Résumé

Europe is devoting significant joint efforts to develop and to manufacture MW-level gyrotrons for electron cyclotron heating and current drive of future plasma experiments. The two most important ones are the stellarator Wendelstein W7-X at Greifswald and the Tokamak ITER at Cadarache. While the series production of the 140 GHz, 1 MW, CW gyrotrons for the 10-MW electron cyclotron resonance heating system of stellarator W7-X is proceeding, the European GYrotron Consortium is presently developing the EU-1 MW, 170 GHz, CW gyrotron for ITER. The initial design had already been initiated in 2007, as a risk mitigation measure during the development of the advanced ITER EU-2-MW coaxial-cavity gyrotron. The target of the ITER EU-1-MW conventional-cavity design is to benefit as much as possible from the experiences made during the development and series production of the W7-X gyrotron and of the experiences gained from the earlier EU-2-MW coaxial-cavity gyrotron design. Hence, the similarity of the construction will be made visible in this paper. During 2012, the scientific design of the ITER EU-1-MW gyrotron components has been finalized. In collaboration with the industrial partner Thales electron devices, Velizy, France, the industrial design of the technological parts of the gyrotron is being completed. A short-pulse prototype is under development to support the design of the CW prototype tube. The technological path toward the EU ITER-1 MW gyrotron and the final design will be presented.

Détails

Actions