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SUMMARY
Retinal degenerative diseases resulting in the loss of photoreceptors are one of the major causes of blindness. Photoreceptor replacement

therapy is a promising treatment because the transplantation of retina-derived photoreceptors can be applied now to different murine

retinopathies to restore visual function. To have an unlimited source of photoreceptors, we derived a transgenic embryonic stem cell

(ESC) line in which the Crx-GFP transgene is expressed in photoreceptors and assessed the capacity of a 3D culture protocol to produce

integration-competent photoreceptors. This culture system allows the production of a large number of photoreceptors recapitulating the

in vivo development. After transplantation, integrated cells showed the typical morphology of mature rods bearing external segments

and ribbon synapses. We conclude that a 3D protocol coupled with ESCs provides a safe and renewable source of photoreceptors display-

ing a development and transplantation competence comparable to photoreceptors from age-matched retinas.
INTRODUCTION

Retinal degenerative diseases such as inherited or age-

related eye diseases resulting in the loss of photoreceptors

are the leading cause of blindness in Europe. To date,

around 4% of the western world population suffers from

one of these diseases, and unfortunately, no cures exist

to treat the majority of them (Prokofyeva and Zrenner,

2012). Up to now, only gene therapy applied at the very

early stage of the disease provides encouraging results by

slowing down the degeneration progression (Bemelmans

et al., 2006; Bainbridge et al., 2008; Maguire et al., 2008),

but no data indicate that gene therapy with the present

tools can in fact stop the degenerative process in patients

(Cideciyan et al., 2013). Around 200 different mutated

genes and loci were identified so far to be responsible for

roughly half of the retinal dystrophy cases, revealing that

a substantial number of patients necessitate alternative

therapies. Interestingly, during retinal degeneration, the

mammalian retina is unable to regenerate, but the under-

lying retinal circuitry is relatively well preserved for

a long time. Different groups therefore validated the possi-

bility to reactivate dormant retinal circuits of degenerating

retinas, focusing onmethods such as retinal prosthetic sys-

tems, optogenetic approaches, and cell replacement ther-

apy (Busskamp and Roska, 2011; Mathieson et al., 2012;

MacLaren et al., 2006). Restoring photosensitivity by trans-

planting new photoreceptors and coupling them to the

remaining active retinal circuitry is thus a realistic

approach. Photoreceptor cells collected directly from either
Ste
newborn or adult donor retinas can be effectively trans-

planted into adult wild-type retinas and restore photosen-

sitivity as well as some visual function in mouse models

of retinal degeneration (MacLaren et al., 2006; West et al.,

2009; Gust and Reh, 2011; Pearson et al., 2012; Singh

et al., 2013). Because the developing retina is not a suitable

renewable source of photoreceptors, many groups focused

their attention on different stem cells due to their potential

to provide an unlimited supply of the desired cell pheno-

type (Tomita et al., 2002; Klassen et al., 2004; Zhang

et al., 2004; Cicero et al., 2009; Gualdoni et al., 2010;

Decembrini et al., 2011). To date, the best cell sources iden-

tified to efficiently generate photoreceptors in vivo are the

pluripotent embryonic stem cells (ESCs) and the induced

pluripotent stem cells (iPSCs). Recently, many groups

have developed protocols to induce the differentiation of

photoreceptors from human or mouse ESCs (hESCs or

mESCs, respectively) and iPSCs (Lamba et al., 2006, 2009,

2010; Osakada et al., 2008; Hirami et al., 2009; Meyer

et al., 2009; Tucker et al., 2011; Nakano et al., 2012). How-

ever, few studies investigated the capacity of photorecep-

tors derived from ESCs and iPSCs to integrate the retina.

Up to now, two different publications have shown the gen-

eration of human retinal cells from pluripotent cells that,

after transplantation, migrate into the outer nuclear layer

(ONL), acquiring a photoreceptor-like morphology and

expressing some photoreceptor markers (Lamba et al.,

2009; Tucker et al., 2011). Although encouraging, these

works did not provide a characterization of the cell type

or of the developmental stage amenable to produce
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photoreceptors that integrate the recipient retina. More-

over, the lack of well-formed external segments andmature

ribbon synapses precludes a firm conclusion of truly inte-

grated photoreceptors. In addition, the use of viral vectors

to label transplanted cells could have led to false-positive

results (West et al., 2012). So far, only one study has

described the attempt to produce enough mESC-derived

photoreceptors for cell replacement therapy, concluding

that the 2D culture system utilized cannot be scaled up to

produce integration-competent photoreceptors (West

et al., 2012). These results diverge with the 2D systems pre-

viously exploited with human cells (Lamba et al., 2009;

Tucker et al., 2011). Recently, the group of Y. Sasai pub-

lished a new 3D culture system (Eiraku et al., 2011; Eiraku

and Sasai, 2012) to induce the formation of optic cups

(OCs) generating retina-like tissues containing all the

retinal cell types including photoreceptors. Importantly,

such photosensitive cells were not challenged for their ca-

pacity to integrate a retina after transplantation. In this

study, we derived transgenic mESC lines in which the re-

porter gene, the Crx-GFP transgene, is expressed in postmi-

totic photoreceptor cells. Taking advantage of such lines,

we evaluated the extent to which the above-mentioned

3D culture system recapitulates photoreceptor genesis

and in parallel assessed the capacity of in-vitro-generated

photoreceptors to integrate recipient retinas in correlation

with their stage of culture.
RESULTS

De Novo Isolation of a Crx-GFP ESC Line from

Blastocysts

Within the last 2 years, the group of Y. Sasai (Japan) pub-

lished two landmark papers describing a 3D culture system

to generate synthetic OCs from mESCs and hESCs (Eiraku

et al., 2011; Eiraku and Sasai, 2012). Such a culture system

offers the unique opportunity to studymammal retinogen-

esis in vitro and to exploit the photoreceptor capacity to

integrate the retina after grafting. In order to follow photo-

receptor development and to trace cells after transplanta-

tion, we derived three ESC lines from a transgenic mouse

line expressing GFP under the control of the endogenous

photoreceptor-specific promoter Crx (Samson et al.,

2009). At the onset of the mouse retinogenesis, the CRX

protein is translated in developing photoreceptor precur-

sors (from embryonic day 13 [E13]). In the adult murine

retina, its expression is restricted to both mature cones

and rods (Samson et al., 2009). For our ESC line, blastocysts

were isolated from a Crx-GFP-positive female at 3.5 days

postcoitum (dpc) as described by Bryja et al. (2006a,

2006b) with minor adjustments (Kiyonari et al., 2010;

Wray et al., 2010, 2011) consisting with the addition of
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CHIR99021 and PD184352 molecules to block the

glycogen synthase kinase 3 b and mitogen-activated pro-

tein (MEK) pathways, respectively, and increase ESC resis-

tance to differentiation (Figures S1A–S1D available online).

Clones positive for the pluripotency markers (Figures S1E–

S1M) were tested for the teratoma assay. For each line, five

adult nonobese diabetic (NOD)/severe combined immuno-

deficiency (SCID) mice were injected subcutaneously with

13 106 ESCs (see Supplemental Experimental Procedures).

Three weeks postinjection, teratomas were sampled and

analyzed by hematoxylin and eosin staining for the tissue

composition. All the lines tested gave rise to a rapid tera-

toma outgrowth composed of a mixture of tissues derived

from all three germinal sheets (Figures S1N–S1S).

Optimization of theOCandPhotoreceptorGeneration

Optic Vesicle and Cup Morphogenesis

Taking advantage of recently published milestone work by

Eiraku et al. (2011) and Eiraku and Sasai (2012) describing

the in vitro generation of OCs, we optimized and scaled

up a 3D culture protocol to generate transplantation-

competent photoreceptor cells from mESCs. Briefly, the

five phases of the former protocol are day 0, which is a

quick aggregation step to induce the formation of

embryoid body (EB)-like structures; day 1, addition of base-

ment-membrane matrix components to promote the

development of a neuroepithelium around the EBs from

which different optic vesicles (OVs) will be specified; day

7, EBs transfer into floating culture conditions to induce

the OC formation (Figures 1A–1L); day 10, OC isolation;

and day 13, switchmedium to induce photoreceptor differ-

entiation. In the following experiments, three different

Crx-GFP ESC lines were used (clones 3, 6, and 8). We first

assessed the ideal cell density to generate the highest num-

ber of photoreceptors by producing individual aggregates

containing from 1,500 to 12,000 ESCs (15–120 cells/ml of

medium). The optimal cell density, leading to a large pro-

duction of photoreceptors, was found to be 3,000–5,000

cells per aggregate depending on the line used. A higher

number of cells had no positive impact. A lower number

of cells resulted in the failure of the neuroepithelium for-

mation. In addition, after 25 days of culture, we observed

that only OVs with a size superior to 300 mm between

days 5 and 7 of culture (Figure 1M), and with a flattened

distal portion by days 7–9 (Figures 1G, 1K, and 1L, black

arrows), gave the highest number of photoreceptors. This

OV population represents around 70% of the total retinas

generated. Then, the increased time in Matrigel improved

the OC formation from one out of five (20%) to one out

of three (33%) initial OVs as well as the harvesting of

retina-like structures (Figure 1N). Concerning the OC isola-

tion (at day 10), we assessed the option of growing devel-

oping retinas directly inside the mother aggregate, instead
s



Figure 1. Time Course of OV and OC For-
mation from mESCs and Quantification
(A) Single aggregate formation in serum-
free floating culture of EB-like aggregate
with quick reaggregation conditions.
(B) Neuroepithelium formation.
(C–H) Different examples of OV evagination
from specialized area of the neuro-
epithelium.
(I–L) Flattening of the OV distal portion and
invagination. (G, K, and L) Examples are
shown of OV flattened at varied differenti-
ation days (black arrows).
(M) Quantification of the diameter of OV
giving rise to retinas.
(N) Quantification of OC and OV generation
before and after the protocol fine-tuning.
Error bars, mean ± SEM (n = 7 independent
experiments with 96 cells counted per
experiment). **p < 0.01 and ***p < 0.001,
by t test. a, after; b, before. Scale bars,
150 mm (A) and 100 mm (I).
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of dissecting them as previously described by Eiraku et al.

(2011). In fact, the deletion of tissue adjacent to the OC

provoked unpredictable consequences likely due to its

potential role in retina patterning and differentiation.

Boosting the Photoreceptor Differentiation

In order to improve and scale up the photoreceptor pro-

duction, we fine-tuned the 3D culture system by adding

ingredients and adjusting the dioxygen (O2) concentra-

tion. The use of supplements such as N2 and B27 (see

Supplemental Experimental Procedures) instead of the

original mix of retinoic acid (RA), N2, and 10% of fetal

calf serum (FCS) produced a series of benefits. Indeed, we

observed that the absence of serum reduces the growth

of nonneural tissues and that the B27 supplement favors

neuroectoderm development. In addition we exploited

the consequences of a different O2 concentration on

aggregates at different days of culture. Age-matched aggre-

gates (day 7 or day 12) were placed in floating conditions

to induce retina maturation and incubated at either atmo-

spheric O2 concentration or in hyperoxia. Aggregates from

day 7 culture incubated at 40% of O2 exhibited increased

apoptosis up to day 12 with a sequential reduction of

the OV-OC dimension: for clone 3.48% ± 1.3% of the

GFP-positive structures showed a reduced size and 39% ±

2.4% for clone 6 (data not shown). Conversely, when ag-

gregates were kept in a hyperoxic environment from day

12, corresponding to the photoreceptor differentiation
Ste
onset, onward, an increased proliferation (Figures 2A–

2BII and 2E) and a decreased amount of cell death (Figures

2C–2DII and 2F) were revealed at day 18 of culture. These

results highlight the dual role exerted by hyperoxia on

progenitor proliferation and photoreceptor survival dur-

ing early and late stages of retinogenesis. However, aggre-

gates maintained at atmospheric O2 concentration up to

day 25 reduced their GFP expression and retina size over

time (Figure 2G). Consequently, hyperoxic conditions,

applied from the time of photoreceptor differentiation

onset onward, allowed the development of retinas with a

volume increased up to five times over 10 days. Such pro-

tocol adjustments result in the formation of multilayered

well-aligned GFP-positive retinas showing closer similar-

ities to the in vivo development than the previous 3D

protocol, as confirmed by the average number of GFP-

positive cells (79% ± 1.8% versus 63% ± 2.2%) and photo-

receptor rows (nine versus seven) produced per retina

(Figure 3). Remarkably, the retina induction efficiency of

the 3D culture system, measured as the number of aggre-

gates containing at least one GFP-positive retina in com-

parison to the total number of aggregates, is around

79% ± 4.3% and 68% ± 3.5% using clones 3 and 6, respec-

tively. Reliable induction of OC-OV was observed after a

few passages, between 3 and 20, and between differentia-

tion days 7 and 9, approximately one-third of the OVs un-

derwent a quick morphological rearrangement, flattening,
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Figure 2. Hyperoxic Conditions to
Increase Retina Size
OCs were incubated with normoxic or
hyperoxic condition from day 12 onward.
(A–DII) Sections of retina-like tissues after
18 days of culture.
(A–AII and C–CII) Hyperoxic conditions
(40% O2).
(B–BII and D–DII) Atmospheric normoxia.
(E and F) Quantification of Ki67-positive (E)
and caspase 3-positive (F) cells in normoxic
and hyperoxic conditions.
(G) Quantification of the aggregate size
at day 18 of culture in hyperoxia and nor-
moxia.
All the figures presented have a correct
apical-basal (Ap-Ba) polarization but with
photoreceptors localized at the concave
side of the retina as shown in (A).
**p < 0.01 and ***p < 0.001 by t test (n = 3
independent experiments with n = 3 bio-
logical replicates counted per experiment).
Scale bar, 15 mm.
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and consecutively invaginating their distal portion to give

rise to OC-like structures.

In most of the cases when the invagination proceeded,

round bright PAX6-positive structures resembling a pri-

mordial lens were observed in or near the OV invagination

furrow (Figures S2A–S2D). At the end of the invagination

process, lens-like structures were found to be displaced or

had disappeared from the original position. At day 13 of

culture, the first GFP-positive cells appeared inside either

the OCs or the remaining OVs that had not invaginated.

In fact, OVs unable to invaginate still demonstrated the

capacity to produce photoreceptors resuming the canoni-

cal apical-basal polarization in an apical and concave

shape, rather than convex, as highlighted by the laminin

and N-cadherin expressions (Figures S2E–S2LI).

Time Course of the Photoreceptor Formation

At the end of the OC morphogenesis, the culture condi-

tions established (see previous section) created an ideal

and reproducible environment for the photoreceptor

and retina development. Between days 12 and 14 of cul-

ture, GFP-positive cells arose in the most central part of

the retina in a dispersed fashion similarly to what occurs

in the neuroblastic layer of the developing E13 retina (Fig-

ures 4A–4BI and 4K–4KI). Between days 14 and 20, GFP-

positive cells increased in number and progressively

migrated toward the apical side of the retina to form a

dense cell layer composed of numerous well-aligned pho-
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toreceptors (Figures 4C–4FI and 4L–4MI). At this time

point, GFP-positive cells lined up to form photoreceptor

rows equivalent to a postnatal day 0 (P0) retina in vivo.

Between days 20 and 25, the retina size presented minor

variations, and all the further modifications were mostly

linked to the photoreceptor maturation (Figures 4E–4HI

and 4M–4NI; see below, Retina and Photoreceptor Matura-

tion). After 25–28 days of culture, a variable amount of

retinas started developing rosettes (Figures 4I–4JI). In or-

der to determine the peak time of photoreceptor birth

in vitro, cell cultures were pulse labeled with 5-ethynyl-

20-deoxyuridine (EdU) for 24 hr or stained for Ki67 and

analyzed for the GFP and EdU or Ki67 coexpressions.

Photoreceptor birth was maximal between days 19

and 20 of culture (Figures S3A–S3D). It is noteworthy

that aggregates at any differentiation stage were not

completely synchronized in development, resulting in

retinas with different sizes, shapes, and apical-basal orien-

tation inside the aggregates. Nevertheless, a constant per-

centage of photoreceptors per retina, ranging between

73% and 85%, was revealed at the peak of the retinal

size development (Figure 3).

Retina and Photoreceptor Maturation

After optimizing the protocol, we investigated whether

the increase of photoreceptors affected the retinogenesis

and whether the in vitro retina development paralleled

the in vivo one. PAX6-positive (ganglion or amacrine cells;
s



Figure 3. Comparison between the Num-
ber and Rows of Photoreceptors, per
Retina, Obtained with the Present and
the Former 3D Culture Protocol
(A–BII) Cryosections of day 25 retinas.
(A and B) Examples of complete (A) and
incomplete (B) ONL/INL separation (white
arrows).
(C and D) Quantification of photoreceptor
rows (C) and photoreceptor number (D)
obtained per retina.
The figures presented have a correct apical-
basal (Ap-Ba) polarization with photore-
ceptors localized at the concave (A–AII)
and at the convex (B–BII) side of the
retina. The apical-basal polarization is
shown in (A). DAPI nuclear stain is in blue.
**p < 0.01 and ***p < 0.001 by ANOVA
with Tukey’s correction (n = 7 independent
experiments). Scale bar, 25 mm.
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Figures S3E–S3EI), BRN3b-positive (ganglions; Figures S3F–

S3FI), and RXRy-positive cells (cones; Figures S3G–S3GI)

were detected from day 13 onward. SOX9-positive retinal

progenitors were present from day 13 up to days 20–22 of

culture (Figures S3I–S3II). Sparse calbindin-positive cells

(horizontal cells) with disoriented nuclei were identified

from day 15 (data not shown). At this developmental stage,

all the OTX2-positive cells were GFP positive, underlining

the absence of bipolar cells (Figures S3H–S3HI). Two

different populations of photoreceptor cells, the CRX-

RXRy-positive and CRX-positive-RXRy-negative, were de-

tected for the first time between days 13 and 15 of culture,

confirming the presence of both cones and rods (Figures

S3G–S3GI). The percentage of RXRy-positive cells over

the total GFP-positive photoreceptors was calculated. Of

RXRy-positive cones, 38% ± 1%, 27% ± 0.9%, 18% ±

1.1%, and 12% ± 1.2% were counted at days 16, 18, 20,

and 23, respectively (Figure 5). The GFP expression

perfectly parallels the in vivo development of the Crx-

GFP mouse line (Samson et al., 2009) peaking in intensity

at day 20. In this culture condition, the retinal-pigmented

epithelium (RPE) differentiated from day 12 onward, but

the structures analyzed showed development variations.

In a few cases (3% ± 0.9%), the RPE completely enfolded

the neural retina from the beginning, but most of the

time, black-spotted cells patched the retina (Figure S4). In
Ste
several experiments, the RPE differentiated in other loca-

tions, spreading along the surface of the aggregates. No

obvious correlation was found between the RPE locali-

zation and the retina formation. From day 20, GFP-positive

cells started producing sketches of the inner segments, and

5% ± 1.3% of them translated the cone phototransduction

protein GNAT2 (Figures S5A–S5AI). At the same differenti-

ation stage, OTX2-positive-GFP-negative cells (bipolar

cells) were detected for the first time (Figures S5B–S5BI).

Importantly, paralleling the in vivo development,

Rhodopsin-positive photoreceptors were detected from

day 20 onward (Figures S5C–S5CI). Other retinal cell types

including PAX6-positive ganglion and amacrine cells as

well as SOX9-positive retinal progenitors were still detected

(Figures S5D–S5EI). After 25 days of culture, around 50% of

the retinas began to separate the ONL from the inner

nuclear layer (INL), even if the layer formation was often

found to be incomplete (Figure 3, white arrows). The

average diameter of the in-vitro-generated retinas peaked

between days 23 and 25, to around 1.5 mm, fitting more

with a P0 retina. From day 25 onward, structural synaptic

proteins and functional components of the phototrans-

duction cascade revealed by Ribeye, Bassoon, GNAT1,

and GNAT2 were respectively detected (Figures S5F–S5II)

with a pattern similar to that observed in P5 retinas. Other

interneurons such as bipolar, amacrine, and ganglion cells
m Cell Reports j Vol. 2 j 853–865 j June 3, 2014 j ª2014 The Authors 857



Figure 4. Time Course of Photoreceptor Formation from mESCs
(A–JI) Each differentiation stage is represented with two micrographs to highlight the heterogeneity of the in-vitro-generated retinas.
(A–BI) Appearance of GFP-positive photoreceptors.
(C–DI) Increase of photoreceptor number and alignment.
(E–FI) Peak of photoreceptor birth and GFP intensity.
(E–HI) Peak in retina size and in photoreceptor number.
(I–JI) Decrease in retinal size along with increase of rosette formation.
(K–OI) Micrographs of retina sections at various days of culture.
The figures presented have a correct apical-basal polarization but with photoreceptors localized at the concave (K–OI) side of the retina.
The apical-basal polarization is shown in (KI), (LI), (MI), (NI), and (OI). DAPI nuclear stain is in blue.
Ba, basal side; Ap, apical side. Scale bars, 100 mm (A), 20 mm (K), and 50 mm (M).
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were observed in all the retinas (Figures S5J–S5KI). Around

0.5% ± 0.2% of Vimentin-positive cells (Figures S5L–S5LI;

Müller cells) were clearly distinguishable from day 25

onward.

In order to better determine the differentiation stage

reached by the in-vitro-generated photoreceptors, the

structure of the external segments was investigated. Cen-

trin, expressed in the connecting cilium, basal body, and

associated centrioles, and RPGRIP1L, found in the basal

body, were utilized to identify the presence of the inner

segments and the cilium of developing photoreceptors

(Figures 6A–6C; RPGRIP1L not shown). Because the

Centrin staining increases over time in evolving ciliary

structures of developing photoreceptors, we determined

that at day 25, the average size reached by the connecting
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cilium was similar to that of P4 photoreceptors (0.2–

0.3 mm; Figures 6A–6C; Sedmak and Wolfrum, 2010). It

is noteworthy that Centrin was revealed in photoreceptors

either before dissociation or after fluorescence-activated

cell sorting (FACS) procedures, even though sorted photo-

receptors could be partially damaged (Figure 6D). ROM1

and Peripherin, two structural proteins involved in the

morphogenesis and stabilization of the outer segments,

localized at the distal tip of the connecting cilium before

the outer segment formation, were not detected in retinas

at differentiation days 25 and 30. The absence of such

structural proteins highlighted the lack of the outer

portion of the external segment, which during the in vivo

development, is first detected in roughly 12% of P7 photo-

receptors (Figure S6; Peripherin not shown). Based on the
s



Figure 5. Percentage of Cones Generated from 3D Synthetic
Retinas over Time
(A–DII) Cryosections of in-vitro-derived retinas at various differ-
entiation stages.
(A–DII) GFP-positive photoreceptors in green.
(AI, BI, CI, and DI) RXRy-positive cones in red.
(AII, BII, CII, and DII) Merge with DAPI in blue.
(E) Quantification of RXRy-positive cells over total GFP-positive
cells.
The figures presented have a correct apical-basal polarization with
photoreceptors localized at the concave (A–BII and D–DII) and at
the convex (C–CII) side of the retina. The apical-basal polarization
is shown in (A).
**p < 0.01 and ***p < 0.001 by t test (n = 3 independent experi-
ments with n = 3 technical replicates counted per experiment). Ba,
basal side; Ap, apical side. Scale bar, 15 mm.

Ste
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connecting cilium size, the absence of outer segment pro-

teins, and together with the expression of functional

photoreceptor proteins, retinas at day 25 of culture were

equivalent to those at P4–P6 in vivo. Moreover, the trans-

lation of Bassoon and Ribeye, proteins responsible for the

integrity of the ribbon complex of the synapses, high-

lights the capacity of such in-vitro-generated photorecep-

tors to make proper connections with the underlying

bipolar cells showing a certain degree of maturation. At

days 25–28, a variable amount of retinas started devel-

oping rosettes composed mostly of cells expressing simul-

taneous cone and rod markers (Opsin1, GNAT1, 2, and

Rhodopsin; data not shown). Inversely, rosette-free retinas

did not. After 28–30 days of culture, synthetic retinas

decreased in size likely due to a massive apoptosis of

different retinal cell types other than photoreceptors. No

further morphological maturation of the external seg-

ments was observed up to day 45 of culture (data not

shown).

Characterization of the Most Appropriate Stage to

Transplant Crx-GFP-Positive Photoreceptors

Generated with the 3D Culture System

The competence of ESC-derived photoreceptors to

morphologically integrate adult retinas after transplanta-

tion was tested. Age-matched retina-like structures were

pooled together and dissociated into a single-cell suspen-

sion (see Supplemental Experimental Procedures). GFP-

positive photoreceptor cells were sorted by FACS. Around

ten million photoreceptors were isolated per 96-well plate.

The cells were then transplanted by subretinal injections

into adult NOD/SCID recipient mice (see Experimental

Procedures) to avoid the positive or negative influence

that immune cytokines may have on photoreceptor

survival and integration. In order to establish the most

appropriate developmental stage for transplantation, pho-

toreceptors were grafted at three differentiation time

points (days 22, 25, and 30) and analyzed 3 weeks after

transplantation. During this short period of time, suffi-

cient to allow ESCs to develop tumors, none of the sorted

and transplanted GFP-positive cells gave rise to tumor for-

mation in the recipient mice. Integrated photoreceptors

were well orientated within the ONL of the recipient retina

(Figures 7A and 7B). A different integration competence

was observed between photoreceptors collected at days

20, 25, and 30 of culture. Photoreceptors at day 25 showed

the highest integration competence (around 799 ± 73 cells

per retina; number of eyes injected [n] = 4; Figures 7A–7I),

resembling more of those collected directly from P4 retinas

(our internal control), known to be the best cell source for

transplantation (MacLaren et al., 2006) (1,643 ± 137; n = 4

Figures 7I and S7). A lower capability to integrate recipient

retinas was shown by older or younger in-vitro-derived
m Cell Reports j Vol. 2 j 853–865 j June 3, 2014 j ª2014 The Authors 859



Figure 6. Centrin Expression in In-Vitro-
versus In-Vivo-Developed Photo-
receptors
Centrin stains the connecting cilium, basal
body, and associated centriole.
(A–AIII) Centrin protein expressions (in
red) at day 25 of culture and (B–BIII) in P4
retinas.
(AIII–BIII) Magnifications of (A and B)
white-squared Centrin-positive cells
merged with DAPI in blue.
(C) Quantification of Centrin size.
(D) Quantification of Centrin-GFP-positive
photoreceptors before sorting on cryosec-
tioned synthetic retinas and after sorting
on floating cells at day 25 of culture. DAPI
nuclear stain is in blue.
(A–BII) Correct apical-basal polarization
with photoreceptors localized at the
concave (A–AII) and at the convex (B–BII)
side of the retina. The apical-basal polari-
zation is shown in (A).
*p < 0.05 and ***p < 0.001 by ANOVA with
Tukey’s correction (n = 11 [P0], 9 [P4], 7
[P8], 11 [Day 25] independent experiments
with n = 3 biological replicates counted per
experiment). Ba, basal side; Ap, apical side.
Scale bars, 20 mm (A) and 5 mm (AIII).
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photoreceptors (656 ± 33 [n = 6] and 580 ± 32 [n = 7],

respectively, cells per retina; Figure 7I). Importantly,

unsorted cultured photoreceptors collected at any differ-

entiation stage produced aggressive pigmented tumors af-

ter grafting in C57BL/6J mice (n = 5; data not shown).

Moreover, unsorted photoreceptors dissected directly

from P4 retinas did not give rise to tumors but produced

only low integration success (n = 3; data not shown). All

these results emphasized the need to isolate a pure popula-

tion of photoreceptor cells before transplantation to maxi-

mize the photoreceptor integration and to increase the

safety of the procedure. Finally, we assessed the mor-

phological features displayed by mature integrated

photoreceptors by immunocytochemistry. Integrated

photoreceptors were positive for the outer segment marker

ROM1, phototransduction pathway proteins GNAT1,

PDE6b, and Rhodopsin (Figures 7C–7FI), and formed

Bassoon- and Ribeye-positive active rod spherule synapses

(Figures 7G and 7H), suggesting interaction within the

recipient retina circuitry. Integrated rods show a correct

apical-basal polarization and a directional light-mediated

translocation of proteins such as Arrestin and GNAT1 (Fig-

ures 7J–7M).

It is noteworthy that mGluR6 and PKC-a proteins,

localized postsynaptically at bipolar cell dendritic termi-

nal tips and in rod bipolar cells, respectively, showed
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the capacity to extend dendrites toward the GFP-positive

ribbon synapses of transplanted photoreceptors. Single-

channel 3D images were analyzed for colocalization

by Imaris and Just Another Colocalization Program

(JACoP) plug-in on ImageJ (National Institutes of Health).

Statistical data were reported from the Costes’ randomi-

zation-based colocalization module. The colocalization

analysis with GFP, PKC-a, and mGluR6 was performed

in all three combinations. The statistical analyses pro-

vided, showing 100% colocalization between the fluo-

rophores examined, strongly suggest a connection of the

new synapses with the hosting bipolar cells (Figures 7N–

7NIII and S7B–S7E).

In summary, in this work, we fine-tuned a 3D culture

system enabling the production of large amounts of

photoreceptors. A robust and reliable morphological inte-

gration of ESC-derived photoreceptors, along with the

expression of key proteins present only in active ribbon

synapses that colocalize with endogenous bipolar cells,

was revealed after transplantation. In anticipation of

the further characterization of the transplanted photo-

receptors necessary to confirm their capacity to mediate

light stimuli signals and restore visual functions, our

results bring clear evidence laying the foundation for the

use of in-vitro-derived photoreceptors to repair damaged

retinas.
s
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DISCUSSION

In this study, we provide a robust and reproducible

protocol to obtain a large number of postmitotic, integra-

tion-competent photoreceptors, having adjusted a previ-

ously published protocol designed by Eiraku et al. (2011).

The use of B27 supplement (Klassen et al., 2004; Merhi-

Soussi et al., 2006; Djojosubroto and Arsenijevic, 2008;

Giannelli et al., 2011) and the decrease of the FCS ratio

from 10% to 1% allowed a reduction of extraocular tissue

growth while favoring the development of a higher num-

ber of and better-aligned photoreceptor rows in compari-

son to those formed with the Eiraku protocol (seven to

ten rows versus five to seven, respectively; Figure 3). The

use of a higher concentration of O2 (40% O2) from day

12 rather than day 7, as previously published, provided a

better environment to sustain the photoreceptor survival

in vitro (Figure 2). All the ameliorations performed allowed

a reproducible and robust production of retina-like tissues

containing multilayered photoreceptor rows. From eight

up to ten million Crx-GFP cells were routinely generated

and simply harvested from a 96-multiwell plate. Notably,

the hyperoxic conditions applied in the present 3D culture

system are in contrast with a recently publishedwork based

on low-oxygen conditions to direct retinal progenitors

toward photoreceptors from ESCs in 2D cultures (Garita-

Hernández et al., 2013). The hypoxic conditions adopted

allowed the induction of early retinal progenitors express-

ing RAX, SIX3, and PAX6, then giving rise to photorecep-

tors. Instead, in the present protocol, the use of hyperoxia

was focused on sustaining photoreceptor survival once the

cells are already formed (Figure 2). Even if in recognized

literature the effects caused by different O2 tensions are

quite contrasting (Yu et al., 2004; Sirinyan et al., 2006;

Wang and Linsenmeier, 2007; Bae et al., 2012), hyperoxic

conditions have been demonstrated to increase photore-

ceptor oxygen consumption in avascularized retinas.

Importantly, the in-vitro-derived retinas are not vascular-

ized when photoreceptors develop the internal segment,

which contains a high amount of mitochondria, respon-

sible for the oxygen consumption of photoreceptors (Mas-

lim et al., 1997). A hyperoxic condition, as tested in this

work, thus seems to compensate for the vascularization

deficit.

The advantage of this 3D culture system is the capacity of

the induced retinal tissue to recapitulate precisely the

in vivo development. At 25 days old, in-vitro-generated

photoreceptors start expressing proteins involved in the

phototransduction pathway such as GNAT1, and in the

generation of active rod synapses such as Bassoon and

Ribeye, thus resembling P4–P6 in-vivo-developed retinas.

Moreover, the size of Centrin staining, expressed in the

connecting cilium, basal body, and associated centrioles,
Ste
confirms the similarity with the in vivo development.

Indeed, the area of the Centrin staining increases over

time, evolving in ciliary structures of developing photore-

ceptors (Sedmak and Wolfrum, 2010). Even if the ciliogen-

esis in rods is not completely synchronized, at day 25, the

average size reached by the connecting cilium, highlighted

by the Centrin antibody staining, was similar to that of P4

photoreceptors (0.2–0.25 versus 0.2–0.3 mm; Figure 6).

We then challenged the in-vitro-derived photoreceptors

to integrate and mature inside the recipient retina. The use

of a transgenic line prevents false-positive results as may

occur in viral-transfected ESCs (West et al., 2012). Here, we

transplanted ESC-derived photoreceptors at three differ-

entiation stages, day 20, 25, or 30, into NOD-SCID mice

retinas in order to evaluate the photoreceptor integration

potential in the absence of inflammatory cytokines. The

peak of photoreceptor integrationwas reached, as expected,

by transplanting immature photoreceptors at day 25 of

culture (Figure 7I). Indeed, based on the connecting cilium

size, the phototransduction protein expression (GNAT1,

Rhodopsin), the absence of ROM1 and Peripherin proteins

(involved in the morphogenesis as well as the stabilization

of the outer segments), and the transplantation study re-

sults, we can declare that retinas derived from ESCs at day

25 of culture are equivalent to those at P4–P6 in vivo. This

morphological and cellular maturation corresponds to the

stage of photoreceptor development with optimal compe-

tence to integrate a retina after transplantation (MacLaren

et al., 2006). Morphologically integrated GFP-positive cells

werewell oriented and localized specifically in theONL giv-

ing rise to the external segments and active ribbon synapses

spanning the whole ONL thickness. Indeed, all integrated

cells were GFP positive and translated the rod photosensi-

tive pigment Rhodopsin, the structural protein of the

external segment ROM1, the two phototransduction com-

ponents GNAT1 and PDE6b, as well as the active rod syn-

apse proteins Bassoon and Ribeye (Figure 7). Integrated

rods show a directional light-mediated translocation of pro-

teins such as Arrestin andGNAT1 (Figures 7J–7M). It is note-

worthy that colocalization of the postsynaptic endogenous

rod bipolar dendrites (PKC-a+) and rod bipolar dendritic ter-

minal tips (mGluR6+), with the GFP-positive ribbon synap-

ses of transplanted photoreceptors, was determined with a

100% statistical significance, suggesting the connection of

the new synapses with the hosting bipolar cells (Figures

7N–7NIII andS7). Theseobservations indicatea correct inte-

gration andmaturation of the transplanted cells. In conclu-

sion, this work demonstrates that the 3D culture system

alongwith the use of theCrx-GFP ESC line allows the gener-

ation of in vitro retinas comprising integration-competent

photoreceptors. Even if further characterization of the

graftedphotoreceptors is still needed to reveal their capacity

tomediate light stimuli signals and restore visual functions,
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Figure 7. Transversal Sections of Adult NOD-SCID Mouse Retinas Transplanted with ESC-Derived Photoreceptors after 25 Days of
Culture
(A–AI) Deconvolution pictures of morphologically integrated rod photoreceptors bearing the outer segment and spherule synapses (in
green).
(B–H) Confocal images. (B) 3D reconstruction is shown of integrated rod bearing the external segment and spherule synapses (white
arrows). Proteins involved in the phototransduction pathway such as ROM1 (C–CI), GNAT1 (D–DI), PDE6b (E–EI), and Rhodopsin (F–FI) are
detected in the integrated cells. Synaptic ribbon proteins Ribeye (G) and Bassoon (H) are detected in the spherule synapses of the GFP-
positive cells. The insets in (G) and (H) show the magnification of double-positive synapses.
(I) Quantification of morphologically integrated ESC-derived photoreceptors per injected eye, defined by the presence of the
external segment or synapses. Number of injected eyes, n = 4 (Day 22), n = 3 (Day 25), n = 5 (Day 30), n = 4 (P4) with three technical
experiment per eye.
(J–M) Opposite light-dependent distribution of rod Arrestin and GNAT1 in light- and dark-adapted retinas and transplanted photo-
receptors.

(legend continued on next page)
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our results give clear evidence of a morphological integra-

tion of in-vitro-derived photoreceptors. This work provides

insight into how to achieve the production of photorecep-

tors compatible with transplantation requirements.

At the time of submission, Robin Ali’s group published

compelling results, transplanting ESC-derived photo-

receptors differentiated from Eiraku’s protocol as well (Gon-

zalez-Cordero et al., 2013). Although the photoreceptors

generated by the two 3D culture systems were transplanted

indifferent recipientmice, the formerpaperprovides similar

results concerning the transplantation efficiency: 0.3%

versus 0.4% of the present protocol. The advantage of the

Crx-GFP ESC line is the possibility to follow the photore-

ceptor genesis in vitro and determine the most appropriate

differentiation stage for cell transplantation depending on

cell maturation. Moreover, the present approach avoids

the necessity of efficient viral-transfected photoreceptors

that may be altered by the procedure and prevents the gen-

eration of false-positive results after grafting.

Importantly, this recent paper (Gonzalez-Cordero et al.,

2013) together with our work confirms the capacity of

pluripotent stem cells to provide a renewable source of

cells to produce photoreceptors in vitro and highlights

the great interest of using the 3D culture system

developed by Sasai’s group. Additionally, the use of the

Crx-GFP ESC line in the culture conditions proposed in

the present work brings a unique opportunity to follow

the mammalian photoreceptor development in vitro.

This paper provides insight into how to achieve produc-

tion of photoreceptors compatible with transplantation

requirements. It is now important to translate such

knowledge to human pluripotent cells to reach a better

comprehension of the mechanisms controlling the differ-

entiation of future transplantation-competent human

photoreceptors.
EXPERIMENTAL PROCEDURES

Animals
The mice used in this work were obtained from the Charles

River Laboratories (C57BL/6J, NOD/SCID, and 129SvJ strains) or

from The Jackson Laboratory (Crx-GFP line) and treated according

to institutional and national as well as the Association for Research

in Vision and in Ophthalmology guidelines. All the experiments

as well as the procedures were approved by cantonal veterinary

authorities. All mice were kept on the standard 12 hr dark-light

cycle.
(N–NIII) Qualitative colocalization analysis of Manders’ coefficient v
(NII) GFP versus PKC-a, and (NIII) GFP versus mGluR6 channel are sh
**p < 0.01 and ***p < 0.001 by ANOVA with Tukey’s correction. P4
adapted; LA, light adapted. Scale bars, 10 mm (A, D, E, and F), 4 mm (C
1 mm (inset in NI).

Ste
Blastocyst Recovery, Embryo Culture, ESC Line

Isolation
Blastocysts were obtained from natural mating of 8-week-old

Crx-GFP females (C57BL/6 background) crossed with 129SvJ

male mice. For further details, see Supplemental Experimental

Procedures.

Teratoma Assay
Immune-deficient 2-month-old NOD/SCID mice were injected

subcutaneously using a 1 ml syringe with a bolus of 5 3 105

ESCs, inactivated mouse embryonic fibroblasts, and Matrigel

(50% v/v in PBS). For further details, see Supplemental Experi-

mental Procedures.

FACS Analysis
The in vitro retina-derived photoreceptors were dissociated accord-

ing to the manufacturer’s instructions using a Papain kit

(Worthington Biochemical) and FACS sorted for GFP expression.

Cell sorting was performed using a MoFlo Astrios (Beckman

Coulter), fitted with a 488 nm green laser to excite GFP.

Transplantation of In Vitro Retina-Derived

Photoreceptors
Adult recipient NOD/SCID mice were anesthetized with a revers-

ible anesthetic regimen composed of ketamine/Dormitor (keta-

mine 30–60 mg/kg and Dormitor 0.5 –1 mg/kg) and reversed

with the injection of Antisedan (0.5 –1 mg/kg). Recipient mice

were transplanted between 6 and 12 weeks of age. For further

details, see Supplemental Experimental Procedures. For the media

used for cell isolation, propagation, differentiation, tissue/cell fix-

ation, and immunohistochemistry/cytochemistry, as well as for

PCR, RNA isolation, and reverse transcription, see Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and seven figures and can be found with this article

online at http://dx.doi.org/10.1016/j.stemcr.2014.04.010.
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Bryja, V., Bonilla, S., Cajánek, L., Parish, C.L., Schwartz, C.M., Luo,

Y., Rao, M.S., and Arenas, E. (2006b). An efficient method for the

derivation ofmouse embryonic stem cells. StemCells 24, 844–849.

Busskamp, V., and Roska, B. (2011). Optogenetic approaches to

restoring visual function in retinitis pigmentosa. Curr. Opin.

Neurobiol. 21, 942–946.

Cicero, S.A., Johnson, D., Reyntjens, S., Frase, S., Connell, S.,

Chow, L.M., Baker, S.J., Sorrentino, B.P., and Dyer, M.A. (2009).

Cells previously identified as retinal stem cells are pigmented

ciliary epithelial cells. Proc. Natl. Acad. Sci. USA 106, 6685–6690.

Cideciyan, A.V., Jacobson, S.G., Beltran, W.A., Sumaroka, A.,

Swider, M., Iwabe, S., Roman, A.J., Olivares, M.B., Schwartz, S.B.,
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Guede, I., Diez-Lloret, A., Valdés-Sánchez, M.L., Massalini, S.,

Erceg, S., and Bhattacharya, S.S. (2013). Hypoxia increases the

yield of photoreceptors differentiating from mouse embryonic

stem cells and improves the modeling of retinogenesis in vitro.

Stem Cells 31, 966–978.

Giannelli, S.G., Demontis, G.C., Pertile, G., Rama, P., and Broccoli,

V. (2011). Adult human Müller glia cells are a highly efficient

source of rod photoreceptors. Stem Cells 29, 344–356.

Gonzalez-Cordero, A., West, E.L., Pearson, R.A., Duran, Y.,

Carvalho, L.S., Chu, C.J., Naeem, A., Blackford, S.J., Georgiadis,

A., Lakowski, J., et al. (2013). Photoreceptor precursors derived

from three-dimensional embryonic stem cell cultures integrate

and mature within adult degenerate retina. Nat. Biotechnol. 31,

741–747.

Gualdoni, S., Baron, M., Lakowski, J., Decembrini, S., Smith, A.J.,

Pearson, R.A., Ali, R.R., and Sowden, J.C. (2010). Adult ciliary

epithelial cells, previously identified as retinal stem cells with

potential for retinal repair, fail to differentiate into new rod photo-

receptors. Stem Cells 28, 1048–1059.

Gust, J., and Reh, T.A. (2011). Adult donor rod photoreceptors inte-

grate into the mature mouse retina. Invest. Ophthalmol. Vis. Sci.

52, 5266–5272.

Hirami, Y., Osakada, F., Takahashi, K., Okita, K., Yamanaka, S.,

Ikeda, H., Yoshimura, N., and Takahashi, M. (2009). Generation

of retinal cells from mouse and human induced pluripotent stem

cells. Neurosci. Lett. 458, 126–131.

Kiyonari, H., Kaneko, M., Abe, S., and Aizawa, S. (2010). Three

inhibitors of FGF receptor, ERK, and GSK3 establishes germline-

competent embryonic stem cells of C57BL/6N mouse strain with

high efficiency and stability. Genesis 48, 317–327.

Klassen, H.J., Ng, T.F., Kurimoto, Y., Kirov, I., Shatos, M., Coffey, P.,

and Young, M.J. (2004). Multipotent retinal progenitors express

developmental markers, differentiate into retinal neurons, and

preserve light-mediated behavior. Invest. Ophthalmol. Vis. Sci.

45, 4167–4173.

Lamba, D.A., Karl, M.O.,Ware, C.B., and Reh, T.A. (2006). Efficient

generation of retinal progenitor cells fromhuman embryonic stem

cells. Proc. Natl. Acad. Sci. USA 103, 12769–12774.

Lamba, D.A., Gust, J., and Reh, T.A. (2009). Transplantation of

human embryonic stem cell-derived photoreceptors restores

some visual function in Crx-deficient mice. Cell Stem Cell 4,

73–79.

Lamba, D.A., McUsic, A., Hirata, R.K., Wang, P.R., Russell, D., and

Reh, T.A. (2010). Generation, purification and transplantation of

photoreceptors derived from human induced pluripotent stem

cells. PLoS One 5, e8763.

MacLaren, R.E., Pearson, R.A.,MacNeil, A., Douglas, R.H., Salt, T.E.,

Akimoto, M., Swaroop, A., Sowden, J.C., and Ali, R.R. (2006).

Retinal repair by transplantation of photoreceptor precursors.

Nature 444, 203–207.

Maguire, A.M., Simonelli, F., Pierce, E.A., Pugh, E.N., Jr., Mingozzi,

F., Bennicelli, J., Banfi, S., Marshall, K.A., Testa, F., Surace, E.M.,
s



Stem Cell Reports
Integration-Competent Photoreceptors from ESCs
et al. (2008). Safety and efficacy of gene transfer for Leber’s congen-

ital amaurosis. N. Engl. J. Med. 358, 2240–2248.

Maslim, J., Valter, K., Egensperger, R., Holländer, H., and Stone, J.

(1997). Tissue oxygen during a critical developmental period

controls the death and survival of photoreceptors. Invest. Oph-

thalmol. Vis. Sci. 38, 1667–1677.

Mathieson, K., Loudin, J., Goetz, G., Huie, P., Wang, L., Kamins,

T.I., Galambos, L., Smith, R., Harris, J.S., Sher, A., and Palanker,

D. (2012). Photovoltaic Retinal Prosthesis with High Pixel Density.

Nat. Photonics 6, 391–397.

Merhi-Soussi, F., Angénieux, B., Canola, K., Kostic, C., Tekaya, M.,

Hornfeld, D., and Arsenijevic, Y. (2006). High yield of cells

committed to the photoreceptor fate from expandedmouse retinal

stem cells. Stem Cells 24, 2060–2070.

Meyer, J.S., Shearer, R.L., Capowski, E.E., Wright, L.S., Wallace,

K.A., McMillan, E.L., Zhang, S.C., and Gamm, D.M. (2009).

Modeling early retinal development with human embryonic and

induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 106,

16698–16703.

Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Seki-

guchi, K., Saito, K., Yonemura, S., Eiraku, M., and Sasai, Y. (2012).

Self-formation of optic cups and storable stratified neural retina

from human ESCs. Cell Stem Cell 10, 771–785.

Osakada, F., Ikeda, H., Mandai, M.,Wataya, T., Watanabe, K., Yosh-

imura, N., Akaike, A., Sasai, Y., and Takahashi, M. (2008). Toward

the generation of rod and cone photoreceptors from mouse,

monkey and human embryonic stem cells. Nat. Biotechnol. 26,

215–224.

Pearson, R.A., Barber, A.C., Rizzi, M., Hippert, C., Xue, T., West,

E.L., Duran, Y., Smith, A.J., Chuang, J.Z., Azam, S.A., et al.

(2012). Restoration of vision after transplantation of photorecep-

tors. Nature 485, 99–103.

Prokofyeva, E., and Zrenner, E. (2012). Epidemiology of major eye

diseases leading to blindness in Europe: a literature review.

Ophthalmic Res. 47, 171–188.

Samson, M., Emerson, M.M., and Cepko, C.L. (2009). Robust

marking of photoreceptor cells and pinealocytes with several

reporters under control of the Crx gene. Dev. Dyn. 238, 3218–

3225.

Sedmak, T., andWolfrum, U. (2010). Intraflagellar transport mole-

cules in ciliary and nonciliary cells of the retina. J. Cell Biol. 189,

171–186.

Singh, M.S., Charbel Issa, P., Butler, R., Martin, C., Lipinski, D.M.,

Sekaran, S., Barnard, A.R., and MacLaren, R.E. (2013). Reversal of
Ste
end-stage retinal degeneration and restoration of visual function

by photoreceptor transplantation. Proc. Natl. Acad. Sci. USA 110,

1101–1106.

Sirinyan, M., Sennlaub, F., Dorfman, A., Sapieha, P., Gobeil, F., Jr.,

Hardy, P., Lachapelle, P., and Chemtob, S. (2006). Hyperoxic expo-

sure leads to nitrative stress and ensuing microvascular degenera-

tion and diminished brain mass and function in the immature

subject. Stroke 37, 2807–2815.

Tomita, M., Adachi, Y., Yamada, H., Takahashi, K., Kiuchi, K.,

Oyaizu, H., Ikebukuro, K., Kaneda, H., Matsumura, M., and

Ikehara, S. (2002). Bone marrow-derived stem cells can differen-

tiate into retinal cells in injured rat retina. Stem Cells 20, 279–283.

Tucker, B.A., Park, I.H., Qi, S.D., Klassen, H.J., Jiang, C., Yao, J.,

Redenti, S., Daley, G.Q., and Young, M.J. (2011). Transplantation

of adult mouse iPS cell-derived photoreceptor precursors restores

retinal structure and function in degenerative mice. PLoS One 6,

e18992.

Wang, S., and Linsenmeier, R.A. (2007). Hyperoxia improves

oxygen consumption in the detached feline retina. Invest.

Ophthalmol. Vis. Sci. 48, 1335–1341.

West, E.L., Pearson, R.A., MacLaren, R.E., Sowden, J.C., and Ali,

R.R. (2009). Cell transplantation strategies for retinal repair. Prog.

Brain Res. 175, 3–21.

West, E.L., Gonzalez-Cordero, A., Hippert, C., Osakada, F., Marti-

nez-Barbera, J.P., Pearson, R.A., Sowden, J.C., Takahashi, M., and

Ali, R.R. (2012). Defining the integration capacity of embryonic

stem cell-derived photoreceptor precursors. Stem Cells 30, 1424–

1435.

Wray, J., Kalkan, T., and Smith, A.G. (2010). The ground state of

pluripotency. Biochem. Soc. Trans. 38, 1027–1032.

Wray, J., Kalkan, T., Gomez-Lopez, S., Eckardt, D., Cook, A., Kemler,

R., and Smith, A. (2011). Inhibition of glycogen synthase kinase-3

alleviates Tcf3 repression of the pluripotency network and

increases embryonic stem cell resistance to differentiation. Nat.

Cell Biol. 13, 838–845.

Yu, D.Y., Cringle, S., Valter, K., Walsh, N., Lee, D., and Stone, J.

(2004). Photoreceptor death, trophic factor expression, retinal

oxygen status, and photoreceptor function in the P23H rat. Invest.

Ophthalmol. Vis. Sci. 45, 2013–2019.

Zhang, J., Shan, Q., Ma, P., Jiang, Y., Chen, P., Wen, J., Zhou, Y.,

Qian, H., and Pei, X. (2004). Differentiation potential of bone

marrow mesenchymal stem cells into retina in normal and laser-

injured rat eye. Sci. China C Life Sci. 47, 241–250.
m Cell Reports j Vol. 2 j 853–865 j June 3, 2014 j ª2014 The Authors 865


	Derivation of Traceable and Transplantable Photoreceptors from Mouse Embryonic Stem Cells
	Introduction
	Results
	De Novo Isolation of a Crx-GFP ESC Line from Blastocysts
	Optimization of the OC and Photoreceptor Generation
	Optic Vesicle and Cup Morphogenesis
	Boosting the Photoreceptor Differentiation
	Time Course of the Photoreceptor Formation
	Retina and Photoreceptor Maturation

	Characterization of the Most Appropriate Stage to Transplant Crx-GFP-Positive Photoreceptors Generated with the 3D Culture  ...

	Discussion
	Experimental Procedures
	Animals
	Blastocyst Recovery, Embryo Culture, ESC Line Isolation
	Teratoma Assay
	FACS Analysis
	Transplantation of In Vitro Retina-Derived Photoreceptors

	Supplemental Information
	Acknowledgments
	References


