Spectral Density Ratio Models for Multivariate Extremes

(Supplementary Material)

Miguel DE CARVALHO and Anthony C. DAVISON

1 D-Dimensional Maximum Empirical Likelihood Estimator

The extension of the maximum empirical likelihood estimator of Einmahl and Segers (2009) to the D-dimensional setting
is straightforward. The maximum empirical likelihood estimator H(-) = 3, ji 6, (-) has probability masses given by the
solution of
a iz logp;
such that >0 p; =1, (1)
S vipi =D 11p.
By the method of Lagrange multipliers, the solution is given by

l 1
nl+ )\T(’Ui — D_l].D)’

P = i=1,...,n,

where A € R? is the Lagrange multiplier associated to the marginal moment constraint in (1), defined implicitly as the

solution to the equation
n

1 v; — D711D

n Z -1 =0
ne=1+ AT (v; — D~ '1p)

See Qin and Lawless (1994) for further details.
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2 Additional Empirical Reports
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Figure 1: Scatterplot of air temperature data after transformation to unit Fréchet scale; the gray line represents the boundary threshold, at

the 98% quantile, corresponding to each sample in the log-log scale, with both axes being logarithmic.
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Figure 2: Boxplot of p-values for the bootstrap-based goodness of fit test in Section 2.4; each p-value is obtained by resampling 1000 times,

from one simulated data set. The histogram of p-values is constructed by repeating this procedure for all the simulated data sets in Section 3.2.

3 Convex Dual Representation and the Inner Optimization Problem

The convex dual representation of the empirical likelihood problem under analysis is helpful for computational purposes.

Here the necessary dual involves minimising

n K
L) =—D log { > explan + Bre(v) o + Af(vi - D11D>}},
i=1 k=0

subject to the linear constraints Z?:o exp{ag + Bre(vi) Hpor + AL (v;— D7 '1p)} > 0, for i = 1,...,n. These constraints
can be removed by using the pseudo-logarithmic function introduced by Owen (2001, p. 235), i.e.,

log(s), s> e,
log(s) =
log(e) — 1.5+ 2s/e — s2/(2¢?), s<c¢,

for some small € > 0. Then the initial problem of interest simplifies into one of minimizing

n K
LupN) == logy { > explak + Bre(vi) Hok + Af(vi — D11D)}},
i=1

k=0

over A € REFDD - for which a Newton algorithm can be implemented by recursive least squares. We write the gradient

and Hessian of £y as

0Ly

aL?
aA - _UTy7 i

OAOAT

—-U"U,



where U = (uq,...,u,)" and y = (y1,...,yn), are defined as
X 1/2
| (2) ) T -1 -1 T
u; = [ log; {Zexp{ak—kﬂkc(vz)}{pk—i—x\k(’vl D 1D)}}] x (v;—D '1p)",
k=0

K
log;p { Zexp{ozk + Bre(vy) Hor + Mg (v; — D11D)}}

k=0

Yi =

K 1/2°
[— log;’ { Z exp{a + Bre(v) Hpr + Af (v, — le)}}]
=0

and log;? denotes the ith derivative of the pseudo-logarithmic function.

Numerical optimization can then be performed by updating A according to the rule A — X + (UTU)~'U"y, which
uses the preceding values of the Lagrange multipliers A corresponding to the marginal moment constraints, and an
increment (UTU)~1U"y; the latter is readily obtained by least squares regression of 4y on U. See Owen (2001, sec. 3.14)
for further details.

4 Proofs of Auxiliary Lemmas
Lemma A.1. Let 0 = (B,a,\)" and 0* = (B*,a*,0)", and suppose that the conditions of Theorem 1 hold. Then

Sps Spa Spa
1 0%

T A Saa Sax |+ Moo
Sax
where the matriz S is symmetric, and, with I(-) the indicator function and py = no/n,...,px = nk/n, we have
(Spplem = Ik =m)prJi® = promJion:  (Sga)km = I(k = m)prJi = prpmJ§
(Sea)k,m = I(k=m)pe i’ — pedims  (Saa)km = I(k =m)pr — prpmJim,
(Sax)kem = —Pkdims (SaX)kom = —Joms



fork,m=1,..., K when considering o, B and k,m =0, ..., K when considering X, where

Tt = [ (ot fcw)ldHo(o),
o = [ pyeplas @) esplan + Bne)
hom /SD e S pexp{ay + Bic(v)} o)
Jp = /S c(v) exp{ay, + Bre(v) }dHy(v),
e _ exp{ay + Brc(v)} exp{am, + Bmc('u)}dH 7
o /SD ) S0t prexp{on + Bic(v)} ®)
Jit = /S c(v)(v — D "1 p) exp{ay + Bre(v)}dHy(v),
o iy explon + Bic(v)) explan + Bue(®))
£ = [ cw)w-D7p) e (v).
Je = exp{ay + Bre(v)} exp{am, + ,Bmc(v)}dH ’
" /s Yo" prexp{ar + fie(v)} )
N (i ) L (O L L5) U
hom /SD v 2 S prexp{ay + Bic(v)} o)
JUv — D11 D11 TeXp{ozk + BkC('U)} exp{am + Bmc(v)}dH
o /SD . 2 2 S prexp{ay + Bic(v)} o)
These expressions are understood to be evaluated at ay, = of, By = B, fork,m=1,... K.

Proof. For compactness let Q; = Zfio exp{ay+Bic(v) Hp+ AT (v; =D '1p)}, ¢; = c(v;), ek j = c(wy ;) and dy ; = pr+
AT (v; — D7 '1p), and note that when (8, a, A) equals (8%, a*,0), we have dy; = p and Q; = Zfio prexp{ag + Bie(v;) }.

Definition (22) in the paper of the auxiliary function s implies that

ok - ;
_@ _ Z eak+ﬂkCz,dk7i/Qi — Nk, (2)
=1
0k = ag+Pkci "
~58 = Z cie dy,i/Qi — Z Chk,js ®)
i=1 J=1
8:‘4/ = — «@ c;
Ton > (vi— D p)er e/, )
=1

If these expressions are evaluated at (8*, a*,0), then since Y | (-) = Z{io Z;”:l() and n; = np;, the expectation of



(2) equals

proxplowt fuelv)} |- explon + fre(wi)} o
Z 1 S prexplan+ 610(”’)}] o /D zz;; S o prexp{a + Bre(wi;)} Hng) =

B ny exp{ay, + Bre(w)}
- /SD — S prexplag + Bre(w)}

_ mexplog + fe(w)y oL
pk/sD — S8y mexp{a + Bie(w)} ) =

exp{a; + Bic(w) }dHo(w) — ng

- S pesplan+ fe@)} o
npg Sp Z{io prexp{a; + Bre(w)} k(w) — ng
= MNpr —Ng
= 0. .

Similar computations show that (3) and (4) also have zero expectations at (3*, a*,0); the computation for (4) uses the
moment constraint (3) of the paper.

The second derivatives may be written as

8214, n n
- = I(k=m) Z eak+ﬁkcidk7i/Qi _ Z eak“rﬂkcieam‘i‘ﬁmcidkﬂ,dm’i/Q?’
Oa,0am, = =1
_ﬂ _ I(k; — m) zn: cieak"!‘ﬁkcmdk Z/Qz _ zn: cieak+5kc1,eam+ﬁm,cidk idom i/QZ,
aﬂkaam i=1 i=1
82:‘6 n - v n
_6)\k8a = I(k=m) Z(% -D 11D)eak+ﬁkcz/Qi _ Z( — D™ 1D)d ak+6kczea1n+ﬁ7ncb/Q2
m i=1 i=1
82 n n
-3 aﬂ — I(k — m) Z C?eak+ﬁk6idk7i/Qi _ Z c?eak‘i’ﬁkci60¢7n+67n5idk7idm7i/Q12’
Bk /Bm i=1 i=1
aZK - —1 ag+PBrc; - —1 akp+Brci ,Cm+Bmci 2
_78)\ Bk = I(k)zm)Z(’UI—D 1D)Ci€ kT Pk ”/Q,‘—Z(’Ui—D 1D)Cidm,ie kTPRC eHm T Pm ”/Qi,
kCHm i=1 i=1
0%k . -1 -1 T @k +PBkCi ,0m+Bmci /)2
TOMNONT > (wi— D '1p)(v; — D'1p)Te igemthmes 12,

i=1
The weak law of large numbers implies that each of these sums of independent variates, when renormalised by division
by n, will converge to the corresponding expectation, if this is finite. When the expressions are evaluated at (3, a, A) =
(B*, a*,0), we find that the manipulations like those leading to (5) give, for example,

1 0%k
E (= Gty ) = (Soalbon = 106 =m0 pip i



where the value of the first term stems from the computation leading to (5) and the second appears because

n

lE Z exp{ozlc + Bkc('vi)} exp{am + ﬁmc<'ui)}

n — K . ’

i—1 [leo prexp{a; + /Blc('vz)}}

1 / i i exp{ax + Brc(wi;) } exp{am + ﬁmcgwl’j)}dHl(wl i)
nJsp 2y i [Zfio prexp{ay + /Blc(wl,j)}}
. o~ mexplan + fue(w)} expam + Bnclw)) gy

nJsp 1= {Z{io prexp{ay + Blc(w)}}

Sy prexp{ay + Bie(w)}
[Zfio prexp{og + BzC(w)}}

_ exp{ay + Bre(w)} exp{ay, + Bmc(w)}dH ). .
/SD Yito prexp{on + Bie(w)} o(w) (6)

The other expectations are computed similarly, with the first term vanishing from the computation for (Sax)k,m because

Jk,m =

= /S exp{ay + fre(w)} exp{am, + Bmc(w)} 5dHp(w)

the expected value of (4) equals zero. O

Lemma A.2. Let 0 = (B,a, A)" and 6* = (3*,a*,0)", and suppose that the conditions of Theorem 1 hold. Then

1o
V106,

where S is defined in Lemma A.1, and, with R = diag(p1, ..., pK),

A NO,V), V=8S-Ty-T1-Tp, n— oo, (7)

0 0 Sia O 0 o 0O 0 O
To=| 0 0 Sarn |» T'=S| 0 R 0 |S, To=p,'S| 0 117 0 |S.
Sx8 Sxaa 25x 0O 0 o 0O 0 O
Proof. The vector random variable
o
V08 | y_g.

is a sum of independent terms, and results in Lemma A.1 imply that its components (2), (3) and (4) have expectations
zero. Thus provided its variance matrix is finite, the result follows by the central limit theorem. We thus must show that

its variance matrix is of form (7). The first step in establishing this is the computation of the variances and covariances



of (2), (3) and (4) when 8 = 0*. At that point, and in the notation used in the proof of Lemma A.1, we have

1 ok Ok 1 N ot Bre(o; (v
;COV <8&k7 aam) — ncov{Ze & +Bk (”‘)pk/Qi»Ze m+Bm (vl)pm/Qi}
=1

i=1

1 - i (0% C\V;
= ZZCOV {ea’“w’cc(m)f’k/Que m+Bme( JPm/Qi}

i=1

_ 1 S (o9 re(wy, ) Qm me(wi,j;)
= n;jz_:lcov{e +A ' pk/Qiae +h ’ pm/Qi}

K
S { / expfay + Bue(w)} explam + Buclw)} jpp )

1=0 Sp [leigl prexp{a; + Blc(w)}}

exp{ay, + Bre(w)} exp{ay, + Brc(w)} exp{an, + Bmc(w)}
dH, dH,

s St prexp{on + Bre(w)} 1) /s St prexp{on + Bie(w)} l(w)}

K
= PkPm (Jk,m - Zlek,lJl,m> ; (8)

=0

the equalities successively following from the definition of covariance, the independence of the observations, re-expression

in terms of the K + 1 samples, the definition of covariance and (6). Now

K K
expiak + prelw
Soohi= Yoo [ PO < [ expfan + uct) () = 1
1=0 1=0 Sp Y i— prexp{a; + Bic(w)} Sp
and this and similar computations yield
K K K
podeo =1— ZPka,z, podio = — ZPlJig,u podio = Ji — Zpl‘]lg,l' (9)

=1 1=1 =1

It follows that the bracketed term in (8) may be written

K K K
Jkm — ZPle,lJl,m -5t (1 - ZPZLL@,Z) (1 - Zlel,m>
=1 =1

=1

and hence (8) may be expressed in matrix terms as
Voo = RIR— RJRJR — p;'R(I — JR)117(I — RJ)R,

where J is the K x K matrix with (k,m) element Jj p,, for k,m=1,..., K.

Note that

0 0 0 SgaR 'Sap SsaR 'Saa SpaR 'Sar

T\=S| 0 R' 0 |S=|S0aR 'Sap SaaR 'Saa SacR 'Sax

0 0 0 SxaR 'Sap SxaR 'Saa SraR 'S

and

0 0 0 880117803 Spall™Saa  Spall™Sar

To=p,'S| 0 11" 0 | S=01"| Saall"Sas Saall”Saa Saall®Sa

0 0 0 S2a117Sas  Sxall™Saa Srall™Sax



Since Sqa = R — RJR, the (o, ) part of (7) equals

Soaa —0—SoaR 'Sqa — Saal1l™Soe = R—RJR—(R-RJR)R'(R-RJR) - p,'(R— RJR)11"(R - RJR)
0
R-RIJR-R+2RJR—- RJRJR - p;'R(I - JR)11"(I - RJ)R

= Vaa-

Tedious computations along the same lines establish that, in similar notation and with a subscript d indicating a

diagonal matrix (so, for example, J¢¢ is the diagonal of the K x K matrix J, whose (k,m) element is J;, ), we have

Sgs = RJS— RJ“R,
Vas = RJS— RIR+RJIJSR+ RISISR — R(J5)? — RIRJ°R — py ' R(JS — J°R)117(JS — RJ°)R,
Ssa = RJ;— RJ°R, Vo =RJI;JR- RI‘RIR - p;'R(J; — J°R)11"(I — RJ)R,

Sgx = RJ —RJ®, Vaa=RJJ' — RI‘RJ' — p;'R(JS — J°R)11"(—RJ"),
Sax = —RJ’, Vorn=RJ'—RJRJ'+p,'R(I - JR)11"RJ",
S)\)\ — —JUU’ V)\}\ — J’UU _ JURJ’U _ palJURllTRJU,

from which the stated relation V= 8§ — Ty — T1 — T5 follows after some matrix algebra. Since all the required matrices

are finite by hypothesis, the result follows. O

The decomposition of V' in Lemma A.2 differs from that of Huang and Rathouz (2012, Lemma 3) due to an unfortunate

error, but a decomposition similar to eq. (7) also holds in their setting.

Lemma A.3. Let S be as in Lemma A.1, but partitioned according to 3 and v = (a, A)*

g [ Ses Sev
Syp Syvy

Then, provided the necessary inverses exist,

(I,~8pv833)8(I,=83,85)" = Spp — 455,58, (10)
(I, ~SpySyy)To(I, 81y Sy8)" = 0, (11)
(I, =SpyS3y)Ti(I, =S5, 88)" = 0, (12)
(I, ~SpyS3y)Ta(I, S5, S5)" = 0. (13)

Proof. To establish (10), we write

Sps Sp N

) T | (1,-85754s)"
Svﬁ S’Y’Y

= (S — Spy S5y Syp, 0)(I, —5, Syp)"

(I,—SpyS,4)S(I,~8,,5p)" = (I,—SpyS,5

= Sps — Spv53, 548



For (11), we write
0
0 Sﬁ'v
SQ/B Syy+ A

0 —Saa 0
SO =1{0 S 3 SO = 9 A = .
By ( ﬁA> 7€) SM’ 0 Sxx

(I, -8y S )To(I, —S,15+8)" = —SpyS,15%5 — 53,551 5+8 + Spy Sy Sy + SpyS1AS 1S5 (14)

(I,—SpyS ) To(I,—85,5p)" = (I,—SpyS53) ( ) (I,-8,38,s)"

where

Some matrix algebra yields

The usual expression for the inverse of a partitioned matrix (Mardia et al., 1979, p. 459) gives

. ( s Saasms;;) )
T\ =851 Sha 8o S
where
(8%) ™" = Saa = SarSxaSra:  (SM) 71 =8ax — SaaSaaSar, S%*SarSix = SamSarS™M. (16)
Inserting (15) into the expressions in (14) yields
SpvS3ySys = SsaSMSas — SpaS SarSxaSas,
S3, S48y = SsaS*Sas — SpaSiaSraS** Sas;
S5yS 488 = SpaS*Sap+ SpaS *Sas — SpaS**SarSxaSrs — S8ASaraS**Sas,
SpySAASTIS s = Sa(S%SarSiaSaa S — 8806 5%)Sap

+SB)\(S)\)\SAAS)V\ o S;}l‘s)\asaa Saasaa Sa)\S;}\)SA,G
75501(50“1 SQ)\SA}\ _ gaa Saasaa Sa)\ S)_\)l\)s)\,@
—SpA(5M8ra S — 853520 S SaaS*) Sap
— Sﬂ)\s)\)\s)\ﬁ _ SﬁaSaa Sa,@a
where the final equality follows from using (16). On inserting these expressions into the right-hand side of (14), we

obtain 0, as required to establish (11).
For (12), we have

0 0

(I,-8pyS )T (I, —S,150)" = (I,sms.,;)s(o o

) S(I,~8,18,5)"

0 0

) (Sps — SpyS+45+8,0)"
0 Q

= (Sp — S3+S5+S+s,0) (

= 0,

10



where @Q is the lower right part of the central matrix in T4, when the latter is partitioned according to (3,-). Clearly
the same argument applies if T} is replaced by T, and this yields (13). O

5 Proof of Corollary 1

Our argument is the same as one of Huang and Rathouz, and is given here for ease of reference.

Proof. Let B* = (89, 32) = (0,32) € B denote the value of 3 giving rise to the data, and note that if B = Op(n=1/2),

which we shall establish below, then a Taylor series expansion of ép(BB) around @ yields

A A A A 2 A A~
216(8) ~ole)) = Vil o) () g )| VA8 B+ ul)

= V(B - B)" = Vn(B - Br) + 0p(1), (17)

since 3 — B* = O, (n~1/?).

We now partition the K x K matrix 3 conformally with 8%, with ¥;; an m X m matrix, and write

b)) b 0o o0
> _ 11 12 H—

)

o1 Xoo 0 )

The last K — m elements of df,/dB|5_g, equal zero, so H d¢,/dB[5_s5, = 0.
The argument to establish part (a) of Theorem 1, but applied within the submodel B, yields

1
N e

Vin(Bs - B) =H ( ) + op(1), (18)
B=p"

since the first m elements of both ,@B and B* equal zero. The term in parentheses on the right of (18) has a limiting

Gaussian distribution with mean zero, by the same argument. Thus

1 de 1 de 1 d2e R i
. = @t (n 2 ﬁ_ﬂ*) V(s — B°) + op(1)
- =5 S B8) + o)
1 de
= (I-XH) (\/ﬁ dT;: ﬁ:g*) + 0p(1)
4 (I-XH)Z, n— oo, (19)

where we have used the consistency of the rescaled profile information matrix and (18), and Z ~ N (0, X).

Now both B and B are \/n-consistent for 3*, so B — B = (BJB% —-B*) — (,é -6 = Op(n’1/2), as stated above. Thus

1 de, 1 de,

1 Lodsl (1 de,
Vi dBla_s,  vn dBlag  \n dBdBT
Y \/ﬁ(ﬁ _BJB) +0P(1)7

) Vn(Bs — B) + op(1)

B=B

11



and this yields

% dbp +0p(1). (20)

Vn(B—Bg) =%"" dg s,

Inserting (20) into (17) and using (19) gives that
20,(8) — £p(Bs)} S Z"(I - XH)'S"'(I - SH)Z, n— .

It is straightforward to check that this has the same distribution as W™ (I — /2 H2/2)W | where W ~ N(0, I¢) and
I - X'2HX'? is idempotent of rank m; thus its eigenvalues are 1 (m times) and 0 (K — m times). Hence the limiting

distribution of Q{EP(B) - EP(B]B)} is x2,, as was announced. O
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