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1. Abstract 

We use the long-wavelength model of Hutchinson and Neale (Hutchinson JW, Neale KW. Acta Metall 
1977;25:839) and Ghosh (Ghosh AK. Acta Metall 1977;25:1413) to estimate the uniform tensile 
elongation of two-phase composites deforming quasistatically according to the equistrain rule of 
mixtures, in which one phase is ductile while the other fractures progressively according to two-
parameter Weibull statistics. We use shear-lag models in the literature to quantify load transfer from 
the ductile phase to the fractured brittle phase, to estimate the influence of matrix strain and strain-rate 
hardening, of brittle phase fracture characteristics, and of phase volume and strength ratios, on the 
composite strain to failure as dictated by the onset of unstable necking. Calculations show that strain 
and strain-rate hardening of the ductile phase do relatively little to increase the ductility of the 
composite. Two parameters play a dominant role, namely the brittle phase Weibull modulus and a 
dimensionless parameter describing load transfer across the two phases. The main practical 
implication of this analysis is that, to produce reasonably ductile two-phase composites, the best 
strategy is to aim for small layer thicknesses. 

2. Introduction 

Many composite materials combine a ductile matrix with a brittle reinforcement: ceramic or carbon 
fibre reinforced metals fall in this category, as do some laminated metal composites and many other 
layered materials (such as thin film structures or ceramic-coated metals) [1–4]. When such composites 
are strained in tension the brittle phase develops cracks that cut its fibres or layers in two along a plane 
normal to the applied load; in laminated composites these are known as “tunnel cracks”. Final fracture 
of the material may then happen in one of two ways. One is sudden brittle failure, caused by a 
propagative localization of internal damage that cuts abruptly the entire specimen in two; many 
strongly bonded ceramic or carbon fibre reinforced composites fail in this way [5–7], as do some 
particle reinforced composites [8]. Alternatively, internal damage accumulates stochastically 
throughout the material, in gradual and uncorrelated fashion. The composite is then likely to fail by 
strain localization, reaching its ultimate tensile strength at a smooth maximum along its stress-strain 
curve, and sometimes deforming significantly thereafter, while deformation concentrates in a portion 
of the sample’s gauge length. Weakly bonded fibre reinforced composites (e.g., [5]), ceramic particle 
reinforced metals (e.g., [8,9]), two-phase metal alloys [10] or laminated metal composites [11] can all 
fail in this way. Strain hardening and strain-rate hardening then both play an important role: even 
small increases in a ductile material’s strain hardening rate, or in its strain-rate sensitivity, can 
noticeably increase the tensile elongation when it is governed by the onset of strain localization.  
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J.W. Hutchinson and co-workers [12,13], simultaneously with A.K. Ghosh [14], proposed a simplified 
approach to predict the tensile elongation of hardening strain-rate sensitive tensile bars. The 
calculation rests on the long-wavelength approximation, which takes the stress to be uniform across 
any given cross-section of a tensile bar’s gauge section. The gauge section, in turn, is assumed to 
contain two collinear regions, one slightly narrower and shorter than the other, main, portion of the 
bar’s gauge section. Equating the load carried by either section and integrating their collective 
deformation numerically taking the main portion to deform at a steady rate, a tensile test conducted on 
a bar containing a slight imperfection can be simulated. One finds [12–14] that the narrower region 
starts at some point to deform much faster than the remainder of the bar, indicating that it will soon 
fail; this gives a prediction of its final tensile elongation. With this model the collective influences of 
both work hardening and of strain-rate hardening can be accounted for, and the analysis confirms and 
approximately quantifies the strong role played by strain-rate hardening in delaying the tensile failure 
of ductile metals and alloys.  

The Hutchinson-Neale-Ghosh long-wavelength approximation model was recently extended to derive 
the uniaxial tensile deformation of equistrain composites (i.e., laminates stressed in their lamination 
plane or fibre composites stressed along their axis) made of two work hardening and strain-rate 
sensitive ductile phases [15]. Here, we consider the complementary problem of equistrain composites, 
also failing in ductile fashion (i.e., with no localized catastrophic propagation of internal damage), in 
which only one phase is ductile, while the other is a brittle elastic phase that fractures according to 
Weibull statistics. We again consider the most basic and simple case, namely a strongly bonded 
unidirectional or laminated composite, which deforms slowly along the fibre or laminate direction. We 
describe load-sharing near a crack in the brittle phase using classical shear-lag theory, known to apply 
with good accuracy in fibre reinforced composites [16,17]. More specifically, we assume that load is 
transferred from the ductile phase back to broken elements of the brittle phase via an interfacial shear 
stress that equals the instantaneous average flow stress of the ductile phase in shear. This differentiates 
the present model from global load sharing models that have been proposed so far in the literature for 
brittle/ductile phase composites [16–19] because here the intact, ductile, phase hardens as it flows. 
Both the load it carries and the load it transmits to the brittle phase, wherever the latter has fractured, 
therefore increase as the composite deforms: we examine here how this influences ductile failure of 
the composite (or, in the parlance of composite mechanics, its failure by global load sharing [16,17]). 
As will be seen, one finds that despite the many parameters needed to describe this two-phase system, 
in the end only two dimensionless parameters influence significantly its strain to failure. The reason 
for this is that the destabilizing effect of internal damage nearly always overrides the stabilizing effect 
of matrix hardening on the strain to failure of the deforming composite. As a result, strategies for the 
microstructural optimization of such composites toward increased ductility are relatively simple to 
formulate, as we show at the end of this contribution after presenting the model and what it predicts. 

3. Governing equations 

3.1. Geometry and force balance 

Consider a laminated or unidirectional composite made of two components: A (a ductile phase) and B 
(a brittle phase). The two are strongly bonded and resist debonding as the composite deforms. Along 
the plane of lamination or along the fibre direction, the uniaxial flow stress can reasonably be assumed 
to obey the equistrain rule-of-mixtures: 
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!!"# = !!!! + !!!! (1) 

where σA and σB are respectively the average stress in Phase A or and Phase B when each is deformed 
to the average uniaxial tensile strain of the composite, ε. Parameters VA and VB=1-VA are the volume 
fractions of Phases A and B respectively, and σLMC is the true (average) stress acting on the composite 
along the direction of applied stress.  

Following Hutchinson and Neale [12], we consider a tensile specimen of the composite, which is 
assumed to have a uniform cross sectional area exception made for a reduced (also called “non-
uniform”) portion of cross-sectional area that is only a small fraction η thinner and much shorter than 
the remaining, main (“uniform”) part of the specimen. The long-wavelength assumption takes it that 
the transition to this reduced portion of the tensile bar is sufficiently smooth for the stress to be 
uniaxial and homogeneous along any cross-section normal to the applied load. The gage section of the 
tensile bar is thus made of two colinear regions, one slightly wider and much longer than the other. 
Axial load equilibrium between the uniform and non-uniform portions dictates: 

!!!! + !!!! ! = !!!!,! + !!!!,! !! (2) 

where A and A0 are the instantaneous cross-sectional area of the reduced and uniform regions 
respectively. All quantities associated with the uniform region in Eq. (2) and in all what follows are 
denoted with a subscript 0. By definition, the initial fractional non-uniformity η is: 

! =
!!,!" − !!"

!!,!"
 (3) 

with Ain and A0,in the initial cross sectional areas of the reduced and uniform portions of the gauge 
length, respectively.  

It can reasonably be assumed that Phase A deforms at constant volume. The true strain of this phase in 
the reduced (ε) and uniform (ε0) portions of the tensile bar is then related to the cross-sectional areas 
(A, A0) or length (L, L0) of this phase by: 

! = −ln  
!
!!"

= !"
!
!!"

, !! = −!"
!!
!!,!"

= !"
!!
!!,!"

 
(4) 

Phase B on the other hand does not deform at constant volume: it remains elastic and, most 
importantly, it cracks. Since its lateral (Poisson) contraction is likely to remain small (because its 
longitudinal elastic strain will not exceed a few percent), we assume hereafter that its cross sectional 
areas, in both the reduced and uniform sections, remain constant as the composite deforms. As the 
composite elongates, therefore, force equilibrium between the uniform and reduced sections dictates: 
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!!!!!,!!! + !!,!!! =
1

1 − !
!!!!!!,!!!,! + !!,!!!,!  

(5) 

where, again, subscript 0 denotes quantities in the uniform section. 

3.2. Behaviour of the hardening ductile phase 

The ductile phase in the composite is assumed to harden according to a customary constitutional law 
in which contributions from strain hardening and strain-rate hardening to the flow stress are added 
[14][15]: 

!! = ! !! +!  !"
!
!!

 
(6) 

here K is the strength constant, n the strain-hardening exponent, m the strain-rate hardening coefficient 
and !! a reference strain-rate, typically given the value 5 . 10-5 s-1 [14][15].  

3.3. Statistical model for the damaging brittle phase 

The flow stress of the brittle phase (B) is, in the absence of internal damage, linear elastic:  σB = Eε, 
where E is Young’s modulus of Phase B. We assume that as the composite is strained, it sees the 
gradual and stochastic appearance of cracks that cut the fibre or planar layer of Phase B in two across a 
plane normal to the tensile axis. Cracking is assumed to follow classical two-parameter Weibull 
statistics, namely we take it that the cumulative probability of failure for a single brittle phase element 
(fibre or layer) of length L subjected to uniaxial stress σ is [16,20–22]: 

!! !, ! = 1 − !"# −
!
!!

!
!!

!
 

(7) 

where ρ is the Weibull modulus, L0 is a reference length and σ0 a reference strength (note that these 
two parameters, which are often separated for dimensional convenience, are in fact lumped together in 
the Weibull statistical law and are hence to be considered as a single parameter, L0(σ0)ρ). 

We assume that the interface remains intact where a crack has cut an element (layer or fibre) of Phase 
B. Phase Near a crack, Phase A will therefore transmit stress and hence part of the applied load, across 
the interface, back to Phase B. This causes the average stress within Phase B to build up as one moves 
along the stress axis away from each crack it contains. The mechanics of this (complex) problem have 
been the subject of extensive work in composite micromechanics; Refs. [16][17] give detailed in-depth 
reviews. The simplest (“shear-lag”) view of the problem is that wherever the brittle phase has cracked, 
it is reloaded by the ductile phase via the shear stress that the latter exerts, along the stress direction, 
across the interface between the two phases. As is customary in dealing with ductile matrix composites 
(even though this is a strong assumption given the complex stress distributions to be expected with a 
strain and strain-rate hardening material) we take the interfacial shear stress to be uniform and assume 
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that it equals the instantaneous average flow stress in shear of the ductile phase. Adopting the Von 
Mises criterion and assuming Phase A to be isotropic, we take this to be: 

!! =
!!
3
=
! !! +!  !" !

!!
3

 

(8) 

where, as before, ε is the local instantaneous composite strain along the direction of tensile loading. 
This causes a linear build-up of σB away from each crack that Phase B might contain, Figure 1, up to a 
distance δ from the crack, at which σB has reached the value that would obtain in the absence of a 
crack, namely Eε. A simple force balance gives [16]: 

! =
ℎ!!! 3
2!!

=
ℎ!!" 3

2! !! +!  !" !
!!

 
(9) 

where σB = Eε; σA is given by Eq. (6) and h is the thickness or the radius of the brittle phase in 
laminated or fibre composites, respectively. Note that both σB and σA evolve as deformation 
progresses. 

 

Figure 1: Stress profile around a crack in a brittle layer of the multilayered composite. !! is the average stress 
on the brittle layer, whereas σB is the remote stress. 

The load-bearing capacity of a cracked brittle layer decreases as the number of cracks it contains 
increases; on the other hand, hardening within the ductile phase decreases δ, which per se increases 
!!, raising somewhat the average stress in the brittle phase near the cracks it contains (Figure 1). The 
average stress in the brittle phase is: 
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!! =
1
!

!! ! !"
!

!
 (10) 

where !! !  is the stress profile along a statistically representative length L of brittle phase in the 
composite, measured parallel to the stress axis. It is convenient to rewrite this by summing over all 
fragments now composing Phase B, sorting contributions by the length l of fragments: 

!! =
!
!

!!,! ! !"
!

!
! !,!! !"
∞

!
 

(11) 

where   !!,! is the stress profile along a fragment of length l, N is the total number of cracks along 
length L in Phase B and P(l, σB) is given by Eq.(7). With τs the same everywhere at any given instant, 
one has: 

!!,! ! !"
!

!
=

!! 1 −
!
!
    ! ≥ 2!

!!
!
4!

                          ! < 2!
 

(12) 

Combining Eqs. (11) and (12) gives [16]: 

!!
!"

= 1 −
!
!
! +

!
!

! − ! +
!!

4!
! !,!! !"

!!

!
 

(13) 

The second term on the right-hand side accounts for layer fragmentation: it represents the reduced 
load-bearing capacity of the fragments near their ends. The third term accounts for overlapping of the 
recovery regions in fragments of length ! < 2! [16]. In the absence of cracks, the second and third 
term of Eq. (13) equal zero and the average stress is simply σB = Eε, as should be. 

3.4. Curtin’s model 

Curtin [16,23,24] developed an approximate analytical solution to Eq. (13) by considering that, with 
sufficiently few breaks, the third term can be neglected because fragments of length ! < 2! are then 
unlikely. This assumption leads to accurate estimates of the peak load, and hence the tensile strength, 
of composites in which the fibres carry nearly all the load and the matrix flows at steady stress; 
unfortunately, as we shall see below, for the present problem Curtin’s simplification is not justified. 
Still, this model has the virtue of leading to simple expressions that expose well the physics of the 
present problem; we therefore use it first in formulating the problem tackled here.  

Curtin’s assumption reduces Equation (13) to: 
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!!
!"

= 1 −
1
2
!"
!!

!!!
 

(14) 

where σR is a reference stress given by: 

!! =
!! ∙ !! ∙ !!!

ℎ

!
!!!

 
(15) 

The factor ½ in the second term of Eq. (14) expresses the fact that sections of Phase B that carry a 
reduced load and intersect the composite cross section of interest carry on average one-half of the 
stress carried by an intact elastic fibre (this comes from the linear load profile of Phase B near cracks) 
[16]. Curtin showed [16] that Eq. (14) produces a good approximation of the peak stress in composites 
with a non-hardening matrix for ! > 1.6.  

Equation (14) suggests the definition of a dimensionless damage parameter: 

! ≡
!"
!!

!!!
≡ !!!! 

(16) 

(note that, in the present problem, ω varies as the composite deforms because it contains the matrix 
flow stress). Inserting Eqs. (6), (8) and (15) into Eq. (16) gives: 

! =
!"
!!

!!!
=
!!!! ∙ ℎ ∙ 3
!! ∙ !!! ∙ !

!!!!

!! +! ∙ !" !
!!

 

(17) 

leading to define another dimensionless parameter, which incorporates only fixed physical 
characteristics of the composite: 

φ ≡
!!!! ∙ ℎ ∙ 3
!! ∙ !!! ∙ !

 
(18) 

Using Curtin’s expression for the average stress in Phase B, Eq. (14), the composite flow stress is 
now: 
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!!"# = !! ∙ !    !!! !! +!  !"
!
!!

+ !! ∙ ! ∙ ! 1 −
1
2
φ

!!!!

!! +! ∙ !" !
!!

 

(19) 

Combining Eqs. (5) and (19), and defining ! ≡ !!!
!!!

 gives: 

!!! ∙ ! !! +! ∙ !"
!
!!

+ ! 1 −
1
2φ

!!+1

!! +! ∙ !" !
!!

=
1

1 − !
!!!! ∙ ! !!! +! ∙ !"

!!
!!

+ !! 1 −
1
2φ

!0
!+1

!0! +! ∙ !" !0
!!

 

(20) 

for the composite in the long-wavelength approximation when the brittle phase average stress is 
expressed using Curtin’s approximation.  

Equation (20) gives a relation between the instantaneous values of strain and strain-rate in the uniform 
and non-uniform sections of the composite tensile bar. When it is solved numerically for !  with  !! 
fixed it gives values for the strain in both the uniform and reduced sections, versus time. These at first 
both increase slowly, with the strain in the reduced section only slightly higher than in the remainder 
of the gauge section. At some point the strain in the reduced section starts deviating to much higher 
values than in the uniform section: necking has become catastrophically unstable. The strain at that 
point in the (main) uniform section is taken here as an estimate of the elongation to failure of the 
material; its value depends somewhat, but only slightly, on the value of η, provided η is only slightly 
smaller than unity. 

By analogy with the behaviour of ductile metals and alloys, the influence of strain-rate hardening in 
the ductile phase, if any, is expected to occur after the peak stress. At that point, overlapping of the 
recovery regions near the breaks is likely; Curtin’s solution then loses accuracy. Two improvements to 
Curtin’s analysis exist in the literature. 

3.5. Improved models 

Hui et al. [18] derived the exact fragment size distribution P(l, σB) and numerically calculated the 
composite mean stress, thus solving Eq. (13) precisely; however, their solution could not be expressed 
analytically. An approximate improved expression was given by Neumeister [19], who developed an 
alternative expression for the average brittle phase flow stress, accounting for the influence of 
overlapping shear-lag regions. Neumeister’s expression is approximate but it fits better Hui et al.’s 
[18] exact solution than does Eq. (14), particularly at low values of the Weibull exponent !. 
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Both Neumeister’s and Hui et al.’s solution can be expressed in terms of the same dimensionless 
parameter as Curtin’s expression, namely ω defined in Eq. (16). This is seen directly with 
Neumeister’s model [19], which gives the flow stress of the brittle phase as: 

!!
!"

=
1

! + 1
+

1
2  !" ! + 1

!
! + 1

!
 

(21) 

Combining Eqs. (5), (6) and (21) gives for this model the equation to be integrated to derive the 
composite mean stress and uniform elongation in the long-wavelength approximation. 

Hui et al.’s solution [18] expresses the composite mean stress as: 

!!
!"

=
1
!

!!

2
!! !, ! !"

!

!
+ ! ! − ! +

!
2
!! !, ! !"

∞

!
   

(22) 

where !! !, !  is the same probability function as in Eq. (7) and where ! = !"
!!

 is the dimensionless 

stress defined in Eq. (16). Some mathematical transformations have to be applied to Eq. (22) before 
solving it numerically; these lead to express it as: 

!!
!"

=
1
!

!"#
−2!
1 + !

!

!
  ! !, !   !  Ψ !, !   !"  

(23) 

where: 

! =
!!!!

2
=
!
2

 
(23a) 

! !, ! =
1 − !
!

−
!
2
+

1 − !!!

!
 

(23b) 

Ψ !, ! = !!!Φ !  (23c) 

Φ ! =
!

! + 1
1 − !!!

!
!"

!

!
 

(23d) 

Hui et al. [18] then seek a solution for the composite mean stress having the form: 
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! ! =
2

!
!!!

1 + !
∙ ! ! ∙ !! !  

(24) 

where: 

! ! = !
!

!!! ∙ !!!!
∞

!!!

 
(24a) 

! ! = −2! − 2
!

! + 1
!!!!

∞

!!!

 
(24b) 

The coefficients ak are given by the following recursive relation: 

!! =
1 + !
!

= !! 
(24c) 

!!!! =
1 + !

1 + ! ! + 1 + 1
− !!!!!!

!

!!!

+
−1 !!!

! + 2 !
  !"#  ! ≥ 1 

(24c) 

while the bk coefficients are defined as: 

!! =
−1 !!!

! !!
 

(24d) 

and finally the ck coefficients are: 

!! = −2          !! = −2
!

! + 1
! + 1 !!!!        !"#  ! ≥ 1 (24e) 

As seen, all three models for the average stress in Phase B, including the complete solution by Hui et 
al. [18], are governed by the same dimensionless parameters, namely the (strain-dependent) parameter 
ω, which itself contains the dimensionless constant φ defined in Eq. (18). Whatever the model used, 
therefore, the problem is governed by five dimensionless parameters, namely: n, m, ρ, γ, and φ. Once 
these are fixed, one can calculate, in the long-wavelength approximation and with all the assumptions 
stated above, the uniform elongation as well as the tensile curve of the composite.  
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A load balance akin to Eq. (20) is thus written for the model of Hui et al. [18] in the long-wavelength 
approximation by combining Eqs. (5), (6) and (24) with an evolving shear-stress in the brittle phase as 
expressed in Eq. (8). As in Ref. [15], we solve numerically this relation using a Taylor-series-based 
explicit finite difference algorithm, using strain increments ∆!! = 0.0001, and calculate the value of ε 
at each strain increment using the bisection method with an error of 10-10. Also, for every calculation, 
L0 is set to a standard value of one metre (such that L0(σ0)ρ is expressed in terms of σ0 only). 

An example is given in Figure 2 where the calculated stress-strain curve in the uniform section of a 
laminated composite combining two steels in equal volumetric proportions is shown. Parameters are 
from the literature except for ρ, which was slightly lowered, for a ductile steel [25–27] and a more 
brittle steel [28,29]. The composite peak stress values differ little between the three models (as already 
stated by Neumeister [19]) and follow the same trend with increasing m (the Curtin model 
underestimates the exact solution whereas Neumeister’s model overestimates it). On the other hand the 
three models disagree more significantly past the peak stress; we therefore use hereafter the exact 
analysis of Hui et al., referring occasionally to Curtin’s model when it brings light to the behaviour of 
the composites considered here.  

 

Figure 2: Engineering stress-strain curves in the uniform portion of multilayered composite specimens for 
Curtin model (Eq. (14)), Neumeister model (Eq. (21)) and Hui model (Eq. (24)). For various values of m and 
taking η=0.005. 

4. Results 

Strains in the uniform and non-uniform sections can be obtained by combining the long-wavelength 
analysis (Eq. (5)) and the Hui model (Eq. (24)). Figure 3 shows what is predicted for the same 
laminated metal composite as above, combining equal volumes of a ductile steel [25–27] and a 
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damaging steel [28,29]. Note how strain localizes in the reduced section past a certain strain in the 
uniform section. The value of strain in the main section (!!

!) gives a (conservative) estimate of the 
composite strain to failure, for two reasons: (i) on average ε exceeds ε0, and (ii) near the point at which 
the applied tensile load peaks, the slope of the true stress-true strain curve is also low, such that a 
small difference in stress between the two regions translates into a much larger difference in strain. 
Both Figure 2 and Figure 3 show that, as in Ref. [15] and for metals and alloys more generally, a finite 
strain-rate sensitivity can delay the onset of instability, increasing the tensile elongation that is reached 
before the neck elongation increases toward infinity; note also how a finite value of m causes a more 
gradual departure of ε as compared to ε0. Figure 3 also shows how decreasing the stiffness of the brittle 
phase, all else constant, can increase the composite strain to failure. 

 

Figure 3: Variation of the strain in the non-uniform section (η=0.005), ε, with the strain in the uniform section, 
ε0, of the LMC (parameter values are given in the insert and on the graph). 

Of the five parameters characterizing the model, ρ is expected to be influential since it appears as an 
exponent of E and σ0. Figure 4 shows, for the same LMC combining a ductile steel [25–27] with a 
damaging steel [28,29], the strain to failure plotted versus the Weibull modulus: increasing ρ leads to a 
decrease of !!

!. This influence appears directly in Curtin’s model, Eq. (19): increasing ρ causes a more 
abrupt decrease in the composite flow stress with increasing strain, which per se tends to destabilize 
the composite against necking. Figure 4 also gives a first view of the influence exerted by n and m on 
the composite ductility. An increase in strain-rate hardening exponent m (Figure 4 (a)) gives, at fixed 
ρ, a higher failure strain; however, this influence decreases as ρ increases and is almost negligible 
when ρ=10. On the other hand, an increase in the strain hardening exponent n (Figure 4 (b)) gives, for 
fixed ρ, a lower failure strain. This unexpected influence, which decreases as ρ increases, is caused by 
the fact that, when the strain hardening exponent n increases keeping all else constant, the reference 
strength σR (Eq. (15)) decreases since ε < 1. This in turn increases the damage parameter ω (Eq. (16)) 
and therefore decreases the uniform strain to failure. The highest influence of strain hardening 
parameters is observed for ρ=2; however, the effect is in practice smaller than that, since most realistic 
values for brittle metals and engineering ceramics give ρ between 5 and 20 (roughly, ρ=3-20 for 
ceramics, ρ=8-20 for powder metallurgy steels, ρ>30 for wrought steels) [20–22,28–36]. 



13 
 

 

Figure 4: Maximum attainable strain in the uniform section, !!
!, of an LMC as a function of the Weibull 

modulus ρ, for various parameters (see insert) and η=0.005. (a) varying m; (b) varying n. 

We now examine more systematically the influence exerted by the five dimensionless parameters 
governing the problem: n, m, ρ, γ and φ, taking n between 0 and 0.5 and m between 0 and 0.1, the 
Weibull modulus ρ between 5 and 10 (above 10 the ductile phase influence becomes negligible), and γ 
between 0 and 1. These ranges cause the dimensionless parameter φ to be spread over a relatively wide 
scale, see Table 1 (note that some parameter combinations are not physically realistic, e.g., high σ0 
with low E or vice-versa) [16,28–35,37–45]. 

Table 1: Typical φ values as a function of ρ, h, σ0, K and E. 

ρ=5 
100 100 100 5000 5000 5000 10000 10000 10000 σ0 [MPa] 

50 200 500 50 200 500 50 200 500 E [MPa] 

0.001 100 3.E+13 1.E+17 3.E+19 9.E+04 4.E+08 9.E+10 3.E+03 1.E+07 3.E+09 

 
0.001 5000 5.E+11 2.E+15 5.E+17 2.E+03 7.E+06 2.E+09 5.E+01 2.E+05 5.E+07 

0.000001 100 3.E+10 1.E+14 3.E+16 9.E+01 4.E+05 9.E+07 3.E+00 1.E+04 3.E+06 

0.000001 5000 5.E+08 2.E+12 5.E+14 2.E+00 7.E+03 2.E+06 5.E-02 2.E+02 5.E+04 

h [m] K[MPa]  

ρ=7 
100 100 100 5000 5000 5000 10000 10000 10000 σ0 [MPa] 

50 200 500 50 200 500 50 200 500 E [MPa] 

0.001 100 7.E+18 4.E+23 7.E+26 9.E+06 6.E+11 9.E+14 7.E+04 4.E+09 7.E+12 

 
0.001 5000 1.E+17 9.E+21 1.E+25 2.E+05 1.E+10 2.E+13 1.E+03 9.E+07 1.E+11 

0.000001 100 7.E+15 4.E+20 7.E+23 9.E+03 6.E+08 9.E+11 7.E+01 4.E+06 7.E+09 

0.000001 5000 1.E+14 9.E+18 1.E+22 2.E+02 1.E+07 2.E+10 1.E+00 9.E+04 1.E+08 

h [m] K[MPa]  

ρ=10 
100 100 100 5000 5000 5000 10000 10000 10000 σ0 [MPa] 

50 200 500 50 200 500 50 200 500 E [MPa] 

0.001 100 8.E+26 4.E+33 8.E+37 9.E+09 4.E+16 9.E+20 8.E+06 4.E+13 8.E+17 

 
0.001 5000 2.E+25 7.E+31 2.E+36 2.E+08 7.E+14 2.E+19 2.E+05 7.E+11 2.E+16 

0.000001 100 8.E+23 4.E+30 8.E+34 9.E+06 4.E+13 9.E+17 8.E+03 4.E+10 8.E+14 

0.000001 5000 2.E+22 7.E+28 2.E+33 2.E+05 7.E+11 2.E+16 2.E+02 7.E+08 2.E+13 

h [m] K[MPa] 
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Figure 5: Lines of constant predicted uniform strain to failure (!!
!) of the composite plotted versus 

dimensionless parameter φ and the strain-rate hardening exponent m for three values of γ (γ=0.001, 0.01 and 0.1). 
(a) ρ=5; (b) ρ=10. 

One can see in Figure 5 a few jumps in the predicted ductility around a small range of variation of 
either m, n, or γ. Its origin is hinted at in Figure 3: note how the transition to instability is abrupt when 
m = 0, and more gradual at m = 0.1. Figure 6 shows that a similar jump occurs, all else constant, as 
γ increases. This figure additionally shows that predictions are relatively insensitive to the time step 
used in integration: curves calculated with 104 or 105 iterations are similar, suggesting that the jump is 
not a numerical artefact. Figure 6 adds to Figure 7 predictions for a wider range of γ values (with the 
integration step now constant), and superimposes on the plot the (dimensionless) load borne by each of 
the two phases in the reduced portion of the gauge length, with values given on the horizontal axis 
versus the strain ε in that region, on the vertical axis of the plot. Note how, when the load-bearing 
capacity of the ductile phase is very low (γ=0.0005 and 0.005, the black and red curves), tensile 
instability is triggered when the brittle phase reaches its peak stress. There is then essentially no 
influence exerted by the ductile phase; this is as one would expect. As the load-bearing capacity of the 
ductile phase (or in other words, as γ) increases, there is a shift in the point where tensile instability is 
reached, to a (slightly γ−dependent) point situated a little after the inflection point at which the 
(negative) derivative of the brittle phase stress-strain curve reaches a minimum. What this suggests is 
that with m = 0, the observed jump in the strain to failure of the composite is linked with the inflection 
point in the brittle phase flow curve. If the composite survives up to this point, the fact that the brittle 
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phase work hardening rate starts to increase gives the composite a temporary lease on resistance to 
necking. This is then lost when the ductile phase rate of work hardening has decreased sufficiently. 
Figure 7 (b) shows the effect of a change in φ, all else constant: the same transitions are found, at 
corresponding points. Additionally, the graph shows explicitly how increasing the value of φ, which 
governs damage in the brittle phase, decreases the composite failure strain and also decreases the 
amplitude of the transition behaviour (as is visible in Figure 5). The role played by the inflection point 
in the brittle phase flow stress is also corroborated by the fact that such jumps in strain to failure are 
not observed when Curtin’s equation, which predicts no inflection point in the brittle phase stress-
strain curve, is used instead of the full solution by Hui et al. (Eq. (14)). The inflection point in the 
brittle phase average stress is caused in the model of Hui et al. by the fact that, past a certain strain, 
overlapping recovery regions in the brittle phase are reloaded again through the increased ductile 
phase flow stress: the mechanics of flow stabilization by the ductile phase are thus a complex result of 
its dual roles, in load-bearing and in load-transfer.  

 

 

 

Figure 6: Strain in the non-uniform section, ε, as a function of the strain in the uniform section, ε0, for different 
values of γ, two iteration numbers and constant values of φ, n, m and ρ. 
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Figure 7: (a): Strain in the non-uniform section, ε, versus: (i) the strain in the uniform section, ε0 (ii) the 
dimensionless load borne by the ductile phase (only γ=0.0005, 0.005, 0.05 are shown on the graph, other curves 
being off-range) (iii) the dimensionless load borne by the brittle phase (curves for all γ values superimpose), for 
different values of γ and constant marked values of φ, n, m and ρ. (b): Strain in the non-uniform section, ε, 
versus: (i) the strain in the uniform section, ε0 (ii) the dimensionless load borne by the brittle phase (curves for all 
γ values superimpose), for two values of φ, four values of γ and constant values of n, m and ρ (indicated on the 
graph). 

 

 

 

Figure 8 shows what happens to predictions in Figure 6 when the ductile phase also exhibits strain-rate 
hardening (m = 0.1). Trends remain the same: ε deviates overall in the same way from ε0, and also the 
ductile phase has the same (limited) effect on the elongation to failure. What is new is the presence of 
a step in the ductile phase flow stress; this is caused by strain-rate hardening, which raises the ductile 
phase flow stress, in turn raising the average stress in the brittle phase, once deformation in the 
reduced section starts accelerating. This in turn delays the instability, rounding the ε versus ε0 curve 
near the transition to failure: there lies the mechanism whereby strain-rate hardening increases the 
strain to failure of the composite. As a result, the brittle phase flow stress now depends somewhat on γ 
past its peak. The reason is that γ affects the level of ductile phase strain-rate hardening once neck 
deformation accelerates, causing γ to influence δ (Eq. 9) and therefore the damage parameter ω (Eq. 
17), affecting in turn the flow stress in Phase B.  
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Figure 8: Strain in the non-uniform section, ε, versus: (i) the strain in the uniform section, ε0 (ii) the 
dimensionless load borne by the ductile phase (only curves for value of γ up to 0.05 are shown on the graph, 
other curves being off-range) (iii) the dimensionless load borne by the brittle phase, for different values of γ and 
constant marked values of φ, n, m and ρ. 

Figure 9 shows the influence of ρ using maps of the strain to failure versus φ and γ for ρ=5, 7 or 10 
with hardening parameters of the ductile phase set to n=0.5 and m=0.1. These graphs confirm the 
minor role played by γ: the strain to failure of the composite is mostly dictated by φ and ρ. Increased ρ 
gives higher elongations at fixed φ; this is explained by the fact that increasing ρ while keeping φ 
constant leads to a lower value of damage parameter (Eq. (17), keeping in mind that ε will nearly 
always stay below unity). It is worth noting that if one keeps all dimensional physical system 
parameters fixed and varies only the Weibull exponent ρ, its influence will be different since its 
variations will then also affect φ (Eq. 18); this will be detailed below. 
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Figure 9: Maximum attainable strain in the uniform section of a composite  (!!
!) made of a brittle phase and a 

ductile phase, as a function of the brittle phase dimensionless parameter φ (Eq. (18)) and the load sharing 
fraction γ, with ductile phase parameters n=0.5 and m=0.1, and for η=0.005: (a) ρ=5; (b) ρ=7 (c) ρ=10. 

 

5. Engineering implications 

From a physical standpoint, what transpires is that the uniform elongation of ductile/brittle phase 
composites, as dictated by tensile instability and within the framework of the present analysis, is 
chiefly governed by properties of the damaging brittle phase. Strain and strain-rate hardening in the 
ductile phase are of some, but only limited, assistance in delaying failure by the onset of unstable 
necking in such materials. All relevant dimensionless parameters but φ (Eq. 18) and the Weibull 
modulus ρ have only a minor influence on the composite elongation to failure. Load-bearing by the 
ductile phase, and the stress it transmits to the brittle phase where the latter has cracked, buy the 
material at most a small lease of life against the necking instability if one measures ductility by the 
elongation of the main section of the tensile bar, as we have done here.  

We therefore now draw a map that gives, in coordinates of φ and ρ and with adequate precision given 
the weak influence of all other parameters, the composite uniform elongation to failure. This is shown 
in Figure 10, which plots iso-deformation lines for three combinations of n and m covering a wide 
range in their possible values, keeping γ set to zero (thus ignoring the role of load-bearing by the 
matrix since this will not increase much the composite elongation, Figure 9; this leads predictions to 
be slight underestimations). As seen, in composites deforming to high elongation (low values of φ), it 
is mainly φ that governs the elongation. Where ρ plays (at fixed φ) a more important role is where 
elongations are low: there, its influence can be considerable, as shown by the high slope of the iso-
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deformation lines or by the increase in tensile elongation that is, for example, brought by going from ρ 
= 7 to ρ = 15 when φ equals 1012: the ductility then goes roughly from 1 to 10%.  

 

Figure 10: Map of the predicted uniform tensile elongation to failure (!!
!) as a function of the dimensionless 

parameter φ and the Weibull modulus ρ, for η=0.005 and γ = 0. Iso-deformation lines give the uniform strain to 
failure, for three ductile phase parameters combinations: n=m=0; n=0.5 & m=0; n=0.5 & m=0.1. 

Table 2 gives relevant physical properties of a few brittle metals in which fracture statistics have been 
reported in the form of two-parameter Weibull statistics (often, three-parameter Weibull statistics are 
given instead [31,32,35,37,46–54]); note that these are often for deformation at temperatures well 
below ambient. Let us consider a “typical” medium-strength brittle steel, with E = 210 GPa, σ0 = 
1,500 MPa and L0 = 1 m, leaving the Weibull parameter ρ as a free-floating variable. Let us pair it 
with alloy 6061 (K = 550 MPa, n = 0.11, m = 0 [55]).  

Returning to the definition of φ (Eq. (18)) we write:  

log φ = ! log
!
!!

+    log
! ∙ ℎ ∙ 3
!! ∙ !

 
(25) 

This defines a line of slope 2.15 and intercept (-1.48) that can be drawn directly over the map of 
predicted elongations, as shown in Figure 11 (here n and m have now been fixed at 0.3 and 0, 
respectively). As seen, it turns out that the line comes close to that giving material combinations that 
have a uniform elongation to failure of only 1%: this is thus the predicted elongation to failure no 
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matter what the value of the Weibull parameter ρ might be with this system. To improve the 
elongation of the laminate, two options are available: (i) decreasing the slope of this line if ρ is high, 
meaning, for a given Phase A and hence with E roughly constant, increasing its strength as measured 
by σ0, or (ii) decreasing the second term between parentheses on the right-hand side of Eq. (25), which 
means in practice either decreasing h or increasing K. There is, for a given material combination, 
limited flexibility with regard to strength constants (σ0 or K are not easily changed by several orders of 
magnitude); therefore the main parameter that can move the line drawn by Eq. (25) down significantly 
is the laminate thickness, h. As a bonus, once h falls near or below 10 µm, this will generally also 
increase K (Refs. [56,57] give reviews of dislocational layer hardening mechanisms in small scale 
composites). In the present example, decreasing h from 50 µm to 50 nm will shift the line down, into a 
range where elongations of several percent can now be expected, particularly if ρ is low, Figure 11. 

Numbers will change from one system to another (e.g., log !
!!

 varies from 1.3 to 3.8 across systems 

listed in Table 2); however, the line of reasoning that precedes and its main conclusion, remain. The 
most robust and potent strategy in designing laminated composites having some stability against 
necking and hence reasonable ductility is to reduce h. 

 

Figure 11: Maximum attainable strain in the uniform section (!!
!) of a composite combining a brittle phase with 

a ductile phase, as a function of the brittle phase dimensionless parameter φ (Eq. (18)) and the Weibull modulus 
ρ, setting γ=0, but having n=0.3 and m=0, and for η=0.005. Yellow line: predicted ductility for a medium-
strength steel / aluminium alloy 6061 composite with h = 50 µm; Orange line: same but with h = 50 nm. 
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Table 2: Physical properties of brittle metals found in literature: E, σ0, ρ and L0, characterizing a two-parameter 
Weibull model. For different testing temperatures. 

Brittle metals E [GPa] σ0 [MPa] ρ T [°C] L0 [mm] Ref. 

A533B Steel 215 11,000 4 -150 NA [30] 
HT780 Steel 206 2,690 12.2 -75 1 [29] 

A36 Steel 200 1,800 7.8 -43 1 [28] 

Sand Cast A319 Aluminium 74 197 21 RT NA [31][32] 

Ductile cast Iron  <4% Pearlite 170 73.5 15.7 -40 1 [33] 
Ductile cast Iron  <9% Pearlite 170 71.4 11.7 -40 1 [33] 

Ductile cast Iron  <20% Pearlite 170 69.4 9.47 -40 1 [33] 

SA508 Carbon Steel 210 1,350 9 -40 NA [58] 
Al356 Vertically top filled Cast 

Al-7Si-Mg 
71 289 10.8 RT NA [34][35] 

 

Summing up, what transpires most strongly from the present analysis is that an equistrain composite 
combining a brittle (two parameter Weibull) with a ductile (strain and strain-rate hardening) phase will 
nearly always have a rather low ductility: cracking in the brittle phase destabilizes, in nearly all 
practically relevant cases, tensile deformation of the composite, regardless of ductile phase properties. 
The main exception to this is in composites having very thin layer thicknesses: these can be made 
reasonably ductile because very short shear-lag lengths, coupled with strengthening of the ductile 
phase, lead to efficient damage healing, allowing in turn elongations that can significantly exceed one 
percent – provided of course that there is no clustering of damage (or fracture by local load sharing, in 
the parlance of composite mechanics). Best is, however, to avoid damage altogether: here again 
reducing layer thicknesses is a potent strategy. In recent research, laminated austenitic/martensitic 
steel composites having exceptional combinations of strength and ductility were demonstrated: key 
ingredients to this achievement were a suppression of tunnel crack growth in the brittle martensitic 
steel at sufficiently small layer thicknesses in laminated metal composites having a sufficiently strong 
and tough interface [59–61]. 

6. Conclusion 

Shear-lag analysis of the deformation of equistrain composites in the presence of stochastic cracking 
of one phase is adapted for strain and strain-rate hardening in the other, ductile, phase, and then 
implemented in the Hutchinson-Neale-Ghosh long wavelength model for the prediction of the 
composite uniform strain to failure as governed by neck formation and instability. It is found that 
strain and strain-rate hardening in the ductile phase can delay somewhat the onset of unstable 
deformation; however, the resulting increase in composite elongation is generally small. It is 
furthermore found that only two parameters influence strongly the predicted composite tensile 
ductility: these are the brittle phase Weibull modulus ρ and the dimensionless parameter φ that is 
defined in Eq. (18). Working the model with practical values of its governing parameters leads to 
conclude that the best strategy to produce ductile laminated composites when one of its phases is 
susceptible to cracking is to reduce the scale of the microstructure: greater ductility is then obtained as 
damage in thinner layers or fibres is then more efficiently healed or suppressed. 
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