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Figure 1: In procedural modeling, a single rule set can produce a wide variety of 3D models (left). This paper presents a
thumbnail gallery generation system which automatically samples a rule set, clusters the resulting models into distinct groups
(middle), and selects a representative image for each group to visualize the diversity of the rule set (right).

Abstract
Procedural modeling allows for the generation of innumerable variations of models from a parameterized, condi-
tional or stochastic rule set. Due to the abstractness, complexity and stochastic nature of rule sets, it is often very
difficult to have an understanding of the diversity of models that a given rule set defines. We address this problem
by presenting a novel system to automatically generate, cluster, rank, and select a series of representative thumb-
nail images out of a rule set. We introduce a set of ‘view attributes’ that can be used to measure the suitability of
an image to represent a model, and allow for comparison of different models derived from the same rule set. To
find the best thumbnails, we exploit these view attributes on images of models obtained by stochastically sampling
the parameter space of the rule set. The resulting thumbnail gallery gives a representative visual impression of the
procedural modeling potential of the rule set. Performance is discussed by means of a number of distinct examples
and compared to state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Geometric algorithms, languages, and systems I.5.3 [Pattern Recognition]: Clustering—Similarity measures

1. Introduction

Rendering and display capabilities are leading to an increas-
ing demand for high quality 3D models. Manually creating
a large variety of detailed models is very tedious. Procedu-
ral modeling methods help to reduce the manual effort re-
quired to define a model, while at the same time provid-

ing an efficient way to describe and store a model. More-
over, once a procedural description (i.e., a rule set) of a
model is obtained, one can easily generate variations of the
model by just manipulating a few rule parameters. The diver-
sity of models that can be represented procedurally is large
and ranges from plants and furniture, to buildings and up to
whole city layouts.
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Figure 2: Each row shows five potential outcomes of one
single rule set. A rule set can be stochastic (often with unpre-
dictable design emergence as shown in top row) or paramet-
ric (often with numerous, hard-to-use parameter sets) and
produces geometry of arbitrary detail. A rule author is not
restricted to a specific content scope e.g. a rule set can en-
code variations within a specific building style (middle row)
or variations of different building styles (bottom row). As a
consequence, the modeling potential of a rule set is difficult
to predict, grasp and represent.

However, one inherent problem of procedurally defined
models is that without any additional information, the in-
duced changes of a single parameter are hard to predict and
might even have a global scope. In particular, small varia-
tions of one parameter might completely change the appear-
ance of a model, while changes of another parameter might
only affect details. Furthermore, because parameters are of-
ten not independent and rules can be of stochastic nature and
contain conditional decisions, it is hard to oversee the vast
variety of different models that can be produced from one
rule set. Figure 2 visualizes this by means of three different
rule sets. For each rule set, five models were generated by
varying the rule set’s parameters. Note how the differences
in the Roman house in the second row are relatively subtle
while the buildings in the bottom row are completely differ-
ent both in types and numbers.

In order to overcome this problem, we propose a system
that automatically generates and arranges a series of thumb-
nail images into a gallery as illustrated in Figure 1. This so-
called thumbnail gallery captures the variety of potential de-
signs to communicate the expressive power of a given rule
set.

To define this set of representative images, we first gener-
ate a number of model exemplars by stochastically sampling
the rule set’s parameter space. We introduce a set of view at-
tributes that can be used both for finding an optimal view
(intra-model variation) and discriminate between different
models (inter-model distance). These view attributes can be
computed efficiently in image space using programmable

graphics hardware. Amongst different views of the same
model we chose the most representative view that maxi-
mizes a scoring function based on these view attributes. An
adapted weighting scheme of our attributes allows to cluster
the representative images of different models. The clusters
are ranked and their centers are used to finally depict the
model potential of the given rule set in a gallery.

The major contributions of this paper are:

• A set of normalized view attributes that allow for both best
view finding and inter-model comparison.

• A system for automatically generating representative im-
ages from a procedural modeling rule set into a thumbnail
gallery.

Compared to previous work, our view attributes permit find-
ing better best-views. The gallery generation system exploits
the above-mentioned view attributes and opens up the door
for a number of more user-friendly procedural modeling ap-
plications.

2. Related Work

We discuss the related work corresponding to the interme-
diate steps: procedural modeling, best view selection, image
clustering, and model retrieval.

Procedural Modeling. L-systems were proposed for plant
and city modeling [PL90, PM01]. More recently, procedu-
ral modeling was used e.g. for buildings [MWH∗06], furni-
ture [GS09] or floor plans [MSK10]. Procedural modeling
was also adapted by the industry, the most prominent exam-
ples are Houdini [Inc13] and CityEngine [ESR12]. For our
examples we used the latter, but any procedural modeling
system could have been applied.

Best View Selection. Some viewpoints reveal and preserve
more details of a given model than others. A large body of
related work deals with finding the best viewpoint under cer-
tain assumptions. Vázquez et al. [VFSH01] define the view-
point entropy of a given view direction based on the relative
area of the model’s projected polygonal faces, and they suc-
cessfully apply this quality measure for molecule visualiza-
tion [VFSL02]. Mesh saliency, introduced in 2005 by Lee
et al. [LVJ05] has the goal to include perception-based met-
rics in the evaluation of the goodness of a view. A Gaussian-
weighted average of mean curvature across different scales
is used as a surface feature descriptor and as a measure of
local importance, and assigned to each vertex of the mesh.
Gooch et al. [GRMS01] introduce a number of heuristics
that aim at capturing esthetic considerations for scene com-
position. Podolak et al. [PSG∗06] select views that minimize
symmetry to avoid visual redundancy in the depicted objects.
Secord et al. [SLF∗11] and Dutagaci et al. [DCG10] evalu-
ate a combination of different view attributes in a user study.
While these methods define the quality of a viewpoint with
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respect to a single model, Laga [Lag10] focuses on finding
views that maximally discriminate between different mod-
els under the assumption that models belonging to the same
class of shapes share the same salient features. Unlike these
methods, we exploit view-dependent information to com-
pare different models, and we use the semantic information
contained in procedural models to develop new image-based
features.

Image Retrieval. Clustering images for thumbnail gener-
ation requires a metric that quantifies the similarities of
different depictions of the rule set. Defining such a met-
ric is a challenging problem, and methods in this area can
be grouped based on the features they use to do so. Low
level features, such as color [DMK∗01, MRF06] or texture
and patterns [LP96, HD03] are readily available, while high
level features need to be carefully extracted from images
(see [LZLM07] for a detailed overview). In contrast to these
methods we are able to employ additional semantic informa-
tion about our 3D objects given the procedural definition.

3D Model Retrieval. Our approach shares the objective to
identify similar objects within a group of models with 3D
retrieval techniques (see [BKS∗05] for a detailed overview).
Here a set of features is computed across a database of mod-
els that is then used to implement a distance metric and al-
lows for efficient nearest neighbor queries. In contrast to
our approach the features used for this purpose are mostly
model driven and an important goal is to be view indepen-
dent, while we actively strive for discriminating features to
identify most representative views.

3. View Attributes

A view attribute is a scalar value that quantifies a certain
property of a 3D model seen from a given viewpoint and
view direction. Examples are the visible surface, silhouette
length, or contrast in the observed image (exact definitions
follow below).

In general we use such view attributes to achieve two dif-
ferent goals:

1. We compare different views of a single model by ranking
their view attributes to find the ‘best’ or most appealing
view. To this end, a weighted linear combination of view
attributes is used to assign a ‘goodness’ score to each
viewpoint (see Section 4.1 for details) that we optimize
for.

2. As a new contribution, we use the same view attributes
to compare and distinguish different models seen from a
fixed viewpoint. This inter-model comparison is used to
cluster different variations of our procedural models into
distinct groups.

Note that our approach is inherently different from classical
3D shape descriptors used for object retrieval. We show that

2D view attributes that work well for best view finding can
also be used to compare different derivations of a procedu-
ral rule set seen from the same viewpoint. This inter-model
comparison approach is also faster than comparing based on
3D descriptors.

The problem with most existing view attributes is that they
are not suited for inter-model comparison. For example, sur-
face visibility, the ratio of the model’s visible to its total sur-
face [PB96], is a relative value and has no information about
the real size of objects.

Our scoring function is based on a combination of adapted
existing and several new view attributes that are specifically
designed to work well for inter-model comparison. In this
section we present these view attributes grouped by the dif-
ferent aspects they capture: geometry based, esthetic, and
semantic view attributes.

To calculate the view attributes for a given viewpoint, the
model is rendered only once on the GPU and such infor-
mation as normals, luminance, and color-coded information
about terminals (used for view attributes a2, a7, and a8 de-
fined below) is stored. All proposed view attributes are com-
puted using solely the stored 2D data and no further analy-
sis of the polygonal geometry is necessary, which allows for
very fast evaluation for a number of different viewpoints. We
only look at the geometry in a preprocessing step that stores
face and terminal area sizes in lookup tables and the color
mapping (color value to face or terminal index) for our color-
coded buffers. This information is reused every time we need
to compute the view attributes from a new perspective. In our
application we want to see the full model as large as possi-
ble. To this end, the camera is always placed at the distance
where the model’s minimal bounding sphere fits tightly into
the frustum. We normalize all view attributes to lie in [0,1].

3.1. Geometric View Attributes

a1 Pixel Count is the ratio of projected area n (in pixels) of
the model on the screen to the overall image size [PB96]:

a1 =
4
π

n
width×height

.

The idea is that the larger the projected area, the more you
see of the object.

a2 Surface. The ratio of visible to total surface area seen
from a specific viewpoint is called surface visibility [PB96].
Maximizing this view attribute minimizes the amount of oc-
cluded surface area. For our application, we define the sur-
face view attribute as the logarithm of baseM = 106 of the
visible surface area A in m2:

a2 = logM (A+1) .

Due to the logarithm there is a higher resolution for lower
values of model sizes and a decreasingly lower resolution
as the models get bigger. The choice ofM leads to attribute
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values in [0,1] (unless we encounter models with visible sur-
face larger than 106m2, e.g., a fictional super skyscraper).
Table 1 shows how a2 correlates to object size. We increase
A by one to be able to assess also small objects.

Example max vis. surf. a2

Furniture ≈ 1m2 0.05
Vehicle ≈ 10m2 0.17
Residential building ≈ 200m2 0.38
Apartment building ≈ 1000m2 0.5
Office building ≈ 10000m2 0.67
High-rise ≈ 60000m2 0.8
City block ≈ 300000m2 0.91

Table 1: Surface view attribute a2 for objects of different
size seen from one point.

a3 Silhouette length. The longer the object’s silhouette is
in the rendered image, the more interesting details such as
protrusions and concavities should be visible. To bring this
value into a reasonable range, we define the view attribute
as:

a3 = log16

( s
l

)
,

where s is the silhouette length in pixels, and l is the side
length of the largest square that could possibly be rendered
(largest square that still fits into the projection of the ob-
jectâĂŹs bounding sphere). We choose 16 as base for the
logarithm for the following reason: A standard rectangular
object results in an outline of s ≈ 4l. For this case, we want
a3 ≈ 0.5 which results in base 16. Furthermore, tests showed
that the outline of length s≈ 16l (a3≈ 1) is an adequate limit
for shapes of high complexity with many concavities.

3.2. Esthetic View Attributes

While the esthetic properties of an image are highly sub-
jective, there exist compositional heuristics, e.g., the widely
known rule of thirds [Smi97].

a4 Contrast. Higher contrast stands for a larger dynamic
range and a visual appealing image. We use root means
square contrast [Pel90] of the rendered image, because it can
be computed efficiently:

a4 = 2

√
1
n

n

∑
i=0

(
Ii− I

)2
,

where n is the number of pixels, Ii is the luminance at pixel
i, and I is the average luminance of all n pixels. We only
consider the pixels that have been rasterized and neglect the
uniformly colored background.

Since the contrast depends on the lighting, we use the
same lighting conditions for all models. We use a standard
three point lighting technique, where key, fill, and back light
are in fixed positions with respect to the camera and the
scene center (see, e.g., [Bir00]).

a5 Normal ratio. One artistic composition rule states that
the projections of front/side/top of an object should have rel-
ative areas of 4/2/1 in an image [EB92, Arn54]. Gooch et
al. [GRMS01] orient the object’s bounding box so that the
projections of its three visible sides fulfill that ratio (front
and side dimensions can be exchanged). Bounding boxes are
only a rough approximation of the true geometry and we an-
alyze image space normals instead. They are grouped into
the three categories: left (counting towards the front), right
(counting towards the side), and up. While it is possible to
compose these three variables into a scalar that quantifies the
deviation from the desired ratio, our experience has shown
that the same value doesn’t perform well for inter-model
comparison. Therefore, we decided to merely distinguish left
from right pointing normals and defined the normal ratio as:

a′5 =
l

l + r
, a5 = 1−

∣∣∣∣1− 3
2

a′5

∣∣∣∣ ,
where l and r are the number of pixels with normals pointing
towards the left or the right respectively. a5 is used for best
view selection and a′5 for inter-model comparison. The opti-
mal ratio l

r = 4
2 leads to a′5 =

2
3 which maximizes a5 = 1.

a6 Form. Most appealing are renderings for which the ob-
ject covers a greater part of the image. Degenerate objects,
i.e., with very thin renderings are less favorable. The form
view attribute is a function of the ratio of the height and the
width of the 2D axis aligned bounding box (AABB) of the
rendering:

a′6 =
1
2

(
logl

(
h
w

)
+1
)
, a6 = 1−

∣∣∣∣logl

(
h
w

)∣∣∣∣ ,
where h and w are the height and the width of the AABB.
The base of the logarithm, l, is the side length of the largest
possible square (same l as in a3).

For inter-model comparison we use a′6, which allows to
differentiate between flat, square, and tall thin AABBs. a6 is
used for best view selection, a square is best while horizon-
tally and vertically thin AABBs are equally unwanted. This
view attribute is similar to a1 for best view finding but it is
useful for distinguishing thin tall from wide flat objects.

3.3. Semantic View Attributes

The procedurally generated models we are working with are
annotated with extra information, e.g., the derivation tree or
correspondences between geometry and terminal symbols.
The following semantic view attributes exploit this extra in-
formation.

a7 Visible terminal types. Every model is composed of ter-
minal symbols that represent the model’s geometry. Seeing
many terminals does not necessarily mean that one obtains a
lot of information, because many terminal shapes might be
of the same type. What matters most is the number of differ-
ent terminal symbols that are visible. Most of our examples
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contain between 2 and 100 terminals (e.g., the Petronas Tow-
ers in Figure 6 only uses two terminal types called glass and
metal). We define:

a7 = log100 Nt ,

where Nt is the number of visible terminal symbols in the
image. The logarithm maps that count onto [0,1] (assuming
that there are not more than 100 terminals types). Changes
of Nt have more importance for situations with few visible
terminal types.

a8 Terminal entropy. Viewpoint entropy [VFSH01,Váz03]
is an adaptation of Shannon entropy [Sha48]. It uses as prob-
ability distribution the relative area of the projected faces
over the sphere: pi =

fi
Atot

, with fi the projected area of face
i and Atot the total projected area of all visible faces (both in
solid angles). Our view attribute measures the entropy of vis-
ible terminal types. Terminal types provide a more semantic
entity of information than polygonal faces:

a8 =−
Nt

∑
i=0

ti
Atot

log100
ti

Atot
,

where ti is the projected area of terminal type i, and Atot is the
total projected area of the object. Both variables are again in
solid angle. Nt is again the number of visible terminal types.
We use the same base for the logarithm as a7, with the same
reasoning.

4. Thumbnail Gallery Generation

In this section we introduce a system for the automatic cre-
ation of a thumbnail gallery out of a rule set. The system is
outlined in Algorithm 1 and consists of the following steps:

1. The default model is procedurally generated in
CityEngine (CE) using the default values of the rule set’s
parameters. This model is then used to calculate the best
viewpoint for the rule set (see Subsection 4.1).

2. The rule set’s parameter space is stochastically sampled
to generate model variations. Each model is rendered
from the previously found viewpoint to obtain its thumb-
nail image and view attributes (Subsection 4.2).

3. The resulting list of view attributes is clustered into dis-
tinct groups, and for each group a center is selected. The
thumbnail images associated with these centers define the
final thumbnail gallery (Subsection 4.3).

4. For a comprehensible visualization, the selected repre-
sentatives are sorted radially around the default model in
a reduced 2D space. The latter is obtained by applying a
PCA [Jol86] on the view attributes (Subsection 4.4).

4.1. Best View Selection

Once the default model has been created, we search for its
best view by sampling a number of viewpoints on a sphere
placed around the model. The camera’s view direction al-
ways points towards the center of the sphere. We discard

Algorithm 1 System Overview

# compute best view for default model
defaultModel← CE.generate(ruleset, ruleset.defaultParams)
bestview← computeBestview(defaultModel, bestviewWeights)

# sample in rule set’s parameter space
<thumbnail0, viewAttrs0>← render(defaultModel, bestview)
for i = 1 to nSamples do

params← stochasticSample(ruleset.paramRanges)
model← CE.generate(ruleset, params)
<thumbnaili, viewAttrsi>← render(model, bestview)

# cluster view attributes and select thumbnails
clusters← calcClusters(viewAttrs, clusterWeights, nClusters)
for each cluster in clusters do

if 0 /∈ cluster then # discard cluster with default model
find viewAttrsi∈cluster closest to center of cluster
add index i to selection

# sort selected thumbnails and create gallery
viewAttrs2D← PCA(viewAttrs, 2)
selection.sortRadial(viewAttrs2D∀i∈selection, viewAttrs2D0)
gallery← thumbnail0∪∀ j∈selection

viewpoints that lie below the base plane of the model or
look down too steeply. We found that good viewpoints were
located between 0◦ and 45◦ above ground [BTBV96]. The
model is rendered from all sample cameras and the view at-
tributes are stored.

To increase stability, the view attributes are normalized to
the [0,1] range, i.e., for a given view attribute, the lowest
sampled value will be mapped to 0, the highest value to 1,
and in-between values are linearly interpolated. To rank the
viewpoints, a score is defined as a linear combination of the
normalized view attributes. We empirically determined the
weights listed in the second column of Table 2. More sophis-
ticated schemes for automatically choosing weights, e.g.,
through semi-supervised learning, are an interesting area of
future work [KHS10]. For existing view attributes we started
with values that Secord et al. [SLF∗11] concluded from a
user study.

View Attribute bestviewWeights clusterWeights
Pixel count (a1) 15% 10%
Surface (a2) 20% 25%
Silhouette (a3) 5% 30%
Contrast (a4) 2% 2%
Normal ratio (a5 or ′5) 10% 5%
Form (a6 or a′6) 3% 3%
Visible terminal types (a7) 25% 5%
Terminal entropy (a8) 20% 20%

Table 2: The weights for the view attributes for best view
selection and for clustering. Note that normal ratio and form
use slightly different view attribute definitions for best view
selection and clustering.
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Figure 3: Different viewpoints versus normalized view at-
tributes for the Petronas Towers. The final score (red) is a
linear combination with the weights in Table 2. Its peak us-
ing the corresponding thumbnail is highlighted.

The graph in Figure 3 plots different viewpoints versus
the normalized view attributes and the final score. There are
32 viewpoints sampled on a ring π

8 above the horizon. Note
that the overall score is minimized when one tower is hidden
behind the other one.

4.2. Stochastic Sampling of Rule Parameters

A rule set typically comes with several parameters to steer
the generation of the procedural 3D model. In CityEngine,
rule sets are encoded using the shape grammar CGA
[MWH∗06] and continuous or discrete parameters can be
defined as shown on the left in Figure 4. Note that every pa-
rameter needs to be initialized with a default value. Authors
can also define the range of meaningful values for parame-
ters using @Range annotations. In CityEngine, these ranges
are used for constructing the sliders in the UI (Figure 4 on
the right) and for us they limit the space within which we
generate samples.

A rule set contains a start rule which is applied on an ini-
tial shape which is annotated with @StartRule in CGA.
But the initial shape is undefined and could be of arbitrary
form, dimension, or geometry. Thus, it could have a high
impact on the generation, e.g., a conditional rule might de-
termine to build a high-rise building instead of a small house
based on the size of the initial shape. As a consequence, we
extend CGA with the @StartShape annotation to set one
or many predefined initial shapes such as Point, Line,
Rect or Cube. In the example on the left of Figure 4, the
author uses @StartShape(LineM) to define the default
initial shape as a line (the letters S, M and L denote dimen-
sions 10, 30 and 100 meters).

As described in Algorithm 1, we now stochastically sam-
ple the rule set within its given parameter ranges and initial
shapes (by using CityEngine’s Python interface). For each
resulting model we render the thumbnail image and view at-

# -----------------------------
# Rule Parameters
# -----------------------------

@Range(0,4)
attr Nbr_of_left_lanes = 1 

@Range(0,4)
attr Nbr_of_right_lanes = 2attr Nbr_of_right_lanes = 2

@Range(3,5) 
attr Lane_width = 3.7  

attr Construct_median = false

@Range(0.5,10)
attr Median_width = 2

...

# ----------------------------# ----------------------------
# Rules
# ----------------------------

@StartShape(LineM)
@StartRule
Street --> 
   alignScopeToAxes(y)
   split(x){ Crosswalk_width : Crosswalk(-1)    split(x){ Crosswalk_width : Crosswalk(-1) 
           | ~1              : Streetsides
           | Crosswalk_width : Crosswalk(1) } 
   BridgeMain

...

Figure 4: Left: CGA rule set excerpt with parameter ranges
and start rule. Right: User interface to control the many pa-
rameters of the rule set.

tributes from the best viewpoint found in Subsection 4.1. The
reasons why we use only the best view of the default model
even though it might not be the best view when jointly con-
sidering all models are twofold: (1) performance, i.e., calcu-
lating best views of more samples requires additional pro-
cessing time, and (2) since all initial shapes are similarly
aligned, changing the viewpoint for each sample only wors-
ens the visual understanding of model differences. As an
alternative we also experimented with calculating the best
view of every sample and taking the one viewpoint that had
the most support (every model sample would give one vote
to its best viewpoint). The results are similar but there is the
drawback of having to compute the view attributes for all
viewpoints for all samples.

4.3. Clustering View Attributes

As a next step, the list of view attributes is clustered
into a given number of groups. Therefore we applied a
slightly modified version of the k-means++ clustering al-
gorithm [AV07]. K-means++ chooses only the first initial
clustering seed completely at random and applies a distance-
based probability heuristic to determine the remaining initial
cluster seeds. However, to make the clustering even more
stable, we set the first initial seed to the view attributes of
the default model. This is justified by the fact that most rule
authors intuitively place the default model near the center of
the design space.

The cluster distance function is a weighted linear combi-
nation of the view attribute deltas. Since our view attributes
are typically well distributed in the [0, 1] range, the weights
reflect the importance of the corresponding view attributes
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Figure 5: Stochastic sampling of the Petronas Towers rule set. Left: Clustering results where each row of thumbnails represents
one group with similar models. The cluster which received the most samples is depicted in the top row. The distance to each
cluster center increases from left to right, i.e., the model on the left is the one nearest to the center of its cluster. Right:
Representation of the clustering results using the first two principal components. The samples nearest to their cluster are
marked red and the large one is the default model. The numbers illustrate the radial sorting around the default model and
correspond to the numbers in Figure 6.

for clustering. Accordingly, they are actually a user setting
which decides what types of models should be grouped to-
gether. The weights we use were determined empirically,
they are listed in Table 2 on the right. They provide visu-
ally appealing and representative clusters for arbitrary rule
sets. A cluster result is shown on the left Figure 5.

4.4. Thumbnail Gallery Creation

To illustrate a cluster, we select the sample nearest to its
center. To arrange the selected thumbnail images in a visu-
ally comprehensible way, we applied UI principles of De-
sign Galleries [MAB∗97]. There, the current design is in the
middle and suggested variations are arranged around it in a
manner that correlates to the editing distances. In our case,
the default model is the center and the selected thumbnails
of the other clusters are arranged around it as shown in Fig-
ure 6.

The leftmost thumbnail column in Figure 5 shows that the
cluster size is not a well-suited sorting criteria for the ra-
dial arrangement. The user wants to visually compare similar

thumbnails and is less interested in the cluster sizes. There-
fore, we run PCA on the view attributes to project the se-
lected samples from their original eight-dimensional space
into a two-dimensional subspace spanned by the first two
principal components. Within this space, the representatives
are sorted radially around the default model. This is illus-
trated in Figure 5 on the right.

This arrangement is also the reason why we typically gen-
erate 14 clusters. If we display the selected samples at third
the size of the default model, we can fit exactly 13 thumb-
nails on the circle. Nonetheless, the number of clusters can
be chosen by the user.

5. Results

5.1. Best View

To evaluate our best view method, we conducted a prelimi-
nary user study with 39 participants. The test data set con-
tained 21 buildings, each rendered from the optimal per-
spective according to our view attribute combination and ac-
cording to the ‘linear-5’ combination suggested by Secord et
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Figure 6: Resulting thumbnail gallery of the Petronas Tow-
ers rule set. The thumbnail in the middle shows the default
model and those around it depict other representatives. The
ordering is the same as in Figure 5.

Figure 7: Secord et al.’s [SLF∗11] view attribute combina-
tion (left) versus ours (right). Circles denote differences be-
tween both methods, dashed circles stand for minor differ-
ences only. The bar charts show the user preference counts:
left is ours, middle is Secord et al., right is no preference.

al. [SLF∗11]. For our test set, both systems provide the same
thumbnails for 5 of the exemplars (different view directions
indicated as circles in Figure 7). For the remaining mod-
els the subjects preferred our view direction in 351 cases,
161 views according to Secord et al., and had no preference
in 112 cases. A significance test rejects H0 (H0: no prefer-
ence, HA: preference for the view direction obtained from
our view attributes) clearly within the p < 0.001 (one-tailed)
confidence interval. Focusing on the models for which the
two viewing directions considerably changed (more than 10
degrees, see Fig. 7 solid circles) the subjects preferred our
suggestions even more clearly (in 225 cases compared to 84
cases for the alternative, with 42 occasions of no preference).

5.2. Clustering

Clustering behavior varies for different rule sets. Generally,
we observed that the clusters stabilize when at least 200
samples are used. K-means++ proved to be the most nat-
ural way to initialize clustering for our domain as we want
the default model as the global center. We also experimented
with other clustering methods with worse results: hierarchi-
cal clustering [FLP∗51] with dendrograms, spectral cluster-
ing, and mean shift clustering [FH75].

Figure 8 shows thumbnail galleries for three different rule
sets: Philadelphia, Paris, and procedural streets. The run-
ning times for those rule sets are listed in Table 3. We
used OpenGL and rendered the thumbnails at a resolution of
500x500pixels on an Intel Core2 Duo 2.8 GHz Laptop with
a Nvidia Quadro FX3700M graphics card. Clustering was
done with NumPy and took about 0.5s for each rule set. The
times show that model generation is the most expensive part
of the system. The attribute computation varies between rule
sets (Philadelphia takes 4 times longer than Paris). We be-
lieve that the reason for this is the increased number lookup-
table reads (the number depends on the number of terminals
and faces in the model) in former example.

Rule Set Model generate Best View Attr. calc.
Petronas 334.00s 0.43s 64.34s
Philadelphia 279.60s 0.61s 123.93s
Paris 38.45s 0.67s 31.88s
Proc. streets 113.27s 0.35s 111.08s

Table 3: Running times for our system for different rule sets
using 200 model samples. The best view selection algorithm
considered 32 different viewpoints.

6. Discussion and Conclusion

Thumbnail galleries provide a new visual tool for procedural
modeling that can significantly simplify rule selection during
the content creation process. Our experiments demonstrate
that the thumbnails automatically generated by our method
yield good visual representations of the model diversity of a
rule set.
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Figure 8: Thumbnail galleries for three rule sets. Left: Philadelphia, center: Paris-style building, right: procedural street.

Our system also has some limitations which open ar-
eas for future research. We currently fail to distinguish
models that have a very similar overall shape that dif-
fers only on lower-scale structural details. We believe that
view attributes encoding the silhouette (e.g., Fourier descrip-
tors [ZR72]) or the shape of the 2D rendering (e.g., Zernike
moments [KH90]) could remedy those shortcomings. An-
other problem are rule parameters that change minor details,
e.g., a building’s window width or the leaf shape of a tree.
Those changes are hard to spot from a perspective that fea-
tures the full model. A beneficial feature of the system would
be to detect those shapes and present close-up images. One
could further investigate new color and texture based view
attributes as our system ignores this information almost en-
tirely (color changes influence the luminance images and
have a minor effect on the contrast view attribute).

User-guided exploration of the procedural design space
similar to Design Galleries [MAB∗97] is also worth explor-
ing: the user would repeatedly select a model while the sys-
tem automatically provides new suggestions of models close
to the selected one. A related question is if it’s possible to
reverse-engineer the influence of rule parameters given the
view attribute.

Our system currently just samples parameters which have
an optional range annotation. User-guided refinement could
be used to detect sensible ranges for non-annotated parame-
ters. Also our sampling strategy could be improved with an
adaptive approach. Rather than sampling all parameters with
the same probability we could detect the ones which lead to
large variations of the view attributes and sample them more
densely.

Conclusion. We present a system that finds the best view of
a procedural model and that generates a thumbnail gallery
depicting the design possibilities of a rule set. The best view
selection algorithm works well for arbitrary mesh topologies

and outperforms existing methods. Clustering in conjunction
with our novel view attributes is a first step towards visualiz-
ing the immense variety of models encoded in a procedural
rule set. To the best of our knowledge, we are the first to
present such a system.
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