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PRIME POWER TERMS IN

ELLIPTIC DIVISIBILITY SEQUENCES

VALÉRY MAHÉ

Abstract. We study a problem on specializations of multiples of rational
points on elliptic curves analogous to the Mersenne problem. We solve this
problem when descent via isogeny is possible by giving explicit bounds on the
indices of prime power terms in elliptic divisibility sequences associated to
points in the image of a nontrivial isogeny. We also discuss the uniformity of
these bounds assuming the Hall–Lang conjecture.

1. Introduction

The classical Mersenne problem consists of the search for all prime integers of
the form 2n − 1. This article is dedicated to the study of an analogous problem
for elliptic divisibility sequences. A divisibility sequence is a sequence of integers
(Bn)n∈N satisfying the divisibility relation Bn | Bm for every pair (n,m) ∈ N2

such that n | m. Elliptic divisibility sequences are a particular case of divisibility
sequences, arising from the study of denominators of multiples of points on elliptic
curves. The first systematic study of elliptic divisibility sequences is due to Ward
(see [35]).

The Lenstra–Pomerance–Wagstaff conjecture asserts the number of primes p
less than x with 2p − 1 being prime is asymptotically eγ log2(x) where γ denotes
the Euler–Mascheroni constant (see [34]). In particular, we expect the Mersenne
sequence to have infinitely many prime terms. This contrasts with the behaviour
of elliptic divisibility sequences. An analog to the Lenstra–Pomerance–Wagstaff
heuristic suggests the following conjecture (see [8]).

Conjecture 1.1 (Primality conjecture: Einsiedler–Everest–Ward). Let B =
(Bn)n∈N be an elliptic divisibility sequence. Then B contains only finitely many
prime terms.

The primality conjecture is supported by many computations and has been
proved for magnified elliptic divisibility sequences by Everest, Miller and Stephens
in [11] (see below for a definition of the magnification condition). Although the

Received by the editor December 24, 2009 and, in revised form, October 15, 2011 and October
31, 2012.

2010 Mathematics Subject Classification. Primary 11G05, 11A41.
Key words and phrases. Siegel’s Theorem, elliptic curves, isogeny, division polynomials, Thue

equations, canonical height, local height.
This work was supported by EPSRC grant EP/E012590/1, the Université de Montpellier 2,
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1952 VALÉRY MAHÉ

magnification condition is a strong assumption, the study of prime terms in mag-
nified elliptic divisibility sequences has applications to logic; it is studied in [9] as
part of a further investigation of a result of Poonen on Hilbert’s tenth problem
(see [22]).

Our main result consists of a computation of explicit bounds on the index n of
a prime power term Bn in a magnified elliptic divisibility sequence (Bn)n∈N. Such
explicit bounds are crucial when considering the problem of sieving for all prime
power terms in a magnified elliptic divisibility sequence. This main result applies
only to elliptic divisibility sequences that are both magnified and normalized, in the
sense that they are defined over Q using elliptic curves given by minimal Weierstrass
equations. No other condition is required.

Using the same method we show the existence of a uniform bound on the index of
a prime power term in a normalized magnified elliptic divisibility sequence. Unlike
our main result, this second theorem is conditional on conjectures of Lang and of
Hall–Lang. This result improves the main theorem in [10] which asserts the exis-
tence of a uniform bound on the number (and not the indices) of prime power terms
in normalized magnified elliptic divisibility sequences, assuming Lang’s conjecture.

Before proving those two results, we explain how the primality conjecture for
magnified elliptic divisibility sequences is linked to two classical problems in dio-
phantine geometry: solving Thue equations and finding integer points on elliptic
curves.

1.1. Background.

Notation 1.1.1. Elliptic divisibility sequences can be defined by considering the
rank one subgroup generated by a point P of infinite order on an elliptic curve E
defined over Q by a Weierstrass equation with integral coefficients

(1) E : y2 + a1y + a3xy = x3 + a2x
2 + a4x+ a6.

For each integer n ∈ N, we consider the “denominator” BnP of the multiple [n]P
of P ; we write

[n]P =

(
AnP

B2
nP

,
CnP

B3
nP

)
with AnP ∈ Z and BnP ∈ N such that gcd(AnP , BnP ) = gcd(CnP , BnP ) = 1.

Definition 1.1.2. We use Notation 1.1.1.

(a) The sequence B = (BnP )n∈N is called the elliptic divisibility sequence asso-
ciated to the point P and equation (1).

(b) The sequence B = (BnP )n∈N is the normalized elliptic divisibility sequence
associated to P if equation (1) is a standardized minimal Weierstrass equa-
tion, meaning that equation (1) is minimal with a1, a3 ∈ {0, 1} and
a2 ∈ {−1, 0, 1}.

The definition of the elliptic divisibility sequence associated to a point P on an el-
liptic curve E depends on a choice of a Weierstrass equation for E. If equation (1)
is the standardized minimal Weierstrass equation for E, then any other Weies-
trass equation for E with integral coefficients can be derived from equation (1)
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PRIME POWER TERMS IN ELLIPTIC DIVISIBILITY SEQUENCES 1953

using a change of variables (x′, y′) = (u2x + s, u3y + vu2x + t) for some
s, t, u, v ∈ Z (with u �= 0). Moreover, if (Bn)n∈N is the normalized elliptic divis-
ibility sequence associated to P , then the elliptic divisibility sequence associated
to P and the Weierstrass equation for E obtained using those new coordinates
(x′, y′) = (u2x + s, u3y + vu2x + t) is

(B′
n)n∈N :=

(
Bn

gcd (Bn, u)

)
n∈N

.

In particular, given any integer N there is a well-chosen Weierstrass equation for
E for which the elliptic divisibility sequence associated to P has at least N prime
power terms. The normalization condition is introduced because each point P on
an elliptic curve has only one normalized elliptic divisibility sequence associated to
it. From now on all elliptic divisibility sequences will be assumed to be normalized.

Our definition of elliptic divisibility sequence is slightly different from the defini-
tion given in [35] but is better suited to the definition of an analog of the Mersenne
problem in the context of the theory of elliptic curves. Using Notation 1.1.1, if
E has good reduction at a prime l, then for each integer n we have equivalence
between the conditions:

• l divides BnP ;
• nP ≡ OE mod l (where OE denotes the point at infinity on E).

Thus the search for prime power terms in normalized elliptic divisibility sequences
is a particular case of the following problem which arises naturally when studying
specializations of algebraic groups.

Problem 1.1.3. Given a Q-point P ∈ G(Q) on an algebraic group G defined over
Q (whose group law is denoted multiplicatively), are there infinitely many integers
n ∈ N such that

Supp (Pn) := {v finite place of Q : Pn ≡ 1G mod v}

has cardinality one?

When G = Gm and P = 2, Problem 1.1.3 consists of the following unsolved
variant of the Mersenne problem: Are there infinitely many prime power terms in
the sequence (2n − 1)n∈N?

The Lenstra–Pomerance–Wagstaff conjecture and Conjecture 1.1 suggest that
the answer to Problem 1.1.3 depends strongly on the choice of the algebraic group
G. Thus finding common properties between Lucas sequences and elliptic divisi-
bility sequences can lead to a better understanding of the Mersenne problem. The
magnification condition has been introduced to study the analog for elliptic divisi-
bility sequences of an easy result on Mersenne primes: if p is an integer such that
2p − 1 is a prime, then p must be prime since

2nm − 1 = (2n − 1)

(
m−1∑
k=0

2kn

)

for all n,m ∈ N∗.

Licensed to Ecole Polytech Fed de Lausanne. Prepared on Tue Dec 16 13:02:31 EST 2014 for download from IP 128.178.14.218.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1954 VALÉRY MAHÉ

Definition 1.1.4.

(a) A Q-point P on an elliptic curve E defined over Q is magnified if P = σ(Q),
for some isogeny σ : E′ −→ E defined over Q different from the identity
map and some Q-point Q on E′.

(b) An elliptic divisibility sequence B is magnified if B is the normalized elliptic
divisibility sequence associated to some magnified point on an elliptic curve
defined over Q.

In [5] Corrales-Rodrigáñez and Schoof proved that if B′ = (B′
n)n∈N and B =

(Bn)n∈N are two normalized elliptic divisibility sequences such that B′
n divides Bn

for every n ∈ N, then either B = B′ or B is a magnified elliptic divisibility sequence.
The converse is true: terms in magnified elliptic divisibility sequences admit natural
factorization by terms in another associated elliptic divisibility sequence. For ex-
ample, any elliptic divisibility sequence B = (Bn)n∈N satisfies the strong divisibility
property

gcd(Bn, Bm) = Bgcd(n,m)

and, in particular, Bn divides Bnm for any n,m ∈ N. When m ≥ 2 is an integer,
the primality conjecture for the elliptic divisibility sequence (Bnm)n∈N is true if

• Bn has a prime factor and
• Bnm has a prime factor coprime to Bn

for all but a finite number of indices n. However, checking these two conditions is
not as easy as proving that 2n − 1 and

∑m−1
k=0 2kn are greater than 1; it requires

the use of diophantine approximation to prove strong versions of Siegel’s theorem
on integer points on elliptic curves.

1.2. Statement of the results. A first approach to the problem of computing
the set prime power terms in a magnified normalized elliptic divisibility sequence
consists of relating it to solved questions in diophantine geometry.

Theorem 1.2.1. Let σ : E′ −→ E be an isogeny of odd degree greater than 2
between two elliptic curves defined over Q by minimal equations. Denote by ΔE′

the minimal discriminant of E′. We use Notation 1.1.1.

Then there is a homogeneous polynomial Fσ ∈ Z[X,Y ] of degree deg(σ)−1
2 such

that the set

Eσ :=
⋃

|d|≤deg(σ)|ΔE′ |deg(σ)/4

{
(A,B) ∈ Z2 : Fσ(A,B2) = d

}
contains all pairs (AP ′ , BP ′) associated to Q-points P ′ ∈ E′(Q) such that every
prime factor of Bσ(P ′) divides BP ′ .

Without the upper bound |d| ≤ deg(σ)2|ΔE′ |deg(σ)/4, the existence of the poly-
nomial Fσ would not be surprising. It would be an easy consequence of the existence
of division polynomials (see the proof of Theorem 1.2.1 in subsection 4.3 for an ex-
plicit formula for Fσ). The true strength of Theorem 1.2.1 lies in the inequality
|d| ≤ deg(σ)2|ΔE′ |deg(σ)/4. This upper bound being explicit, the set Eσ can be
computed in theory by solving a finite number of explicit Thue equations:

Fσ(A,B2) = d,
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using the algorithm described in [31]. As explained above in the case σ = [m], a
term Bnσ(P ′) fails to be prime if BnP ′ > 1 and Bnσ(P ′) has a prime factor coprime
to BnP ′ . In particular, Bnσ(P ′) fails to be prime if BnP ′ > 1 and (AnP ′ , BnP ′) /∈ Eσ.
Since the condition BnP ′ > 1 can be checked using algorithms for the search for
integer points on elliptic curves, Theorem 1.2.1 leads to a theoretical method for the
computation of all prime power terms in magnified elliptic divisibility sequences.
However, in practice the set Eσ can be computed only when deg(σ) is small: the
number of Thue equations involved in the definition of Eσ in Theorem 1.2.1 grows
exponentially with deg(σ). We address this difficulty by adopting a different ap-
proach to the Mersenne problem for elliptic curves. We adapt results from [15] and
use height theory to compute explicit bounds on the index of prime power terms in
magnified elliptic divisibility sequences.

Theorem 1.2.2. Let σ : E′ −→ E be an isogeny defined over Q between two elliptic
curves defined by minimal equations. Let P ′ ∈ E′ (Q) be a Q-point on E′ of infinite
order. We use Notation 1.1.1.

Then Bnσ(P ′) has two distinct prime factors coprime to BP ′ for all prime num-
bers

n > max
{
3.5× 1029C(P ′), 4× 1027C(P ′)7/2ĥ(σ(P ′))5/2

}
and all composite numbers

n > max
{
7089C(P ′), 5C(P ′) (log(18C(P ′)))

2
}
,

where ĥ denotes the canonical height, hFalt denotes the Faltings height and

C(P ′) := max

{
1,

2hFalt(E
′) + 10

ĥ(P ′)

}
.

Moreover, there are at most two prime numbers N1 and N2 with

Ni > 34C(P ′)

and BNiσ(P ′) having no more than one prime factor coprime to BP ′ .

Remark 1.2.3. If n is coprime to deg(σ), then, under the same hypotheses as in
Theorem 1.2.2, we can show that Bnσ(P ′) has in fact two distinct prime factors
coprime to Bσ(P ′) (see the proof of Theorem 5.3 for details).

In Remark 8.4.1 we give bounds on indices n such that Bnσ(P ′) has at most
one prime factor coprime to Bσ(P ′) (without any coprimality condition of n and
deg(σ)). Those bounds depend on deg(σ). This is not the case for the bounds
given in Theorem 1.2.2. In fact, if Lang’s Conjecture 1.2.6 the bounds given in
Theorem 1.2.2 can be bounded above by an absolute constant (i.e., a constant that
does not depend on (E′, E, P ′, P, σ)).

Remark 1.2.4. Theorem 1.2.2 is part of a two-step method to compute the set of
prime power terms in sequences

(
Bnσ(P ′)/BP ′

)
n∈N

:

(a) compute a bound N on the index of a prime power term in the sequence(
Bnσ(P ′)/BP ′

)
n∈N

;

(b) use the bound N to sieve for all prime power terms in (Bnσ(P ′)/BP ′)n∈N.

The second part can be done by adapting the algorithms for the search for integer
points on elliptic curves or for the computation of solutions to Thue equations (see
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1956 VALÉRY MAHÉ

for example [31]), since Bnσ(P ′)/BP ′ cannot be a prime power if Bnσ(P ′)/BnP ′ and
Bn(P ′)/BP ′ are coprime and greater than or equal to 2.

Theorem 1.2.2 gives three bounds on the index of a prime power term in the
sequence

(
Bnσ(P ′)/BP ′

)
n∈N

:

• one very large general bound;
• two far more reasonable bounds which are valid for all but at most two
prime indices N1 and N2.

The general bound should only be used when searching for the exceptional indices
N1 and N2 if they exist. The two other bounds are far smaller, thus better suited
to the computation of the set of all integers n /∈ {N1, N2} such that Bnσ(P ′)/BP ′

is a prime power.

The proof of Theorem 1.2.2 is based on Siegel’s theorem on integer points on
elliptic curves and, more precisely, on upper bounds for archimedean heights of
multiples of P ′ and σ(P ′). Theorem 1.2.2 can be refined when good bounds on the
archimedean heights of the multiples of P ′ and σ(P ′) are known.

Example 1.2.5. We consider Notation 1.1.1 when equation (1) is

EA : y2 = x(x2 −A),

where A is a positive integer not divisible by a fourth power. Let P ′ be a Q-point
of infinite order on EA. Let m be an integer. Assume that either m is even or P ′

is on the bounded real connected component of EA. Then BnmP ′ is a composite

• whenever n ≥ 5 if A �≡ 12 mod 16;
• whenever n ≥ 10 if A ≡ 12 mod 16.

Example 1.2.5 is obtained in section 9 by computing an upper bound for the
number C(P ′) introduced in Theorem 1.2.2 that does not depend on (E′, P ′), i.e.,
by proving a particular case of the following conjecture of Lang.

Conjecture 1.2.6 (Lang). There is an absolute constant C > 0 such that, for
every Q-point P of infinite order on an elliptic curve E defined over Q by a minimal
equation, the following inequality holds:

hFalt(E) ≤ Cĥ(P ).

Hindry and Silverman proved in [13] that Lang’s conjecture is a consequence of
the Szpiro conjecture. This result was improved in [21]: Petsche showed that

log |ΔE |
ĥ(P )

≤ 1015
(
log |ΔE |
log |FE |

)6

log2

(
104613

(
log |ΔE |
log |FE |

)2
)
,

where FE (respectively ΔE) denotes the conductor (respectively the minimal dis-
criminant) of E.

In [2], Lang’s conjecture is proven unconditionally for curves EN2 with N ∈ N

squarefree. Example 1.2.5 has been obtained by generalizing this result to curves
EA with A positive. The main difficulty for this generalization is the computation
of the reduction type of EA at each prime integer. This is achieved by applying
Tate’s algorithm. This example is also studied in [33] but without any condition
on the sign of A.

While all previously stated results were unconditional, Corollary 1.2.8 below is a
generalization of Example 1.2.5 which can be obtained only when assuming Lang’s
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conjecture and the following conjecture of Hall and Lang, which gives a very strong
version of Siegel’s theorem.

Conjecture 1.2.7 (Hall–Lang). There are two constants K, γ > 0 such that, for
every quadruple of integers (A,B, x, y) with y2 = x3+Ax+B the following inequality
holds:

max{|x|, |y|} ≤ Kmax{|A|, |B|}γ .

Corollary 1.2.8. Let σ : E′ −→ E be an isogeny defined over Q between two
elliptic curves. Let P ′ ∈ E′ (Q) be a Q-point on E′ of infinite order. We use
Notation 1.1.1. We assume

(a) that E and E′ are defined by minimal short Weierstrass equations;
(b) the Lang Conjecture 1.2.6 holds;

(c) the Hall–Lang Conjecture 1.2.7 holds with γ < deg(σ)
4 .

Then there is a constant N ≥ 0 independent of (E,E′, P ′, σ) such that Bnσ(P ′)

has two distinct prime factors coprime to BP ′ for every index n > N .

Corollary 1.2.8 is an improvement on the main result in [10]: assuming the
Lang conjecture and the Hall–Lang conjecture we state the existence of a uniform
bound on the index (and not only on the number) of prime power terms in elliptic
divisibility sequences.

Given a point P on an elliptic curve, the multiple nP is an integer point if and
only if the n-th term in the elliptic divisibility sequence associated to P is a unit
(i.e., has no prime factor). This explains why we need the Hall–Lang conjecture to
prove the existence of a uniform bound on the maximal index n such that BnP has
at most one prime factor.

2. Sketches of the proofs

2.1. The division polynomial and Thue equations. We use the notation of
Theorem 1.2.1. The x-coordinates xE : E −→ P1 on an elliptic curve E in Weier-
strass form is a 2-covering of P1 such that xE ◦ [−1] = xE . Since deg (σ) is odd, our
isogeny σ : E′ −→ E commutes with [−1]. In particular, σ induces a morphism of
algebraic varieties ϕσ : P1 −→ P1 such that xE ◦ σ = ϕσ ◦ xE′ . The poles of ϕσ are
the x-coordinates of the elements of ker (σ). Moreover, ϕσ has even valuation at
its poles, i.e., ϕσ = φσ/ψ

2
σ for some φσ, ψσ ∈ Z[x]. Up to a choice of its leading co-

efficient, the polynomial ψσ is the division polynomial associated to σ. Our choice
for the polynomial Fσ is the homogeneization Fσ(X,Z) := Z(deg(σ)−1)/2ψσ (X/Z)
of the division polynomial associated to σ.

The denominator BP ′ divides Bσ(P ′). From our definition for Fσ we know the

denominator Bσ(P ′) divides the integer BP ′Fσ

(
AP ′ , B2

P ′
)
. We get a factorization

in Z,

Fσ

(
AP ′ , B2

P ′
)
=

Bσ(P ′)

BP ′

B
deg(σ)
P ′ ψσ(x(P

′))

Bσ(P ′)
.

Since deg(σ) is odd, the theory of formal groups shows that, if every prime factor of

Bσ(P ′) divides BP ′ , then
Bσ(P ′)
BP ′

divides deg(σ). The proof of Theorem 1.2.1 consists

of using height theory to bound
B

deg(σ)

P ′ ψσ(x(P
′))

Bσ(P ′)
. More precisely, the denominators
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BP ′ and Bσ(P ′) can be defined using naive local heights:

log |BP ′ | =
∑

v prime

(hv(σ(P
′)) ,

log
∣∣Bσ(P ′)

∣∣ = ∑
v prime

hv(σ(P
′)).

In the same way log |ψσ(P
′)| can be expressed in terms of canonical local heights

after proving a consequence of a generalized quasi-parallelogram law for canonical
local heights:

log |ψσ(P
′)| = deg(σ) log |ΔE′ | − log |ΔE |

12
+
∑

v prime

(
ĥv(σ(P

′))− deg(σ)ĥv(P
′)
)
.

Theorem 1.2.1 follows from these three formulas, by invoking bounds on the differ-
ence between naive local heights and canonical local heights.

2.2. Computing bounds on the index of prime power terms in magni-
fied elliptic divisibility sequences. The proof of the primality conjecture for
magnified elliptic divisibility sequences relies on:

• the theory of formal groups which shows that, if n ∈ N is any integer such
that each prime factor of Bnσ(P ′) divides BnP ′ , then

(2) log
∣∣Bnσ(P ′)

∣∣ ≤ log |BnP ′ |+ log |BsP ′ |+ log (deg(σ)) ;

with 1 ≤ s ≤ 10.
• Siegel’s theorem which implies the existence of h > h′ > 0 such that

lim
n−→∞

log |BnP ′ |
n2

= h′ and lim
n−→∞

log
∣∣Bnσ(P ′)

∣∣
n2

= h.

Since h′ < h, the difference between the growth rate of BnP ′ and Bnσ(P ′) implies
that equation (2) holds only for finitely many n. In particular, Bnσ(P ′) has a prime
factor ln coprime to BnP ′ for all but finitely many n. Siegel’s theorem asserts
that BnP ′ has a prime factor l′n for all but finitely many n. Since l′n and ln both
divide Bnσ(P ′) and are coprime, Bnσ(P ′) is a prime power only for finitely many
indices n. In section 5 we explain how this argument can be made explicit assuming
more precise statements of Siegel’s theorem, namely inequalities from diophantine
approximation of the form

ĥ∞(P ) ≤ εĥ(P ) +M,

where P is a point on an elliptic curve E defined over Q, ĥ∞ and ĥ are, respectively,
the canonical archimedean height and the canonical height on E, and ε ∈]0, 1[ and
M > 0 are constants (independent of P ). The remainder of the article is dedicated
to the study of various statements of Siegel’s theorem:

• in section 6 we prove Corollary 1.2.8 by assuming the Hall–Lang Conjec-
ture 1.2.7 on the archimedean height of integer points on elliptic curves;

• in section 7 we explain how division polynomials can be used to prove a
sharp version of Siegel’s theorem for integral multiples of magnified points,
which implies a bound on the composite integers which are the index of a
prime power term in a given magnified elliptic divisibility sequence;
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• in section 8 we use David’s lower bound on linear forms in two elliptic
logarithms to prove a general bound on the index of a prime power term in
a given magnified elliptic divisibility sequence;

• in section 8 we prove the last statement in Theorem 1.2.2 using a gap
principle to obtain a refinement of David’s lower bound for linear forms in
elliptic logarithms, which is stated without numerical values in [15].

For a simplified example of the techniques above we refer the reader to the proof
of Example 1.2.5 in section 9.

3. Notation

We use the following notation:

Notation 3.0.1.

E′, E elliptic curves defined over Q by standardized minimal equations
σ : E′ −→ E an isogeny defined over Q of degree at least 2
d degree of σ
P ′ a Q-point of infinite order on E′

(BnP ′)n∈N normalized elliptic divisibility sequence associated to P ′

rl,P ′ the rank of apparition of a prime l in (BnP ′)n∈N (see Def. 4.2.4)
P the image σ(P ′)
(Bnσ(P ′))n∈N normalized elliptic divisibility sequence associated to P := σ(P ′)
h naive height

ĥ canonical height
h∞ naive archimedean height

ĥ∞ canonical archimedean height
hv naive local height at a place v

ĥv canonical local height at a place v
ΔE discriminant of an elliptic curve E
h (E) naive height of an elliptic curve E
hFalt (E) Faltings height of an elliptic curve E

All height functions are defined using the same normalizations as in [27]. In par-
ticular, naive local heights functions are defined by

hv (x) = max {0,−v(x)} = max {0,− ordv(x) log(p)}

for any x ∈ Q and

hv(P ) =
1

2
hv(x(P ))

for any Q-point P on an elliptic curve E as in Notation 1.1.1. Moreover, if E is
given by a minimal Weierstrass equation, then

h(E) = 1

12
max {h(j(E)), h(ΔE)} .

The isogeny σ and all other isogenies in this article will be assumed to be different
from the identity map.
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4. Computing the set of indices of prime power terms in magnified

elliptic divisibility sequences

One of the main difficulties when studying the primality conjecture for magnified
points is to compute the denominator of the image of a given point under a given
isogeny in an appropriate way. This can be done using division polynomials to
reformulate a formula from Vélu. For the convenience of the reader, we begin by
recalling some basic facts on division polynomials. We refer to [18, appendix 1] for
details.

4.1. Background on division polynomials.

Notation 4.1.1. We use Notation 3.0.1. An elliptic curve E ∈ {E′, E} is given by a
minimal Weierstrass equation

E : y2E + a1xEyE + a3yE = x3
E + a2x

2
E + a4xE + a6

in coordinates (xE , yE). The function zE := −xE/yE is a uniformizer at OE .
As in Theorem 1.2.1 we assume d = deg(σ) is odd. Then the divisor

σ∗ (OE) − deg(σ)OE′ being principal, we can associate with σ a nonzero function
ψσ on E whose divisor div (ψσ) is

div (ψσ) = σ∗ (OE)− deg(σ)OE′ .

The function ψσ is defined only up to multiplication by a constant. To define ψσ

in a unique way we introduce a normalization condition(
zdE′ψσ

zE ◦ σ

)
(OE′) = 1,

where zE′ and zE are the two uniformizers at OE′ and OE defined above.
Since d = deg(σ) is odd, the function ψσ is a polynomial in xE′ called the division

polynomial associated to σ. From now on we will denote by dσ ∈ Z the leading
coefficient of ψσ.

Remark 4.1.2. Consider the differential form

ωE =
dxE

2yE + a1xE + a3
=
(
1 + a1zE +

(
a21 + a2

)
zE + · · ·

)
dzE .

We have
(

dzE
ωE

)
(OE) = 1. In particular, our definition of the division polynomial

ψσ is consistant with [18, appendix 1]: it corresponds to the division polynomial
associated to σ and the differential forms ωE′ and ωE .

Lemma 4.1.3. We use Notation 4.1.1. Then the functions ψσ and φσ :=(xE ◦ σ)ψ2
σ

are elements of Z[xE′ ]. Moreover, φσ is a monic polynomial in xE′ of degree deg (σ).

Proof. The two functions ψσ and φσ are given by

ψ2
σ = d2σ

∏
T∈ker(σ), T �=OE′

(xE′ − xE′(T )) ,

φσ =
∏

T∈E′(Q), xE(σ(T ))=0

(xE′ − xE′(T )) ,

where dσ ∈ Q is such that σ∗ωE = dσωE′ . We wish to show that the coefficients of
φσ and ψ2

σ are in Z.
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For any number field K, and any finite place v of K, the set

E′
1 (Kv) := {P ∈ E′ (Kv) : P ≡ OE′ mod v}

is a subgroup of E′ (Kv). The image σ (E′
1 (Kv)) is included in E1 (Kv). In par-

ticular, the points T ∈ E′ (Q) with xE(σ(T )) = 0 are integral. Thus φσ is in
Z[xE′ ].

The study of ψσ is implicitly done in [29]. While the main results in [29] focus
on endomorphisms of elliptic curves, the intermediate results on formal groups we
need are proven for a general isogeny. For background on formal groups, we refer
the reader to [24, Chapter IV].

Let p pe a prime number. Every rational function on E ∈ {E′, E} can be
expressed as a Laurent series in zE . This means that we have an embedding
PE : Qp (E) −→ Qp((T )) (see [24, Chapter IV.1] for computations of PE′ (xE′)
and PE′ (yE′)). Let

Fσ := PE′(zE ◦ σ) = expÊ(dσ logÊ′(T ))

(where Ê and Ê′ are the formal groups associated to E and E′). The power series
Fσ gives an homomorphism of formal groups

F ∗
σ : Qp((T )) −→ Qp((T )), f(T ) 	−→ f(Fσ(T ))

such that PE′ ◦ (σ∗) = F ∗
σ ◦ PE .

The elliptic curves E and E′ being given by minimal equations, we know from [29]

that the power series Fσ has p-integral coefficients. In particular, PE′

(
1

xE◦σ

)
=

F ∗
σPE

(
1
xE

)
has p-integral coefficients. Since φσ has integral coefficients, PE′ (φσ) =

φσ (PE′ (xE′)) has p-integral coefficients. This implies that PE′
(
ψ2
σ

)
= PE′

(
φσ

xE◦σ

)
has p-integral coefficients. It follows that the coefficients of ψ2

σ are p-integral be-
cause PE′

(
ψ2
σ

)
= ψ2

σ (PE′ (xE′)) and

PE′ (xE′) =
1

T 2
− a1

T
− a2 − a3T − · · · ,

where the integers ai are coefficients of the minimal equation defining E′ (in fact,
one could even recursively retrieve the coefficients of ψ2

σ as polynomials in some
coefficients of ψ2

σ (PE′ (xE′))). �

Lemma 4.1.4. Let E, E′, E′′ be three elliptic curves defined over Q by Weierstrass
equations with integral coefficients. Let σ : E −→ E′ and τ : E′ −→ E′′ be
two isogenies defined over Q. Then the two following equalities hold:

(φτ ◦ σ)ψ2 deg(τ)
σ = φτ◦σ,

(ψτ ◦ σ)2ψ2 deg(τ)
σ = ψ2

τ◦σ.

Proof. The formula for ψ2
τ◦σ is obtained by comparing the divisors of the two func-

tions (ψτ ◦ σ)2ψ
2 deg(τ)
σ and ψ2

τ◦σ ; see [18, Appendix 1] for a more general result.

The assertion for φτ◦σ follows since φτ◦σ
ψ2

τ◦σ
= x ◦ τ ◦ σ = φτ◦σ

(ψτ◦σ)2
. �

Remark 4.1.5. When τ is the dual isogeny of σ, Lemma 4.1.4 implies that the
leading coefficient dσ of ψσ must be a divisor of deg(σ).
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Notation 4.1.6. We keep the hypotheses of Lemma 4.1.4. Then the intersection
F := E[deg(τ )]

⋂
ker(τ ◦ σ) is invariant under the action of the absolute Galois

group of Q. In particular, there is an elliptic curve Eτσ defined over Q by a minimal
standardized equation, an isogeny τσ : E −→ Eτσ defined over Q with ker(τσ) = F ,
and an isogeny στ : Eτσ −→ E′′ defined over Q such that the following diagram
commutes

E
σ ��

τσ

��

E′

τ

��
Eτσ στ

�� E′′

The isogeny σ induces an isomorphism between E[deg(τ )]/ (ker(σ)
⋂
E[deg(τ )])

and E′[deg(τ )]. The restriction of this isomorphism to F/ (ker(σ)
⋂
E[deg(τ )]) is

an isomorphism between F/ (ker(σ)
⋂
E[deg(τ )]) and ker(τ ). In particular, we have

deg(τσ) ≥ deg(τ ). Moreover, if E[deg(τ )]
⋂
ker(σ) = {OE} (for example if deg(σ)

and deg(τ ) are coprime), then deg(τσ) = deg(τ ). In this particular case, using τσ,
we point out in Lemma 4.1.7 that a natural factorization of division polynomials
can be deduced from Lemma 4.1.4.

Lemma 4.1.7. We use Notation 4.1.6 and we assume that deg(σ) and deg(τ ) are
coprime. Then ψ2

σψ
2
τσ divides ψ2

τ◦σ in Z[x].

Proof. Comparing the orders of ker(σ) and ker(τσ), we show that

ker(τ ◦ σ) = ker(στ ◦ τσ) = ker(σ) + ker(τσ).

The definition of a division polynomial implies that ψ2
τ◦σ = ψ2

στ◦τσ . Applying

Lemma 4.1.4, we get that ψ2
τ◦σ is divisible in Q[x] by ψ2

σ and by ψ2
τσ . The two

polynomials ψ2
σ and ψ2

τσ are coprime because ker(σ) ∩ ker(τσ) = {OE}. Both poly-

nomials are in Z[xE ] (see Lemma 4.1.3); the quotient
ψ2

τ◦σ
ψ2

τψ
2
σ
is also an element of

Z[xE] because its leading coefficient is an integer and its roots are the x-coordinates
of points of order dividing deg(σ) deg(τ ) but neither deg(σ) nor deg(τ ) (see [24, The-
orem VII.3.4 (a)]). �
4.2. Division polynomials and elliptic divisibility sequences. Elliptic divis-
ibility sequences are closely related to evaluations of division polynomials (see [35]).
For points with good reduction everywhere this link is given by [1, Théorème A]
which we recall in a slightly weaker form.

Theorem 4.2.1 (Ayad). Let v be a place of Q. Let P ∈ E(Q) be a point on E
whose reduction at v is not the reduction at v of OE. Then the following assertions
are equivalent:

(a) the reduction of P at v is a singular point;
(b) there is an integer m such that v(ψm(P )) > 0 and v(φm(P )) > 0;
(c) for every integer n, we have v(ψn(P )) > 0 and v(φn(P )) > 0.

Ayad’s theorem does not predict the valuation v(ψm(P )) when P has bad re-
duction at v. In [3] the valuations v(ψm(P )) and v(φm(P )) are studied in terms
of the smallest positive integer NP,v such that NP,vP has good reduction at v.
This integer NP,v can easily be computed using Tate’s algorithm (see [27]). How-
ever, the computation of an explicit uniform upper bound for the number of prime
power terms in magnified elliptic divisibility sequences requires an estimate for
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B
2 deg(σ)
P ψσ(P )2

B2
σ(P )

that does not depend on NP,v. Such an estimate can be obtained

from a comparison between naive local heights and their associated canonical local
heights.

Lemma 4.2.2. We use Notation 4.1.1. For every P ′ ∈ E′(Q) of infinite order we
have

(3) log |ψσ(P
′)| = deg(σ)ĥ∞(P ′)− ĥ∞(σ(P ′)) + deg(σ) log |ΔE′ |−log |ΔE |

12 .

Proof. The proof is based on [12, Theorem 6.18], which states that

ĥ∞(Q) = lim
n→+∞

log |ψn(Q))|
n2

− 1

12
log |ΔE |,

for any Q ∈ E(Q), and on the quasi-parallelogram law for ĥ∞, which asserts that

ĥ∞(P +Q) + ĥ∞(P −Q) = 2ĥ∞(P ) + 2ĥ∞(Q)− log |x(P )− x(Q)|+ 1

6
log |ΔE |,

for every P,Q ∈ E(Q) such that P,Q, P ±Q �= OE .
When σ = [n], equation (3) is proven recursively using the quasi-parallelogram

law for ĥ∞ and the equation x([n]P ) = x(P )− ψn+1(P )ψn−1(P )
ψn(P )2 . This particular case

of equation (3) and [12, Theorem 6.18] imply that lim
n→+∞

ĥ∞([n]Q)

n2
= 0, for any

Q ∈ E′(Q). Hence the quasi-parallelogram law for ĥ∞ implies that

(4) lim
n→+∞,gcd(deg(σ),n)=1

∑
T∈ker(σ),T �=OE′

log |x([n]P ′)− x([n]T )|
n2

= 0.

Applying [12, Theorem 6.18] to σ(P ′) together with Lemma 4.1.4, we get

ĥ∞(σ(P ′))

= lim
n→+∞,gcd(deg(σ),n)=1

log |ψσ([n]P
′)ψn(P

′)deg(σ)ψσ(P
′)−n2

)|
n2

− 1

12
log |ΔE |.

From this equation we deduce equation (3) in the general case, noting that

lim
n→+∞,gcd(deg(σ),n)=1

log |ψσ([n]P
′)|

n2

= lim
n→+∞,gcd(deg(σ),n)=1

∑
T∈ker(σ),T �=OE′

log |x([n]P ′)− x([n]T )|
n2

= 0,

and using [12, Theorem 6.18] (applied to P ′). �

Proposition 4.2.3. We use Notation 4.1.1.

(a) If P ′ has good reduction everywhere, then

(5) Bσ(P ′) = B
deg(σ)
P ′ ψσ(P

′).

(b) In the general case, the quotient
B

deg(σ)
P ψσ(P

′)
Bσ(P ′)

satisfies the inequalities

(6) log
∣∣Bσ(P ′)

∣∣ ≤ log
∣∣∣Bdeg(σ)

P ′ ψσ(P
′)
∣∣∣ ≤ log

∣∣Bσ(P ′)

∣∣+ 1

8
deg(σ) log |ΔE′ | .
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Proof. We use the decomposition of the canonical height in a sum of local canonical

heights and the equation ĥ(σ(P ′)) = deg(σ)ĥ(P ′) to reformulate equation (3) as

log |ψσ(P
′)| = deg(σ) log |ΔE′ | − log |ΔE |

12
+
∑

v prime

(
ĥv(σ(P

′))− deg(σ)ĥv(P
′)
)
.

Equation (5) follows, since

(7) ĥv(Q) =
1

2
max{0,−v(x(Q))}+ 1

12
v(ΔE) = v(BQ) +

1

12
v(ΔE ),

for any point Q ∈ E(Q) with good reduction at v (where E ∈ {E′, E}).
Inequality (6) is obtained in the same way as equation (5), except that we replace

equation (7) by the following inequality:

1

24
min(0, v(j(E))) ≤ ĥv(Q)− 1

2
max{0,−v(x(Q))} = ĥv(Q)− v(BQ) ≤

1

12
v(ΔE)

(which holds for any Q-point Q on an elliptic curve E given by a minimal Weierstrass
equation; see [17, Chapter III, Theorem 4.5] for details). �

The proof of Theorem 1.2.1 is based on two results: Proposition 4.2.3, which
compare elliptic divisibility sequences with evaluations of division polynomials, and
an explicit description of the behaviour of the l-adic norms of the terms in an
elliptic divisibility sequence (Bn)n∈N when n varies among multiples of the rank of
apparition of l (see Lemma 4.2.6 below).

Definition 4.2.4. Let Q be a Q-point on an elliptic curve E defined over Q. Let
l be a prime number. We call the rank of apparition of l in the elliptic divisibility
sequence (BnQ)n∈N

associated to Q the order

rl,Q := min{n ∈ N \ {0} : nQ ≡ OE mod l}
= min{n ∈ N \ {0} : BnQ ≡ 0 mod l}

of the reduction of Q modulo l

Lemma 4.2.5. Let Q be a Q-point on an elliptic curve E defined over Q and
let (BnQ)n∈N

be the elliptic divisibility sequence associated to Q. Let l be a prime
number. Then we have:

• vl (BnQ) > 0 if and only if rl,Q divides n;

• rl,Q ≤ l + 1 + 2
√
l.

Proof. The second assertion is a consequence of the Hasse-Weil bound on the num-
ber of rational points on an elliptic curve defined over a finite field. The first
assertion is proven by noticing that rl,P is a generator of the kernel of the group
homomorphism redl : Z −→ E (Fl) , n 	−→ nQ mod l. �

Lemma 4.1.4 explains how the division polynomial associated to the composition
of two isogenies factorizes in a natural way. The following key lemma gives an
analogous property for terms in a magnified elliptic divisibility sequence.

Lemma 4.2.6. We use Notation 3.0.1. Recall that d = deg(σ). Let l be a prime
number. Let n ∈ N be an integer.

(a) In all cases we have

vl (BnP ′) ≤ vl
(
Bnσ(P ′)

)
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(b) If vl(BnP ′) > 0, and either v2(BnP ′) > 1 or l �= 2 or deg(σ) is odd, then

vl
(
Bnσ(P ′)

)
≤ vl

(
Brl,P ′P ′

)
+ vl

(
n deg(σ)

rl,P ′

)
.

(c) If l = 2 and v2(BnP ′) = 1, then

v2
(
Bnσ(P ′)

)
≤ v2 (BsP ′) + v2(n deg(σ))

with s = 2r2,P ′ (in particular, the Hasse-weil bound implies that s ≤ 10).

Proof. We use Notation 4.1.1 (but we do not assume that deg(σ) is odd). Let Ê

and Ê′ be the formal groups associated respectively to E and E′. As in the proof of
Lemma 4.1.3, for E ∈ {E′, E}, we define an embedding PE : Ql (E) −→ Ql((T ))
by expressing every rational function on E as a Laurent series in zE . We know
from [29] that the power series

Fσ := PE′(zE ◦ σ) = expÊ(dσ logÊ′(T ))

has l-integral coefficients. In particular, Fσ converges over the disc Dl in Ql of
center 0 and radius 1, and, since Fσ(0) = 0, we have |Fσ(z)|l ≤ |z|l for any z ∈ Dl.

The proof Lemma 4.2.6 is straightforward when vl(BnP ′) = 0. From now on
we assume that l divides BnP ′ or equivalently that nP ′ and OE′ have the same
reduction modulo l. This implies that σ(nP ′) and OE have the same reduction
modulo l. In particular, l divides Bnσ(P ′). The divisibility of BnP ′ and Bnσ(P ′) by
l means that |zE′(nP ′)|l < 1 and |zE(nσ(P ′)|l < 1. Assertion (a) follows:

vl(Bnσ(P ′)) = vl(zE(nσ(P
′))) = vl(Fσ(zE′(nP ′))) ≥ vl((zE′(nP ′)) = vl(BnP ′).

Replacing nP ′ by nσ(P ′) and σ by the dual isogeny of σ, we get

(8) vl(BnP ′) ≤ vl(Bnσ(P ′)) ≤ vl(Bndeg(σ)P ′).

Using inequalities (8) we deduce assertions (b) and (c) from the particular case
when σ = [m] is the multiplication-by-m map on E′. In fact, we know from
[28, Lemma 1.2] that:

(i) vl(BkmP ′) ≥ vl(BkP ′) + vl(m) always;

(ii) vl(BkmP ′) > vl(BkP ′) + vl(m) if and only if the two following conditions
are satisfied:

• l = 2, and 2 divides m, and v2(BkP ′) = 1;
• E′ has ordinary or multiplicative reduction at 2.

If l does not divide deg(σ), then vl(Bn deg(σ)P ′) = vl(BnP ′). In that case, inequali-
ties (8) imply that vl(Bnσ(P ′)) = vl(BnP ′). From now on we assume that l divides
deg(σ).

The power series expÊ(z) and log
Ê′(z) converge for any z ∈ Ql with vl(z) >

1
l−1 .

Moreover, both power series preserve the l-adic valuation of any such z ∈ Ql with
vl(z) > 1

l−1 . In [29], this observation is used to deduce from the equality Fσ =

expÊ(dσ logÊ′(T )) that

vl(Bnσ(P ′)) = vl(BnP ′) + vl(dσ)

whenever vl(BnP ′) > 1
l−1 . Since vl (dσ) ≤ vl (deg(σ)), this implies Lemma 4.2.6

when vl(BnP ′) > 1 or 1 > 1
l−1 , i.e., when vl(BnP ′) ≥ 2 or l > 2. From now on we

assume that l = 2 and v2(BnP ′) = 1.
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Since v
(
Br2,P ′P ′

)
≥ 1, we obtain from assertion (i) above that

v2(B2r2,P ′P ′) ≥ v
(
Br2,P ′P ′

)
+ 1 ≥ 2.

In particular, assertion (ii) above implies that

v2(B2mr2,P ′P ′) = v2(B2r2,P ′P ′) + v2(m)

for any m ∈ N. Since v2(BnP ′) > 0 we know that r2,P ′ divides n. Moreover, we
have assumed that 2 divides deg(σ). It follows that

v2(Bnσ(P ′)) ≤ v2(Bdeg(σ)nP ′) = v2(B2r2,P ′P ′) + v2

(
deg(σ)n

2r2,P ′

)
. �

4.3. The proof of Theorem 1.2.1. Let P ′ ∈ E′(Q) be a point such that every
prime factor of Bσ(P ′) divides BP ′ . Then, since deg(σ) is odd, Lemma 4.2.6 im-
plies that Bσ(P ′) divides deg(σ)BP ′ . Applying inequality (6) to the point P ′ and
simplifying, we get ∣∣∣Bdeg(σ)−1

P ′ ψσ(P
′)
∣∣∣ ≤ deg(σ)|ΔE′ |deg(σ)/4.

5. Prime power terms in elliptic divisibility sequences

and Siegel’s theorem

In this section we explain how an explicit statement for the primality conjecture
for magnified elliptic divisibility sequences can be derived from explicit variants
of Siegel’s theorem and, more precisely, from upper bounds on the archimedean
heights of multiples of a point.

We begin with the following lemma, which is useful when trying to solve various
inequalities appearing in the proof of the primality conjecture. The technical in-
troduction of the real number A helps to optimize the size of the bound obtained.
Such an optimization will not be important in this section as we will choose A = 1.
However, we will need to apply Lemma 5.1 with A = 1√

ĥ(P ′)
in the proofs of Corol-

lary 7.2.2 and Corollary 7.3.1. We will also need to apply Lemma 5.1 with A = 1018

and δ = 6 in the proof of Proposition 8.2.1.

Lemma 5.1. Let a, b and A ≥ 1 be three positive real numbers. Let n, δ ≥ 1 be two
positive integers such that

n2 ≤ a(log(n) + 1)δ + b.

Then we have n ≤ max
{
A (2δ log(2δ) + 2 log(A))δ , a

A +
√
b
}
.

Proof. Assume n ≥ A (2δ log(2δ) + 2 log(A))δ. The map x 	−→ log(x) − x
A1/δδ

is

decreasing on [A1/δδ,+∞[. It follows that

log(n1/δ)− n1/δ

A1/δδ
≤ log

(
A1/δ (2δ log(2δ) + 2 log(A))

)
− 2 log(2δ)− 2 log(A)

δ
.

Since log(x) ≤ x
2δ + log(2δ)− 1 for every x ≥ 2δ, we have

log
(
A1/δ (2δ log(2δ) + 2 log(A))

)
= log (2δ log(2δ) + 2 log(A)) + log(A)

δ

≤ 2 log(2δ) + 2 log(A)
δ − 1.
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In particular, we get

log(n1/δ) ≤ n1/δ

A1/δδ
− 1.

From this inequality and the inequality

n2 ≤ a(log(n) + 1)δ + b ≤ a(δ log(n1/δ) + 1)δ + b,

we deduce that either n2 ≤ a
An+ b or n ≤ A (2δ log(2δ) + 2 log(A))

δ
. �

Lemma 4.2.6 describes the difference between the v-height of a point P ′ on an
elliptic curve and the v-adic height of the image σ(P ′) of P ′ by an isogeny σ. In
Proposition 5.2, we apply Lemma 4.2.6 to the study of the canonical height of
σ(P ′).

Proposition 5.2. Let P be a Q-point on an elliptic curve E defined over Q by
a standardized minimal Weierstrass equation and let (σi : Ei −→ E)i∈I be a finite
family of isogenies between elliptic curves defined over Q by standardized minimal
Weierstrass equations. For each i ∈ I we consider a Q-point Pi on Ei and an
integer ni ∈ N such that σi(niPi) = P. We assume:

• the existence of two real numbers M and ε ≥ 0 such that

(9) ĥ∞(P ) ≤ εĥ(P ) +M ;

• for any prime factor l of the denominator BP of P , the existence of an
index il ∈ I such that l divides the denominator BPil

of Pil .

Then we have

(1− ε)ĥ(P ) ≤ M + 2h(E) + log (lcm {ni deg(σi) : i ∈ I}) + Θ2 +
∑
i∈I

ĥ(Pi),

where

Θ2 :=

{
3ĥ(Pi2) if v2(BP ) > 0 and v2(BPi2

) = 1 and v2(ni deg(σi2)) > 0,
0 otherwise.

Moreover, if Ei = E for all i ∈ I, then we have

(1− ε)ĥ(P ) ≤ M + h(E) + log (lcm {ni deg(σi) : i ∈ I}) + Θ2 +
∑
i∈I

ĥ(Pi).

Proof. The decomposition of the canonical height into local canonical heights gives

ĥ(P ) = ĥ∞(P ) +
∑

v(BP )>0 or v(ΔE)>0

ĥv(P ).

This equation, with inequalities (9), implies that

(10) (1− ε)ĥ(P ) ≤ M +
∑

v(BP )>0 or v(ΔE)>0

ĥv(P ).

Using [17, Chapter III, Theorem 4.5], inequality (10) becomes

(11) (1− ε)ĥ(P ) ≤ M + h(E) +
∑

v(BP )>0

ĥv(P ).

Let v be a finite place such that v(BP ) > 0. The point P has good reduction at v.
It follows that

(12) ĥv(P ) = hv(P ) +
v(ΔE)

12
.
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By definition of iv, the point BPiv
and the point at infinity on Eiv have the same

reduction at v. In particular, the points Piv and 2Piv have good reduction at v and
it follows that

ĥv(Piv) = hv(Piv) +
v(ΔEiv

)

12
,(13)

ĥv(2Piv) = hv(2Piv) +
v(ΔEiv

)

12
.(14)

We deduce from Lemma 4.2.6 that

(15) ĥv(P ) ≤ ĥv(Piv) + hv(niv deg(σiv)) +
1

12

(
v(ΔE)− v

(
ΔEiv

))
if v(2) = 0 or v2(BPi2

) > 1 or v(ni2 deg(σiv)) = 0, and

(16) ĥ2(P ) ≤ ĥ2(2Pi2) + hv(ni2 deg(σi2)) +
1

12

(
v (ΔE)− v

(
ΔEi2

))
if v2(BP ) > 0 and v2(BPi2

) = 1 and v2(niv deg(σi2)) > 0. Applying inequality (15)

and inequality (16) we deduce from inequality (11) that

(1− ε)ĥ(P ) ≤ M + h(E) + θ2 +
∑

v(BP )>0,v(2)=0

ĥv(Piv)

+
∑

v(BP )>0

(
hv(niv deg(σiv)) +

1

12

(
v (ΔE)− v

(
ΔEiv

)))
,

where

θ2 :=

⎧⎪⎨⎪⎩
ĥ2(2Pi2) if v2(BP ) > 0 and v2(BPi2

) = 1 and v2(ni deg(σi2)) > 0,

ĥ2(Pi2) if v2(BP ) > 0 but either v2(BPi2
) > 1 or v2(ni deg(σi2)) = 0,

0 otherwise.

Proposition 5.2 follows from this inequality and the decomposition of the canonical

heights ĥ(Pi) and ĥ(2Pi2) into local canonical heights, the inequality∑
v(BP )>0

1

12

(
v (ΔE)− v

(
ΔEiv

))
≤ h(E)

and the inequality

θ2 +
∑

v(BP )>0,iv=i2

ĥv(Piv) ≤ Θ2 + ĥ(Pi2),

which holds since Lemma 4.2.6 implies that ĥv(Piv) ≤ ĥv(2Piv) for any finite place
v such that v(BP ) = v(Bσiv (Piv )

) > 0. �

If n is the index of a prime power term in a magnified elliptic divisibility sequence(
Bnσ(P ′)

)
n∈N

, then either every prime factor of Bnσ(P ′) divides BnP ′ or every prime

factor of BnP ′ divides BP ′ . In particular, Theorem 5.3 below can be used to
deduce upper bounds on such indices n from strong variants of Siegel’s theorem
(inequalities (17)).

Theorem 5.3. We use Notation 3.0.1. Let M ′, M and ε ≥ 0 be three real numbers
such that d(1− ε) > 1. Let J be the set of indices n ∈ N such that

(17)
ĥ∞(nP ′) ≤ εĥ(nP ′) +M ′,

ĥ∞(nP ) ≤ εĥ(nP ) +M.
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Then BnP ′ has a prime factor coprime to BP ′ for every integer n ∈ J such that
n ≥ 2 and

n >
1

(1− ε)ĥ(P ′)
+

√
M ′ + h(E′) + 4ĥ(P ′)

(1− ε)ĥ(P ′)
.

This prime factor can be chosen coprime to Bσ(P ′) if n is coprime to deg(σ) or if

n >
1

(1− ε)ĥ(P ′)
+

√
M ′ + 2h(E′) + (100 + d)ĥ(P ′)

(1− ε)ĥ(P ′)
.

Moreover, Bnσ(P ′) has a prime factor coprime to Bσ(P ′)BnP ′ for any n ∈ J such
that n ≥ 2 and

n >
1

(d− dε− 1)ĥ(P ′)
+

√
M + 2h(E) + (100 + d)ĥ(P ′) + log(d)

(d− dε− 1)ĥ(P ′)
.

Proof. Let n ∈ J be an integer such that every prime factor of BnP ′ divides BP ′ .
Applying Proposition 5.2 with I = {1} and [n1] ◦ σ1 = [n], the multiplication by n
map on E′, we get

(18) (1− ε)n2ĥ(P ′) ≤ M ′ + h(E′) + 4ĥ(P ′) + log(n).

If n ≥ 2 log(2), applying Lemma 5.1 with A = 1, inequality (18) becomes

n ≤ 1

(1− ε)ĥ(P ′)
+

√
M ′ + h(E′) + 4ĥ(P ′)

(1− ε)ĥ(P ′)
.

Let n ∈ J be an integer such that every prime factor of BnP ′ divides Bσ(P ′). We
know from Lemma 4.2.5 that Bσ(P ′) divides Bdeg(σ)P ′ and that any common prime
factor of BnP ′ and Bdeg(σ)P ′ divides Bgcd(n,deg(σ))P ′ . In particular, if n is coprime
to deg(σ), then every prime factor of BnP ′ divides BP ′ . In that case we still have

n ≤ 1

(1− ε)ĥ(P ′)
+

√
M ′ + h(E′) + 4ĥ(P ′)

(1− ε)ĥ(P ′)
.

In the general case, the finite group ker(σ) ∩ E′[n] is invariant under the action of
the absolute galois group of Q and contained in E′[gcd(n, deg(σ))]. In particular,
the multiplication by gcd(n, deg(σ)) map on E′ can be written as the composition
[gcd(n, deg(σ))] = τn,1 ◦ τn,2 of two isogenies τn,1 and τn,2 defined over Q such that
ker(τn,2) = ker(σ)∩E′[n]. A prime l divides BnP ′ (respectively Bσ(P ′)) if and only if
the reduction of P ′ modulo l belongs to the reduction modulo l of E′[n] (respectively
ker(σ)). If l is a common prime factor of BnP ′ and Bσ(P ′), then the reduction of
P ′ modulo l belongs to the reduction modulo l of ker(τn,2) = ker(σ) ∩ E′[n]. This
means that l divides Bτn,2(P ′) whenever l is a common prime factor of BnP ′ and
Bσ(P ′). Applying Proposition 5.2 with

• I = {1} and [n1] ◦ σ1 =
[

n
gcd(n,deg(σ))

]
◦ τn,1 when 2 does not divide BnP ′ ,

• I = {1; 2} and [n1] ◦ σ1 =
[

n
gcd(n,deg(σ))

]
◦ τn,1 and [n2] ◦ σ2 =

[
n

r2,P ′

]
and

i2 = 2 when 2 divides BnP ′ , i.e., when r2,P ′ divides n,

we get

(1− ε)n2ĥ(P ′) ≤ M ′ + 2h(E′) +
(
4r22,P ′ + deg(τn,1)

)
ĥ(P ′) + log(n)

≤ M ′ + 2h(E′) + (100 + d) ĥ(P ′) + log(n).
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If n ≥ 2 log(2) we deduce from Lemma 5.1, applied with A = 1, that

n ≤ 1

(1− ε)ĥ(P ′)
+

√
M ′ + 2h(E′) + (100 + d)ĥ(P ′)

(1− ε)ĥ(P ′)
.

Let n ∈ J be an integer such that every prime factor of Bnσ(P ′) divides either BnP ′

or Bσ(P ′). If 2 divides BnP ′ , Lemma 4.2.5 implies that the rank of apparition r2,P ′

divides n. Since ker(τr2,P ′ ,1) ⊂ ker(σ), there exists an isogeny τr2,P ′ ,3 such that
σ = τr2,P ′ ,3 ◦ τr2,P ′ ,1. If 2 divides Bσ(P ′), then, as above, we have that 2 divides

Bτr2,P ′ ,1P
′ . Since deg(τr2,P ′ ,1) ≤ r22,P ′ , applying Proposition 5.2 with

• I = {1; 2} and [n1] ◦ σ1 = [n] the multiplication by n map on E and σ2 = σ
when 2 divides neither BnP ′ nor Bσ(P ′),

• I = {1; 2; 3} and [n1] ◦ σ1 = [n] and σ2 = σ and [n3] ◦ σ3 =
[

n
r2,P ′

]
◦ σ and

i2 = 3 when 2 divides BnP ′ ,
• I = {1; 2; 3} and [n1] ◦ σ1 = [n] the multiplication by n map on E and
σ2 = σ and [n3] ◦ σ3 = [n] ◦ τr2,P ′ ,3 and i2 = 3 when 2 divides Bσ(P ′),

we get

(1− ε)dn2ĥ(P ′) ≤ M + 2h(E) + (4r22,P ′ + n2 + d)ĥ(P ′) + log(nd).

This inequality and the inequality r2,P ′ ≤ 5 given by Lemma 4.2.5 imply that

(d− dε− 1)n2ĥ(P ′) ≤ M + 2h(E) + (100 + d)ĥ(P ′) + log(n) + log(d).

If n ≥ 2 log(2) we deduce from Lemma 5.1, applied with A = 1, that

n ≤ 1

(d− dε− 1)ĥ(P ′)
+

√
M + 2h(E) + (100 + d)ĥ(P ′) + log(d)

(d− dε− 1)ĥ(P ′)
. �

We conclude this section by discussing a variation on Theorem 5.3: the study
of terms in a magnified elliptic divisibility sequences which have only one primitive
divisor. We refer the reader to [16] for effective (but non-explicit) results on prim-
itive divisors in elliptic divisibility sequences. While we will not use Theorem 5.5
in this article, we hope this discussion enlightens the limits of the method used to
prove Theorem 5.3.

Definition 5.4. Let (un)n∈N be a sequence of integers. A prime number l is called
the primitive divisor of un if the two following conditions are satisfied:

• l divides un and
• l is coprime to um for any m < n.

Theorem 5.5. We use Notation 3.0.1. We denote by ζ the usual Riemann zeta-
function. Let M ′, M and 1 > ε ≥ 0 be three real numbers such that d(2−ζ(2)−ε)>1.
Let J be the set of indices n ∈ N such that

(19)
ĥ∞(nP ′) ≤ εĥ(nP ′) +M ′,

ĥ∞(nP ) ≤ εĥ(nP ) +M.

Then BnP ′ has a primitive divisor for every integer n ∈ J such that

n >
1

(2− ζ(2)− ε) ĥ(P ′)
+

√
M ′ + h(E′) + 100ĥ(P ′)

(2− ζ(2)− ε) ĥ(P ′)
.
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Moreover, Bnσ(P ′) has a primitive divisor coprime to BnP ′ for any n ∈ J such that

n >
1

(2d− dζ(2)− dε− 1) ĥ(P ′)
+

√
M + 2h(E) + 100ĥ(P ′)

(2d− dζ(2)− dε− 1) ĥ(P ′)
.

Proof. Let n ∈ J be an integer such that BnP ′ does not have a primitive divisor. If
l is a common prime factor of BnP ′ and BmP ′ for some integer 0 < m < n, then we
know from Lemma 4.2.5 that l divides Bgcd(m,n)P ′ . In particular, for every prime
factor l of BnP ′ there is a prime factor ql of n such that l divides B n

ql
P ′ . Applying

Proposition 5.2 with

• I ′ the set of prime factors of n,
• I = I ′ when 2 does not divide BnP ′ ,

• I = {
} ∪ I ′ and i2 = 
 and [n	] =
[

n
r2,P ′

]
the multiplication by n

r2,P ′
map

on E′, when 2 | BnP ′ , i.e., when r2,P ′ | n,
• [nq] = [q] the multiplication by q map on E′ when q ∈ I ′,

we get

(1− ε)n2ĥ(P ′) ≤ M ′ + h(E′) + log(n) +

⎛⎝4r22,P ′ +

⎛⎝ ∑
q prime, q|n

n2

q2

⎞⎠⎞⎠ ĥ(P ′)

≤ M ′ + h(E′) + log(n) +
(
100 + n2 (ζ(2)− 1)

)
ĥ(P ′),

i.e.,

(2− ζ(2)− ε)n2ĥ(P ′) ≤ M ′ + h(E′) + 100ĥ(P ′) + log(n) + log(d).

If n ≥ 2 log(2), applying Lemma 5.1 with A = 1, this inequality becomes

n ≤ 1

(2− ζ(2)− ε) ĥ(P ′)
+

√
M ′ + h(E′) + 100ĥ(P ′)

(2− ζ(2)− ε) ĥ(P ′)
.

Let n ∈ J be an integer such that every primitive divisor of Bnσ(P ′) divides BnP ′ .
As in the previous case, Lemma 4.2.5 and the definition of a primitive divisor imply
that for every prime factor l of Bnσ(P ′) we have

• either l divides BnP ′ ,
• or l is not a primitive divisor of Bnσ(P ′), in which case Lemma 4.2.5 implies
as above the existence of a prime factor ql of n such that l divides B n

ql
σ(P ′).

Applying Proposition 5.2 with

• I ′ the set of prime factors of n,
• I = {�} ∪ I ′ when 2 does not divide BnP ′ ,

• I = {
, �} ∪ I ′ and i2 = 
 and [n	] ◦ σ	 =
[

n
r2,P ′

]
◦ σ the composition of the

multiplication by n
r2,P ′

map on E and σ, when 2 | BnP ′ , i.e., when r2,P ′ | n,
• [nq] = [q] the multiplication by q map on E when q ∈ I ′,
• σ
 = σ
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we get

(1− ε)n2dĥ(P ′) ≤ M + 2h(E) + log(nd) +

⎛⎝4r22,P ′ + n2 +
∑

q prime, q|n

n2d

q2

⎞⎠ ĥ(P ′)

≤ M + 2h(E) +
(
100 + n2 (1 + dζ(2)− d)

)
ĥ(P ′) + log(nd),

i.e.,

(2d− dζ(2)− dε− 1)n2ĥ(P ′) ≤ M + 2h(E) + 100ĥ(P ′) + log(n) + log(d).

If n ≥ 2 log(2), applying Lemma 5.1 with A = 1, this inequality becomes

n ≤ 1

(2d− dζ(2)− dε− 1) ĥ(P ′)
+

√
M + 2h(E) + 100ĥ(P ′)

(2d− dζ(2)− dε− 1) ĥ(P ′)
. �

Remark 5.6. In Theorem 5.5, we show that BnP ′ has a primitive divisor ln. This
prime number ln is a divisor of Bnσ(P ′). However, we do not claim that ln is a

primitive divisor of the n-th term in the sequence
(
Bnσ(P ′)

)
n∈N

.

Remark 5.7. Theorem 5.5 can be proven only because the series
∑

q prime

1

q2
converges

and has limit less than 1− ε− 1
d . The nonconvergence of some similar series is an

obstruction to some naive generalizations of the proof of Theorem 5.5

Using Theorem 5.3, many bounds on integer points of an elliptic curve can be
generalized to the case of prime power terms in magnified elliptic divisibility se-
quences. In the next section we give an improvement of the main result of [10]:
the existence of a uniform bound on the index of a prime power term in a magni-
fied elliptic divisibility sequence, assuming the Lang conjecture and the Hall–Lang
conjecture.

6. The proof of Corollary 1.2.8

Corollary 1.2.8 is a consequence of Theorem 5.3 applied to a uniform version
of inequalities (17) which will be deduced in this section from the Hall–Lang con-
jecture 1.2.7. This uniform version of inequalities (17) was already used in [16] to
study primitive divisors in elliptic divisibility sequences. Let A,B,A′, B′ be four
integers such that E and E′ are given by the short minimal equations

E : y2 = x3 +Ax+ B,

E′ : y2 = x3 +A′x+B′.

Let n ≥ 3 be an integer. Using Notation 1.1.1, the point (AnP ′ , CnP ′) on the elliptic
curve given by the equation y2 = x3 +A′B4

nP ′ +B′B6
nP ′ is an integer point. Thus

the Hall–Lang Conjecture 1.2.7 gives

(20)
1

2
log |AnP ′ | ≤ 3γ log |BnP ′ |+ γ

2
logmax{|A′|, |B′|}+ 1

2
log(K).

If the Hall–Lang Conjecture 1.2.7 is true for every quadruple of integers
(2T 4, T 6, T 2, 2T 3), then γ ≥ 1

2 . Since h(nP ′) = 1
2 logmax

{
|AnP ′ |, B2

nP ′
}

and
log |BnP ′ | = h(nP ′)− h∞(nP ′), it follows from inequality (20) that

(21) h(nP ′) ≤ 3γ(h(nP ′)− h∞(nP ′)) + 6γh(E′) +
1

2
log(K).
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From [26, Theorem 1.1] and [26, Theorem 5.5] we know that

h(Q) ≤ ĥ(Q) + h(j(E′))
8 + h(ΔE′ )

12 + 0.973,

ĥ∞(Q) ≤ h∞(Q) + h(j(E′))
12 + 1.07.

Inequality (21) becomes

ĥ∞(nP ′) ≤
(
1− 1

3γ

)
ĥ(nP ′) + 6h(E′) +

log(K)

6γ
+ 2.043.

In the same way we prove that

ĥ∞(nP ) ≤
(
1− 1

3γ

)
ĥ(nP ) + 6h(E) +

log(K)

6γ
+ 2.043.

Applying Theorem 5.3 to those inequalities, we get

either n ≤ 3γ

ĥ(P ′)
+
√
21γ h(E′)

ĥ(P ′)
+ 12γ + log(K)+12.258γ

2ĥ(P ′)

or n ≤ 3γ

(deg(σ)−3γ)ĥ(P ′)
+

√
24γ γh(E)

ĥ(σ(P ′))
+3γ+ 300γ

deg(σ)
+ log(K)+12.258γ+6γ log(deg(σ))

2 deg(σ)ĥ(P ′)√
1− 3γ

deg(σ)

whenever Bnσ(P ′) is a prime power. The hypothesis deg(σ) ≥ 4γ implies that√
1− 3γ

deg(σ) ≥ 1
2 . We conclude noting that Lang’s Conjecture 1.2.6 gives upper

bounds on h(E′)

ĥ(P ′)
and h(E)

ĥ(σ(P ′))
and 1

ĥ(P ′)
that do not depend on (E,E′, P ′, σ).

7. Elliptic divisibility sequences associated to points in

the bounded connected component of an elliptic curve

In this section we improve Corollary 1.2.8 for two examples of magnified elliptic
divisibility sequences:

• first we study the case when P is in the bounded real connected component
of E;

• then we consider the case when P is doubly magnified, i.e., when P is the
image of a magnified point under an isogeny defined over Q.

In those two particular cases we prove that Corollary 1.2.8 holds even if the Hall–
Lang conjecture is not known. The results obtained in this section will be used in
the proof of Theorem 1.2.2.

Notation 7.0.1. Let E be an elliptic curve defined over Q by a minimal Weierstrass
equation. This minimal equation might not be a short Weierstrass equation. In fact,
E might not have a short Weierstrass equation that is minimal at 2 and minimal
at 3. However, the elliptic curve E is isomorphic to an elliptic curve E given by a
nonminimal short Weierstrass equation,

(22) E : ỹ2 = x̃3 + ax̃+ b,

where a and b are integers such that the discriminant of ΔE of E is given by
ΔE = 612ΔE . Equation (22) is not minimal so ΔE is not the minimal discriminant
of E . Since j (E) = j(E) and ΔE = 212312ΔE we have

a3 = − j(E)ΔE
21233 = −39j(E)ΔE

and

b2 =
∣∣∣ ΔE
2433 − 4a3

33

∣∣∣ ≤ ∣∣ ΔE
2433

∣∣+ ∣∣∣4a3

33

∣∣∣ ≤ 2839 |ΔE |+ 2236 |j(E)ΔE| .
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The coefficients a and b being integers, it follows that

h
(
1,−a

4 ,−
b
16

)
≤ max {log |a| , log |b| , 4 log(2)}
≤ 9

2 log(6) +
1
2h (j (E)) + 1

2h (ΔE) .

In particular, we get

(23) max
{
1, h
(
1,−a

4 ,−
b
16

)
, h(j(E))

}
≤ 12h(E) + 5 log(6).

The left-hand side of inequality (23) appears in David’s lower bound on linear forms
in elliptic logarithms [7, Théorème 2.1], a result used in section 8.

7.1. Two particular cases of Siegel’s theorem. Corollary 1.2.8 is a conse-
quence of Theorem 5.3 proven using the Hall–Lang conjecture to get a uniform
version of inequalities (17). For points in the bounded component of an elliptic
curve, a sharp version of inequalities (17) is given by the following proposition.

Proposition 7.1.1. Let E be an elliptic curve defined over Q by a minimal Weier-
strass equation. We assume that E(R) has two connected components. Then, for
every rational point Q in the bounded connected component of E(R), the following
inequality holds:

ĥ∞(Q) ≤ 3h(E) + log(6) + 1.07.

Proof. We use Notation 7.0.1. Denote by α1, α2, α3 the three roots of the polyno-
mial x̃3 + ax̃ + b whose discriminant is −2−43−3ΔE . From Cardano’s formula we
know the existence of ui, vi ∈ C such that αi = ui + vi and

(24)
(
b+ 2u3

i

)2
=
(
b+ 2v3i

)2
= −2−43−3ΔE = −2839ΔE .

Equations (24) and the bounds on b2 recalled in Notation 7.0.1 show that

2|ui|3 ≤ |−b|+
∣∣b+ 2u3

i

∣∣
≤

√
2839 |ΔE |+ 2236 |j(E)ΔE|+

√
2839 |ΔE |

≤ 54
(√

1 + 2633 +
√
2633

)
e12h(E)

≤ 2e12h(E)+3 log(14).

In the same way, we prove that |vi| ≤ e4h(E)+log(14). This leads to an upper bound

|αi| ≤ 2e4h(E)+log(14). Since |x(Q)| ≤ 3
max
i=1

(|αi|), for every point Q in the bounded

real connected component of E , we get

h∞(Q) ≤ 2h(E) + log(6).

We conclude by applying [26, Theorem 5.5], which asserts that

ĥ∞(Q) ≤ h∞(Q) +
1

12
h(j(E)) + 1.07,

for every point Q ∈ E(Q). Note that while the archimedean height h∞ might not

be the same for E and for E , the canonical archimedean height ĥ∞ does not depend
on the choice of model for the elliptic curve E. �
Proposition 7.1.2. We use Notation 3.0.1. In particular, σ : E′ −→ E is an
isogeny of degree at least 2. Let E′′ and E′′′ be elliptic curves defined over Q by
a standardized minimal equation, and let σ2 : E′′ −→ E′ and σ3 : E′′′ −→ E′′ be
isogenies defined over Q, which we allow to be the identity map. Let P ′ be a Q-point
on E′′′.
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PRIME POWER TERMS IN ELLIPTIC DIVISIBILITY SEQUENCES 1975

If every prime factor of Bσ◦σ2◦σ3(P ′) divides Bσ2◦σ3(P ′), then

ĥ∞(σ3(P
′)) ≤

8r22,P ′ ĥ(P ′)

deg(σ ◦ σ2)
+ 7h(E′′) +

5h(E′′′)

2
+ 9 + log(deg(σ ◦ σ2 ◦ σ3)).

Proof. We assume that every prime factor of Bσ◦σ2◦σ3(P ′) divides Bσ2◦σ3(P ′). Let
T0 ∈ ker(σ ◦ σ2) \ ker(σ2) be such that

|x(σ3(P
′))− x(T0)| ≤ |x(σ3(P

′))− x(T )|
for every T ∈ ker(σ ◦ σ2) \ ker(σ2). Since the leading coefficient dσ◦σ2

of the
division polynomial ψσ◦σ2

associated to σ ◦σ2 is an integer divisible by the leading
coefficient dσ2

of the division polynomial ψσ2
associated to σ2, we have

|x(σ3(P
′))− x(T0)|deg(σ◦σ2)−deg(σ2) ≤

d2σ◦σ2

d2σ2

∏
T∈ker(σ◦σ2)\ker(σ2)

|x(σ3(P
′))− x(T )|

=

∣∣∣∣ψ2
σ◦σ2

(σ3(P
′))

ψ2
σ2
(σ3(P ′))

∣∣∣∣ .
From this inequality, and Proposition 4.2.3, we deduce that

|x(σ3(P
′))− x(T0)|deg(σ◦σ2)−deg(σ2) ≤ |Bσ◦σ2(σ3(P ′))|2e3 deg(σ◦σ2)h(E′′)

|ψσ2
(σ3(P ′))|2|Bσ3(P ′)|2 deg(σ◦σ2)

≤ |Bσ◦σ2◦σ3(P ′)|2
|Bσ2◦σ3(P ′)|2

e3 deg(σ◦σ2)h(E
′′).

Let r2,σ2◦σ3(P ′) be the rank of apparition of 2 in the elliptic divisibility sequence
associated to σ2 ◦ σ3(P

′). If 2 divides Bσ2◦σ3(P ′), then r2,σ2◦σ3(P ′) = 1. Since every
prime factor of Bσ◦σ2◦σ3(P ′) divides Bσ2◦σ3(P ′), applying Lemma 4.2.6, we get

log
∣∣∣Bσ◦σ2◦σ3(P ′)

Bσ2◦σ3(P ′)

∣∣∣ ≤ log(deg(σ)) + v2
(
B2(σ2◦σ3(P ′))

)
− v2

(
Bσ2◦σ3(P ′)

)
≤ log(deg(σ)) + v2

(
B2 deg(σ2◦σ3)P ′

)
− v2

(
Bσ2◦σ3(P ′)

)
≤ log(deg(σ)) + v2

(
B2r2,P ′P ′

)
+ v2(deg(σ2 ◦ σ3))− v2 (BP ′) .

As a consequence we have

|x(σ3(P
′))− x(T0)|deg(σ) deg(σ2)/2 ≤ |x(σ3(P

′))− x(T0)|(deg(σ)−1) deg(σ2)

≤
∣∣∣∣B2r2,P ′P ′

BP ′

∣∣∣∣2 (deg(σ ◦ σ2 ◦ σ3))
2
e3 deg(σ◦σ2)h(E

′′)

≤
∣∣∣∣B2r2,P ′P ′

BP ′

∣∣∣∣2 deg(σ3)
2e2 log(deg(σ◦σ2))+3 deg(σ◦σ2)h(E

′′)

and, in particular,

|x(P ′)− x(T0)| ≤
∣∣∣∣deg(σ3)B2r2,P ′P ′

BP ′

∣∣∣∣4/ deg(σ◦σ2)

e2+6h(E′′).

The triangle inequality gives

(25) |x(P ′)| ≤ 2max

{
|x(T0)|,

∣∣∣∣deg(σ3)B2r2,P ′P ′

BP ′

∣∣∣∣4/ deg(σ◦σ2)

e2+6h(E′′)

}
.
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The short Weierstrass equation for E′′ introduced in Notation 7.0.1 can be obtained
from the standardized minimal equation

y2 + a1y + a3xy = x3 + a2x
2 + a4x+ a6

of E′′ using the change of variable

(x̃, ỹ) = (36x+ 3a21 + 12a2, 216y + 108a1x+ 108a3).

Since a1, a2 ∈ {−1, 0, 1}, from inequality (23) and [7, Lemme 10.1] we get

|36x(T0)| − 15 ≤
∣∣36x(T0) + 3a21 + 12a2

∣∣ ≤ 480 deg(σ ◦ σ2)
2e12h(E

′′)+5 log(6).

It follows from inequality (25) and [26, Theorem 5.5] that

ĥ∞(σ3(P
′)) ≤ h∞(σ3(P

′)) + h(E′′) + 1
2 log(2) + 1.07

≤
2 log

∣∣∣∣∣
deg(σ3)B

2r
2,P ′P ′

B
P ′

∣∣∣∣∣
deg(σ◦σ2)

+ 7h(E′′) + 8 + log(deg(σ ◦ σ2))

≤ 2h(2r2,P ′P ′)+2 log(deg(σ3))

deg(σ◦σ2)
+ 7h(E′′) + 8 + log(deg(σ ◦ σ2)).

(Note that [26, Theorem 5.5] is applied to a standardized equation and that h∞(P ′)
= 1

2 logmax{1, |x(P ′)|}.) Applying [26, Theorem 1.1] we get

ĥ∞(σ3(P
′)) ≤

8r22,P ′ ĥ(P ′) + 5h(E′′′) + 1.946 + 2 log(deg(σ3))

deg(σ ◦ σ2)

+ 7h(E′′) + 8 + log(deg(σ ◦ σ2)). �

7.2. Prime power terms of composite index. We consider the primality con-
jecture, for an elliptic divisibility sequence associated to a point σ(P ′) that is mag-
nified by an isogeny σ, when the point P ′ is also magnified. This case will be used
to study the primality conjecture for elliptic divisibility sequences associated to
points belonging to the bounded real connected component of an elliptic curve.

The proof consists of an adaptation of the proof of Theorem 5.3. In this proof we
need to compare the naive heights h(E′) and h(E) of two isogenous elliptic curves
E′ and E. Such a comparison follows from the good behaviour of the Faltings
height under isogeny.

Proposition 7.2.1. We use Notation 3.0.1. Then we have

h(E′) ≤ αh(E) + h(deg(σ)) + 15.8

with α = 5 if h(j(E)) > 48 and α = 16 if h(j(E)) ≤ 48.

Proof. The proof is based on the good behaviour of the Faltings height hFalt under
isogeny: if σ : E′ −→ E is an isogeny between elliptic curves, then the Faltings
heights hFalt(E) of E and hFalt(E

′) of E′ satisfy the inequality:

(26) |hFalt(E)− hFalt(E
′)| ≤ 1

2
log(deg(σ)).

Given E ∈ {E′, E}, the proof of [20, Lemme 5.2] gives explicit bounds on the
Faltings height hFalt(E) of E that depend linearly in the j-invariant height h(j(E)):

12hFalt (E) ≤ logmax {|j(E)ΔE |, |ΔE |}+ 6 log (1 + h(j(E)) + 47.15,

logmax {|j(E)ΔE |, |ΔE |} ≤ 94.3 + 24max {1, hFalt(E)} .
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PRIME POWER TERMS IN ELLIPTIC DIVISIBILITY SEQUENCES 1977

The elliptic curve E is given by a minimal Weierstrass equation. The term
logmax{|j(E)ΔE |, |ΔE |} can be bounded linearly in h(E) using the two inequali-
ties:

12h (E) ≤ max {h(j(E)), h(ΔE)}

≤ logmax {|j(E)ΔE |, |ΔE |} ≤ 24h (E) .

It follows that

12h(E′) ≤ 24max{1, hFalt(E
′)}+ 94.3

≤ max{24, 24hFalt(E) + 12 log(deg(σ))}+ 94.3

≤ 48h(E) + 12 log(1 + h(j(E)) + 12 log(deg(σ)) + 188.6.

We conclude by observing that log(1 + h(j(E))) ≤ h(j(E))
12 ≤ h(E) whenever the

inequality h(j(E)) > 48 holds. �

Corollary 7.2.2. Let E0, E1, E2, E3 be four elliptic curves defined over Q by stan-
dardized minimal equations. For each i ∈ {1, 2, 3} let τi : Ei−1 −→ Ei be an isogeny
defined over Q of degree at least 2. Let P ′ ∈ E0(Q) be a point of infinite order such
that B(τ3◦τ2◦τ1)(P ′) has at most one prime factor coprime to BP ′ . Then, for each
index i, we have

either
√
deg(τi) ≤ 2√

ĥ(P ′)
log

(
2√

ĥ(P ′)

)
or

√
deg(τi) ≤ 26√

ĥ(P ′)
+
√
200 + 147h(E0)+129

ĥ(P ′)
.

Proof. We denote by di the degree di := deg(τi) of τi. Replacing τi with (τi+1)τi
if needed (see Notation 4.1.6 for details), we can assume without loss of generality
that d1 ≥ d2 ≥ d3.

Assume, for now, that l is a prime number dividing Bτ1(P ′) and coprime to BP ′ .
Following Lemma 4.2.6, the prime l divides B(τ2◦τ1)(P ′). Thus each prime factor of
B(τ3◦τ2◦τ1)(P ′) divides B(τ2◦τ1)(P ′). Since 1 ≤ r2,P ′ ≤ 5, Proposition 7.1.2 applied
with σ = τ3 and σ2 = Id and σ3 = τ2 ◦ τ1 gives

(27) ĥ∞ ((τ2 ◦ τ1) (P ′)) ≤ 100ĥ(P ′) + 7h(E2) +
5

2
h(E0) + 9 + log(d1d2d3).

Since each prime factor of B(τ2◦τ1)(P ′) divides Bτ1(P ′), Proposition 5.2 can now be
used to give a bound on d1 as in the proof of Theorem 5.3. This requires a careful

analysis of the behaviour of the canonical local height ĥ2(τ1(P
′)). The finite group

ker(τ1) ∩ E0[r2,P ′ ] is invariant under the action of the absolute galois group of Q.
In particular, τ1 can be written as the composition τ1 = η1 ◦ η2 of two isogenies
η1 and η2 defined over Q such that ker(η2) = ker(τ1) ∩ E0[r2,P ′ ]. If 2 divides
Bτ1(P ′), then, the reduction of P ′ modulo 2 belongs to the reduction modulo 2 of
ker(τ1). In that case, by definition of r2,P ′ , the reduction of P ′ modulo 2 belongs
to the reduction modulo 2 of ker(η2) = ker(τ1) ∩ E0[r2,P ′ ]. This means that 2
divides Bη2(P ′) whenever 2 divides Bτ1(P ′). Since log(d3) ≤ log

(√
d1d2

)
, applying

Proposition 5.2 with I = {1, 2}, i2 = 1, σ1 = τ2 ◦ η1, σ2 = τ2, and ε = 0, we get:

d1d2ĥ(P
′) ≤ 9h(E2) +

5h(E0)

2
+ 9 + 5 log

(√
d1d2

)
+ (100 + 4deg(η2) + d1) ĥ(P

′).
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Following Proposition 7.2.1, since deg(η2) ≤ r22,P ′ ≤ 25, this inequality implies that

d1(d2 − 1)ĥ(P ′) ≤ 200ĥ(P ′) + 147h(E0) + 152 + 23 log
(√

d1d2

)
.

Since log
(√

d2

d2−1

)
≤ 1

2 , applying Lemma 5.1 with n =
√
d1(d2 − 1) and A =

1√
ĥ(P ′)

we get

either
√
d1(d2 − 1) ≤ 2 log(2)√

ĥ(P ′)
+ 2√

ĥ(P ′)
log

(
1√

ĥ(P ′)

)
or

√
d1(d2 − 1) ≤ 23√

ĥ(P ′)
+
√
200 + 147h(E0)+129

ĥ(P ′)
.

Assume now that l is a prime number dividing B(τ3◦τ2◦τ1)(P ′) and coprime to
Bτ1(P ′). If l does not divide Bτ2◦τ1(P ′), then every prime factor of B(τ2◦τ1)(P ′)

divides Bτ1(P ′). In that case, Proposition 7.1.2 applied with σ = τ2 and σ2 = Id
and σ3 = τ1 gives

ĥ∞ (τ1(P
′)) ≤ 100ĥ(P ′) + 7h(E1) +

5

2
h(E0) + 9 + log(d1d2d3).

If l divides Bτ2◦τ1(P ′), then every prime factor of Bτ3◦τ2◦τ1(P ′) divides Bτ2◦τ1(P ′).
In that case, Proposition 7.1.2 applied with σ = τ3, σ2 = τ2, and σ3 = τ1 gives

ĥ∞ (τ1(P
′)) ≤ 50ĥ(P ′) + 7h(E1) +

5

2
h(E0) + 9 + log(d1d2d3).

In both cases, since l is coprime to Bτ1(P ′), each prime factor of Bτ1(P ′) divides BP ′ .
In particular, since log(d1d2d3) ≤ 3 log(d1), Proposition 5.2 and Proposition 7.2.1
give:

d1ĥ(P
′) ≤ 104ĥ(P ′) + 147h(E0) + 152 + 26 log

(√
d1

)
.

Applying Lemma 5.1 with n =
√
d1 and A = 1√

ĥ(P ′)
, we get

either
√
d1 ≤ 2 log(2)√

ĥ(P ′)
+ 2√

ĥ(P ′)
log

(
1√

ĥ(P ′)

)
or

√
d1 ≤ 26√

ĥ(P ′)
+
√
104 + 147h(E0)+126

ĥ(P ′)
.

�

7.3. The primality conjecture for magnified points in the bounded con-
nected component of an elliptic curve over R.

Corollary 7.3.1. We use Notation 3.0.1. We assume that E(R) has two connected
components and that deg(σ) is odd. We assume that P = σ(P ′) belongs to the
bounded connected component of E(R). Then Bnσ(P ′) has two distinct prime factors
coprime to BP ′ , for every integer n such that

n > 4√
ĥ(P ′)

log

(
2√

ĥ(P ′)

)
,

n > 52√
ĥ(P ′)

+ 2
√
200 + 147h(E′)+129

ĥ(P ′)
.
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Proof. When n is even, Corollary 7.3.1 follows from Corollary 7.2.2 applied with
τ1 = n/2 and τ2 = 2. We assume now that n is odd.

Since σ is an isogeny of odd degree and E(R) has two connected components,
E′(R) also has two connected components. Moreover, since σ(P ′) is on the bounded
connected component of E(R), the point P ′ is on the bounded connected component
of E′(R).

As n is odd, the points nP ′ and nP = nσ(P ′) are in the bounded connected
components of E′(R) and E(R) respectively. We use Proposition 7.1.1, Proposi-
tion 7.2.1, and Proposition 5.2 to bound n. More precisely, adapting the proof of
Theorem 5.3, we show that

n2ĥ(P ′) ≤ 4h(E′) + 4ĥ(P ′) + log(n) + log(6) + 1.07,

if every prime factor of BnP ′ divides BP ′ , and

n2(deg(σ)− 1)ĥ(P ′) ≤ 5h(E)+(100+deg(σ))ĥ(P ′)+log(6)+1.07+log(n deg(σ))

≤ 80h(E′)+(100+deg(σ))ĥ(P ′)+82+6 log(deg(σ))+log(n),

if every prime factor of Bnσ(P ′) divides BnP ′ . We conclude the proof by applying

Lemma 5.1 with A = 1√
ĥ(P ′)

. �

8. Elliptic divisibility sequences and linear forms

in elliptic logarithms

Since no uniform upper bound on the canonical height of integer points on an
elliptic curve is known, we cannot hope to get an explicit uniform bound on the
index of a prime power term in an elliptic divisibility sequence. However, an explicit
nonuniform bound can be computed using the work of David on lower bounds for
linear forms in elliptic logarithms.

Notation 8.0.2. We use Notation 7.0.1. We consider the map φ defined on the
unbounded real connected component E(R)0 of E by the formula

φ(P ) = φE(P ) := Sign(ỹ(P ))

∫ +∞

x̃(P )

dt√
t3 + at+ b

.

The map φ is linked to the archimedean height by the following inequality (see [30,
section 3, inequality 2]): for every point P ∈ E(R)0, we have

(28) − log |φ(P )| − 1

2
log(2) ≤ h∞(P ) ≤ − log |φ(P )|+ 5

2
log(2).

Let ℘ be the Weierstrass ℘-function relative to the elliptic curve E . Let T0 ∈ E(R)
be the real 2-torsion point with the highest x-coordinate. Let P ∈ E(Q) be a point

in the unbounded connected component E(R)0 of E(R). Then ℘
(

φ(P )
2φ(T0)

)
= x(P )

4

and, for every n ∈ Z, there is an integer m such that

φ(nP ) = nφ(P ) + 2mφ(T0).

Moreover, since |φ(nP )| < |φ(T0)| and |φ(P )| < |φ(T0)|, we have |m| ≤ |n|.
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8.1. David’s lower bounds on linear forms in elliptic logarithms.

Lemma 8.1.1. Let E be an elliptic curve defined over Q by a minimal Weierstrass
equation with integral coefficients. Let P ∈ E(Q) be a point on E. For any integer
n > 0 denote by bn the maximum

bn := max
{
log |2n|, 2ĥ(P ), 12eh(E) + 5e log(6)

}
.

Then, for n > 1, the inequality

ĥ∞(nP ) ≤ c1(bn + log(3) + 1)6 + c2

holds, with c1 = 5.9× 1043 and c2 = h(E) + 2.81.

Proof. We use Notation 8.0.2. We apply [7, Théorème 2.1] to the short Weierstrass
equation introduced in Notation 7.0.1 with k = 2, D ≤ 3, E = e, γ1 = P , γ2 = T0,

log(V1) = log(V2) = max
{
2ĥ(P ), 12eh(E) + 5e log(6)

}
≥ max

{
2ĥ(P ), emax

{
1, h

(
1,−a

4
,− b

16

)
, h(j(E))

}
, 2π

√
3

}

≥ max

{
2ĥ(P ),max

{
1, h

(
1,−a

4
,− b

16

)
, h(j(E))

}
,

3π|φ(P )|2
|2φ(T0)|2Im(τ )

}
(where τ is a complex number such that E(C) � C/(Z + τZ) and Im(τ ) ≥

√
3
2 ),

and

log(B) = max{log |2n|, log(V1)}

≥ max
{
emax

{
1, h
(
1,−a

4 ,−
b
16

)
, h(j(E))

}
, h(n, 2m), log(V1)

D

}
,

where m is an integer such that φ(nP ) = nφ(P )+ 2mφ(T0). (Note that |m| ≤ |n|).
This application of [7, Théorème 2.1] gives

log |nφ(P ) + 2mφ(T0)| ≥ − C log(V1) log(V2)(log(B) + log(3) + 1)

× (log(log(B)) + 12h(E) + 5 log(6) + log(3) + 1)3 ,

where C = 2.3× 1043. Note that:

• we do not use the same definition for naive height functions as in [7];
• the number h := max

{
1, h
(
1,−a

4 ,−
b
16

)
, h(j(E))

}
is equal to the number

denoted by h in [7]; inequality (23) gives an upper bound on h that is linear
in h(E) (see Notation 7.0.1).

Using the inequalities log(x) ≤ x − 1 (which holds for every real number x > 0)
and

12h(E) + 5 log(6) ≤ e−1 log(V1),

we deduce from inequality (28) that

h∞(nP ) ≤ (1 + e−1)3C (1 + log(3) + log(B))6 +
5

2
log(2).

We conclude by using [26, Theorem 5.5]. �
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8.2. A nonuniform bound on the index of a prime power term in an
elliptic divisibility sequence.

Proposition 8.2.1. We use Notation 3.0.1. Then BnP ′ has a prime factor coprime
to BP ′ for every index

n > max

{
3.5× 1029,

1.1× 1027

ĥ(P ′)
, 1023ĥ(P ′)5/2,

2× 1027h(E′)7/2

ĥ(P ′)

}
.

This prime factor can be chosen coprime to Bσ(P ′) if n is coprime to deg(σ) or

n >
√
d+max

{
3.5× 1029,

1.1× 1027

ĥ(P ′)
, 1023ĥ(P ′)5/2,

2× 1027h(E′)7/2

ĥ(P ′)

}
.

Moreover, Bnσ(P ′) has a prime factor coprime to BnP ′ for every index

n > max

{
3.5× 1029,

1.1× 1027

ĥ(P ′)
, 2× 1023ĥ(σ(P ′))5/2,

4× 1027h(E)7/2

ĥ(σ(P ′))

}
.

Proof. Let n ∈ N be such that BnP ′ has no prime factor coprime to BP ′ . Then

Lemma 8.1.1 (applied with b′ := max{2ĥ(P ′); 12eh(E′) + 5e log(6)}) asserts that

either ĥ∞(nP ′) ≤ 5.9×1043× (b′+2.1)6+h(E′)+2.81 or log |2n| > b′. We assume
for now that log |2n| ≤ b′. Applying Theorem 5.3 we get that

n ≤ 1

ĥ(P ′)
+

√
5.9×1043(b′+2.1)6+2h(E′)+4ĥ(P ′)+2.81

ĥ(P ′)

≤ 1+
√

5.91×1043(b′+2.1)7

ĥ(P ′)

≤ 8.7×1021(max{ĥ(P ′)+1.05,17h(E′)+14})7/2
ĥ(P ′)

≤ 8.7×1021(max{2ĥ(P ′),34h(E′),28})7/2
ĥ(P ′)

.

Now we assume that log |2n| ≥ b′. The proof of Theorem 5.3 is still valid when M
and M ′ are replaced with polynomials in log(n). In particular, Lemma 8.1.1 and
Proposition 5.2 imply that

n2ĥ(P ′) ≤ 5.9× 1043(log |6n|+ 1)6 + log(n) + 4ĥ(P ′) + 2h(E′) + 2.81

≤ 2max
{
5.9× 1043(log |6n|+ 1)6, log(n) + 4ĥ(P ′) + 2h(E′) + 2.81

}
.

Applying Lemma 5.1

• with A = 1018 and δ = 6 when (6n)2ĥ(P ′) ≤ 4, 3× 1045(log |6n|+ 1)6;

• with A = 2δ = 2 when n2ĥ(P ′) ≤ 2 log(n) + 8ĥ(P ′) + 4h(E′) + 5.62,

we get that

either n ≤ max
{
3.5× 1029, 7.1×1026

ĥ(P ′)

}
or n ≤ max

{
5.6, 1

ĥ(P ′)
+
√
8 + 3.62

ĥ(P ′)
+ 4h(E′)

ĥ(P ′)

}
≤ max

{
5.6,
(
1 +

√
3
)
max

{
1

ĥ(P ′)
, 2
√
2,
√

3.62

ĥ(P ′)
,
√

4h(E′)

ĥ(P ′)

}}
.
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In the proof of Theorem 5.3 we have seen that if n is coprime to deg(σ), then any
common prime divisor of BnP ′ and Bσ(P ′) is a prime factor of BP ′ . In the general
case, when BnP ′ has no prime factor coprime to Bσ(P ′), we can deduce as above
from, Lemma 8.1.1 and Proposition 5.2 that

n ≤
√
d+max

{
3.5× 1029,

1.1× 1027

ĥ(P ′)
, 1023ĥ(P ′)5/2,

2× 1027h(E′)7/2

ĥ(P ′)

}
.

(Note that
√
a+ b ≤ √

a+
√
b for all real numbers a and b.)

In the same way, when Bnσ(P ′) has no prime factor coprime to BnP ′ and Bσ(P ′),

we can prove using the inequalities deg(σ)
deg(σ)−1 ≤ 2 and log(deg(σ))

deg(σ)−1 ≤ 1 that

either n ≤ 1.8×1022(max{2ĥ(σ(P ′)),34h(E),28})7/2
ĥ(σ(P ′))

or n ≤ max
{
3.5× 1029, 7.1×1026

(deg(σ)−1)ĥ(P ′)

}
or n ≤ max

{
16.7, 1

(deg(σ)−1)ĥ(P ′)
+
√
204 + 3.62+2 log(deg(σ))

(deg(σ)−1)ĥ(P ′)
+ 12h(E)

ĥ(σ(P ′))

}
≤ max

{
16.7,

(
1 +

√
3
)
max

{
2

ĥ(σ(P ′))
,
√
204,

√
5.62

ĥ(P ′)
,
√

12h(E)

ĥ(σ(P ′))

}}
.

�

8.3. An explicit version of the gap principle. David’s theorem on lower bounds
for linear forms in elliptic logarithms leads to a bound M(B) on the index of a prime
term in a magnified elliptic divisibility sequence B that is quite large. The bound
M(B) can be reduced by applying the LLL algorithm (see [30,31]) or a gap principle
(see [15]).

Notation 8.3.1. We use Notation 3.0.1. Following Notation 8.0.2 we denote by
E (respectively E ′) a model of E (respectively E′) given by a short Weierstrass
equation with coefficients in Z such that ΔE = 612ΔE (respectively ΔE′ = 612ΔE′).
Let P ′ be a Q-point on E′. We denote by R′ ∈ E ′(Q) (respectively R ∈ E(Q)) the
point on E ′ (respectively E) associated to P ′ (respectively σ(P ′)).

Lemma 8.3.2. We use Notation 8.3.1. Let n ∈ N and δ ∈ {0, d} be such that

n >
1

ĥ(P ′)
+

√√√√103 + δ +max

{
6h(E′)

ĥ(P ′)
,
12h(E)

ĥ(σ(P ′))

}
+

7

ĥ(P ′)
.

(a) Assume that every prime factor of BnP ′ divides BP ′ and that δ = 0. Then
|x(nR′)| ≥ 2max {|x(T )| : T ∈ E ′[2]} and nφE′(R′) �= φE′(nR′).

(b) Assume that every prime factor of BnP ′ divides Bσ(P ′) and that δ = d.
Then |x(nR′)| ≥ 2max {|x(T )| : T ∈ E ′[2]} and nφE′(R′) �= φE′(nR′).

(c) Assume that every prime factor of Bnσ(P ′) divides either BnP ′ or Bσ(P ′)

and that δ = 0. Then |x(nR)| ≥ 2max {|x(T )| : T ∈ E ′[2]} and nφE(R) �=
φE(nR).
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Proof. The sole difference between the proofs of assertion (a) and assertion (b) is
the bound given by Theorem 5.3; we give the proof only in the two cases when
δ = 0.

When |x(nR′)| ≤ 2max {|x(T )| : T ∈ E ′[2]} , the proof of Lemma 7.1.1 gives

ĥ∞(nP ′) = ĥ∞(nR′) ≤ 3h(E′) + log(6) +
1

2
log(2) + 1.07 ≤ 3h(E′) + 3.21.

Thus Theorem 5.3 implies that, if every prime factor of BnP ′ divides BP ′ and

n > 1

ĥ(P ′)
+
√
4 + 4h(E′)+3.21

ĥ(P ′)
, then |x(nR′)| ≥ 2max {|x(T )| : T ∈ E ′[2]}; this

implies that R′ is in the unbounded real connected component E ′(R)0.

In the same way, since n > 1

ĥ(P ′)
+
√
102 + 10h(E)

ĥ(σ(P ′))
+ 4.21

ĥ(P ′)
, we deduce from

Theorem 5.3 that, if every prime factor of Bnσ(P ′) divides BnP ′ , then we have
|x(nR)| ≥ 2max {|x(T )| : T ∈ E [2]}; in particular, R is in the unbounded real con-
nected component E(R)0.

Assume that |x(nR′)| ≥ 2max {|x(T )| : T ∈ E ′[2]} and nφE′(R′) = φE′(nR′).
Then inequality (28) gives

h∞(nR′)− 5
2 log(2) ≤ − log |φE′(nR′)|

≤ − log(n)− log |φE′(R′)|
≤ − log(n) + h∞(R′) + 1

2 log (2) .

Now [26, Theorem 1.1] asserts that

h∞(R′) ≤ h(R′) ≤ ĥ(R′) + h(E ′) + 3
24h(j(E ′)) + 0.973

≤ ĥ(R′) + 5
2h(E

′) + log(6) + 0.973.

Applying [26, Theorem 5.5] to ĥ∞(nP ′) = ĥ∞(nR′) we get

(29) ĥ∞(nP ′) + log(n) ≤ ĥ(P ′) +
7

2
h(E′) + 2 log(6) + 3 log(2) + 2.043.

If every prime factor of BnP ′ divides BP ′ and nφE′(R′) = φE′(nR′) and
3 log(2) ≤ log(n), then it follows from inequality (29) and Theorem 5.3 that

n ≤ 1

ĥ(P ′)
+
√
5 + 5h(E′)+6

ĥ(P ′)
. The proof of inequality (29) holds also when replac-

ing E′, P ′ and R′ respectively by E, P and R. It follows that, if every prime
factor of Bnσ(P ′) divides BnP ′ and nφE(R) = φE(nR) and 3 log(2) ≤ log(n), then

n ≤ 2

ĥ(P ′)
+
√
103 + 12h(E)

ĥ(σ(P ′))
+ 7

ĥ(P ′)
. �

Proposition 8.3.3. We use Notation 3.0.1 and we assume that E and E′ are
given by minimal Weierstrass equations. Let δ be either 0 or d = deg(σ). Let
n3 > n2 > n1 > 8 be three pairwise coprime integers with

n3 > n2 > n1 >
1

ĥ(P ′)
+

√√√√103 + δ +max

{
6h(E′)

ĥ(P ′)
,
12h(E)

ĥ(σ(P ′))

}
+

7

ĥ(P ′)
.

Licensed to Ecole Polytech Fed de Lausanne. Prepared on Tue Dec 16 13:02:31 EST 2014 for download from IP 128.178.14.218.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1984 VALÉRY MAHÉ

If δ = 0 (respectively δ = d) we set B := BP ′ (respectively B := Bσ(P ′)). We
assume that Bniσ(P ′) has at most one prime factor coprime to B. Then we have

either n1 ≤ 1

ĥ(P ′)
+
√
102 + 2 log(n3)+54h(E)

ĥ(σ(P ′))
+ 24.42

ĥ(P ′)

or n1 ≤ 1

ĥ(P ′)
+
√
100 + δ + log(ni)+27h(E′)+23.42

ĥ(P ′)
,

with i ∈ {2, 3} an index such that every prime factor of BniP ′ divides B.

Proof. The proof is the same when δ = 0 and when δ = d, except in the bounds
obtained when we apply Theorem 5.3 and Lemma 8.3.2. This is why we give the
proof only in the case when δ = 0. We use Notation 8.3.1. For every l ∈ {1, 2, 3}
at most one prime factor of Bnlσ(P ′) does not divide BP ′ . In particular, there are
two indices i �= j such that

• either every prime factor of BniP ′ divides BP ′ and every prime factor of
BnjP ′ divides BP ′ ;

• or every prime factor of Bniσ(P ′) divides BniP ′ and every prime factor of
Bnjσ(P ′) divides BnjP ′ .

We assume for now that every prime factor of BniP ′ divides BP ′ and every prime
factor of BnjP ′ divides BP ′ . Lemma 8.3.2 asserts that

• |x(niP
′)| ≥ 2max {|x(T )| : T ∈ E ′[2]} and φE′(niP

′) �= niφE′(P ′);
• |x(njP

′)| ≥ 2max {|x(T )| : T ∈ E ′[2]} and φE′(njP
′) �= njφE′(P ′).

We denote by mi �= 0 and mj �= 0 two integers such that

φE′(niP
′) = niφE′(P ′) + 2miφE′(T0),

φE′(njP
′) = njφE′(P ′) + 2mjφE′(T0).

Since |niφE′(P ′) + 2miφE′(T0)| ≤ |φE′(T0)| and |φE′(P ′)| ≤ |φE′(T0)|, we have
|mi| < |ni|. If nimj = njmi, then ni is a divisor of mi (because ni and nj are
coprime). It follows that njmi − nimj �= 0. In particular, we get

2 |φE′(T0)| ≤ 2 |φE′(T0)| |njmi − nimj |
≤ |njφE′(niP

′)− niφE′(njP
′)|

≤ 2max {|nj | |φE′(niP
′)| , |ni| |φE′(njP

′)|} .(30)

We deduce from inequality (28) and inequality (30) that

min {h∞(njP
′)− log(ni), h∞(niP

′)− log(nj)} ≤ − log |φE′ (T0)|+
5

2
log(2).

Applying [20, Lemme 2.1] and inequality (23), we get

min {h∞(njP
′)− log(ni), h∞(niP

′)− log(nj)} ≤ 24h(E′) + 22.35.

Theorem 5.3 and [26, Theorem 5.5] show that

n1 ≤ min{ni, nj} ≤ 1

ĥ(P ′)
+

√
4 +

log (max {ni, nj}) + 26h(E′) + 23.42

ĥ(P ′)
.

Now we assume that every prime factor of Bniσ(P ′) divides BniP ′ and every
prime factor of Bnjσ(P ′) divides BnjP ′ . An analogous argument shows that

min {h∞(njσ(P
′))− log(ni), h∞(niσ(P

′))− log(nj)} ≤ 24h(E) + 22.35.
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From this inequality, Theorem 5.3, and [26, Theorem 5.5], we deduce that

n1 ≤ 1

ĥ(P ′)
+

√
102 +

2 log(n3) + 54h(E)

ĥ(σ(P ′))
+

23.42

ĥ(P ′)
+

log(d)

(d− 1)ĥ(P ′)
.

(Note that n1 ≤ min{ni, nj} and max{ni, nj} ≤ n3). �

8.4. The proof of Theorem 1.2.2. The bounds we prove in this section are

expressed as a function of Γ := max
{
1, h(E′)

ĥ(P ′)
, h(E)

ĥ(σ(P ′))

}
. The statement of The-

orem 1.2.2 is deduced by using the inequality Γ ≤ C(P ′), which was already used
in the proof of Proposition 7.2.1. The use of the number C(P ′) in the statement
of Theorem 1.2.2 is motivated by the fact that, unlike C(P ′), the number Γ has a
definition which depends on the choice of equations for E and E′. However, Γ is

easier to compute in practice than C(P ′). The inequality h(E′) ≥ log(16)
12 = log(2)

3
implies that

2

ĥ(σ(P ′))
≤ 1

ĥ(P ′)
≤ 3Γ

log(2)
≤ 4.33× Γ.

Let n be an integer such that at most one prime factor of Bnσ(P ′) is not a prime
factor of BP ′ . We have either

• each prime factor of Bnσ(P ′) divides BnP ′ ,
• or each prime factor of BnP ′ divides BP ′ .

If n = n1n2 with n1 ≥ n2 > 1, then Corollary 7.2.2 implies that either

n ≤ n2
1 ≤ 4

ĥ(P ′)

(
1

2
log

(
4

ĥ(P ′)

))2

≤ 5Γ (log(18Γ))
2

or

n ≤ n2
1 ≤

⎛⎝ 26√
ĥ(P ′)

+

√
200 +

147h(E′) + 129

ĥ(P ′)

⎞⎠2

≤ 7089Γ.

Let Ni be the i-th largest prime integer such that BNiσ(P ′) has at most one prime
factor coprime to BP ′ . Proposition 8.2.1 asserts that

N1 ≤ max
{
3.5× 1029Γ, 2× 1023ĥ(σ(P ′))5/2, 4× 1027Γ7/2ĥ(σ(P ′))5/2

}
.

In particular, since h ≥ log(h) for every h ≥ 1, we have

(31)
log(N1)

ĥ(σ(P ′))
≤ 295Γ + 8Γ log(Γ) +

5

2
.

Noticing that 1

ĥ(P ′)
+

√
103 + max

{
5h(E′)

ĥ(P ′)
, 12h(E)

ĥ(σ(P ′))

}
+ 7

ĥ(P ′)
≤ 17Γ, we deduce

from Proposition 8.3.3 and inequality (31) that either N3 ≤ 17Γ

or N3 ≤ 1

ĥ(P ′)
+
√
102 + 2 log(N1)+54h(E)

ĥ(σ(P ′))
+ 24.42

ĥ(P ′)
≤ 34Γ

or N3 ≤ 1

ĥ(P ′)
+
√
100 + log(Ni)+27h(E′)+23.42

ĥ(P ′)
,(32)

for some i ∈ {1, 2} such that every prime factor of BNiP ′ divides BP ′ . When

inequality (32) holds, Proposition 8.2.1 gives log(Ni)

ĥ(P ′)
≤ 590Γ + 16Γ log(Γ) + 5

2 . In

that case inequality (32) implies that N3 ≤ 34Γ.
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Remark 8.4.1. The proof of Theorem 1.2.2 can be adapted to give an upper bound
on indices n such that Bnσ(P ′) has at most one prime factor coprime to Bσ(P ′).

Let Ñi be the i-th largest integer such that B
Ñiσ(P ′) has at most one prime factor

coprime to Bσ(P ′). Then Proposition 8.2.1 asserts that

Ñi ≤
√
d+max

{
3.5× 1029Γ, 2× 1023ĥ(σ(P ′))5/2, 4× 1027Γ7/2ĥ(σ(P ′))5/2

}
.

In particular, since log(x+ y) ≤ log (2max{x, y}) pour tous x, y > 0, we have

log(Ñi)

ĥ(P ′)
≤ max

{
5 log

(
2
√
d
)
Γ; 590Γ + 16Γ log(Γ) + 5 + log(2)

}
and it follows from Proposition 8.3.3 that

Ñ3 ≤ 1

ĥ(P ′)
+

√
100 + d+ log(Ñi)+24.42

ĥ(P ′)
+max

{
27h(E′)

ĥ(P ′)
, 54h(E)

ĥ(σ(P ′))

}
≤ max

{
34Γ + Γ

√
d; 21Γ + Γ

√
d+ 5

2 log(d)
}
.

9. Elliptic curves with j-invariant 1728

In this section we compute the bound from Corollary 7.3.1 in the particular case
of an elliptic curve EA defined by a Weierstrass equation

(33) EA : y2 = x(x2 −A),

where A denotes a positive integer not divisible by a fourth power. The results are
stated for the elliptic divisibility sequence (BnP )n∈N arising from a Q-point P on
EA of infinite order, relative to equation (33) (see Notation 1.1.1). This sequence
(BnP )n∈N might not be normalized; equation (33) is not minimal in general.

For congruent number curves our results can be deduced from results on integer
points on EN2 . For nonsquare A, the main difficulty is to get the following explicit
version of Lang’s conjecture 1.2.6. (Note that Lang’s conjecture is known to be
true for elliptic curves with integral j-invariant).

Proposition 9.1. Let P ∈ EA(Q) be a nontorsion point lying on the bounded

connected component of EA(R). Denote by ĥA the canonical height on EA. Then

(34) ĥA(P ) ≥ 1

16
log |2A|

when A �≡ 12 mod 16 and

(35) ĥA(P ) ≥ 1

64
log |2A|

when A ≡ 12 mod 16. Moreover, writing x(P ) = AP /B
2
P , we have

(36) −1

4
log |A| − 3

8
log(2) ≤ ĥA(P )− 1

4
log |A2

P +AB4
P | ≤

1

12
log(2).

Proof. The proposition is similar to [2, Proposition 2.1] so we do not give a full
proof here. However, more reduction types have to be considered than in the
case A = N2, leading to a more complicated proof. The proof is based on the
decomposition of the canonical height as a sum of local canonical heights.
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Denote by ΔA = 64A3 the discriminant of EA. The contribution of the archi-
medean height is computed using Tate’s series as in [2]. We get

(37) 0 ≤ ĥ∞(P )− 1

4
log |x(P )2 +A|+ 1

12
log(ΔA) ≤

1

12
log(2).

Nonarchimedean canonical heights are computed using the algorithm presented
in [25]. If v is an odd prime number, then Tate’s algorithm can be used to prove
that EA has reduction type:

• I0 at v when ordv(A) = 0;
• III at v when ordv(A) = 1;
• I∗0 at v when ordv(A) = 2;
• III∗ at v when ordv(A) = 3.

In particular, 2P always has good reduction at v, and we get

(38) − v(A)
4 ≤ ĥv(P )− 1

2 max{0,−v(x(P ))} − v(ΔA)
12 ≤ 0.

(The only technical difficulty is the case ordv(A) = 2 ordv(x(P )) = 2; in that case,
the equation for EA implies that ordv(x(P )2−A) ≡ ordv(x(P )) mod 2 and it follows
that ordv(x(P )2 +A) = ordv(2A) = 2.)

Considering the specialization of EA at 2, Tate’s Algorithm gives reduction type:

• II for EA at 2 when A ≡ −1 mod 4;
• III for EA at 2 when A ≡ 1 mod 4;
• III for EA at 2 when ord2(A) = 1;
• I∗2 for EA at 2 when A ≡ 4 mod 16;
• I∗3 for EA at 2 when A ≡ 12 mod 16;
• III∗ for EA at 2 when ord2(A) = 3;

In particular, every double 2P in EA(Q) has good reduction everywhere if and only
if A �≡ 12 mod 16. When A ≡ 12 mod 16, every Q-point on EA in the image of the
multiplication-by-4 map has good reduction everywhere. Moreover, the algorithm
described in [25] gives

(39) −v2(A)

4
− 3

8
log(2) ≤ ĥ2(P )− 1

2
max{0,−v2(x(P ))} − v2(ΔA)

12
≤ 0.

We compute the canonical height by summing local canonical heights. By doing
so, inequality (36) becomes a consequence of inequalities (37), (38) and (39).

Now we prove the two inequalities (34) and (35). When Q ∈ EA(Q) has good
reduction everywhere we have∑

v �=∞
ĥv(Q) = log |BQ|+

1

4
log |4A|.

By adding this equation and the inequality (37) we get

(40) ĥA(Q) ≥ 1

4
log |A2

Q +AB4
Q|.

If Q is a point in the bounded real connected component of EA, then |AQ| =

|x(Q)|B2
Q ≥

√
|A|B2

Q ≥
√
|A|. Inequality (40) becomes

(41) ĥA(Q) ≥ 1

4
log |2A|.
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Finally, let P be any Q-point on EA. As shown above 2P has good reduction
everywhere whenever A �≡ 12 mod 16, and 4P has good reduction everywhere in all
cases. The two inequalities (34) and (35) follow from inequality (41) applied with
Q ∈ {2P, 4P}. �

Proposition 9.2. Let P be a Q-point of infinite order on EA. Then B2kP is
composite in the following two cases:

• when k ≥ 5 and A �≡ 12 mod 16;
• when k ≥ 10 and A ≡ 12 mod 16;

Proof. Since gcd(AkP , BkP ) = 1, the equation

x(2kP ) =
(A2

kP + AB4
kP )

2

4B2
kPAkP (A2

kP −AB4
kP )

shows that B2kP is composite in the following three cases:

• when BkP > 1 and |AkP | > A2;
• when BkP > 1 and AB4

kP −A2
kP > 4A2;

• when |AkP | > A3 and A2
kP −AB4

k > 4A2.

(Note that 4A2 ≥ gcd
(
AB4

kP −A2
kP , (A

2
kP +AB4

kP )
2
)
.) We assume that we are

not in the first case, i.e., that either BkP = 1 or |AkP | ≤ A2. We show then that
the second case happens whenever x(kP ) < 0, and the third case happens whenever
x(kP ) > 0.

Case 1: x(kP ) < 0. Then |x(kP )| <
√
|A|, which implies that

log |A2
kP +AB4

kP | ≤ log(2AB4
kP ).

Now inequality (36) gives

k2ĥA(P ) ≤ 1

4
log(2AB4

kP ) +
1

12
log(2).

Using inequalities (34) and (35) we get

k2

16
log(2A) ≤ 1

4
log(2AB4

kP ) +
1

12
log(2),

when A �≡ 12 mod 16, and

k2

64
log(2A) ≤ 1

4
log(2AB4

kP ) +
1

12
log(2),

when A ≡ 12 mod 16. In particular:

• the inequality BkP > 1 holds for k ≥ 3 when A �≡ 12 mod 16, and for k ≥ 5
when A ≡ 12 mod 16;

• the inequality AB4
kP > 5A4 holds for k ≥ 4 when A �≡ 12 mod 16, and for

k ≥ 8 when A ≡ 12 mod 16.

Note that if |BkP | > 1, then (by assumption) |AkP | ≤ A2. It follows that the
inequality

AB4
k −A2

kP ≥ AB4
kP −A4 > 4A2

holds, whenever |BkP | > 1 and AB4
kP > 5A4 ≥ 4A2 +A4.
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Case 2: x(kP ) > 0. Then |x(kP )| >
√
|A| which implies that

log |A2
kP +AB4

kP | ≤ 2 log |2AkP | − log(2).

Now inequality (36) gives

k2ĥA(P ) ≤ 1

2
log |2AkP | −

1

6
log(2).

Using inequalities (34) and (35) we get

k2

16
log(2A) ≤ 1

2
log |2AkP | −

1

6
log(2),

when A �≡ 12 mod 16, and

k2

64
log(2A) ≤ 1

2
log |2AkP | −

1

6
log(2),

when A ≡ 12 mod 16. In particular:

• the inequality |AkP | > A3 holds for k ≥ 5 if A �≡ 12 mod 16, and for k ≥ 10
if A ≡ 12 mod 16;

• the inequality A2
kP > 5A2 holds for k ≥ 3 if A �≡ 12 mod 16, and for k ≥ 6

if A ≡ 12 mod 16.

Suppose |AkP | > A3. Then |AkP | > A2 and it follows that BkP = 1. In
particular, the inequality

A2
kP −AB4

k ≥ A2
kP −A2 > 4A2

holds, whenever A2
kP > 5A2 ≥ 4A2 +A and |AkP | > A3. �

Proposition 9.3. Let m be an odd integer. Let P ′ be a Q-point of infinite order on
EA. Denote by P the multiple mP ′. Assume P ∈ EA(Q) is a point on the bounded
component of EA. Then BnP is composite:

• when n ≥ 4 and A �≡ 12 mod 16;
• when n ≥ 8 and A ≡ 12 mod 16.

Proof. When n is even, Proposition 9.2 applied to P ′ shows that BnP = BnmP ′ is
composite:

• when n ≥ 10
m and A �≡ 12 mod 16;

• when n ≥ 20
m and A ≡ 12 mod 16.

From now on we assume that n is odd. In that case nP lies on the bounded
component of the curve. As in the proof of Proposition 9.2, this implies that

(42) n2ĥA(P
′) ≤ log(BnP ′) +

1

4
log(2A) +

1

12
log(2),

(43) m2n2ĥA(P
′) ≤ log(BnP ) +

1

4
log(2A) +

1

12
log(2).

Equation (42) shows that the inequality BnP ′ > 1 holds, for n ≥ 3 when A �≡
12 mod 16, and for n ≥ 6 when A ≡ 12 mod 16.

From now on we assume that each prime factor of BnP divides BnP ′ . Then [10,
Lemma 2.3] implies that BnP divides m2BnP ′ . As a consequence, equation (43)
gives

m2n2ĥA(P
′) ≤ 2 log(m) +

1

4
log(B4

nP ′) +
1

4
log(A) +

1

3
log(2).
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Using the first inequality (36), we get

m2n2ĥA(P
′) ≤ 1

4 log |A2
nP ′ +AB4

nP ′ |+ 2 log(m) + 1
3 log(2)

≤ n2ĥA(P
′) + 1

4 log |A|+ 2 log(m) + 17
24 log(2).

Now it follows from inequalities (34) and (35) that

(m2 − 1)n2

16
log |2A| ≤ 1

4
log |2A|+ 2 log(m) +

11

24
log(2),

when A �≡ 12 mod 16, and

(m2 − 1)n2

64
log |2A| ≤ 1

4
log |2A|+ 2 log(m) +

11

24
log(2),

when A ≡ 12 mod 16. Since m ≥ 3, these inequalities imply n < 4 when A �≡
12 mod 16, and n < 8 when A ≡ 12 mod 16. �
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[9] Kirsten Eisenträger and Graham Everest, Descent on elliptic curves and Hilbert’s tenth prob-
lem, Proc. Amer. Math. Soc. 137 (2009), no. 6, 1951–1959, DOI 10.1090/S0002-9939-08-

09740-2. MR2480276 (2009k:11201)
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