000201252 001__ 201252
000201252 005__ 20181203023602.0
000201252 0247_ $$2doi$$a10.1515/jgt-2014-0001
000201252 022__ $$a1433-5883
000201252 02470 $$2ISI$$a000338850000001
000201252 037__ $$aARTICLE
000201252 245__ $$aHomogeneous number of free generators
000201252 260__ $$bWalter De Gruyter Gmbh$$c2014$$aBerlin
000201252 269__ $$a2014
000201252 300__ $$a15
000201252 336__ $$aJournal Articles
000201252 520__ $$aWe address two questions of Simon Thomas. First, we show that for any n >= 3 one can find a four-generated free subgroup of SLn (Z) which is profinitely dense. More generally, we show that an arithmetic group Gamma that admits the congruence subgroup property has a profinitely-dense free subgroup with an explicit bound on its rank. Next, we show that the set of profinitely-dense, locally-free subgroups of such an arithmetic group Gamma is uncountable.
000201252 700__ $$uEcole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland$$aAka, Menny
000201252 700__ $$aGelander, Tsachik
000201252 700__ $$aSoifer, Gregory A.
000201252 773__ $$j17$$tJournal Of Group Theory$$k4$$q525-539
000201252 909C0 $$xU11828$$0252238$$pTAN
000201252 909CO $$pSB$$particle$$ooai:infoscience.tind.io:201252
000201252 917Z8 $$x178545
000201252 917Z8 $$x148230
000201252 937__ $$aEPFL-ARTICLE-201252
000201252 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000201252 980__ $$aARTICLE