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Abstract

In protein-coding genes, synonymous mutations are often thought not to affect fitness and therefore are not subject to
natural selection. Yet increasingly, cases of non-neutral evolution at certain synonymous sites were reported over the last
decade. To evaluate the extent and the nature of site-specific selection on synonymous codons, we computed the site-to-
site synonymous rate variation (SRV) and identified gene properties that make SRV more likely in a large database of
protein-coding gene families and protein domains. To our knowledge, this is the first study that explores the determinants
and patterns of the SRV in real data. We show that the SRV is widespread in the evolution of protein-coding sequences,
putting in doubt the validity of the synonymous rate as a standard neutral proxy. While protein domains rarely undergo
adaptive evolution, the SRV appears to play important role in optimizing the domain function at the level of DNA. In
contrast, protein families are more likely to evolve by positive selection, but are less likely to exhibit SRV. Stronger SRV was
detected in genes with stronger codon bias and tRNA reusage, those coding for proteins with larger number of interactions
or forming larger number of structures, located in intracellular components and those involved in typically conserved
complex processes and functions. Genes with extreme SRV show higher expression levels in nearly all tissues. This indicates
that codon bias in a gene, which often correlates with gene expression, may often be a site-specific phenomenon regulating
the speed of translation along the sequence, consistent with the co-translational folding hypothesis. Strikingly, genes with
SRV were strongly overrepresented for metabolic pathways and those associated with several genetic diseases, particularly
cancers and diabetes.
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Introduction

Synonymous mutations in protein-coding genes preserve an

encoded amino acid (AA), and so by Anfinsen’s principle [1],

should not affect the protein product. Presumably having no

fitness effect, synonymous mutations therefore should be invisible

to natural selection. However, it has long been suggested that

translational selection on synonymous codon usage may act to

adapt to organism’s tRNA pools [2,3]. In many genes and

organisms, differences in abundance of cognate tRNAs for

different synonymous codons lead to selection pressure to

maximize translation rate in favor of codons that that are read

by the most abundant tRNA [4,5,6]. Therefore, the key signature

of translational selection is the codon bias in favor of optimal

codons affecting whole genes, where fast accurate translation

ensures high levels of expression. More recently, experimental

studies showed that rare codons may also be favored and selection

could act differentially at different synonymous sites, even within

the same gene. For example, rare codons may be more frequent in

genes with low level of expression, if slow translation is more

favorable [7], or involved in regulating expression levels over the

time course [8]. Overall, several stages prior to translation

involved in protein production may be sensitive to codon choice

[9]. Today overwhelming evidences indicate that synonymous

mutations can be under site-specific selection on synonymous

codon choice. Synonymous mutations can affect splicing control

elements, such as exonic splicing enhancers and silencers [10,11]

and even can create new ‘cryptic’ splice sites [12], and so will be

affected by selection to avoid codons that could be incorrectly

identified as intronic ends. To ensure correct splicing, selection

may constrain the synonymous rates of evolution in domains

associated with splice control [13,14] and in alternatively spliced

exons [15,16,17]. Constraints on synonymous changes help to

ensure efficient binding of microRNA to sense mRNA as a mode

of gene regulation [9]. Plenty of studies indicate that synonymous

mutations can have direct effect on mRNA structure stability,

often causing drastic phenotypic effect [18,19,20]. Perhaps even

more surprisingly, synonymous mutations can affect the protein

folding. Kimchi-Sarfaty and colleagues [21] demonstrated that a

synonymous change in the multidrug resistance-1 gene (MDR-1)
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causes protein misfolding. The protein with the new altered form

helps the cancer cells to get rid of the chemotherapy drug much

more efficiently, making the drug useless [21]. Indeed, the folding

of a peptide chain is somewhat speed-dependent, and slower

production influences the final 3D form of the protein product.

Translational pausing due to the usage of rare codons explains

why stretches of rare codons were found to correlate to turns, loops

and links between protein domains [22,23].

In sum, it is now evident that synonymous mutations can be

under a variety of selective mechanisms. With over 40 genetic

diseases (including cancers and diabetes) associated with synony-

mous mutations, it is now clear that such mutations can have

important fitness consequences, unlike previously thought [24,25].

Chamary and Hurst [26] estimated that 5–10% of human genes

contain at least one region where silent mutations could be

harmful. Based on the analysis of human genetic associations of

SNPs with disease, Chen et al. [27] concluded that non-

synonymous and synonymous SNPs show similar likelihood and

effect size of human disease association. Finally, synonymous

mutations may be responsible for individual differences in disease

susceptibility and treatment outcomes (see [25] for a comprehen-

sive review).

Recently, many large-scale statistical studies focused on

detecting pervasive positive diversifying selection on the protein,

as measured by the nonsynonymous to synonymous rates ratio

v = dN/dS [28]. However, patterns of selection on synonymous

codons are poorly understood. Most often negative selection on

synonymous codons is studied by measuring the average codon

usage per gene. Resch et al. [29] performed a large-scale scan for

positive selection on synonymous sites, where average pairwise

synonymous substitution rate dS for a gene was compared to the

corresponding average intron rate in mouse-rat gene pairs. This

approach found that positive selection on synonymous sites could

be even more frequent than positive selection on the protein.

However, the pairwise averaging approach typically lacks power

[30] and overlooks the impact of site-specific synonymous rate

variation (SRV) over the protein-coding sequence. Zhou et al. [31]

proposed to distinguish synonymous rates of change between

different types of synonymous codons (‘‘preferred’’ and ‘‘un-

preferred’’). Applied to yeast and worm genes, their method found

substantially lower number of genes with positive selection on

synonymous sites compared to [29]. Clearly, the accuracy of such

an approach would be affected by uncertainties in identifying

preferred and un-preferred codons. But perhaps more important-

ly, the method of Zhou et al. [31] models only average

synonymous rates per gene and so cannot capture site-specific

selection pressure that acts on the DNA or mRNA level related to

transcription, splicing, expression regulation or mRNA structure

stability. Significant variation of synonymous rates (dS) reflects that

the evolutionary forces act differently at different synonymous

sites, likely due to variation in selective constraints. Thus candidate

genes affected by either purifying or positive selection on the DNA

can be detected with a systematic analysis of the SRV, using the

extent of dS variation as a proxy for selection.

Here for the first time we present a large-scale analysis of

homologous proteins – with the aim to improve our understanding

of the nature of synonymous changes and the SRV in protein-

coding sequences. In contrast to the study of Resch et al. [29], we

analyzed multiple sequence alignments (where evolutionary

information is at the maximum) using Markov codon models with

SRV. We determined how often and where strong SRV occurs,

and listed the gene properties that make the SRV more likely. The

patterns of SRV and groups of genes enriched with SRV may

provide important clues for other studies focusing on understand-

ing disease, optimizing transgene design, as well as those dedicated

to determining specific and general evolutionary trends in

molecular sequences. Our study opens directions for exploring

new measures of selective pressure that incorporate the effect of

selection on synonymous sites.

Materials and Methods

The Data
7738 homologous groups and corresponding alignments of

protein-coding DNA and AA sequences were obtained from the

PANDIT database v17.0 [32]; http://www.ebi.ac.uk/goldman-

srv/pandit). PANDIT contains protein domains and families,

derived from the Pfam-A seed alignments [33]. Phylogenetic trees

were inferred for each homologous group by maximum likelihood

(ML) under the amino acid model LG+C+F, as implemented in

PhyML3.0 [34]. These ML estimates of trees were consequently

used for all optimizations under codon models (see below). To

avoid drawing conclusions based on saturated alignments, we

removed groups where the average divergence was greater than

two expected substitutions per amino acid site per branch (Figure

S1). Annotations for each homologous group were taken from the

PANDITplus database [35]; http://panditplus.org), an extension

of PANDIT, integrating data from a variety of reliable and

curated bioinformatics sources. It provides access to data on

protein interactions, functional and chemical pathway annotation,

gene expression and association with diseases. The estimates from

evolutionary codon models computed for this study are now also

available from PANDITplus.

Analyses of Positive Selection (PS) on the Protein and the
Synonymous Rate Variation (SRV)

Pervasive diversifying positive selection (PS) on the protein was

evaluated by ML using Markov models of codon evolution, as

implemented in the codeml program from the PAML package

v4.1 [36]. The selective pressure at the protein level was measured

by the v-ratio, with v,1, = 1, or .1 indicating purifying, neutral

or positive selection on the protein respectively [37]. For each

homologous group we computed estimates of the average v using

model M0, which assumes constant selective pressure across codon

sites and over time. ML estimates of branch lengths under M0

were then used as starting (or fixed) values in all following

computations under codon models. Likelihood ratio test (LRTs) of

nested codon models M0 vs M3, and M7 vs M8 was used to

determine whether a gene was affected by selection [38,39,40].

Evidence for adaptive evolution in a gene was considered sufficient

if the following conditions were met: (1) both LRTs were

significant at 5% level with an estimated v.1, (2) the estimated

proportion of positively selected sites was large enough to include

at least one site, and (3) the SRV-aware model (DUAL, [41])

supported the presence of PS. Condition (3) was required to avoid

a potential bias on the detection of PS as a result of SRV. Groups

of proteins with evidence of PS are further refereed to as PS+,

while those with no such evidence are denoted as PS2.

To determine whether a gene exhibited site-to-site SRV, we

applied an LRT between a codon model where dS was assumed

constant (model M3) and a model where both dS and dN could vary

(DUAL model) [41]. ML optimization for this task was performed

with the HYPHY program [41]. Both dS and dN were assumed to

be drawn from independent general discrete distributions, each

with three rate categories. Evidence for site-to-site SRV was

considered sufficient if: (1) the LRT was significant at 5% level and

(2) the coefficient of variation (CV) of the synonymous rates was .

0. The second condition was added to exclude the few cases with

Site-to-Site Synonymous Rates Variation
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artifacts of ML estimation, where the LRT showed significantly

better fit of the model with variable dS, but yet the estimated CV of

dS was 0. Data classified as having significant SRV is further

referred to as SRV+ set, while data where dS can be assumed

constant is further referred to as SRV2.

Patterns in 7341 data sets were analyzed, after filtering out

protein groups that were too diverged or had convergence

problems during ML optimizations. To avoid optimization

problems each analysis was performed multiple times and one

with a higher log-likelihood was selected.

Analyses of Over/Under-representation in Functional
Categories

GO and KEGG annotations for each group were obtained from

PANDITplus [35]. To account for the hierarchical nature of GO

and KEGG data, each gene (protein) was considered to belong to

all parent categories where it was directly assigned. To test the

over/under-representation of genes with specific feature (PS or

SRV), the data sets were divided into two groups: those showing

evidence for the feature of interest (PS+, SRV+) and those that

failed to show such evidence (PS2, SRV2). For each tested

functional category C, a 262 contingency table was constructed

containing the numbers of genes assigned and not assigned to C.

To test for independence of rows and columns one-sided P-values

were computed using Fisher’s exact test. As test sets overlapped,

the raw P-values from Fisher’s exact test were adjusted to control

the false discovery rates [42].

Codon Bias, Autocorrelation and Nucleotide Composition
For each protein group, we computed total GC content, GC

content at third codon positions (GC3), and codon usage indices

CBI (Codon Bias Index, [43]) and ENC (Effective Number of

Codons, [44]), using the CodonW program [45]. CBI measures

the usage of optimal codons, ranging between 1 (only optimal

codons are used) to 21 (only non-optimal codons are used), with 0

for random codon choice. ENC is another measure of synonymous

codon usage, ranging between 20 (only one codon is used for each

AA) and 61 (codons are used randomly).

Finally, we computed the TPI (tRNA Pairing Index), a statistical

measure of tRNA reusage [46,47], using the dedicated Darwin

functions [48]. By definition, the TPI ranges from 21 for perfectly

anticorrelated tRNA changes (i.e maximal number of tRNA

changes) to +1 for perfectly autocorrelated (minimal number of

tRNA changes). For example, in a sequence where one AA is

encoded by two tRNAs X and Y, highly autocorrelated case is

XXXXYYYY, while XYXYXY is highly anticorrelated case. For

a comprehensive review of codon usage measures see [49].

Note that when measuring the correlation between any two

phenomena, we computed both Spearman and Pearson correla-

tion coefficients, which provided very similar results. We therefore

show only the Spearman correlation values.

Analyses of Gene Expression Data
Several sources of gene expression data were used in this study.

Mappings of gene expression in human tissues (data from

HumanProteinpedia [50]) were obtained from PANDITplus.

These data do not contain information on the expression levels,

but only inform whether a gene is expressed in a certain human

tissue or not. Fisher’s exact tests were performed to identify the

tissues with over/under-representation of expressed genes with

SRV and PS. Information on human gene expression breadth of

Ensembl genes from three types of experiments (Gene Atlas

microarray, EST and SAGE) was taken from [51]. These data

provide information on the gene expression breadth measured by

the number of tissues where the gene is expressed, but no

information about the expression levels or the tissue of expression.

Ensembl gene IDs were mapped to Pfam IDs using BioMart

module of the Ensembl database v.62 [52]. Note that in the

expression data analyses we used gene-Pfam mappings derived

from gene associations with full Pfam alignments. We also

analyzed expression data from Gene Atlas U133A Affymetrix

microarray from the BioGPS portal of the Genomics Institute of

the Novartis Research Foundation ([53]; http://biogps.gnf.org/

downloads), mapping individual protein sequences from the seed

PANDIT alignments to microarray probes. We used these data to

analyze gene expression levels by calculating the distribution of the

log expression values for the categories of interests.

Clustering Analyses
Hierarchical clustering of gene categories was performed for

KEGG pathways. The dissimilarity matrix for the clustering was

defined so that any two categories A and B from the same

hierarchical level had dissimilarity dAB = 0 when all SRV+ genes

were assigned to both categories A and B, and dissimilarity dAB = 1

when A and B did not share any SRV+ gene. More specifically,

dissimilarity between two categories A and B was defined as:

dAB~
1{jN(A)\N(B)j

minN(A),N(B)

where N(X) denotes the number of SRV+ genes in category X.

Results

Significant SRV was found in 42% (or 37%) of protein groups

at 5% (or 1%) significance level. This suggests that the

phenomenon of site-to-site heterogeneity of synonymous rates is

widespread and deserves attention. Extreme SRV was detected in

154 datasets (CV$1, see Table S1). Notably, certain Pfam clans

were exclusively composed of SRV+ groups. Recall that clans are

higher-level clusters of related families, grouped based on

structure, function, matching of families HMMs and profile-

profile comparisons. The list of SRV exclusive clans includes p53-

related proteins and ABC transporters (see Table S2).

Note that PS on the protein was detected in 11% (or 7%) of

groups at 5% (or 1%) significance level (consistent with previous

estimates, eg. [54]). We observed weak but significant negative

correlation (r = 20.11, P,10216) between the variability of

synonymous rates and the average v-ratio across protein sites.

This indicates that proteins that are more conserved tend to have

greater SRV among sites. A bootstrap analysis on the differences

in mean v for protein groups classified as SRV+ and SRV2,

confirmed that proteins with SRV tend to be under stronger

purifying selection (lower v) compared to proteins where

synonymous rates may be assumed constant (Figure 1A).

Reflecting Pfam, our protein groups included protein families

(74%), domains (23%), motifs (1%) and repeats (2%). SRV was

significantly overrepresented in protein domains, but underrepre-

sented in protein families (Table 1). An opposite pattern was

observed for PS: protein domains showed significant underrepre-

sentation of groups with PS, while protein families were

overrepresented with PS+ groups. Motifs and repeats did not

show any significance for over or underrepresentation with SRV+
or PS+ groups, most likely due to their small dataset numbers and

short sequences, which increased variance of ML estimates.

Site-to-Site Synonymous Rates Variation
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Figure 1. Bootstrap distribution of the differences in A) the mean v-ratio, B) tRNA reusage, measured through tRNA Pairing Index
(TPI), C) number of interactions and D) number of structures, between protein groups having site-to-site variation in synonymous
rates (SRV+) and protein groups having constant synonymous rates (SRV2). The plots B), C) and D) also show the bootstrap distributions
of the corresponding differences between protein groups showing evidence for positive selection (PS+) and those failing to show such evidence
(PS2). All differences (except for TPI in PS+/PS2 data) are significant since 95% of the histogram area does not include the zero value.
doi:10.1371/journal.pone.0095034.g001

Table 1. Overrepresentation (+) and underrepresentation (2) of SRV and PS in different data categories.

Pfam type SRV PS

Representation P-value Representation P-value

Protein Domains + 10233 2 1029

Protein Families 2 10228 + 10210

doi:10.1371/journal.pone.0095034.t001

Site-to-Site Synonymous Rates Variation
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Dependencies between Site-to-site SRV and Gene
Properties

Selection for translational speed favors codons matching the

cognate tRNA profile. We investigated whether the codon bias

and tRNA reusage could contribute to the observed site-to-site

SRV. CV of synonymous rates was correlated with both codon

bias and tRNA reusage (Table S3). In the SRV+ group the

average codon bias and tRNA reusage were significantly larger

than in the SRV2 group (Figure 1B; Figure S2, Table 2). In

contrast PS+ group had on average weaker codon bias compared

to the PS2 group (Table 2, Figure S2).

It has been suggested that selection at synonymous sites favors

high GC, which is reflected in a correlation between codon bias

and GC3, the GC content at third codon positions [55]. Some

studies reported that GC at synonymous sites was higher than in

the flanking introns [56,57], and that GC content could contribute

to the regulation of splicing signals, in which case synonymous

mutations may lead to exon skipping associated with disease [58].

These evidences indicate the possibility of selection acting on

synonymous sites. In our data we observed that the variability of dS

correlated positively with the variation of GC and GC3 among

homologous genes, but not very well with the GC and GC3

content (see also Figure S3 and Table S3).

Our results suggest that proteins with many interactions evolved

under stricter purifying selection (Figure 1C), which is in

agreement with the extended complexity hypothesis [54]. We

observed positive correlation between the number of interactions

and CV of dS (r = 0.22, P,10216; Figure 1C). Since SRV and PS

groups were unequally represented within different data types

(domains, families, motifs and repeats), bootstrap analyses were

repeated for each data type separately. The reported trends were

significant for domains, families and repeats. Further, proteins

forming many structural complexes exhibited stronger SRV

(Figure 1D) and tended to be more conserved and less likely to

be under recurrent diversifying positive selection. We observed

positive correlation between the number of structural complexes

that proteins can form and the CV of dS (r = 0.22, P,10216), and

weak negative correlation with the v-ratio (rSpearman = 20.08, P,

10212; Pearson correlation was not significant).

Overall, our data show that there is a correlation between the

individual variables, most notable between GC and GC3 content

(r = 0.92); codon bias and GC3 content (r = 0.74); codon bias and

GC content (r = 0.73); number of interactions and number of

structures (r = 0.52); codon bias and codon autocorrelation

(r = 0.41); GC content and codon autocorrelation (r = 0.23) etc.

However, some of these variables could be independently

associated with one another. For instance, it has been widely

reported that codon bias is associated with various biological

factors, such as gene expression level, tRNA abundance, GC

composition, protein structure etc. Furthermore, it was shown that

the similarity in codon usage is a strong predictor of protein-

protein interactions [59]. To get more insights, we conducted a

multivariate analysis and sought to find the individual variables

that give the greatest separations between the SRV+ and SRV2

groups. We quantified the ‘‘separation’’ F between the SRV+ and

SRV2 groups achieved by a particular variable (v-ratio, CBI,

TPI, GC/GC3 content, #interactions, #structures) as the ratio of

its ‘‘between-groups’’ variance to its ‘‘within-groups’’ variance.

Surprisingly, the greatest separation between the two groups was

achieved based on the number of protein-protein interactions

(F = 218), followed by the tRNA reusage index (F = 193), the

number of protein structures (F = 146), the v-ratio (F = 74), codon

bias (F = 68), GC3 content (F = 30) and GC content (F = 16).

Finally, we performed principal component analysis (PCA) to

investigate whether most of the variation between our SRV+/

SRV2 data can be captured using principal components that

were linear combinations of all or some of the other variables (v-

ratio, CBI, TPI, GC/GC3 content, #interactions, #structures).

The first two principal components (PC) explain 70% of the

variance of SRV. The first PC (explaining 45% of the variance)

represented a contrast between the v-ratio and the other

variables (CBI, TPI, GC content, GC3 content, #interactions,

#structures), with the largest loadings (in absolute) values for

GC3 content (0.59), GC content (0.59) and CBI (0.55), the

loadings of the other components were ,0.06. This supports the

negative correlation between CV of SRV and the v-ratio, and its

positive correlation with all the other variables, but suggests that

omega has little impact (based on the low loading value). The

second PC represents a contrast between the v-ratio, CBI, TPI,

#interactions and #structures, and the variables GC content and

GC3 content. The largest loadings of this PC were for

#interactions (0.7), #structures (0.7), while the loadings (in

absolute) values of the other variables were ,0.08. Overall, the

PCA demonstrates that the influence of the above-mentioned

factors on SRV is complex due to the strong dependencies among

them.

Table 2. Differences between the mean values of the attribute (#interactions, #structures, codon bias and tRNA reusage) in SRV+
and SRV2 data, and in PS+ and PS2 data correspondingly.

Attribute
Difference between attribute means
in SRV+ and SRV2 data (median [IQR])

Difference between attribute means in
PS+ and PS2 data (median [IQR])

Interactions 0.50 [0.48, 0.53 20.42 [20.44, 20.39]

Structures 17.72 [16.65, 18.80] 211.38 [210.12, 212.59]

Codon bias (CBI measure) 0.02 [0.019; 0.022] 20.01 [20.018; 20.011]

Codon bias (ENC measure) 21.3 [21.39; 21.22] 1.0 [0.84; 1.18]

tRNA reusage 0.14 [0.13; 0.15] 20.01 [20.02; 0.005]

GC content 0.042 [0.04; 0.043] 20.041 [20.038; 20.043]

GC3 content 0.08 [0.078; 0.083], 20.08 [20.085; 20.076]

All p-values are ,10216, except for the differences in mean values of tRNA reusage (TPI) between PS+/PS2 data where there was no significance. This table corresponds
to Figure 1 and Figure S2.
doi:10.1371/journal.pone.0095034.t002

Site-to-Site Synonymous Rates Variation
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Site-to-site SRV and Protein Function, Interactions and
Reaction Networks

We examined the distribution of GO functional categories [60]

with respect to site-to-site SRV. Since our protein groups were

unevenly distributed among GO categories (Figure S4), significant

over/under-representation was more difficult to detect for sparsely

sampled categories, with better power for GO terms annotating

larger number of protein groups.

Table 3 summarizes the results of GO-enrichment tests for

‘‘Cellular Component’’. Categories enriched with SRV+ proteins

included cell envelope, membrane, wall and external encapsulat-

ing structure. Underrepresentation of SRV+ proteins was found in

extracellular region, membrane-enclosed lumen and organelles.

Our results for PS+ proteins are consistent with previous findings

[54,61]: extracellular region and MHC protein complex were

found as overrepresented with PS+ proteins, while the cellular

components that are mostly internal to the cell, organelles and

macromolecular complex were identified as strongly conserved.

Analyses of ‘‘Molecular function’’ categories are summarized in

Table 4. Categories enriched with SRV+ proteins included

catalytic and transporter proteins, proteins with a role in carrying

electrons, or those important for binding (with exception of

receptor binding). Underrepresentation of SRV+ proteins was

observed among the proteins that participate in receptor binding

and enzyme regulation. Categories underrepresented with PS+
proteins included catalytic and transporter proteins, and those

with a role in binding.

Enrichment analyses of ‘‘Biological process’’ categories are

summarized in Table 5. We found an overrepresentation of SRV+
among the proteins with function in metabolism, cellular processes

and in localization and transport. Proteins that participate in

multi-organism processes (symbiosis, interaction with host), defen-

sive response to stimulus and reproduction were found as least

likely to have significant site-to-site SRV. For PS+ proteins we

observed the opposite: proteins involved in metabolic and cellular

processes, as well as biological regulation were found to be most

conserved and least likely to undergo adaptive evolution. Proteins

related to immune system processes and response to stimulus,

which represent obvious targets for adaptive evolution, were

enriched with PS.

Table 3. Over/under-representation of selective forces in GO categories for Cellular Component.

GO Categories SRV PS #pfam

Over(+)/Under(2)
represent. Signif.

Over(+)/Under(2)
represent. Signif.

cellular component

extracellular region 2 *** + *** 205

cell + ** 2 ** 1491

cell part + ** 2 ** 1491

intracellular 2 ** 872

membrane + * 717

cell wall + * 29

cell envelope + ** 38

endomembrane system 2 ** 55

external encapsulating structure + ** 63

intracellular part 2 ** 773

extrachromosomal DNA + ** 6

ribonucleoprotein complex + * 116

virion + *** 151

virion part + ** 141

viral capsid + * 98

viral envelope + * 35

membrane-enclosed lumen 2 ** 25

organelle lumen 2 ** 23

intracellular organelle lumen 2 ** 23

macromolecular complex 2 * 346

ribosome 2 ** 98

MHC protein complex + ** 4

organelle 2 *** 2 ** 597

membrane-bounded organelle 2 *** 2 * 423

intracellular membrane-bounded organelle 2 *** 2 * 420

intracellular organelle 2 *** 2 ** 593

Notation: Significance levels are at the 5% (*), 1% (**), or 0.1% (***). Boldface indicates overrepresentation of SRV; italics indicates underrepresentation of SRV.
doi:10.1371/journal.pone.0095034.t003
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These findings suggest that forces driving either SRV or PS are

not independent from the gene function, with distinct biases in

their distribution among GO categories. Furthermore, with

exception of organelles, there was a visible tendency to observe

enrichment with SRV+ proteins in the same GO categories that

were underrepresented with PS (Tables 3–5).

Information on biological pathways, in which a protein is

involved, includes chemical reactions within a cell whose

dependencies and dynamics are distinct from the notion of a

biological process as classified by GO. Therefore, we also

performed enrichment analyses for 18,041 human genes in

KEGG with respect to their biological pathways (Table 6). We

classified a KEGG gene as being affected by PS (or SRV), if it was

mapped to at least one PANDIT group that was classified as PS+
(or SRV+ respectively).

SRV+ genes were found to be enriched for a wide variety of

functions related to metabolic pathways, particularly in carbohy-

drate and amino acid metabolism, metabolism of cofactors and

vitamins, metabolism of xenobiotics by cytochrome and drug

metabolism - cytochrome. This finding is consistent with our

observations about metabolic processes based on GO. However,

the analyses of KEGG pathways also revealed certain metabolic

pathways where SRV+ genes were underrepresented. This result

might be due to the fact that gene ontologies are not equivalent to

pathways: pathways could involve genes that are not directly

relevant to the metabolic process, but are included because of the

pathway inter-process dependencies and specific dynamics.

Additionally, this may be also due to the fact that KEGG analysis

is done only on human genes, unlike GO.

Our analyses of GO terms identified that metabolic processes

were generally conserved. Studies of positive selection on the

protein level [54,61,62] mainly refer to metabolic processes, but

not to metabolic pathways. The differences in our results from

KEGG and GO for positive selection might be due to the way of

classification of KEGG genes as PS+ (having found at least one

PANDIT data product of that gene as positively selected). Namely,

Table 4. Over/under-representation of selective forces in GO categories for Molecular Function.

GO Categories SRV PS #pfam

Over(+)/Under(2)
represent. Signif.

Over(+)/
Under(2)
represent. Signif.

molecular function

electron carrier activity + * 53

catalytic activity + *** 2 *** 1536

oxidoreductase activity + ** 2 *** 251

transferase activity + * 2 * 444

transferase activity, transferring one-carbon groups 2 ** 76

hydrolase activity + *** 533

isomerase activity + *** 58

ligase activity + *** 75

ligase activity, forming carbon-oxygen bonds + *** 25

structural molecule activity 220

structural constituent of ribosome 2 ** 98

transporter activity + ** 2 * 221

binding + *** 2 *** 1286

nucleotide binding + *** 2 ** 263

purine nucleotide binding + *** 2 * 231

ribonucleotide binding + *** 2 * 217

protein binding 2 * 244

receptor binding 2 * 83

nucleoside binding + *** 2 * 200

purine nucleoside binding + *** 2 * 199

nucleic acid binding + ** 2 *** 515

DNA binding 2 ** 368

carbohydrate binding + * 27

ion binding 2 ** 270

cation binding 2 ** 269

cofactor binding + *** 61

coenzyme binding + *** 47

enzyme regulator activity 2 ** 68

Notation: Significance levels are at the 5% (*), 1% (**), or 0.1% (***). Boldface indicates overrepresentation of SRV; italics indicates underrepresentation of SRV.
doi:10.1371/journal.pone.0095034.t004
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Table 5. Over/under-representation of selective forces in GO categories for Biological Processes.

GO Categories SRV PS #pfam

Over(+)/
Under(2)
represen. Signif.

Over(+)/
Under(2)
represent. Signif.

biological process

reproduction 2 ** + * 130

metabolic process + *** 2 *** 1807

oxidation reduction 2 ** 98

nitrogen compound metabolic process + *** 2 *** 883

amine metabolic process + *** 2 * 127

cellular nitrogen compound metabolic process + * 2 *** 840

biosynthetic process + *** 2 *** 879

macromolecule biosynthetic process + * 2 *** 591

regulation of biosynthetic process 2 ** 231

cellular biosynthetic process + ** 2 *** 838

regulation of metabolic process 2 ** 260

macromolecule metabolic process + *** 2 *** 1022

gene expression + *** 2 *** 62

macromolecule biosynthetic process + *** 2 *** 591

protein metabolic process + *** 2 *** 378

cellular macromolecule metabolic process + *** 2 *** 875

cellular metabolic process + *** 2 *** 1383

organic acid metabolic process + *** 139

cellular amino acid and derivative metabolic process + *** 2 * 113

cellular nitrogen compound metabolic process + ** 2 *** 840

cellular ketone metabolic process + *** 2 ** 139

cellular biosynthetic process + *** 2 *** 838

cellular macromolecule metabolic process + *** 2 *** 875

cellular carbohydrate metabolic process + *** 102

primary metabolic process + *** 2 *** 1409

carbohydrate metabolic process + *** 228

nucleobase, nucleoside, nucleotide and nucl. acid m. proc. 2 *** 696

cellular amino acid and derivative metabolic process + *** 2 * 113

protein metabolic process + *** 2 *** 378

small molecule metabolic process + *** 2 * 349

alcohol metabolic process + ** 64

organic acid metabolic process + *** 139

cellular amino acid and derivative metabolic process + *** 2 * 113

cellular ketone metabolic process + *** 2 ** 139

immune system process + ** 27

immune response + *** 26

antigen processing and presentation + ** 4

viral reproduction 123

viral reproductive process

viral assembly, maturation, egress, and release + * 25

virion assembly + * 20

viral capsid assembly + * 10

cellular process + *** 2 *** 1782

cell communication 2 * 35

cellular metabolic process + *** 2 *** 1383

regulation of cellular process 2 ** 332

Site-to-Site Synonymous Rates Variation
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a gene is annotated for all the functions and processes of its

products, so it may happen that positive selection in a gene is due

to positive selection only in a certain protein domain while the

signal for positive selection will be tracked for all the functions and

processes that the gene is annotated, i.e. all the pathway

annotations of its products.

Further, we found an overrepresentation of SRV among the

genes participating in some genetic and environmental informa-

tion processing pathways. We observed underrepresentation of PS

among the genes involved in genetic information processing

pathways, but overrepresentation of PS among the genes involved

in environmental information processing pathways.

Among the cellular processes, cell motility and communication,

endocrine and sensory system, and developmental pathways were

found to be overrepresented with SRV+ genes. Categories

overrepresented with PS+ genes included cell communication

and immune and sensory system pathways. These findings are

generally consistent with our previous findings for SRV in cellular

processes using GO annotations. However, note that the

hierarchical structure of cellular processes in KEGG and GO

databases is different. For example, GO terms for immune system

processes are not ‘‘descendants’’ of terms for cellular processes,

while in KEGG cellular process pathways include immune,

nervous and sensory system pathways. Therefore, a simple

comparison of trends for cellular processes in KEGG and GO is

not possible without looking into the finer sub-categories. If the

immune, nervous and sensory system pathways were excluded

from the KEGG cellular process pathways, then overrepresenta-

tion of PS+ in the cellular processes group could not be observed.

Generally, significant overrepresentation of SRV was found

among genes involved in human diseases. SRV+ genes were

enriched in cancer related pathways (Figure 2). Very strong

overrepresentation of SRV+ genes was also found in metabolic

disorders (type II diabetes mellitus) and immune disorders

(systemic lupus erythematosus). Underrepresentation of genes with

SRV was detected among genes involved in neurodegenerative

disease pathways. Immune and metabolic disorders pathways

exhibited an overrepresentation of PS+ genes.

Site-to-site SRV and Gene Expression Patterns
To test if SRV+ genes are over/underrepresented among the

genes expressed in different human tissues, we analyzed gene

expression data of 8,175 human genes from HumanProteinpedia

(HPRD) expressed in 57 healthy and 20 disease tissues, which were

uniquely mapped to KEGG genes. Significant evidence of

overrepresentation of SRV+ genes was found among genes

expressed in brain, cerebrospinal fluid, liver and pancreatic juice.

Among the genes expressed in blood plasma there was an

overrepresentation of PS+ genes, while conserved genes were

overrepresented among the genes expressed in brain, ovary and

stem cell. Indeed, in a previous study genes expressed in the brain

were among the most conserved genes with the least evidence for

PS [61]. Note that in that study blood plasma was not analyzed as

a separate tissue.

Further, we tested for possible relation between gene expression

breadth, measured by the number of expression tissues, and the

SRV/PS forces. Several studies report that broadly expressed

genes evolve more slowly than tissue specific genes (eg. [63,64]).

The power for detecting such correlation is very limited with the

HPRD data, as it is skewed towards low expression breaths (Figure

S5). Therefore, to analyze the correlation between gene expression

breadth and SRV/PS we used data from [51] that mapped

Ensembl gene IDs to gene expression breadth values estimated

from Gene Atlas microarray, EST and SAGE experiments for

Table 5. Cont.

GO Categories SRV PS #pfam

Over(+)/
Under(2)
represen. Signif.

Over(+)/
Under(2)
represent. Signif.

cellular localization 2 *** 85

developmental process + * 89

response to stimulus + ** 202

response to stress + * 132

defense response 2 ** + *** 36

response to wounding + ** 9

immune response + *** 26

localization + *** 2 ** 360

macromolecule localization 2 ** 104

establishment of localization + *** 2 ** 344

cellular localization 2 *** 85

multi-organism process 2 ** + *** 142

pathogenesis + ** 71

biological regulation 2 ** 384

regulation of biological process 2 ** 356

regulation of metabolic process 2 ** 260

regulation of cellular process 2 ** 332

Notation: Significance levels are at the 5% (*), 1% (**), or 0.1% (***). Boldface indicates overrepresentation of SRV; italics indicates underrepresentation of SRV.
doi:10.1371/journal.pone.0095034.t005

Site-to-Site Synonymous Rates Variation

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e95034



Table 6. Over/under-representation of selective forces in KEGG Pathways.

KEGG Pathway SRV PS

Over(+)/
Under(2)
represen. Sign. #Genes

Over(+)/
Under(2)
represen. Sign. #Genes

Metabolism 1434 2 ** 1484

Carbohydrate Metabolism + * 300 313

Pentose phosphate pathway + ** 26 26

Pentose and glucuronate interconversions 25 + *** 25

Fructose and mannose metabolism + * 34 36

Ascorbate and aldarate metabolism 26 + *** 26

Starch and sucrose metabolism + ** 54 + *** 54

Inositol phosphate metabolism + ** 51 51

Energy Metabolism 2 *** 170 2 *** 178

Oxidative phosphorylation 2 *** 116 124

Nitrogen metabolism + * 24 24

Lipid Metabolism 317 330

Androgen and estrogen metabolism + * 44 + *** 46

alpha-Linolenic acid metabolism 2 ** 17 + * 17

Amino Acid Metabolism + * 295 303

Glycine, serine and threonine metabolism + ** 41 41

Glycan Biosynthesis and Metabolism 2 *** 206 213

Glycosaminoglycan degradation 18 + * 18

Glycosphingolipid biosynthesis - globoseries 2 *** 14 14

Glycosphingolipid biosynthesis - ganglioseries 2 *** 21 21

Metabolism of Cofactors and Vitamins + * 190 204

Retinol metabolism + * 56 + *** 65

Porphyrin and chlorophyll metabolism 41 + *** 41

Xenobiotics Biodegradation and Metabolism 156 + *** 160

Metabolism of xenobiotics by cytochrome P450 + *** 66 + *** 70

Drug metabolism - cytochrome P450 + *** 68 + *** 72

Drug metabolism - other enzymes 52 + *** 52

Genetic Information Processing + * 560 2 *** 573

Translation 143 143

Aminoacyl-tRNA biosynthesis + ** 40 40

Folding, Sorting and Degradation + * 257 264

Ubiquitin mediated proteolysis + * 125 2 *** 132

SNARE interactions in vesicular transport + * 37 37

Regulation of autophagy 2 ** 34 + *** 34

Environmental Information Processing + *** 1434 + *** 1480

Membrane Transport + *** 42 42

ABC transporters + *** 42 42

Signal Transduction + *** 849 892

MAPK signaling pathway + *** 265 272

ErbB signaling pathway + *** 85 85

Calcium signaling pathway + *** 170 181

Phosphatidylinositol signaling system + *** 69 75

Hedgehog signaling pathway + * 56 57

Jak-STAT signaling pathway 2 *** 126 145

Signaling Molecules and Interaction + *** 729 + *** 750

Neuroactive ligand-receptor interaction + ** 292 + *** 295

ECM-receptor interaction + * 84 + *** 84
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Table 6. Cont.

KEGG Pathway SRV PS

Over(+)/
Under(2)
represen. Sign. #Genes

Over(+)/
Under(2)
represen. Sign. #Genes

Cell adhesion molecules (CAMs) + *** 128 + *** 130

Cellular Processes + *** 1774 + *** 1837

Cell Motility + *** 201 213

Regulation of actin cytoskeleton + *** 201 213

Cell Growth and Death 210 2 * 225

Cell Communication + *** 400 + *** 413

Focal adhesion + *** 193 201

Adherens junction + ** 77 78

Tight junction + *** 116 + *** 128

Gap junction + *** 96 96

Endocrine System + * 369 381

Insulin signaling pathway + * 129 136

Melanogenesis + *** 96 102

Adipocytokine signaling pathway 61 2 * 66

Immune System 519 + *** 547

Antigen processing and presentation 2 * 82 + *** 86

Natural killer cell mediated cytotoxicity 132 + *** 139

Leukocyte transendothelial migration + *** 109 + *** 117

Sensory System + *** 416 + *** 429

Olfactory transduction + *** 370 + *** 381

Taste transduction + * 51 + *** 53

Development + *** 124 129

Axon guidance + *** 124 129

Human Diseases + *** 983 1025

Cancers + *** 365 378

Pathways in cancer + *** 305 312

Colorectal cancer + *** 83 83

Endometrial cancer + ** 50 50

Basal cell carcinoma + *** 54 55

Melanoma + *** 68 69

Immune Disorders + ** 225 + * 229

Asthma 30 + *** 30

Autoimmune thyroid disease 53 + *** 53

Systemic lupus erythematosus + *** 143 143

Allograft rejection 38 + *** 38

Graft-versus-host disease 42 + *** 42

Neurodegenerative Diseases 275 297

Alzheimer’s disease 2 ** 145 162

Parkinson’s disease 2 *** 116 124

Huntington’s disease 2 ** 162 172

Metabolic Disorders + *** 96 + ** 104

Type II diabetes mellitus + *** 42 43

Type I diabetes mellitus 42 + *** 44

Infectious Diseases + *** 147 149

Pathogenic Escherichia coli infection + ** 53 53

Notation: Significance levels are at the 5% (*), 1% (**), or 0.1% (***). Boldface indicates overrepresentation of SRV; italics indicates underrepresentation of SRV.
doi:10.1371/journal.pone.0095034.t006
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human tissues. Our analyses revealed negative correlation between

expression breadth and the average CV of dS (r = 20.81, P = 0.02)

and the average v-ratio (r = 20.79, P = 0.02) using Gene Atlas

microarray data (Figure S6). Similar results were obtained using

SAGE and EST data (Figure S7–S8).

Additionally, we used expression measurements in 86 tissues

from Gene Atlas Affymetrix U133A microarray. 4,095 proteins

that were classified into SRV+/2 and PS+/2 groups were

mapped to the microarray probes. We examined mRNA

expression levels of SRV+ and SRV2 genes and observed no

difference. However, genes with extreme SRV (CV $ 0.8),

showed increased expression levels in nearly all tissues. There were

243 such genes and we refer to them as SRVEXT genes. We

compared the distribution of the expression levels of the SRVEXT

gene group to the distribution of the expression levels of the

SRV2 genes. The differences were the most pronounced in

several neural tissues: hypothalamus, medulla oblongata, occipital

lobe, pineal day, pineal night, prefrontal cortex, spinal cord,

amygdala, caudate nucleus, cingulate cortex, fetal brain, whole

brain. Figure 3A shows the differences in the distribution of the

Figure 2. Hierarchical clustering of human disease and environmental information processing pathways in respect to the SRV+
genes that are shared between the pathways. The bars next to the pathways denote the number of SRV+ genes (red) and SRV- genes (green) in
the corresponding pathways. Cancer related pathways are marked in blue; metabolic disease pathways are in purple. Note that ABC transporters and
Type II diabetes mellitus pathways are exclusively composed of SRV+ genes.
doi:10.1371/journal.pone.0095034.g002
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expression levels in several tissues. The observed differences

remained when we compared the distribution of the expression

levels of the SRVEXT genes to the distribution of the expression

levels of the SRV2 genes including the subgroup of SRV+ genes

where CV of dS was ,0.8. Consistently with the study of Kosiol et

al. [61], we observed decreased expression levels of PS+ genes in

all tissues (Figure 3B). Using this gene expression dataset we

observed significant overrepresentation of SRV among the genes

expressed in small intestine, pancreas, tongue and several brain

tissues. With the Gene Atlas Affymetrix microarray data

cerebrospinal fluid and pancreatic juice were not experimentally

tested as separate tissues.

Discussion

Large-scale scans for adaptively evolving genes have provided

valuable insights into the patterns of positive selection in protein-

coding genes, but have left many important questions unanswered.

In coding sequences selection may also operate on synonymous

sites, contributing to significant variability patterns with respect to

the conservation of the synonymous substitution rate and codon

usage.

Our analyses of protein families and domains revealed that the

site-to-site SRV is a ubiquitous phenomenon affecting over a

third of homologous protein domains and families. Strikingly, our

study suggests that variation in synonymous rates is more likely in

genes that are conserved and are least likely to undergo

adaptation at the protein level. Proteins with significant SRV

are involved in complex functions, exhibit stronger codon bias

and tRNA reusage, have larger number of interactions and

participate in forming a larger number of structural complexes.

In contrast, we found that genes affected by positive selection

tend to have weaker codon bias and fewer interaction partners

and form fewer protein complexes. This is consistent with the

previous findings: several studies found that the connectivity of

proteins in the network is negatively correlated with their rate of

evolution [54,65,66].

It has been suggested that proteins with more interactions

evolve more slowly because different interactions typically depend

on different sites, and so a greater part of the protein is under

strong functional constraint [65]. At sites important for interaction

between proteins, evolutionary changes may occur largely by co-

evolution, in which substitutions in one protein result in selection

pressure for reciprocal changes in interacting partners. While we

found weak negative correlation between the strength of positive

selection and the number of structural complexes, this was not

found significant in [54], most likely because at that time the

number of structural complexes in Pfam was underestimated (with

fewer structures known) and due to smaller size of PANDIT.

However, it was shown that families and protein domains that

form at least one structure tend to be more conserved. This could

suggest that selection acts on all members of the complex,

irrespective of the number of complexes formed by each member

of the complex [54].

Another surprising finding of our study is that positive selection

on the protein tends to be in an antagonistic relationship with

forces responsible for the SRV 2 a trend seen in most of our

analyses of gene features (codon/tRNA bias, expression, function).

For example, protein domains (very stable protein units optimized

Figure 3. Distribution of the expression levels in A) SRV2 genes (blue) and SRVEXT genes (red) and B) PS2 genes (green) and PS+
genes (purple) for different tissues. SRVEXT genes show higher expression levels compared to SRV2 genes; PS+ genes show reduced expression
levels compared to PS2 genes.
doi:10.1371/journal.pone.0095034.g003
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through deep evolutionary times) evolve slowly compared to

protein families (which often evolve under changing evolutionary

constraints after gene duplications). Here we found that domains

were less likely to undergo positive selection on the protein, but

more likely to have SRV. Possibly for domains, protein ‘‘building

blocks’’ that are reused in different protein architectures, the

exploration of the synonymous mutational landscape is the best

way of fine-tuning the already well-optimized amino acid

sequence. In contrast, protein families were found to be more

likely to undergo positive selection on the protein, but less likely to

have significant SRV. Gene ontologies enriched with SRV were

often underrepresented with PS.

This may suggest that site-to-site variation of synonymous rates

and codon bias are more likely to produce more subtle effects on

protein transcription and translation, and so the SRV might be

one of the mechanisms of adaptation in the proteins that evolve

slowly. Indeed, in very conserved proteins most (if not all)

nonsynonymous mutations would result in a dysfunctional protein

product and would be selected against. The exploration of

mutational landscape is then possible mostly through synonymous

mutations. For example, depending on the position in a sequence

the use of rare (or optimal) codons may slow down (or speed up)

the translation, which can be crucial for correct protein folding

[67]. In another example, differences in mRNA stability were

attributed to synonymous mutations in the conserved gene lady bird

early (lbe) from the homeobox cluster of Drosophila melanogaster [68].

This example is consistent with our observations: on lbe balancing

selection on synonymous sites acts at the background of strict

purifying selection on the protein.

Crucially, the understanding of protein function requires a

detailed analysis of sequence-structure-function trinity. Here we

focused on sequences with SRV, a phenomenon that may affect

protein folding, abundance, degradation and function - through

the regulation of translational rate or mRNA stability. In our

study, proteins found in the cell interior (with exception of

organelles) tended to have more SRV, while it was observed less

frequently in proteins located in the extracellular region. Again,

this pattern is opposite to the well-known localization pattern for

proteins whose protein encoding sequences are under positive

selection on the protein level. Furthermore, proteins involved in

metabolic and cellular processes, transporter activities and binding

exhibited significant excess of SRV.

Several pathways are especially rich in genes with SRV,

suggesting that selective forces on synonymous sites may frequently

act directly on whole protein complexes or pathways. This can be

seen from our clustering of SRV genes by KEGG terms, where

several disease pathways and related environmental information

processing pathways frequently share many genes with SRV

(Figure 2). This is supported by recent literature reporting known

associations of synonymous mutations with .40 human diseases

[24].

Alternatively, some studies suggested that adaptive changes in

one protein may sometimes have a cascade effect, leading to

changes in other genes that bring a system back into the

equilibrium [69]. Further investigation in this respect is needed

in order to analyze the effects of the synonymous changes along

the pathway and to reveal the reasons for overrepresentation of

genes with SRV in certain pathways.

Genes expressed in certain tissues (brain, cerebrospinal fluid,

liver, pancreatic juice) showed excess of SRV. Moreover, genes

with extreme SRV had increased expression levels in most of the

human tissues, especially in brain tissues. This may indicate that

codon bias towards optimal codons, which correlates with gene

expression, may not affect all sites, but is often a site-specific

phenomenon. Indeed, as mentioned above, variation in usage of

optimal vs rare codons could act as a mechanism for regulating the

speed of translation along the sequence, consistent with the co-

translational folding hypothesis. Some recent studies suggested

that site-specific codon preferences may be better explained by

pressures for translational accuracy [70–72] rather than speed of

translation, and the impact of rare codon clusters on ribosomal

occupancy has been recently questioned based on ribosomal

footprinting in yeast [73]. This highlights the complexity of the

relationship between selection on synonymous sites, biochemical

properties of the transcript, protein production and the eventual

function of protein product, necessitating further studies in this

direction.

Recent reports show that synonymous SNPs (synSNPs) can be

associated with disease phenotype, causing disease or be respon-

sible for differences in individual responses to drug treatment. If a

haplotype with a synSNP has higher fitness, it will increase in

frequency due to selection. Growing number of diseases are

associated with synonymous polymorphisms, such as several types

of cancers, hyperinsulinism of infancy, diabetes, and prion-related

conditions, to name a few [24,67,74,75,76,77,78]. Indeed, in our

data we observed high SRV in genes associated with diabetes,

lupus and various cancers. We found significant SRV in several

human genes where synSNPs have been documented to lead or

contribute to a disease [25], among such examples are: the

CHRNE gene, where a synSNP can directly cause a Myastenic

syndrome (muscle disease); the FGFR2 gene, where a synSNP is a

direct cause of a Crouzon syndrome (bone disease); the tumor

suppressor protein p53, where synonymous polymorphisms are

associated with overall tumor susceptibility, pathology and

prognosis; the EGFR gene, where synSNPs may be a potential

predictor for clinical outcome in advanced Non-Small-Cell Lung

carcinoma; the PAH gene, where synSNPs can lead to

Phenylketonuria; the CHRNA4 gene, where synSNPs are

associated with Alzheimer’s disease; in the three genes PADI2,

SYNGR1 and DRD2 associated with schizophrenia. Interesting-

ly, we also detected significant SRV in the MDR-1 gene 2 the

first known case where the effect of a synonymous change on

protein folding was demonstrated in vivo (discussed in the

introduction; [21,79]). Our analyses identified overrepresentation

of SRV in metabolizing enzymes and transporters, which are

subject to many pharmacogenetics studies because they deter-

mine the disposition, safety and efficacy of small molecule drugs

[24].

Overall, the SRV statistic carries a real signal, identifying

important genes including those associated to human disease.

However, like for any automated large-scale study, the conclu-

sions should not be overgeneralized and taken with caution:

hidden effects such as errors in annotation and reduced power of

LRTs for small or too divergent alignments may have contributed

to the overall signal (indeed in our data correlation was found

with number of taxa and divergence, although weak and clearly

non-linear (see Figure S9)). The possibility that size/divergence of

alignments may cause variation in power of LRT for positive

selection (which are methodologically quite similar to the LRT

for SRV that we used here) has been thoroughly studied in [38]

using computer simulations. The study showed that for small

alignments and too low/deep divergences the LRT remained

accurate but had decreased power. To check that this did not bias

our results, we repeated all analyzes by removing small

alignments (in different combinations) with and without a

threshold of $0.3 on the CV of SRV. We could confirm the

reported trends in all cases.
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Whole-genome investigations on a fixed number of lineages

would help to reduce some of the above-mentioned effects.

Further, to detect positions affected by site-specific selection on

synonymous changes with sufficient confidence, better models

and tests need to be developed, taking into account site-to-site

codon variability. Better understanding of site-specific synony-

mous variability promises to become an important contribution

to revising the central molecular biology concepts, to improving

structural prediction, and to our understanding of genetic

diseases with respect to potential effects of synonymous

mutations.

Supporting Information

Figure S1 Histogram of PANDIT data sets divergence.
The divergence (expected substitutions per amino acid site per

branch) was calculated as AA tree length divided by 2*T-3, where

T is the number of sequences in the PANDIT data set. The AA

tree length and the number of sequences in the each data set were

extracted from PANDIT.

(TIF)

Figure S2 Bootstrap distributions of the differences in
mean values of A) Codon Bias Indices (CBI) and B)
Effective Number of Codons (ENC) between protein
groups showing evidence for site-to-site variation in
synonymous rates (SRV+) and those failing to show such
evidence (SRV2), and protein groups showing evidence
for positive selection (PS+) and those failing to show
such evidence (PS2). The differences are significant, since 95%

of the histogram area does not include the zero value for all

histograms.

(TIF)

Figure S3 Bootstrap distributions of the differences
in A) mean GC content values and B) GC3 content
values between PANDIT members showing evidence
for site-to-site variation in synonymous rates (SRV+)
and those failing to show such evidence (SRV2), and
PANDIT members showing evidence for positive
selection (PS+) and those failing to show such
evidence (PS2). All the differences are significant, since 95%

of the histogram area does not include the zero value for all

histograms.

(TIF)

Figure S4 Distributions of data in GO terms.
(TIF)

Figure S5 Expression breadth histogram of genes in
HumanProteinpedia Database.
(TIF)

Figure S6 Correlation between gene expression
breadth (number of tissues of gene expression) calcu-
lated from human Gene Atlas microarray data and A)
average CV of synonymous rates and B) average v
ratio, calculated for each bin of 10 tissues. The Gene

Atlas microarray expression breadth values were taken from

Necsulea et al. (2009).

(TIF)

Figure S7 Correlation between gene expression breadth
(number of tissues of gene expression) calculated from
human SAGE data and A) average CV of synonymous
rates and B) average v ratio. The SAGE gene expression

breadth values were taken from Necsulea et al. (2009).

(TIF)

Figure S8 Correlation between gene expression breadth
(number of tissues of gene expression) calculated from
human EST data and A) average CV of synonymous rates
and B) average v ratio. The EST gene expression breadth

values were taken from Necsulea et al. (2009).

(TIF)

Figure S9 Correlation between individual variables
(stated in the diagonal). The numbers in the upper-diagonal

plots denote the correlation coefficients for the corresponding pairs

of variables. The lower-diagonal plots represent plots of the

corresponding data.

(TIF)

Table S1 PFAM protein groups with extreme site-to-site
heterogeneity of synonymous rates (coefficient of vari-
ation (CV) $1).

(XLS)

Table S2 Clans that are exclusively composed of PFAM
groups identified as having site-to-site heterogeneity of
synonymous rates (SRV+).

(XLS)

Table S3 Strength of correlation between codon bias,
tRNA reusage and nucleotide composition and SRV/PS.
Note that negative correlation with ENC indicates positive

correlation to codon bias, since, unlike CBI, smaller ENC

indicates stronger codon bias.

(XLS)
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