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Abstract A new decomposition optimization algorithm, called path-following gradient-
based decomposition, is proposed to solve separable convex optimization problems. Unlike
path-following Newton methods considered in the literature, this algorithm does not require
any smoothness assumption on the objective function. This allows us to handle more gen-
eral classes of problems arising in many real applications than in the path-following New-
ton methods. The new algorithm is a combination of three techniques, namely smoothing,
Lagrangian decomposition and path-following gradient framework. The algorithm decom-
poses the original problem into smaller subproblems by using dual decomposition and
smoothing via self-concordant barriers, updates the dual variables using a path-following
gradient method and allows one to solve the subproblems in parallel. Moreover, compared
to augmented Lagrangian approaches, our algorithmic parameters are updated automatically
without any tuning strategy. We prove the global convergence of the new algorithm and ana-
lyze its convergence rate. Then, we modify the proposed algorithm by applying Nesterov’s
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accelerating scheme to get a new variant which has a better convergence rate than the first
algorithm. Finally, we present preliminary numerical tests that confirm the theoretical devel-
opment.

Keywords Path-following gradient method · Dual fast gradient algorithm ·
Separable convex optimization · Smoothing technique · Self-concordant barrier ·
Parallel implementation

1 Introduction

Many optimization problems arising in engineering and economics can conveniently be
formulated as Separable Convex Programming Problems (SepCP). Particularly, optimization
problems related to a network N (V , E ) of N agents, where V denotes the set of nodes and
E denotes the set of edges in the network, can be cast as separable convex optimization
problems. Mathematically, an (SepCP) can be expressed as follows:

φ∗ :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
x

{
φ(x) :=

N∑

i=1

φi (xi )
}
,

s.t.
N∑

i=1

(Ai xi − bi ) = 0,

xi ∈ Xi , i = 1, . . . , N ,

(SepCP)

where the decision variable x := (x1, . . . , xN ) with xi ∈ R
ni , the function φi : R

ni → R is
concave and the feasible set is described by the set X := X1 ×· · ·× X N , with Xi ∈ R

ni being
nonempty, closed and convex for all i = 1, . . . , N . Let us denote A := [A1, . . . , AN ], with
Ai ∈ R

m×ni for i = 1, . . . , N , b := ∑N
i=1 bi ∈ R

m and n1 + · · · + nN = n. The constraint
Ax − b = 0 in (SepCP) is called a coupling linear constraint, while xi ∈ Xi are referred to
as local constraints of the i-th component (agent).

Several applications of (SepCP) can be found in the literature such as distributed control,
network utility maximization, resource allocation, machine learning and multistage stochas-
tic convex programming [1,2,11,17,21,22]. Problems of moderate size or possessing a sparse
structure can be solved by standard optimization methods in a centralized setup. However,
in many real applications we meet problems, which may not be solvable by standard opti-
mization approaches or by exploiting problem structures, e.g. nonsmooth separate objective
functions, dynamic structure or distributed information. In those situations, decomposition
methods can be considered as an appropriate framework to tackle the underlying optimiza-
tion problem. Particularly, the Lagrangian dual decomposition is one technique widely used
to decompose a large-scale separable convex optimization problem into smaller subproblem
components, which can simultaneously be solved in a parallel manner or in a closed form.

Various approaches have been proposed to solve (SepCP) in decomposition frameworks.
One class of algorithms is based on Lagrangian relaxation and subgradient-type methods of
multipliers [1,5,13]. However, it has been observed that subgradient methods are usually slow
and numerically sensitive to the choice of step sizes in practice [14]. The second approach
relies on augmented Lagrangian functions, see e.g. [7,8,18]. Many variants were proposed to
process the inseparability of the crossproduct terms in the augmented Lagrangian function in
different ways. Another research direction is based on alternating direction methods which
were studied, for example, in [2]. Alternatively, proximal point-type methods were extended
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to the decomposition framework, see, e.g. [3,11]. Other researchers employed interior point
methods in the framework of (dual) decomposition such as [9,12,19,22].

In this paper, we follow the same line of the dual decomposition framework but in a
different way. First, we smooth the dual function by using self-concordant barriers as in
[11,19]. With an appropriate choice of the smoothness parameter, we show that the dual
function of the smoothed problem is an approximation of the original dual function. Then,
we develop a new path-following gradient decomposition method for solving the smoothed
dual problem. By strong duality, we can also recover an approximate solution for the original
problem. Compared to the previous related methods mentioned above, the new approach
has the following advantages. Firstly, since the feasible set of the problem only depends
on the parameter of its self-concordant barrier, this allows us to avoid a dependence on the
diameter of the feasible set as in prox-function smoothing techniques [11,20]. Secondly, the
proposed method is a gradient-type scheme which allows us to handle more general classes
of problems than in path-following Newton-type methods [12,19,22], in particular, those
with nonsmoothness of the objective function. Thirdly, by smoothing via self-concordant
barrier functions, instead of solving the primal subproblems as general convex programs as
in [3,7,11,20] we can treat them by using their optimality condition. Nevertheless, solving
this condition is equivalent to solving a nonlinear equation or a generalized equation system.
Finally, by convergence analysis, we provide an automatical update rule for all the algorithmic
parameters.

Contribution The contribution of the paper can be summarized as follows:

(a) We propose using a smoothing technique via barrier function to smooth the dual function
of (SepCP) as in [9,12,22]. However, we provide a new estimate for the dual function,
see Lemma 1.

(b) We propose a new path-following gradient-based decomposition algorithm, Algorithm
1, to solve (SepCP). This algorithm allows one to solve the primal subproblems formed
from the components of (SepCP) in parallel. Moreover, all the algorithmic parameters
are updated automatically without using any tuning strategy.

(c) We prove the convergence of the algorithm and estimate its local convergence rate.
(d) Then, we modify the algorithm by applying Nesterov’s accelerating scheme for solving

the dual to obtain a new variant, Algorithm 2, which possesses a better convergence rate
than the first algorithm. More precisely, this convergence rate is O(1/ε), where ε is a
given accuracy.

Let us emphasize the following points. The new estimate of the dual function considered
in this paper is different from the one in [19] which does not depend on the diameter of
the feasible set of the dual problem. The worst-case complexity of the second algorithm is
O(1/ε) which is much higher than in subgradient-type methods of multipliers [1,5,13]. We
note that this convergence rate is optimal in the sense of Nesterov’s optimal schemes [6,14]
applying to dual decomposition frameworks. Both algorithms developed in this paper can be
implemented in a parallel manner.

Outline The rest of this paper is organized as follows. In the next section, we recall the
Lagrangian dual decomposition framework in convex optimization. Section 3 considers a
smoothing technique via self-concordant barriers and provides an estimate for the dual func-
tion. The new algorithms and their convergence analysis are presented in Sects. 4 and 5.
Preliminarily numerical results are shown in the last section to verify our theoretical results.
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Notation and terminology Throughout the paper, we work on the Euclidean space R
n

endowed with an inner product xT y for x, y ∈ R
n . The Euclidean norm is ‖x‖2 := √

xT x
which associates with the given inner product. For a proper, lower semicontinuous convex
function f , ∂ f (x) denotes the subdifferential of f at x . If f is concave, then we also use ∂ f (x)

for its super-differential at x . For any x ∈ dom( f ) such that ∇2 f (x) is positive definite, the

local norm of a vector u with respect to f at x is defined as ‖u‖x := [
uT ∇2 f (x)u

]1/2
and

its dual norm is ‖u‖∗
x := max

{
uT v | ‖v‖x ≤ 1

} = [
uT ∇2 f (x)−1u

]1/2
. It is obvious that

uT v ≤ ‖u‖x‖v‖∗
x . The notation R+ and R++ define the sets of nonnegative and positive real

numbers, respectively. The function ω : R+ → R is defined by ω(t) := t − ln(1 + t) and its
dual function ω∗ : [0, 1) → R is ω∗(t) := −t − ln(1 − t).

2 Lagrangian dual decomposition in convex optimization

Let L (x, y) := φ(x) + yT (Ax − b) be the partial Lagrangian function associated with the
coupling constraint Ax − b = 0 of (SepCP). The dual problem of (SepCP) is written as

g∗ := min
y∈Rm

g(y), (1)

where g is the dual function defined by

g(y) := max
x∈X

L (x, y) = max
x∈X

{
φ(x) + yT (Ax − b)

}
. (2)

Due to the separability of φ, the dual function g can be computed in parallel as

g(y) =
N∑

i=1

gi (y), gi (y) := max
xi ∈Xi

{
φi (xi ) + yT (Ai xi − bi )

}
, i = 1, . . . , N . (3)

Throughout this paper, we require the following fundamental assumptions:

Assumption A.1 The following assumptions hold, see [18]:

(a) The solution set X∗ of (SepCP) is nonempty.
(b) Either X is polyhedral or the following Slater qualification condition holds

ri(X) ∩ {x | Ax − b = 0} 
= ∅, (4)

where ri(X) is the relative interior of X .
(c) The functions φi , i = 1, . . . , N , are proper, upper semicontinuous and concave and A is

full-row rank.

Assumption A.1 is standard in convex optimization. Under this assumption, strong duality
holds, i.e. the dual problem (1) is also solvable and g∗ = φ∗. Moreover, the set of Lagrange
multipliers, Y ∗, is bounded. However, under Assumption A.1, the dual function g may not
be differentiable. Numerical methods such as subgradient-type and bundle methods can be
used to solve (1). Nevertheless, these methods are in general numerically intractable and
slow [14].
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3 Smoothing via self-concordant barrier functions

In many practical problems, the feasible sets Xi , i = 1, . . . , N are usually simple, e.g. box,
polyhedra and ball. Hence, Xi can be endowed with a self-concordant barrier (see, e.g.
[14,15]) as in the following assumption.

Assumption A.2 Each feasible set Xi , i = 1, . . . , N , is bounded and endowed with a self-
concordant barrier function Fi with the parameter νi > 0.

Note that the assumption on the boundedness of Xi can be relaxed by assuming that the set
of sample points generated by the new algorithm described below is bounded.

Remark 1 The theory developed in this paper can be easily extended to the case Xi given as
follows, see [12], for some i ∈ {1, . . . , N }:

Xi := Xc
i ∩ Xa

i , Xa
i := {

xi ∈ R
ni | Di xi = di

}
, (5)

by applying the standard linear algebra routines, where the set Xc
i has nonempty interior and

associated with a νi -self-concordant barrier Fi . If, for some i ∈ {1, . . . , M}, Xi := Xc
i ∩ X g

i ,
where X g

i is a general convex set, then we can remove X g
i from the set of constraints by

adding the indicator function δX g
i
(·) of this set to the objective function component φi , i.e.

φ̂i := φi + δX g
i

(see [16]).

Let us denote by xc
i the analytic center of Xi , i.e.

xc
i := arg min

xi ∈int(Xi )
Fi (xi ) ∀i = 1, . . . , N , (6)

where int(Xi ) is the interior of Xi . Since Xi is bounded, xc
i is well-defined [14]. Moreover,

the following estimates hold

Fi (xi ) − Fi (xc
i ) ≥ ω(‖xi − xc

i ‖xc
i
) and ‖xi − xc

i ‖xc
i

≤
νi + 2

√
νi , ∀xi ∈ Xi , i = 1, . . . , N . (7)

Without loss of generality, we can assume that Fi (xc
i ) = 0. Otherwise, we can replace

Fi by F̃i (·) := Fi (·) − Fi (xc
i ) for i = 1, . . . , N . Since X is separable, F := ∑N

i=1 Fi is a

self-concordant barrier of X with the parameter ν := ∑N
i=1 νi .

Let us define the following function

g(y; t) :=
N∑

i=1

gi (y; t), (8)

where

gi (y; t) := max
xi ∈int(Xi )

{
φi (xi ) + yT (Ai xi − bi ) − t Fi (xi )

}
, i = 1, . . . , N , (9)

with t > 0 being referred to as a smoothness parameter. Note that the maximum problem in
(9) has a unique optimal solution, which is denoted by x∗

i (y; t), due to the strict concavity
of the objective function. We call this problem the primal subproblem. Consequently, the
functions gi (·, t) and g(·, t) are well-defined and smooth on R

m for any t > 0. We also call
gi (·; t) and g(·; t) the smoothed dual function of gi and g, respectively.

The optimality condition for (9) is written as

0 ∈ ∂φi (x∗
i (y; t)) + AT

i y − t∇Fi (x∗
i (y; t)), i = 1, . . . , N . (10)
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We note that (10) represents a system of generalized equations. Particularly, if φi is differ-
entiable for some i ∈ {1, . . . , N }, then the condition (10) collapses to ∇φi (x∗

i (y; t)) + AT
i y

− t∇Fi (x∗
i (y; t)) = 0, which is indeed a system of nonlinear equations. Since problem (9)

is convex, the condition (10) is necessary and sufficient for optimality. Let us define the full
optimal solution x∗(y; t) := (x∗

1 (y; t), · · · , x∗
N (y; t)). The gradients of gi (·; t) and g(·; t)

are given, respectively by

∇gi (y; t) = Ai x∗
i (y; t) − bi , ∇g(y; t) = Ax∗(y; t) − b. (11)

Next, we show the relation between the smoothed dual function g(·; t) and the original dual
function g(·) for a sufficiently small t > 0.

Lemma 1 Suppose that Assumptions A.1 and A.2 are satisfied. Let x̄ be a strictly feasible
point for problem (SepCP), i.e. x̄ ∈ int(X) ∩ {x | Ax = b}. Then, for any t > 0 we have

g(y) − φ(x̄) ≥ 0 and g(y; t) + t F(x̄) − φ(x̄) ≥ 0. (12)

Moreover, the following estimate holds

g(y; t) ≤ g(y) ≤ g(y; t) + t (ν + F(x̄)) + 2
√

tν [g(y; t) + t F(x̄) − φ(x̄)]1/2 . (13)

Proof The first two inequalities in (12) are trivial due to the definitions of g(·), g(·; t) and
the feasibility of x̄ . We only prove (13). Indeed, since x̄ ∈ int(X) and x∗(y) ∈ X , if we define
x∗
τ (y) := x̄ + τ(x∗(y) − x̄), then x∗

τ (y) ∈ int(X) if τ ∈ [0, 1). By applying the inequality
[15, 2.3.3] we have

F(x∗
τ (y)) ≤ F(x̄) − ν ln(1 − τ).

Using this inequality together with the definition of g(·; t), the concavity of φ, Ax̄ = b and
g(y) = φ(x∗(y)) + yT [Ax∗(y) − b], we deduce that

g(y; t) = max
x∈int(X)

{
φ(x) + yT (Ax − b) − t F(x)

}

≥ max
τ∈[0,1)

{
φ(x∗

τ (y)) + yT (Axτ (y) − b) − t F(x∗
τ (y))

}

≥ max
τ∈[0,1)

{
(1 − τ) [φ(x̄) + (Ax̄ − b)]

+τ
[
φ(x∗(y) + yT (Ax∗(y) − b)

]
− t F(x∗

τ (y))
}

≥ max
τ∈[0,1)

{(1 − τ)φ(x̄) + τg(y) + tν ln(1 − τ)} − t F(x̄). (14)

By solving the maximization problem on the right hand side of (14) and then rearranging the
results, we obtain

g(y) ≤ g(y; t) + t[ν + F(x̄)] + tν
[

ln
( g(y) − φ(x̄)

tν

)]

+, (15)

where [·]+ := max {·, 0}. Moreover, it follows from (14) that

g(y) − φ(x̄) ≤ 1

τ

[

g(y; t) − φ(x̄) + t F(x̄) + tν ln

(

1 + τ

1 − τ

)]

≤ 1

τ

[
g(y; t) − φ(x̄) + t F(x̄)

]
+ tν

1 − τ
.
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If we minimize the right hand side of this inequality on [0, 1), then we get g(y) − φ(x̄) ≤
[(g(y; t) − φ(x̄) + t F(x̄))1/2 + √

tν]2. Finally, we plug this inequality into (15) to obtain

g(y) ≤ g(y; t) + tν + 2tν ln

(

1 +
√ [g(y; t) − φ(x̄) + t F(x̄]

tν

)

+ t F(x̄)

≤ g(y; t) + tν + t F(x̄) + 2
√

tν [g(y; t) − φ(x̄) + t F(x̄)]1/2 ,

which is indeed (13). ��
Remark 2 (Approximation of g) It follows from (13) that g(y) ≤ (1+2

√
tν)g(y; t)+ t (ν +

F(x̄)) + 2
√

tν(t F(x̄) − φ(x̄)). Hence, g(y; t) → g(y) as t → 0+. Moreover, this estimate
is different from the one in [19], since we do not assume that the feasible set of the dual
problem (1) is bounded.

Now, we consider the following minimization problem which we call the smoothed dual
problem to distinguish it from the original dual problem

g∗(t) := g(y∗(t); t) = min
y∈Rm

g(y; t). (16)

We denote by y∗(t) the solution of (16). The following lemma shows the main properties of
the functions g(y; ·) and g∗(·).
Lemma 2 Suppose that Assumptions A.1 and A.2 are satisfied. Then

(a) The function g(y; ·) is convex and nonincreasing on R++ for a given y ∈ R
m. Moreover,

we have:

g(y; t̂) ≥ g(y; t) − (t̂ − t)F(x∗(y; t)). (17)

(b) The function g∗(·) defined by (16) is differentiable and nonincreasing on R++. Moreover,
g∗(t) ≤ g∗, limt↓0+ g∗(t) = g∗ = φ∗ and x∗(y∗(t); t) is feasible to the original problem
(SepCP).

Proof We only prove (17), the proof of the remainders can be found in [12,19]. Indeed, since
g(y; ·) is convex and differentiable and dg(y;t)

dt = −F(x∗(y; t)) ≤ 0, we have g(y; t̂) ≥
g(y; t) + (t̂ − t) dg(y;t)

dt = g(y; t) − (t̂ − t)F(x∗(y; t)). ��
The statement (b) of Lemma 2 shows that if we find an approximate solution yk for (16)

for sufficiently small tk , then g∗(tk) approximates g∗ (recall that g∗ = φ∗) and x∗(yk; tk) is
approximately feasible to (SepCP).

4 Path-following gradient method

In this section we design a path-following gradient algorithm to solve the dual problem (1),
analyze the convergence of the algorithm and estimate the local convergence rate.

4.1 The path-following gradient scheme

Since g(·; t) is strictly convex and smooth, we can write the optimality condition of (16) as

∇g(y; t) = 0. (18)
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This equation has a unique solution y∗(t).
Now, for any given x ∈ int(X), we note that ∇2 F(x) is positive definite. We introduce a

local norm of matrices as

|‖A‖|∗x := ‖A∇2 F(x)−1 AT ‖2, (19)

The following lemma shows an important property of the function g(·; t).

Lemma 3 Suppose that Assumptions A.1 and A.2 are satisfied. Then, for all t > 0 and
y, ŷ ∈ R

m, one has

[∇g(y; t) − ∇g(ŷ; t)]T (y − ŷ) ≥ t‖∇g(y; t) − ∇g(ŷ; t)‖2
2

cA
[
cA + ‖∇g(y, t) − ∇g(ŷ; t)‖2

] , (20)

where cA := |‖A‖|∗x∗(y;t). Consequently, it holds hat

g(ŷ; t) ≤ g(y; t) + ∇g(y; t)T (ŷ − y) + tω∗(cAt−1‖ŷ − y‖2), (21)

provided that cA‖ŷ − y‖2 < t .

Proof For notational simplicity, we denote x∗ := x∗(y; t) and x̂∗ := x∗(ŷ; t). From the
definition (11) of ∇g(·; t) and the Cauchy–Schwarz inequality we have

[∇g(y; t) − ∇g(ŷ; t)]T (y − ŷ) = (y − ŷ)T A(x∗ − x̂∗). (22)

‖∇g(ŷ; t) − ∇g(y; t)‖2 ≤ |‖A‖|∗x∗‖x̂∗ − x∗‖x∗ . (23)

It follows from (10) that AT (y − ŷ) = t[∇F(x∗) − ∇F(x̂∗] − [ξ(x∗) − ξ(x̂∗)], where
ξ(·) ∈ ∂φ(·). By multiplying this relation with x∗ − x̂∗ and then using [14, Theorem 4.1.7]
and the concavity of φ we obtain

(y−ŷ)T A(x∗−x̂∗) = t[∇F(x∗)−∇F(x̂∗)]T (x∗−x̂∗)−[ξ(x∗)−ξ(x̂∗)]T (x∗−x̂∗)
concavity of φ≥ t[∇F(x∗) − ∇F(x̂∗)]T (x∗ − x̂∗)

≥ t‖x∗ − x̂∗‖2
x∗

1 + ‖x∗ − x̂∗‖x∗

(23)≥ t
[‖∇g(y; t) − ∇g(ŷ; t)‖2

]2

|‖A‖|∗x∗
[|‖A‖|∗x∗ + ‖∇g(y; t) − ∇g(ŷ; t)‖2

] .

Substituting this inequality into (22) we obtain (20).
By the Cauchy–Schwarz inequality, it follows from (20) that ‖∇g(ŷ; t) − ∇g(y; t)‖ ≤

c2
A‖ŷ−y‖2

t−cA‖ŷ−y‖ , provided that cA‖ŷ − y‖ ≤ t . Finally, by using the mean-value theorem, we have

g(ŷ; t) = g(y; t) + ∇g(y; t)T (ŷ − y) +
1∫

0

(∇g(y + s(ŷ − y); t) − ∇g(y; t))T (ŷ − y)ds

≤ g(y; t) + ∇g(y; t)T (ŷ − y) + cA‖ŷ − y‖2

1∫

0

cAs‖ŷ − y‖2

t − cAs‖ŷ − y‖2
ds

= g(y; t) + ∇g(y; t)T (ŷ − y) + tω∗(cAt−1‖ŷ − y‖2),

which is indeed (21) provided that cA‖ŷ − y‖2 < t . ��
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Now, we describe one step of the path-following gradient method for solving (16). Let us
assume that yk ∈ R

m and tk > 0 are the values at the current iteration k ≥ 0, the values yk+1

and tk+1 at the next iteration are computed as
{

tk+1 := tk − Δtk,
yk+1 := yk − αk∇g(yk, tk+1),

(24)

where αk := α(yk; tk) > 0 is the current step size and Δtk is the decrement of the parameter
t . In order to analyze the convergence of the scheme (24), we introduce the following notation

x̃∗
k := x∗(yk; tk+1), c̃k

A = |‖A‖|∗x∗(yk ;tk+1)
and λ̃k := ‖∇g(yk; tk+1)‖2. (25)

First, we prove an important property of the path-following gradient scheme (24).

Lemma 4 Under Assumptions A.1 and A.2, the following inequality holds

g(yk+1; tk+1) ≤ g(yk; tk) −
[
αk λ̃

2
k − tk+1ω∗(c̃k

At−1
k+1αk λ̃k) − Δtk F(x̃∗

k )
]
, (26)

where c̃k
A and λ̃k are defined by (25).

Proof Since tk+1 = tk − Δtk , by using (17) with tk and tk+1, we have

g(yk; tk+1) ≤ g(yk; tk) + Δtk F(x∗(yk; tk+1)). (27)

Next, by (21) we have yk+1 − yk = −αk∇g(yk; tk+1) and λ̃k := ‖∇g(yk; tk+1)‖2. Hence,
we can derive

g(yk+1; tk+1) ≤ g(yk; tk+1) − αk λ̃
2
k + tk+1ω∗

(
c̃k

Aαk λ̃k t−1
k+1

)
. (28)

By inserting (27) into (28), we obtain (26). ��

Lemma 5 For any yk ∈ R
m and tk > 0, the constant c̃k

A := |‖A‖|∗
x∗(yk ;tk+1)

is bounded.

More precisely, c̃k
A ≤ c̄A := κ|‖A‖|∗xc < +∞. Furthermore, λ̃k := ‖∇g(yk; tk+1)‖2 is also

bounded, i.e.: λ̃k ≤ λ̄ := κ|‖A‖|∗xc + ‖Axc − b‖2, where κ := ∑N
i=1[νi + 2

√
νi ].

Proof For any x ∈ int(X), from the definition of |‖ · ‖|∗x , we can write

|‖A‖|∗x = sup
{
[vT A∇2 F(x)−1 AT v]1/2 : ‖v‖2 = 1

}

= sup
{
‖u‖∗

x : u = AT v, ‖v‖2 = 1
}
.

By using [14, Corollary 4.2.1], we can estimate |‖A‖|∗x as

|‖A‖|∗x ≤ sup
{
κ‖u‖∗

xc : u = AT v, ‖v‖2 = 1
}

= κ sup

{[
vT A∇2 F(xc)−1 AT v

]1/2
, ‖v‖2 = 1

}

= κ|‖A‖|∗xc .

Here, the inequality in this implication follows from [14, Corollary 4.2.1]. By substituting
x = x∗(yk; tk+1) into the above inequality, we obtain the first conclusion. In order to prove
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the second bound, we note that ∇g(yk; tk+1) = Ax∗(yk; tk+1) − b. Therefore, by using (7),
we can estimate

‖∇g(yk; tk+1)‖2 = ‖Ax∗(yk; tk+1) − b‖2 ≤ ‖A(x∗(yk; tk+1) − xc)‖2 + ‖Axc − b‖2

≤ |‖A‖|∗xc‖x∗(yk; tk+1) − xc‖xc + ‖Axc − b‖2

(7)≤ κ|‖A‖|∗xc + ‖Axc − b‖2,

which is the second conclusion. ��
Next, we show how to choose the step size αk and also the decrement Δtk such that

g(yk+1; tk+1) < g(yk; tk) in Lemma 4. We note that x∗(yk; tk+1) is obtained by solving
the primal subproblem (9) and the quantity ck

F := F(x∗(yk; tk+1)) is nonnegative (since we
have that F(x∗(yk; tk+1)) ≥ F(xc) = 0) and computable. By Lemma 5, we see that

αk := tk

c̃k
A(c̃k

A + λ̃k)
≥ α0

k := tk
c̄A(c̄A + λ̄)

, (29)

which shows that αk > 0 as tk > 0. We have the following estimate.

Lemma 6 The step size αk defined by (29) satisfies

g(yk+1; tk+1) ≤ g(yk; tk) − tk+1ω

(
λ̃k

c̃k
A

)

+ Δtk F(x̃∗
k ), (30)

where x̃∗
k , c̃k

A and λ̃k are defined by (25).

Proof Let ϕ(α) := αλ̃2
k − tk+1ω∗(c̃k

At−1
k+1αλ̃k) − tk+1ω(λ̃k(c̃k

A)−1). We can simplify this

function as ϕ(α) = tk+1[u + ln(1 − u)], where u := t−1
k+1λ̃

2
kα + t−1

k+1c̃k
Aλ̃kα − (c̃k

A)−1λ̃k . The
function ϕ(α) ≤ 0 for all u and ϕ(α) = 0 at u = 0 which leads to αk := tk

c̃k
A(c̃k

A+λ̃k )
. ��

Since tk+1 = tk − Δtk , if we choose Δtk := tkω
(
λ̃k/c̃k

A

)

2
[
ω

(
λ̃k/c̃k

A

)
+F(x̃∗

k )
] , then

g(yk+1; tk+1) ≤ g(yk; tk) − t

2
ω

(
λ̃k/c̃k

A

)
. (31)

Therefore, the update rule for t can be written as

tk+1 := (1 − σk)tk, where σk :=
ω

(
λ̃k/c̃k

A

)

2
[
ω

(
λ̃k/c̃k

A

)
+ F(x̃∗

k )
] ∈ (0, 1). (32)

4.2 The algorithm

Now, we combine the above analysis to obtain the following path-following gradient decom-
position algorithm.

Algorithm 1. (Path-following gradient decomposition algorithm).
Initialization:

Step 1. Choose an initial value t0 > 0 and tolerances εt > 0 and εg > 0.
Step 2. Take an initial point y0 ∈ R

m and solve (3) in parallel to obtain x∗
0 := x∗(y0; t0).
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Step 3. Compute c0
A := |‖A‖|∗x∗

0
, λ0 := ‖∇g(y0; t0)‖2, ω0 := ω(λ0/c0

A) and c0
F :=

F(x∗
0 ).

Iteration: For k = 0, 1, . . . , kmax, perform the following steps:

Step 1: Update the penalty parameter as tk+1 := tk(1 − σk), where σk := ωk

2(ωk+ck
F )

.

Step 2: Solve (3) in parallel to obtain x∗
k := x∗(yk, tk+1). Then, form the gradient vector

∇g(yk; tk+1) := Ax∗
k − b.

Step 3: Compute λk+1 := ‖∇g(yk; tk+1)‖2, ck+1
A := |‖A‖|∗x∗

k
, ωk+1 := ω(λk+1/ck+1

A )

and ck+1
F := F(x∗

k ).
Step 4: If tk+1 ≤ εt and λk ≤ ε, then terminate.
Step 5: Compute the step size αk+1 := tk+1

ck+1
A (ck+1

A +λk+1)
.

Step 6: Update yk+1 as yk+1 := yk − αk+1∇g(yk, tk+1).

End.
The main step of Algorithm 1 is Step 2, where we need to solve in parallel the primal

subproblems. To form the gradient vector ∇g(·, tk+1), one can compute in parallel by mul-
tiplying column-blocks Ai of A by the solution x∗

i (yk, tk+1). This task only requires local
information to be exchanged between the current node and its neighbors.

We note that, in augmented Lagrangian approaches, we need to carefully tune the penalty
parameter in an appropriate way. The update rule for the penalty parameter is usually heuristic
and can be changed from problem to problem. In contrast to this, Algorithm 1 does not
require any tuning strategy to update the algorithmic parameters. The formula for updating
these parameters is obtained from theoretical analysis.

We note that since x∗
k is always in the interior of the feasible set, F(x∗

k ) < +∞, formula
(32) can be used and always decreases the parameter tk . However, in practice, this formula
may lead to slow convergence. Besides, the step size αk computed at Step 5 depends on the
parameter tk . If tk is small, then Algorithm 1 makes short steps toward a solution of (1). In
our numerical test, we use the following safeguard update:

tk+1 :=
⎧
⎨

⎩

tk

(

1 − ωk

2(ωk+ck
F )

)

if ck
F ≤ c̄F ,

tk otherwise,
(33)

where c̄F is a sufficiently large positive constant (e.g., c̄F := 99ω0). With this modification,
we observed a good performance in our numerical tests below.

4.3 Convergence analysis

Let us assume that t = infk≥0 tk > 0. Then, the following theorem shows the convergence
of Algorithm 1.

Theorem 1 Suppose that Assumptions A.1 and A.2 are satisfied. Suppose further that the
sequence {(yk, tk, λk)}k≥0 generated by Algorithm 1 satisfies t := infk≥0{tk} > 0. Then

lim
k→∞ ‖∇g(yk, tk+1)‖2 = 0. (34)

Consequently, there exists a limit point y∗ of {yk} such that y∗ is a solution of (16) at t = t .

Proof It is sufficient to prove (34). Indeed, from (31) we have

k∑

i=0

tk
2

ω(λk+1/ck+1
A ) ≤ g(y0; t0) − g(yk+1; tk+1) ≤ g(y0; t0) − g∗.
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Since tk ≥ t > 0 and ck+1
A ≤ c̄A due to Lemma 5, the above inequality leads to

t

2

∞∑

i=0

ω(λk+1/c̄A) ≤ g(y0; t0) − g∗ < +∞.

This inequality implies limk→∞ ω(λk+1/c̄A) = 0, which leads to limk→∞ λk+1 = 0. By
definition of λk we have limk→∞ ‖∇g(yk; tk+1)‖2 = 0. ��
Remark 3 From the proof of Theorem 1, we can fix ck

A ≡ c̄ := κ|‖A‖|∗xc in Algorithm 1.
This value can be computed a priori.

4.4 Local convergence rate

Let us analyze the local convergence rate of Algorithm 1. Let y0 be an initial point of
Algorithm 1 and y∗(t) be the unique solution of (16). We denote by:

r0(t) := ‖y0 − y∗(t)‖2. (35)

For simplicity of discussion, we assume that the smoothness parameter tk is fixed at t > 0
sufficiently small for all k ≥ 0 (see Lemma 1). The convergence rate of Algorithm 1 in the
case tk = t is stated in the following lemma.

Lemma 7 (Local convergence rate) Suppose that the initial point y0 is chosen such that
g(y0; t) − g∗(t) ≤ c̄Ar0(t). Then,

g(yk; t) − g∗(t) ≤ 4c̄2
Ar0(t)2

4c̄Ar0(t) + tk
. (36)

Consequently, the local convergence rate of Algorithm 1 is at least O

(
4c̄2

Ar0(t)2

tk

)

.

Proof Let rk := ‖yk − y∗‖,Δk := g(yk; t) − g∗(t) ≥ 0, y∗ := y∗(t), λk := ‖∇g(yk; t)‖2

and ck := |‖A‖|∗
x∗(yk ;t). By using the fact that ∇g(y∗; t) = 0 and (20) we have:

r2
k+1 = ‖yk+1 − y∗‖2 = ‖yk − αk∇g(yk; t) − y∗‖2

= r2
k − 2αk∇g(yk; t)T (yk − y∗) + α2

k ‖∇g(yk; t)‖2

(20)≤ r2
k − 2αk

tλ2
k

ck
A(ck

A + λk)
+ α2

k λ2
k

(29)= r2
k − α2

k λ2
k .

This inequality implies that rk ≤ r0 for all k ≥ 0. First, by the convexity of g(·; t) we have:

Δk = g(yk; t) − g∗(t) ≤ ‖∇g(yk, t)‖2‖yk − y∗‖2 = λk‖y0 − y∗‖2 ≤ λkr0(t).

This inequality implies:

λk ≥ r0(t)
−1Δk . (37)

Since tk = t > 0 is fixed for all k ≥ 0, it follows from (26) that:

g(yk+1; t) ≤ g(yk; t) − tω(λk/ck
A),
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where λk := ‖∇g(yk; t)‖2 and ck
A := |‖A‖|∗

x∗(yk ;t). By using the definition of Δk , the last
inequality is equivalent to:

Δk+1 ≤ Δk − tω(λk/ck
A). (38)

Next, since ω(τ) ≥ τ 2/4 for all 0 ≤ τ ≤ 1 and ck
A ≤ c̄A due to Lemma 5, it follows from

(37) and (38) that:

Δk+1 ≤ Δk − (tΔ2
k)/(4r0(t)

2c̄2
A), (39)

for all Δk ≤ c̄Ar0(t).
Let η := t/(4r0(t)2c̄2

A). Since Δk ≥ 0, (39) implies:

1

Δk+1
≥ 1

Δk(1 − ηΔk)
= 1

Δk
+ η

(1 − ηΔk)
≥ 1

Δk
+ η.

By induction, this inequality leads to 1
Δk

≥ 1
Δ0

+ ηk which is equivalent to Δk ≤ Δ0
1+ηΔ0k

provided that Δ0 ≤ c̄Ar0(t). Since η := t/(4r0(t)2c̄2
A), this inequality is indeed (36). The

last conclusion follows from (36). ��

Remark 4 Let us fix t := ε. It follows from (36) that the worst-case complexity of Algorithm

1 to obtain an ε-solution yk in the sense g(yk; ε) − g∗(ε) ≤ ε is O

(
c̄2

Ar2
0

ε2

)

. We note that

c̄A = κ|‖A‖|∗xc = ∑N
i=1(νi + 2

√
νi )|‖Ai‖|∗xc

i
. However, in most cases, the parameter νi

depends linearly on the dimension of the problem. Therefore, we can conclude that the

worst-case complexity of Algorithm 1 is O

(
(n‖A‖∗

xc r0)2

ε2

)

.

5 Fast gradient decomposition algorithm

Let us fix t = t > 0. The function g(·) := g(·; t) is convex and differentiable but its gradient
is not Lipschitz continuous, we can not apply Nesterov’s fast gradient algorithm [14] to
solve (16). In this section, we modify Nesterov’s fast gradient method in order to obtain an
accelerating gradient method for solving (16).

One iteration of the modified fast gradient method is described as follows. Let yk and vk

be given points in ∈ R
m , we compute new points yk+1 and vk+1 as follows:

{
yk+1 := vk − αk∇g(vk),

vk+1 = ak yk+1 + bk yk + ckv
k,

(40)

where αk > 0 is the step size, ak , bk and ck are three parameters which will be chosen
appropriately. As we can see from (40), at each iteration k, we only require to evaluate one
gradient ∇g(vk) of the function g. First, we prove the following estimate.

Lemma 8 Let θk ∈ (0, 1) be a given parameter, αk := t
ĉA(ĉA+λk )

and ρk := t
2θk (ĉk

A)2 for

some parameter ĉk
A ≥ ck

A, where λk := ‖∇g(vk)‖2 and ck
A := |‖A‖|∗

x∗(vk ;t). We define two
vectors

rk := θ−1
k [vk − (1 − θk)yk] and rk+1 := rk − ρk∇g(vk). (41)
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Then, the new point yk+1 generated by (40) satisfies

1

θ2
k

[
g(yk+1) − g∗] + (ĉk

A)2

t
‖rk+1 − y∗‖2

2 ≤ (1 − θk)

θ2
k

[
g(yk) − g∗]

+ (ĉk
A)2

t
‖rk − y∗‖2

2, (42)

provided that λk ≤ ĉk
A, where y∗ := y∗(t) and g∗ := g(y∗; t).

Proof Since yk+1 = vk − αk∇g(vk) and αk = t
ĉk

A(ĉk
A+λk )

, it follows from (21) that

g(yk+1) ≤ g(vk) − tω

(‖∇g(vk)‖2

ĉk
A

)

. (43)

Now, since ω(τ) ≥ τ 2/4 for all 0 ≤ τ ≤ 1, the inequality (43) implies

g(yk+1) ≤ g(vk) − t

4(ĉk
A)2

‖∇g(vk)‖2
2, (44)

provided that ‖∇g(vk)‖2 ≤ ĉk
A. For any uk := (1 − θk)yk + θk y∗ and θk ∈ (0, 1) we have

g(vk) ≤ g(uk) + ∇g(vk)T (vk − uk) ≤ (1 − θk)g(yk) + θk g(y∗)

+∇g(vk)T (vk − (1 − θk)yk − θk y∗). (45)

By substituting (45) and the relation vk − (1 − θk)yk = θkrk into (44) we obtain:

g(yk+1) ≤ (1 − θk)g(yk) + θk g∗ + θk∇g(vk)T (rk − y∗) − t

4(ĉk
A)2

‖∇g(vk)‖2
2

= (1−θk)g(yk)+θk g∗+ θ2
k (ĉk

A)2

t

[
‖rk −y∗‖2

2 − ‖rk − t

2θk(ĉk
A)2

∇g(vk) − y∗‖2
2

]

= (1 − θk)g(yk) + θk g∗ + θ2
k (ĉk

A)2

t

[
‖rk − y∗‖2

2 − ‖rk+1 − y∗‖2
2

]
. (46)

Since 1/θ2
k = (1 − θk)/θ

2
k + 1/θk , by rearranging (46) we obtain (42). ��

Next, we consider the update rule of θk . We can see from (42) that if θk+1 is updated such
that (1 − θk+1)/θ

2
k+1 = 1/θ2

k , then g(yk+1) < g(yk). The last condition leads to:

θk+1 = 0.5θk(

√

θ2
k + 4 − θk). (47)

The following lemma was proved in [20].

Lemma 9 The sequence {θk} generated by (47) starting from θ0 = 1 satisfies

1

2k + 1
≤ θk ≤ 2

k + 2
, ∀k ≥ 0.

By Lemma 8, we have rk+1 = rk −ρk∇g(vk) and rk+1 = 1
θk+1

(vk+1 − (1 − θk+1)yk+1).
From these relations, we deduce

vk+1 = (1 − θk+1)yk+1 + θk+1(r
k − ρk∇g(vk)). (48)
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Note that if we combine (48) and (40) then

vk+1 = (1 − θk+1 − ρkθk+1

αk
)yk+1 − (1 − θk)θk+1

θk
yk +

(
1

θk
+ ρk

αk

)

θk+1v
k .

This is in fact the second line of (40), where ak := 1 − θk+1 − ρkθk+1α
−1
k , bk := −(1 −

θk)θk+1θ
−1
k and ck := (θ−1

k + ρkα
−1
k )θk+1.

Before presenting the algorithm, we show how to choose ĉk
A to ensure the condition

λk ≤ ĉk
A. Indeed, from Lemma 5 we see that if we choose ĉk

A := ĉA ≡ c̄A + ‖Axc − b‖2,
then λk ≤ ĉk

A. Now, by combining all the above analysis, we can describe the modified fast
gradient algorithm in detail as follows.

Algorithm 2. (Modified fast gradient decomposition algorithm).

Initialization: Perform the following steps:

Step 1. Given a tolerance ε > 0. Fix the parameter t at a certain value t > 0 and compute
ĉA := κ|‖A‖|∗xc + ‖Axc − b‖2.
Step 2. Take an initial point y0 ∈ R

m .
Step 3. Set θ0 := 1 and v0 := y0.

Iteration: For k = 0, 1, . . . , kmax, perform the following steps:

Step 1: If λk ≤ ε, then terminate.
Step 2: Compute rk := θ−1

k [vk − (1 − θk)yk].
Step 3: Update yk+1 as yk+1 := vk − αk∇g(vk), where αk = t

ĉA(ĉA+λk )
.

Step 4: Update θk+1 := 1
2θk[(θ2

k + 4)1/2 − θk].
Step 5: Update vk+1 := (1 − θk+1)yk+1 + θk+1(rk − ρk∇g(vk)), where ρk := t

2ĉ2
Aθk

.

Step 6: Solve (3) in parallel to obtain x∗
k+1 := x∗(vk+1, t). Then, form a gradient vector

∇g(vk+1) := Ax∗
k+1 − b and compute λk+1 := ‖∇g(vk+1)‖2.

End.
The core step of Algorithm 2 is Step 6, where we need to solve N primal subproblems of

the form (3) in parallel. The following theorem shows the convergence of Algorithm 2.

Theorem 2 Let y0 ∈ R
m be an initial point of Algorithm 2. Then the sequence {(yk, vk)}k≥0

generated by Algorithm 2 satisfies

g(yk) − g∗(t) ≤ 4ĉ2
A

t(k + 1)2 ‖y0 − y∗(t)‖2. (49)

Proof By the choice of ĉA the condition λk ≤ ĉA is always satisfied. From (42) and the
update rule of θk , we have

1

θ2
k

[
g(yk+1) − g∗] + ĉ2

A

t
‖rk+1 − y∗‖2

2 ≤ 1

θ2
k−1

[
g(yk) − g∗] + ĉ2

A

t
‖rk − y∗‖2

2

By induction, we obtain from this inequality that

1

θ2
k−1

[
g(yk) − g∗] ≤ 1

θ2
0

[
g(y1) − g∗] + ĉ2

A

t
‖r1 − y∗‖2

2 ≤ 1 − θ0

θ2
0

[
g(y0) − g∗]

+ ĉ2
A

t
‖r0 − y∗‖2

2,
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for k ≥ 1. Since θ0 = 1 and y0 = v0, we have r0 = y0 and the last inequality implies

g(yk) − g∗ ≤ ĉ2
Aθ2

k−1
t ‖y0 − ȳ‖2

2. Since θk−1 ≤ 2
k+1 due to Lemma 9, we obtain (49). ��

Remark 5 Let ε > 0 be a given accuracy. If we fix the penalty parameter t := ε, then the

worst-case complexity of Algorithm 2 is O(
2ĉAr0

ε
), where r0 := r0(t) is defined as above.

Similarly to Algorithm 1, in Algorithm 2, we do not require any tuning strategy for the
algorithmic parameters. The parameters αk , θk and ρk are updated automatically by using
the formulas obtained from convergence analysis.

Theoretically, we can use the worst-case upper bound constant ĉA in any implementation
of Algorithm 2. However, this constant may be large. Using this value may lead to a slow
convergence. One way to evaluate a better practical upper bound is as follows. Let us take a
constant ĉA > 0 and define

R(ĉA; t) := {
y ∈ R

m | ‖∇g(y; t)‖2 ≤ ĉA
}
. (50)

It is obvious that y∗(t) ∈ R(ĉA; t). This set is a neighbourhood of the solution y∗(t) of
problem (16). Moreover, by observing that the sequence

{
vk

}
converges to the solution

y∗(t), we can assume that for k sufficiently large,
{
vl

}

l≥k ⊆ R(ĉA; t). In this case, we can
apply the following switching strategy.

Remark 6 (Switching strategy) We can combine Algorithms 1 and 2 to obtain a switching
variant:

– First, we apply Algorithm 1 to find a point ŷ0 ∈ R
m and t > 0 such that ‖∇g(ŷ0; t)‖2 ≤

ĉA.
– Then, we switch to use Algorithm 2.

Finally, we note that by a change of variable x := Px̃ , the linear constraint Ax = b can be
written as Ãx̃ = b, where Ã := AP . By an appropriate choice of P , we can reduce the norm
‖ Ã‖x significantly.

6 Numerical tests

In this section, we test the switching variant of Algorithms 1 and 2 proposed in Remark 6
which we name by PFGDA for solving the following convex programming problem:

min
x∈Rn

γ ‖x‖1 + f (x)

s.t. Ax = b, l ≤ x ≤ u,
(51)

where γ > 0 is a given regularization parameter, f (x) := ∑n
i=1 fi (xi ), and fi : R → R is

a convex function, A ∈ R
m×n , b ∈ R

m and l, u ∈ R
n such that l ≤ 0 < u.

We note that the feasible set X := [l, u] can be decomposed into n intervals Xi := [li , ui ]
and each interval is endowed with a 2-self concordant barrier Fi (xi ) := − ln(xi −li )−ln(ui −
xi ) + 2 ln((ui − li )/2) for i = 1, . . . , n. Moreover, if we define φ(x) := − ∑n

i=1[ fi (xi ) +
γ |xi |] then φ is concave and separable. Problem (51) can be reformulated equivalently to
(SepCP).

The smoothed dual function components gi (y; t) of (51) can be written as

gi (y; t) = max
li <xi <ui

{
− fi (xi ) − γ |xi | + (AT

i y)xi − t Fi (xi )
}

− bT y/n,

123



J Glob Optim (2014) 59:59–80 75

for i = 1, . . . , n. This one-variable minimization problem is nonsmooth but it can be solved
easily. In particular, if fi is affine or quadratic then this problem can be solved in a closed
form. In case fi is smooth, we can reformulate (51) into a smooth convex program by adding
n slack variables and 2n additional inequality constraints to handle the ‖x‖1 part.

We have implemented PFGDA in C++ running on a PC Intel ®Xeon X5690 at 3.47 GHz
per core with 94 Gb RAM. The algorithm was parallelized by using OpenMP. We terminated
PFGDA if

optim := ‖∇g(yk; tk)‖2/ max
{
1, ‖∇g(y0; t0)‖2

} ≤ 10−3 and tk ≤ 10−2.

We have also implemented other three algorithms from the literature for comparisons, namely
a dual decomposition algorithm with two primal steps developed in [20, Algorithm 1], a
parallel variant of the alternating direction method of multipliers from [10] and decomposition
algorithm with two dual steps from [19, Algorithm 1] which we named 2pDecompAlg,
pADMM and 2dDecompAlg, respectively, for solving problem (51). We terminated pADMM,
2pDecompAlg and 2dDecompAlg by using the same conditions as in [10,19,20] with the
tolerances εfeas = εfun = εobj = 10−3 and jmax = 3. We also terminated all three algorithms
if the maximum number of iterations maxiter := 20,000 was reached. In the last case we
state that the algorithm has failed.

a. Basis pursuit problem If the function f (x) ≡ 0 for all x , then problem (51) becomes a
bound constrained basis pursuit problem to recover the sparse coefficient vector x of given
signals based on a transform operator A and a vector of observations b. We assume that
A ∈ R

m×n , b ∈ R
m and x ∈ R

n , where m < n and x has k nonzero elements (k � n).
In this case, we only illustratePFGDA by applying it to solve some small size test problems.

In order to generate a test problem, we generate an orthogonal random matrix A and a random
vector x0 which has k nonzero elements (k-sparse). Then we define vector b as b := Ax0.
The parameter γ is set to 1.0.

We test PFGDA on the four problems such that [m, n, k] are [50, 128, 14], [100, 256, 20],
[200, 512, 30] and [500, 1,024, 50]. The results reported by PFGDA are plotted in Fig. 1.

As we can see from these plots, the vector of recovered coefficients x matches very well
the vector of original coefficients x0 in these four problems. Moreover, PFGDA requires 376,
334, 297 and 332 iterations, respectively in the four problems.

b. Nonlinear separable convex problems In order to test the performance of PFGDA, we
generate in this case a large test-set of problems and compare the performance of PFGDAwith
2pDecompAlg, 2dDecompAlg and pADMM (a parallel variant of the alternating direction
method of multipliers [10]). Further comparisons with other methods such as the proximal
based decomposition method [3] and the proximal-center based decomposition method [11]
can be found in [19,20].

The test problems were generated as follows. We chose the objective function fi (xi ) :=
e−γi xi − 1, where γi > 0 is a given parameter for i = 1, . . . , n. Matrix A was generated
randomly in [−1, 1] and then was normalized by A/‖A‖∞. We generated a sparse vector
x0 randomly in [−2, 2] with the density μ ≤ 1 % and defined a vector b := Ax̄ . Vector
γ := (γ1, · · · , γn)T was sparse and generated randomly in [0, 0.5]. The lower bound li and
the upper bounds ui were set to −3 and 3, respectively for all i = 1, . . . , n.

We benchmarked four algorithms with performance profiles [4]. Recall that a performance
profile is built based on a set S of ns algorithms (solvers) and a collection P of n p prob-
lems. Suppose that we build a profile based on computational time. We denote by Tp,s :=
computational time required to solve problem p by solver s. We compare the performance of
algorithm s on problem p with the best performance of any algorithm on this problem;
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Fig. 1 Illustration of PFGDA via the basis pursuit problem
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Fig. 2 Performance profiles in log2 scale of three algorithms

that is we compute the performance ratio rp,s := Tp,s

min{Tp,ŝ | ŝ∈S } . Now, let ρ̃s(τ̃ ) :=
1

n p
size

{
p ∈ P | rp,s ≤ τ̃

}
for τ̃ ∈ R+. The function ρ̃s : R → [0, 1] is the probability for

solver s that a performance ratio is within a factor τ̃ of the best possible ratio. We use the term
“performance profile” for the distribution function ρ̃s of a performance metric. We plotted the
performance profiles in log-scale, i.e. ρs(τ ) := 1

n p
size

{
p ∈ P | log2(rp,s) ≤ τ := log2 τ̃

}
.
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We tested the four algorithms on a collection of 50 random problems with m ranging
from 200 to 1,500 and n ranging from 1,000 to 15,000. The profiles are plotted in Fig. 2.
Based on this test, we can make the following observations. 2dDecompAlg has the best
performance in terms of iterations and computational time. It solves 66 % problems with
the best performance in terms of iterations and 63 % problems with the best performance in
time. These quantities are 34 and 38 %, respectively in 2pDecompAlg. However, the final
solution given by two algorithms, 2pDecompAlg and 2dDecompAlg, is rather dense. The
number of nonzero elements is much larger (up to 77 times) than in the true solution. By
analyzing their solutions, we observed that these solutions have many small entries. PFGDA
and pADMM provided good solutions in terms of sparsity. These solutions approximate well
the true solution. Nevertheless,pADMM is much slower thanPFGDA in terms of computational
time as well as the number of iterations. The objective values obtained by PFGDA is better
than in pADMM in the majority of problems and the computational times for our algorithm
are also superior to pADMM.

For more insights into the behavior of our algorithm, we report the performance informa-
tion of the four algorithms (PFGDA, 2pDecompAlg, 2dDecompAlg and pADMM) for 10
problems with different sizes in Table 1. Here, iter is the number of iterations, time[s]
is the computational time in second, #nnz is the number of nonzero elements, #nnz0 is
the number of nonzero elements of the true solution x∗, match is the number of nonzero

Table 1 Performance information of four algorithms (PFGDA, 2pDecompAlg, 2dDecompAlg and
pADMM) on 10 synthetic data problems

Algorithm m n iter time[s] #nnz #nnz0 match fgap fval

PFGDA 200 1,000 979 1.69 10 10 10 0.782 × 10−3 12.168

2pDecompAlg 200 1,000 655 0.41 144 10 10 0.992 × 10−3 14.720

2dDecompAlg 200 1,000 984 0.85 210 10 10 0.357 × 10−3 17.220

pADMM 200 1,000 6,334 16.47 10 10 10 0.893 × 10−3 12.368

PFGDA 500 1,000 991 2.91 10 9 9 0.812 × 10−3 8.711

2pDecompAlg 500 1,000 883 1.57 11 9 9 0.994 × 10−3 9.273

2dDecompAlg 500 1,000 829 1.22 65 9 9 0.882 × 10−3 11.497

pADMM 500 1,000 5,542 28.97 9 9 9 0.933 × 10−3 8.713

PFGDA 700 2,000 1,330 9.12 12 12 12 0.934 × 10−3 16.112

2pDecompAlg 700 2,000 926 4.17 261 12 12 0.993 × 10−3 22.341

2dDecompAlg 700 2,000 1,347 5.53 461 12 12 0.722 × 10−3 26.953

pADMM 700 2,000 9,890 174.41 12 12 12 0.987 × 10−3 16.248

PFGDA 1,000 3,000 1,640 53.86 20 19 19 0.726 × 10−3 26.058

2pDecompAlg 1,000 3,000 1,186 13.09 600 19 19 0.746 × 10−3 39.434

2dDecompAlg 1,000 3,000 1,644 18.69 1,001 19 19 0.630 × 10−3 51.157

pADMM 1,000 3,000 13,164 514.60 19 19 19 0.976 × 10−3 26.070

PFGDA 1,500 8,000 2,405 493.87 57 56 56 0.967 × 10−3 73.699

2pDecompAlg 1,500 8,000 1,395 53.55 2,520 56 56 0.989 × 10−3 143.381

2dDecompAlg 1,500 8,000 1,150 49.31 3,714 56 55 0.993 × 10−3 207.594

pADMM 1,500 8,000 13,120 2,072.32 56 56 56 0.976 × 10−3 74.453
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Table 1 continued

Algorithm m n iter time[s] #nnz #nnz0 match fgap fval

PFGDA 1,900 10,000 2,869 909.85 81 76 76 0.899 × 10−3 91.158

2pDecompAlg 1,900 10,000 1,607 95.15 3,188 76 76 0.996 × 10−3 179.404

2dDecompAlg 1,900 10,000 1,292 86.47 4,798 76 76 0.995 × 10−3 253.960

pADMM 1,900 10,000 17,620 3,251.22 76 76 76 0.943 × 10−3 91.487

PFGDA 2,000 10,400 3,080 1,061.38 87 82 82 0.896 × 10−3 99.755

2pDecompAlg 2,000 10,400 1,605 105.82 3,492 82 82 0.996 × 10−3 196.732

2dDecompAlg 2,000 10,400 1,315 100.34 5,082 82 81 0.996 × 10−3 275.439

pADMM 2,000 10,400 7,630 2,184.13 82 82 82 0.985 × 10−3 99.139

PFGDA 2,500 14,500 3,828 2,514.84 109 106 106 0.900 × 10−3 133.720

2pDecompAlg 2,500 14,500 2,027 215.64 4,706 106 106 0.994 × 10−3 270.498

2dDecompAlg 2,500 14,500 1,474 183.78 7,250 106 106 0.994 × 10−3 381.443

pADMM 2,500 14,500 11,420 4,511.21 106 106 106 0.954 × 10−3 133.818

PFGDA 1,400 15,000 3,073 2,160.51 101 99 99 0.962 × 10−3 118.879

2pDecompAlg 1,400 15,000 1,369 85.74 3,571 99 97 0.978 × 10−3 213.078

2dDecompAlg 1,400 15,000 981 70.90 5,697 99 96 0.972 × 10−3 268.632

pADMM 1,400 15,000 11,021 2,484.57 99 99 99 0.952 × 10−3 118.597

PFGDA 1,500 15,000 3,007 2,118.78 92 92 92 0.966 × 10−3 110.145

2pDecompAlg 1,500 15,000 1,426 95.08 3,619 92 88 0.985 × 10−3 207.733

2dDecompAlg 1,500 15,000 1,026 79.68 5,698 92 88 0.985 × 10−3 265.100

pADMM 1,500 15,000 18,420 4,569.05 92 92 92 0.974 × 10−3 111.701

The definition for significance of bold means to highlight which one is the best

elements of the approximate solution xk which match the true solution x∗, fgap is the
feasibility gap and fval is the objective value.

As we can observe from this table thePFGDA andpADMMprovided better solutions in terms
of sparsity as well as the final objective value than 2pDecompAlg and 2dDecompAlg. In
fact,2pDecompAlg and 2dDecompAlg provided a poor quality solution (with many small
elements) in this example. The nonzero elements in the solutions obtained by PFGDA and
pADMMmatch very well the nonzero elements in the true solutions. Further, the corresponding
objective values in both methods is close to each other. However, the number of iterations as
well as the computational times in PFGDA are much lower than in pADMM (in the range of 2
to 10 times faster).

7 Concluding remarks

In this paper we have proposed two new dual gradient-based decomposition algorithms for
solving large-scale separable convex optimization problems. We have analyzed the conver-
gence of these two schemes and derived the rate of convergence. The first property of these
methods is that they can handle general convex objective functions. Therefore, they can be
applied to a wide range of applications compared to second order methods. Secondly, the new
algorithms can be implemented in parallel and all the algorithmic parameters are updated
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automatically without using any tuning strategy. Thirdly, the convergence rate of Algorithm
2 is O(1/k) which is optimal in the dual decomposition framework. Finally, the complexity
estimates of the algorithms do not depend on the diameter of the feasible set as in proximity
function smoothing methods, they only depend on the parameter of the barrier functions.
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