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Abstract

The kinetic identification of chemical reaction systems often represents a time-consuming and

complex task. This contribution presents an approach that uses rate estimation and feedback lin-

earization to implement effective control without the use of a kinetic model. The reaction rates

are estimated by numerical differentiation of reaction variants that are computed from measure-

ments. The approach is illustrated in simulation through the temperature control of a continuous

stirred-tank reactor.
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1. Introduction

Efficient control of reaction systems typically requires good kinetic models, whose identification

however can be rather difficult and time consuming. As an alternative, one could try to infer the

reaction rates directly from measurements, that is, without the help of a kinetic model, which can

be done if the various rates can be decoupled (Mhamdi and Marquardt (2004)).

The concept of reaction variants and invariants has been proposed to decouple the dynamic effects

in reaction systems, thereby facilitating their analysis and control (Asbjørnsen and Fjeld (1970);

Asbjørnsen (1972)). A finer separation of the various dynamic effects in both homogeneous and

heterogeneous open reaction systems has been proposed by Amrhein et al. (2010) and Bhatt et al.

(2010), and reformulated recently as a linear transformation of the numbers of moles to so-called

vessel extents by Rodrigues et al. (2015).

Although various control structures for continuous stirred-tank reactors based on reactions variants

and extensive variables have been proposed throughout the years (Hammarström (1979); Geor-

gakis (1986); Farschman et al. (1998); Dochain et al. (2009); Hoang et al. (2014)), there does not

exist a systematic way of tackling the problem, in particular without the use of a kinetic model.

The long-term objective of this research is the development of such a systematic control approach,

which would utilize the linear transformation to vessel extents and control selected extents by

adjusting the corresponding rates such as inlet flowrates or the power exchanged with the jacket.

This paper is a first step in that direction as it investigates the possibility of controlling chemical

reactors without the explicit use of kinetic models. The reaction rates are estimated from concen-

tration and temperature measurements via the concept of variants and then used via a feedback-

linearization scheme to control the reactor temperature by manipulating the amount of heat that is

exchanged with the environment in a continuous stirred-tank reactor.
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2. System description

Let us consider an open homogeneous reactor with S species, R independent reactions, p inlet

streams and one outlet stream. The mole and heat balances can be written as follows (Rodrigues

et al. (2015)):

[
ṅ(t)
Q̇(t)

]

︸ ︷︷ ︸

ż(t)

=

[
NT

(−∆∆∆H)T

]

︸ ︷︷ ︸

A

rv(t)+

[
0S

1

]

︸︷︷︸

b

qex(t)+

[
Win

ŤT
in

]

︸ ︷︷ ︸

C

uin(t)−ω(t)

[
n(t)
Q(t)

]

︸ ︷︷ ︸

z(t)

,

[
n(0)
Q(0)

]

︸ ︷︷ ︸

z(0)

=

[
n0

Q0

]

︸ ︷︷ ︸

z0

, (1)

where n is the S-dimensional vector of numbers of moles, Q(t) = m(t)cp(t)
(
T (t)−Tre f

)
the heat

of the reaction mixture, rv the R-dimensional vector of reaction rates, qex the heat power that is

exchanged with the jacket and the environment, uin the p-dimensional vector of inlet flowrates,

ω(t) := uout (t)
m(t)

the inverse of the residence time, with uout the outlet flowrate and m the mass in the

reactor, N the R× S stoichiometric matrix, ∆H the R-dimensional vector of heats of reaction, Win

the S× p inlet-composition matrix, Ťin the p-dimensional vector of inlet specific enthalpies, V the

reactor volume, cp the specific heat capacity, T the temperature and Tre f a reference temperature.

The state vector z and the vector b are both of dimension S+1, while the matrix A has dimension

(S+ 1)×R and the matrix C has dimension (S+ 1)× p.

2.1. Transformation to reaction-variant states

If rank(A ) = R, there exists a transformation matrix T of dimension R× (S+ 1) such that

T A = IR. (2)

Applying the transformation T to Eq.(1) and defining xrv(t) := T z(t) leads to

ẋrv(t) = rv(t)+ (T b)qex(t)+ (T C )uin(t)−ω(t)xrv(t), xrv(0) = T z0. (3)

The transformed states xrv are reaction variants, with each state xrv,i (i = 1, . . . ,R) depending on the

rate rv,i, the manipulated variable qex, a combination of the inlet flowrates uin, and ω the inverse

of the residence time. To be applicable, the transformation T requires that at least R elements

of the vector z be measured (Rodrigues et al. (2015)). Note that transformations based on [A b]
or [A b z0] could also be used, but they would require stricter rank conditions and thus more

measured quantities, that is, R+ 1 or R+ 2 instead of R.

The proposed control scheme includes two steps, namely, the estimation of the reaction rates from

the reaction-variant states xrv and temperature control via feedback linearization.

3. Control Problem

The objective is to implement temperature control, that is, to control the heat signal Q(t) to either

the constant setpoint Qs or the reference trajectory Qs(t) by manipulating the exchanged heat

power qex(t). The reaction rates rv(t) will be estimated without the use of a kinetic model using

the measured quantities z(t), uin(t), ω(t) and the manipulated variable qex(t).

3.1. Estimation of reaction rates

The estimation of rv(t) proceeds via the differentiation of the reaction variants xrv(t) that are

obtained by transformation of z(t), or of subset of it (of dimension Sa+1 ≥ R), and the knowledge

of the quantities qex(t), uin(t) and ω(t).

Reformulating Eq.(3) yields the reaction rates

rv(t) = ẋrv(t)− (T b)qex(t)− (T C )uin(t)+ω(t)xrv(t). (4)
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Different transformations T that satisfy the condition in Eq.(2) can be found. An example is

the Moore-Penrose pseudo-inverse of the matrix A . However, when only noisy measurements of

the state vector z are available, a better alternative is to consider an estimator in the maximum-

likelihood sense, for which the transformation (2) is computed as

T = (A TΣΣΣ−1
A )−1

A
T ΣΣΣ−1, (5)

where ΣΣΣ is the (S+1)-dimensional variance-covariance matrix of the measurements. Note that the

weighted transformation in Eq.(5) satisfies Eq.(2). The estimates r̂v(t) of the reaction rates given

by Eq.(4) can be computed as described in Appendix A.

3.2. Temperature control via feedback linearization

The controller forces the heat signal Q(t) to converge towards its reference trajectory Qs(t) at a

desired rate. Defining the new input v(t) to represent the right-hand side of the heat balance in

Eq.(1) results in an integral relationship between the input v(t) and the controlled variable Q(t),

Q̇(t) = (−∆∆∆H)Trv(t)+ qex(t)+ ŤT
inuin(t)−ω(t)Q(t)

!
= v(t). (6)

Such an approach builds on feedback linearization, as shown in Figure 1. Solving Eq.(6) for

qex and replacing rv by its estimate r̂v according to Eq.(12) in Appendix A gives the following

expression for the manipulated variable:

qex(t) = v(t)− (−∆∆∆H)Tr̂v(t)− ŤT
inuin(t)+ω(t)Q(t). (7)

One can design a feedback controller that forces the control error e(t) := Qs(t)−Q(t) to converge

exponentially to zero at the rate γ ,

ė(t) =−γ e(t), e(0) = Qs(0)−Q(0), (8)

by using the control law

v(t) = Q̇s(t)+ γ
(
Qs(t)−Q(t)

)
. (9)

Note that this control law uses Q̇s(t), which ideally requires prior knowledge of the reference

signal Qs(t).

4. Simulated example

Consider the simulated example of the acetoacetylation of pyrrole in a homogeneous CSTR of

constant volume with S = 4 species (A: pyrrole; B: diketene; C: 2-acetoacetylpyrrole; D: dehy-

droacetic acid), R = 2 reactions (A + B → C, 2B → D), p = 2 inlets (of A and B) and 1 outlet, the

flowrate of which is adjusted to keep the volume constant (Ruppen et al. (1998)).

For this simulation, the following values are used: N =
[
−1 −1 1 0
0 −2 0 1

]
, WT

in =
[

67.09−1 0 0 0

0 84.08−1 0 0

]

kmol kg−1, ∆∆∆H =
[
−70
−50

]
×103 kJ kmol−1, Ťin = 0p at Tre f = 298.15 K, rv,1 =Vk1cAcB and rv,2 =

Vk2c2
B, where c(t) = n(t)/V (t), k1 = A1 exp

(

−
Ea,1

RT

)

and k2 = A2 exp
(

−
Ea,2

RT

)

. The values of A1,

A2, Ea,1, Ea,2, densities and specific heat capacities are adapted from Maria and Dan (2011). The

volume is constant at V = 90.16 L. Furthermore, it is assumed that the density and the specific

heat capacity are constant, which results in the constant heat capacity mcp = 129.5 kJ K−1.

The system is initially at steady state corresponding to the inputs q̄ex =−4.9× 103 kJ min−1 and

ūin =
[

ūin,A
ūin,B

]

=
[

40
15

]
kg min−1, which gives the initial values nT

0 = [0.833 0.093 0.143 0.028]
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Figure 1: Temperature control based on feedback linearization and estimation of the reaction rates.
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Figure 2: (a) and (c): Temperature profiles for feedback-linearization control (thick line) and PI

control (thin line), with the setpoint shown by the dashed line; (b) and (d): Exchanged heat power

and, insets, estimated (solid lines) and true (dashed lines) reaction rates in kmol min−1. The

subfigures (a) and (b) show results without measurement noise, whereas (c) and (d) show results

with measurement noise.
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kmol and Q0 = 3.37×103 kJ (corresponding to T0 = 324.2 K). The reaction rates rv are estimated

from Eq.(12) in Appendix A. The control objective is to reject a 15 kg min−1 step disturbance in

uin,B by manipulating qex(t).

Measurements of z, qex, uin and ω are available at the sampling time hs = 0.4 s. It is assumed

that the measurement errors in qex, uin and ω are negligible in comparison to those in z, for which

the standard deviation of the concentration measurements is 0.5% of the maximum concentra-

tion of each species and the standard deviation of the temperature measurements is 0.5 K. This

results in the variance-covariance matrix ΣΣΣ = diag
([

0.0042 0.0012 0.0012 0.000252 652
])

. A

differentiation filter of order 1 and window size q = 25 is used (Savitzky and Golay (1964)).

Feedback-linearization control using the exponential convergence rate γ = 5 min−1 is compared to

PI control with the gain Kp = 5 min−1 and the integral time constant τI = 0.2 min. Figure 2 shows

that the feedback-linearization scheme is able to reject the disturbance more quickly than the PI

controller. However, if the standard deviation of the concentration measurements is larger than

about 1% of the maximum concentration of each species, the estimated reaction rates become too

imprecise or delayed (due to the choice of a larger window size q), and the advantage of feedback

linearization over PI control is less clear (results not shown).

5. Conclusions

This paper has considered the control of the heat signal Q (or temperature T ) by manipulating the

exchanged heat power qex in an open homogeneous reactor. Control is implemented without the

knowledge of a kinetic model. Instead, the reaction rates are (i) estimated via differentiation of

reaction variants that are computed from measured states, and (ii) used in a feedback-linearization

scheme that simplifies control design significantly. The parameters of the feedback-linearization

controller are determined by readily available information, namely, the stoichiometry, the heats of

reaction, the inlet composition and specific heat, and the inlet and outlet flow rates. Instead of lin-

earizing the system around a given steady state, this controller implements feedback linearization

that allows tracking a trajectory by forcing the control error to decay exponentially to zero. The

resulting controller shows good performance for the case of frequent and precise concentration

measurements of several species.

The controller requires rank(A ) = R, that is, at least as many measured quantities as there are

reaction rates (Sa + 1 ≥ R). The controller has two tunable parameters, namely, the exponential

convergence rate γ and the parameter of the differentiation filter (the number of samples q in

the case of the Savitzky-Golay filter) used for the rate estimation. These parameters need to be

chosen to guarantee closed-loop stability. This study has shown that, at least in the case of low

measurement noise, feedback linearization coupled to rate estimation can outperform PI control

for the purpose of disturbance rejection.

A. Appendix

Let us approximate the derivative ẋrv(t) using a differentiation filter, such as the first-order fil-

ter proposed by Savitzky and Golay (1964), denoted as Dq(xrv , t), where q is the window size

expressed in number of samples in the time interval [t−∆t, t], with ∆t := (q−1)hs and hs the sam-

pling time. It can be shown that, since xrv is Lipschitz continuous, Dq(xrv , t) can be reformulated

as

Dq(xrv , t) =
q−2

∑
k=0

bk+1

∫ k+1

k
ẋrv(tξ )dξ (10)
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with the weighting coefficients bk+1 =
6(q−1−k)(k+1)

q(q2−1)
> 0, such that ∑

q−2
k=0 bk+1 = 1, and tξ := t −

∆t + ξ hs. Replacing ẋrv by its expression in Eq.(3) gives

Dq(xrv , t) =
q−2

∑
k=0

bk+1

∫ k+1

k

(
rv(tξ )+ (T b)qex(tξ )+ (T C )uin(tξ )−ω(tξ )xrv(tξ )

)
dξ

≈ rv(t)+
q−2

∑
k=0

bk+1 ((T b)qex(tk)+ (T C )uin(tk)−ω(tk)xrv(tk)) , (11)

where tk := t −∆t + k hs.

The approximation in Eq.(11) is valid under the assumptions that rv(t) is approximately constant

in the time interval [t −∆t, t] and the quantities qex(t), uin(t) and ω(t)xrv(t) are approximately

constant in each time interval [tk, tk+1[ .

Defining the operator Wq( f , t) := ∑
q−2
k=0 bk+1 f (tk) for any function f (t), rearranging Eq.(11) for

rv(t) and using measured quantities, denoted as (·̃), yields

r̂v(t) = Dq(x̃rv , t)− (T b)Wq(q̃ex, t)− (T C )Wq(ũin, t)+Wq(ω̃ x̃rv , t) (12)

Eq.(12) approximates Eq.(4) for the case of measured quantities and can be used in Eq.(7).
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