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h i g h l i g h t s

• A new and unified framework for optimizing tool path is proposed.
• Tool path is represented as the iso-level curves of a scalar function.
• Properties of tool path are encoded into that of the scalar function.
• Formulas for controlling the scalar function are derived.
• Optimal tool path regarding iso-scallop and smoothness is generated.
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a b s t r a c t

The aim of tool path planning is to maximize the efficiency against some given precision criteria. In prac-
tice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be
smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with
each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far
from being globally optimal. This paper proposes a new framework for tool path optimization. It views
a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool
path can be generated by finding the function that minimizes certain energy functional and different ob-
jectives can be considered simultaneously. We use the framework to plan globally optimal tool path with
respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and
optimal tool path are respectively derived, and the path topology is studied too. Experimental results are
given to show effectiveness of the proposed methods.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The terminology ‘‘tool path’’ refers to a specified trajectory
along which machine tools move their ends (i.e., cutter and ta-
ble) to formdesired surfaces. The automatic generation of such tra-
jectories are of central importance in modern CAD/CAM systems.
There are two fundamental criteria, i.e., precision and efficiency,
for automatic tool path generation. Precision means the error of
approximating a surface with a family of curves, and approximat-
ing a curve with a family of segments or arcs. Efficiency concerns
the time of machining along the tool path. The aim of tool path
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planning is to maximize the efficiency under the given precision
criteria. In this paper, we propose a method, which can take these
two criteria into consideration together, to generate globally opti-
mal tool paths.

1.1. Related works

For a given precision tolerance (i.e., the scallop height and chord
deviation), the tool path is always supposed to be as smooth and
short as possible. In this paper, the smoothness of tool path is mea-
sured by its curvature in the 3D space. If the tool path is smooth
enough, there is less repeated acceleration/deceleration, which
makes it possible to maintain a high feed rate. Meanwhile, the
shorter the tool path is, the less time themachining takes. Theoret-
ically, tool paths following the direction of maximum machining
strip width are the shortest in total length, since they maximize
material removal. But such strategy often leads to irregular tool
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paths which are neither direction/contour parallel nor spiral, as
shown in [1,2]. Therefore, in practice, a weaker condition that the
tool path has no unnecessary (also called redundant) cutting is
adopted. To achieve this, the scallop height should be kept con-
stant along the path. Hence, tool pathswith iso-scallop and smooth
properties are preferable.

Last decade has seen a great deal of literature on tool path plan-
ning for free-form surfaces, such as iso-parametric method [3–5],
iso-planar method [6–8], iso-scallop method [9–15], iso-phote
method [16] and C-space method [17], to name a few. Surveys of
much more work about tool path planning research can be found
in [18,19]. Since we aim at optimal tool paths with respect to iso-
scallop and smoothness, we put special interest in the iso-scallop
method, whichmeans the height of the points at the scallop curves
remains as high as a given value so that the tool path has no unnec-
essary cutting. Conventionally, constant scallop height is obtained
by varying the offset magnitude along each path. A mathematical
method for generating iso-scallop tool paths following such strat-
egy was first proposed by Suresh et al. [9]. Afterwards methods to
improve the computing efficiency [10,13] and accuracy [11,12,15]
were proposed. In 2007, Kim [14] reformulated the iso-scallop tool
path as geodesic parallel curves on the design surface by defining
a new Riemannian metric.

Despite the non-redundance property, tool paths of constant
scallop height tend to have sharp corners, as illustrated in Fig. 1,
which implies that smoothness and iso-scallop requirements often
conflict with each other. And the tradeoff between them is a major
concern in tool path planning. A widely adopted solution to this
is post-processing: first a new path with constant scallop is gen-
erated by varying the offset magnitude along current path, then it
is smoothed by replacing its corners with circular arcs [20,21]. An
alternative is to employ the level set method to offset the paths
while keeping them smooth [22]. Similar to the image segmen-
tation method proposed by Paragios et al. [23], a curvature term
can be added into the evolution equation so that points of higher
curvature are offset less while those of lower curvature are offset
more. However, on one hand, for a path subject to desired preci-
sion, the modification would introduce error. On the other hand,
if the path is offset less than the desired tolerance to avoid such
error, then hardly can we choose a proper offset magnitude since
we usually do not have an overall picture of the tool path. For ex-
ample, in [22], because a curvature item is introduced into the nor-
mal velocity, it is still unknown how to choose a proper evolution
step that determines the distance between neighboring paths. In
fact, such local modification is in general unable to gain a globally
optimal tool path, since it cannot take the ungenerated paths into
account when operating on (or optimizing) one path. All previous
offset basedmethods generate tool paths one-by-one, and thus in-
herit the drawback of non-optimality.

There also exist some efforts to generate smooth tool paths
without considering the overlapping between neighbor machin-
ing strips (i.e., the iso-scallop condition). Generally, such methods
are based on the Laplacian. For example, Bieterman and Sandstrom
[24] proposed a Laplacian based contour parallel tool path genera-
tion method by selecting the level sets of a harmonic function de-
fined over a pocket as the tool path. But how to choose the level sets
for it still remains an open problem, namely there is no formula for
path interval calculation so far. Similarly, Chuang and Yang [25]
combined the Laplacianmethod and the iso-parametric method to
generate tool paths for pockets with complex topology, i.e., com-
plex boundaries and islands. However, the smoothness of the tool
path cannot be guaranteed through Laplacian energy as a small
Laplacian value does not necessarily mean small curvature of the
level set curves. And solving a Laplace equation over a surface can
only generate a unique and uncontrollable scalar function (scaling
has no impact on the shape of tool paths). Another drawback of
the Laplacian based approach is the severe overlapping between
machining strips of neighbor paths, especially for paths near the
boundary, which results in too much redundant machining.
1.2. Our approach

In this paper, we aim to plan optimal tool path regarding iso-
scallop and smoothness. We propose a framework that is able to
obtain a globally optimal tool path by considering several objec-
tives together. The tool path is represented as a family of level set
curves from a scalar function defined over the surface, and our
method computes an optimal scalar function by solving a single
optimization problem, instead of generating the curves one-by-
one. We refer to the level sets as iso-level curves, and the proposed
tool path planning method as the iso-level method, in order to be
consistent with other terminologies in the literature such as iso-
parametric, iso-planar, iso-scallop and iso-phote.

As the tool path is represented by the iso-level curves of some
optimized scalar function, desired properties of the tool path are
encoded into the properties of the scalar function. In this work, we
give the details of how to control the scalar function so that the
desired tool path, e.g., iso-scallop tool path, can be generated. We
first propose an iso-scallop condition for the target function, which
shapes two neighboring iso-level curves to be iso-scallop. Then
we propose a smoothness objective. Finally we combine them to-
gether to form the objective energy functional so that itsminimizer
corresponds to an optimal tool pathwith respect to iso-scallop and
smoothness. To the best of our knowledge, this paper is the first
work where these formulas are given, through which the interval
between iso-level curves and their smoothness can be controlled
globally. Theminimizer of the iso-scallop objective can not only be
exploited to plan tool path of constant scallop, but also has an in-
teresting machining meaning, namely, the level increment of two
neighbor iso-level curves equals the square root of scallop height.
In addition, the optimal scalar function can be reused to generate
the tool path of different scallop height tolerances.

Comparedwith existing tool path generationmethods, the pro-
posed method solves the tool path planing problem in a global
optimization manner. Besides, the proposed iso-level tool path
planningmethod can free us from the tedious post-processing step
for self-intersection and disjunction, which will be demonstrated
inmore detail in Section 2.4. In addition, since the scalar function is
defined all over the surface, themodel is completely covered by the
iso-level curves, i.e., there are no regions that are not machined, as
opposed to the offset based methods (illustrated in Fig. 1). Our op-
timization framework can also be easily extended to include other
objectives, such as tool wear, machine kinematics and dynamics.

The remainder of this paper is organized as follows: Section 2
describes the optimization models for the iso-level method, in-
cluding iso-scallop tool path generation (Section 2.1), smooth tool
path generation (Section 2.2), and optimal tool path generation
(Section 2.3), followed by a discussion on tool path topology (Sec-
tion 2.4). In Section 3, we present the numerical solution to the
optimizationmodels. Section 4 summarizes the overall procedures
for planning iso-level tool paths. Section 5 shows the experimental
results. Finally, we conclude the whole paper in Section 6.

2. Optimal iso-level tool path

Consider a surface S embedded in R3 and a scalar function ϕ :

S → R defined over it. The curves on S which correspond to a set
of values {li}ni=1 bounded by the range of the scalar function are se-
lected as tool path for the surface. There are two problems to con-
cern when generating tool path following this strategy: the design
of ϕ and themathematical method for determining {li}. In this sec-
tion, we describe our solution to them, and demonstrate how to
plan iso-level tool paths.

2.1. Iso-scallop tool path generation

In general, a tool path is discretized as a family of curves on the
surface. Scallop refers to the remaining material that is generated
when the cutter sweeps along two neighbor paths, which results
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Fig. 1. Iso-scallop tool path. (a) Offset based iso-scallop tool path; (b) scale function based iso-scallop tool path.
Fig. 2. Illustrations of path parameters. (a) Scallop height and path interval; (b) path interval.
in deviation between themachined surface and the design surface.
Generally, we use the height from the points at the ridge of the
scallop to the design surface to quantify such error, as illustrated in
Fig. 2(a). On one hand, the closer the two neighboring curves are,
the lower the scallop height becomes. On the other hand, closer
curvesmay lead to longer path and time tomachine thewhole sur-
face. Therefore, the iso-scallop method generates tool paths with
the scallop height as high as a specific tolerance in order to avoid
redundant machining and achieves higher efficiency. The scallop
height is determined by the interval between two neighbor paths
and they are related by the following formula [10]

h =
κs + κc

8
w2

+ O

w3 , (1)

wherew denotes the interval pipi+1, h is the scallop height, κs is the
normal curvature along the direction normal to path Ci, as shown
in Fig. 2(b), and κc is the curvature of the cutter.

Let Ci, Ci+1 be the iso-level curves {p ∈ S | ϕ(p) = li} and {p ∈

S | ϕ(p) = li+1}, respectively. Then appeal to Taylor’s theorem, we
have

li+1 − li = (∇ϕ)T (pi+1 − pi) + O

∥pi+1 − pi∥2 . (2)

The gradient ∇ϕ is a vector in the tangent plane of the surface at
point pi, and normal to the path. Therefore, the expression can be
rewritten as

|li+1 − li| = ∥∇ϕ∥ · ∥pi+1 − pi∥ + O

∥pi+1 − pi∥2 . (3)

Then

∥∇ϕ∥ = lim
∥pi+1−pi∥→0

|li+1 − li|
∥pi+1 − pi∥

. (4)

If the level increment |li+1 − li| of the scalar function is endowed
with a machining meaning by letting it equal to the square root of
scallop height, Eq. (4) will be

∥∇ϕ∥ =


κs + κc

8
, (5)

and the scallop height between two neighbor iso-level curves of ϕ
will be constant and equal to the square of the increment. This can
be easily verified by substituting Eq. (1) into Eq. (4).

Thus an iso-scallop tool path can be generated by finding a
scalar function satisfying Eq. (5). And we obtain such ϕ by solving
a nonlinear least square problem

min
ϕ

Ew(ϕ) =


S


∥∇ϕ∥ −


κs + κc

8

2

dS, (6)

where κc is a user input and κs is computed by

κs =


∇ϕ

∥∇ϕ∥

T

T


∇ϕ

∥∇ϕ∥


, (7)

with T denoting the curvature tensor (see [26,27] for its definition
and numerical computation).

Finally, the iso-level curves corresponding to level values
i
√
h
n
i=1

are iso-scallop tool path with constant height h, that is,
level increments between neighboring iso-level curves all equal to
√
h. Thus, a large

√
h can generate a tool path for rough machin-

ing, and a small increment for finish machining. The novelty here
is that they share the same scalar function.We refer to this as mul-
tiresolution property.

2.2. Smooth tool path generation

As explained in the introduction section, a smooth tool path is
preferred as we can get a nearly constant feed rate along it. For a
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curve in 3D space, its curvature measures how much it bends at
a given point. This is quantified by the norm of its second deriva-
tivewith respect to arc-length parameter, whichmeasures the rate
at which the unit tangent turns along the curve [26]. It is the very
metric to measure the smoothness of the curve.

As the tool path is embedded on the design surface, its sec-
ond derivativewith respect to arc-length parameter can be decom-
posed into two components, one tangent to the surface and the
other normal to the surface (see Fig. 3) [26]. The norms of these
components are called the geodesic curvature and the normal cur-
vature respectively, and they are related to the curve curvature by

κ2
= κ2

g + κ2
n , (8)

where κ is the curve curvature, and κg , κn are the geodesic curva-
ture and the normal curvature respectively.

For an iso-level curve φ = const , its normal curvature can be
computed by

κn =


n ×

∇ϕ

∥∇ϕ∥

T

T

n ×

∇ϕ

∥∇ϕ∥


=


A

∇ϕ

∥∇ϕ∥

T

T

A

∇ϕ

∥∇ϕ∥


=


∇ϕ

∥∇ϕ∥

T

T ′


∇ϕ

∥∇ϕ∥


, (9)

where T is the curvature tensor,n =

nx, ny, nz

T is the unit normal
vector of the surface, and

A =

 0 −nz ny
nz 0 −nx

−ny nx 0


, T ′

= ATTA. (10)

The geodesic curvature can be computed by

κg = div


∇ϕ

∥∇ϕ∥


, (11)

where div(·) is the divergence operator. For a planar curve, its
normal curvature is zero and we have

κ = κg = div


∇ϕ

∥∇ϕ∥


≠ div(∇ϕ) = ∇

2(ϕ). (12)

Therefore, Laplacian cannot ensure smoothness of a tool path for
pocket milling.

To guarantee the smoothness of all iso-level curves on surface
S, we define the smoothness energy as

Eκ(ϕ) =


S

κ2dS =


S

κ2
g dS +


S

κ2
ndS. (13)

In Section 2.1, we employ the formula |li+1 − li| =
√
h to gen-

erate iso-level tool path. But for smooth tool path, the following
strategy is exploited: first, a certain number of points are sampled
from the iso-level curve Ci; Then the level increment |li+1 − li| is
computed for each point with respect to a given scallop height h
using Eqs. (1) and (3); Finally, the smallest level increment is cho-
sen to be the level increment between Ci and its next path Ci+1.
This results in level increments of different values as opposed to the
iso-scallop method, while the scalar function remains unchanged,
i.e., the multiresolution property still holds.

2.3. Optimal tool path generation

The width term equation (5) and the smoothness term equa-
tion (8) can control the interval between neighboring paths and
smoothness of the paths respectively. Thus an optimal tool path in
terms of iso-scallop and smoothness can be obtained by computing
Fig. 3. The curvature vector kn of curve C on S has two orthogonal components:
the normal curvature vector knnn and the geodesic curvature vector kgng .

ϕ through a nonlinear least square optimization which minimizes
a linear combination of the two energy equations (6) and (13)

E(ϕ) = Ew(ϕ) + λEκ(ϕ), (14)

where λ is a positive weight controlling the trade-off between the
two terms. And in order to ensure the tool path is regular (i.e., ei-
ther contour parallel or direction parallel), we introduce a hard
constraint ∥∇ϕ∥ > 0. The impact of this constraint is demon-
strated in Section 2.4. Then the optimization problem becomes

min
ϕ


S


∥∇ϕ∥ −


κs + κc

8

2

+ λ

κ2
g + κ2

n


dS

s.t. ∥∇ϕ∥ > 0. (15)

However, because of the smoothness energy, the optimization
result may violate Eq. (5), and thus the formula |li+1 − li| =

√
h

would be invalid. Therefore, we employ the method described in
Section 2.2 to select iso-level curves with respect to a certain scal-
lop height tolerance. Note that we can use the same scalar function
for planning tool paths of different scallop height tolerances, which
again shows the multiresolution property of our approach.

Since different machine tools have different feed rate capabil-
ities, for those of good capability we can choose a lower weight
on the smooth term. Thus the freedom of choosing weights λ pro-
vides the possibility of applying the proposed method to various
machine tools.

2.4. Path topology

In this section, wewill show that each iso-level curve generated
by the proposed method is either a closed loop or a curve segment
without self-intersection and disjunction. In addition, this kind of
path topology can be exploited to quickly extract iso-level curves.

Lemma 1. For a given scalar function ϕ defined over a surface S, if
the norm of its gradient does not vanish anywhere, the endpoints of
iso-level curves (if they exist) are on the boundary.

Proof. For an interior point p, ∥∇ϕ∥ ≠ 0 implies that along the
two directions △p1, △p2 orthogonal to ∇ϕ, we have, in a small
range, the following expression:

ϕ(p + △pi) − ϕ(p) = (∇ϕ)T△pi = 0 for i = 1, 2. (16)

Namely, each interior point has exactly two directions sharing the
same level value with it. Therefore, the endpoints can only be on
the boundary. �

Lemma 2. For the scalar function ϕ, its iso-level curves never inter-
sect with each other and do not have self-intersections.
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Fig. 4. Illustrations of self-intersection.
Proof. Since each point corresponds to a unique value, iso-level
curves for different values do not intersect with each other. Gener-
ally, we have two types of self-intersections, as shown in Fig. 4. The
difference between them is that in case (b) the self-intersection is
tangential. For case (a), the two curve segments have different tan-
gent directions at the self-intersection point. It is well-known that
the gradient direction at a point is orthogonal to the tangent di-
rection of the iso-level curve. Thus the two different tangent direc-
tions at the self-intersection point results in a contradiction that
there are two different gradient directions at that point. For case
(b), we view the self-intersection as two iso-level curves that are
of same level value and tangential at the intersectionpoint and sep-
arate from each other in its neighborhood. But ∥∇ϕ∥ ≠ 0 along an
iso-level curve implies that iso-level curves near it are of different
level values, which again lead to a contradiction. �

Note that these properties are employed to extract each de-
sired iso-level curve in the following sections so that traversal is
not needed. As Lemmas 1 and 2 show, for any interior point of the
surface, it has and only has two directions that share the same level
value with the point. Accordingly, we can use a ‘‘Seed Growth’’ like
algorithm to find the iso-level curves, namely, if we want to find
the iso-level curve of a given level value, say l, we can start from
an initial edge on which there exists a point whose level value is l,
and then search through the edge’s adjacent triangles (if the point
is a vertex of the mesh, i.e., the endpoint of the edge, the adjacent
triangles are all the 1-ring triangles) to get exactly two edges con-
taining level value l, repeat this procedure and finally the initial
point can grow to be an iso-level curve of interest. In addition, it
follows immediately from Lemmas 1 and 2 that:

Proposition 1. Each iso-level path generated by the proposed
method is either contour parallel or direction parallel and free from
self-intersection and disjunction.

3. Numerical solution

Numerically, the iso-level method described in the above sec-
tion can be applied to any domain with a discrete gradient opera-
tor ∇ , divergence operator div(·), and curvature tensor T . To solve
the optimization models for free-from surfaces, the Finite Element
Method (FEM) is employed, i.e., in this work, we focus on triangu-
lar meshes. However, this method can be easily extended to other
domains, such as point clouds.

Assume thatM ⊂ R3 is a compact triangulated surface with no
degenerate triangles. Let N1(i) be the 1-neighborhood of vertex vi,
which is the index set for vertices connecting to vi. Let D1(i) be the
1-disk of the vertex vi, which is the index set for triangles contain-
ing vi. The dual cell of a vertex vi is part of its 1-disk which is more
near to vi than its N1(i). Fig. 5(a) shows the dual cell Ci for an in-
terior vertex vi, while Fig. 5(b) shows the dual cell for a boundary
vertex. A functionϕ defined over the triangulated surfaceM is con-
sidered to be a piecewise linear function, such that ϕ reaches value
ϕi at vertex vi and is linearwithin each triangle. Based on these, the
energies shown in Eqs. (6), (13) and (15) are computed by integrat-
ing thewidth term and smooth term over thewholemesh domain,
while the mesh domain can be decomposed into a set of triangles
or a set of dual cells. To compute the width term and the smooth
term on amesh, we need to discretize the gradient, the divergence,
and the curvature tensor, whichwewill describe briefly, since they
are basic in FEM.

The gradient of ϕ over each triangle is constant as the function
ϕ is linear within the triangle. The gradient in a given triangle can
be expressed as

∇ϕ(fi) =
1
2Ai


j∈Ωi

ϕj(Ni × ej), (17)

whereAi is the area of the face fi,Ni is its unit normal,Ωi is the set of
edge indices for face fi, ej is the j−th edge vector (oriented counter-
clockwise), and ϕi is the opposing value of ϕ as shown in Fig. 6.

According to the Stokes’ theorem, the integral of divergence
over the dual cell is equal to the outward flux along the boundary of
the dual cell. Thus the divergence operator associated with vertex
vi is discretized by dividing the outward flux by the dual cell area

div(X) =
1
2Ci


j∈D1(i)

cot θ1
j (e1j · Xj) + cot θ2

j (e2j · Xj), (18)

where the sum is taken over the vertex’s incident triangles fj with a
vector Xj, e1j and e2j are the two edge vectors of triangle fj containing
vertex vi, θ1

j and θ2
j are the opposing angles, and Ci is the dual

cell area for vertex vi. Accordingly, the geodesic curvature value of
curve ϕ = const associated with the vertex vi can be computed by

κ i
g =

1
2Ci


j∈D1(i)

cot θ1
j (e2j · ∇ϕ(j)) + cot θ1

j (e2j · ∇ϕ(j))

∥∇ϕ(j)∥
. (19)

The curvature tensor (second fundamental tensor) T is defined
in terms of the directional derivatives of the surface normal:

T =

Dun Dvn


=


∂n
∂u

· u
∂n
∂v

· u

∂n
∂v

· u
∂n
∂v

· v

 , (20)

where (u, v) are the directions of an orthogonal coordinate system
in the tangent frame (the sign convention used here yields posi-
tive curvatures for convex surfaces with outward-facing normals).
Multiplying this tensor by any vector in the tangent plane gives the
derivative of the normal in that direction. Although this definition
holds only for smooth surfaces, we can approximate it in the dis-
crete case using finite difference. In this work, the curvature tensor
for each face is computed by the method in [27].
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Fig. 5. Dual cells for triangular meshes. (a) Dual cell of an interior vertex; (b) dual cell of a boundary vertex.
Fig. 6. Computation of gradient and divergence within an element (i.e., a triangle). (a) Gradient; (b) divergence.
Then the whole optimization model can be formulated as

min
ϕ

|F |
j=1

Aj

∥∇ϕ(j)∥ −


κ
j
s + κc

8

2

+ λ


|F |
j=1

Aj(κ
j
n)

2
+

|V |
i=1

Ci(κ
i
g)

2


s.t. ∥∇ϕ(j)∥ > 0 (21)

where |F | is the number of faces and |V |denotes the number of ver-
tices. This is a well established nonlinear least square optimization
problem with inequality constraints, which can be easily solved
by the interior point method [28–30]. The interior point solver
requires the gradient of the target function and the constraint func-
tions. The gradient calculation boils down to computing the gradi-
ent of ∇ϕ and ∇ϕ/ ∥∇ϕ∥, which we do as follows.

As demonstrated previously, the gradient of a piecewise linear
scalar function within a given triangle fk is a linear combination of
constant vectors Nk × ei, and thus, the partial derivative of ∇ϕ(k)
with respect to ϕj is

∂

∂ϕj
∇ϕ(k) =

1
2Ak

∂

∂ϕj


i∈Ωk

ϕi(Nk × ei) =
1

2Ak


i∈Ωk

δij(Nk × ei), (22)

where δij =


1 i = j
0 i ≠ j is the Kronecker delta function.

As for the gradient of ∇ϕ/ ∥∇ϕ∥, it is

∂

∂ϕj


∇ϕ(k)

∥∇ϕ(k)∥



=


∂

∂ϕj
∇ϕ(k)


∥∇ϕ(k)∥ − ∇ϕ(k)

(∇ϕ(k))T ∂
∂ϕj

∇ϕ(k)

∥∇ϕ(k)∥

∥∇ϕ(k)∥2 . (23)

The final solution to the optimization problem equation (20)
would be affected by the initial value. In this work, we initialize
the tool path by paths from [31].
4. Tool path planning algorithm

Planning tool-path is to represent a surface with a series of
curves against some error criteria (i.e., chord deviation and scallop
height). We next summarize the overall process for generating
such curves on a surface by the iso-level method as follows:

1. Select an initial curve C0 on the surface S and fix its level value
to zero, i.e., l0 = 0. C0 is a part of boundary for direction parallel
tool path and thewhole boundary for contour parallel tool path.

2. Find the solution to themodels Eqs. (6), (13) and (15), including
meshing and numerical optimization.

3. Select level values {li}ni=1, where l1 = ϕmin, l(n) = ϕmax, with
the method described in Section 2.1 for iso-scallop tool path
and the method in Section 2.2 for smooth or optimal tool path.
For direction parallel tool path the last tool path corresponds to
ln = ϕmax, while for contour parallel tool path the last corre-
sponds to ln−1. Then fastly extract iso-level curves on the trian-
gular mesh based on the method described in Section 2.4.

4. Convert the iso-level curves on the mesh which actually are
polygons to surface S. The vertices of an iso-level curve on the
mesh are either vertices of the mesh or points on edges of the
mesh. For the former case, the vertices are also on S. For the lat-
ter case, a vertex is first proportionally mapped to the parame-
ter domain with respect to the two ends of the edge it is on and
then find its corresponding point on the surface.

5. Greedily merge short segments of the polygons to approach the
chord deviation tolerance as closely as possible. Then finally,
these reduced iso-level curves (polygons) are the desired tool
path.

5. Experimental results

In this section, the proposed tool path planning method is im-
plemented on real data. A free-form surface and a human face are
chosen to illustrate the effectiveness of it, as in Fig. 7. The free-form
surface is exploited to show the generation of direction parallel
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Fig. 7. Tested models. (a) Free-form surface; (b) human face.

tool path. The human face was generated by a coordinate measur-
ing machine. We utilize it to show the generation of contour par-
allel tool path.

To plan iso-level tool path, the first thing to do is to construct
a proper scalar function over the surface. Since the Finite Element
Method is employed to find the optimizer of the optimizationmod-
els, meshing is needed. We choose the element to be triangular.
Fig. 8(a) shows the meshing results of the free-form surface and
Fig. 9(a) shows that of the human face. The optimal scalar func-
tions are illustrated in Figs. 8(b), 9(b) by varying color. Fig. 8(b)
shows the scalar function of the free-form surface for generating
direction parallel tool path and Fig. 9(b) shows that of the human
face for generating contour parallel tool path. And the varying from
blue to red represents the rising of level value.

As the optimal scalar functions have been constructed for both
surfaces, tool path that is optimal with respect to iso-scallop and
smoothness can be generated. A ball-end cutter with radius 4 mm
is chosen to show the path generation so that tool orientation does
not matter. The limited scallop height is 1mm and chord deviation
is 0.01 mm. In order to clearly show tool paths, the error criterion
(i.e., scallop height) is set to be much greater than those in real
cases. Fig. 8(c) shows the optimal direction parallel paths on the
free-form surface and Fig. 9(c) shows corresponding result of con-
tour parallel tool path on the human face. Their weights are both
λ = 1.
Wenext show some comparisons and analyses of the generated
tool paths. According to the demonstration of [32], the contour par-
allel tool pathwill be emphasized. Fig. 10 shows the tool paths from
smooth to iso-scallop generated by the proposedmethod. Fig. 10(a)
shows the smooth contour parallel tool path generated by the pro-
posed method with λ = 10, Fig. 10(b) shows the optimal tool
path with λ = 1, and Fig. 10(c) shows the iso-scallop tool path
with λ = 0. As described in above sections, the iso-scallop condi-
tion equation (5) characterizes the overlapping between neighbor
paths. Therefore, to analyze the overlapping of the generated tool
paths, we conduct statistics on the relative deviation w.r.t. the iso-
scallop condition along the paths. It is computed by

∆ =


∥∇ϕ∥ −


κs+κc

8
κs+κc

8

 =

1 −
∥∇ϕ∥

κs+κc
8

 . (24)

And the statistics results are depicted in Fig. 10(d)–(f). As the fig-
ures show, for the iso-scallop tool path, the relative deviations are
all less than 5%, and centered around 1%. For the optimal tool path,
we could find the ratio moves to the greater side, as imagined, and
there are a few points which are much greater than the rest. Most
of these points are located in the corner parts of the tool path. And
for the smooth tool path, its overlapping ismuchmore obvious and
there are about 2% of pointswhose ratio is greater than 10%. But the
losing of iso-scallop condition brings smoothness to the tool paths,
which is shown in Fig. 10(g)–(i). In conclusion, the optimal tool
path tries to find a balance between the overlapping and smooth-
ness. We also compare the optimal tool path with the Laplacian
based one in Fig. 11. Although the Laplacian based tool path is obvi-
ously smooth than the optimal one, from the overlapping analysis
figures, i.e., Fig. 11(c), (d), we can find that it is muchmore severely
overlapped for neighbor paths.

6. Conclusion

In this paper, a new framework of tool path planning is pro-
posed. The novelty of ourmethod is that it allows several objectives
to be considered in a unified framework and thus making global
optimization of tool paths possible. Moreover, the scalar function
Fig. 8. Direction parallel tool path for the free-form surface. (a) Meshing result; (b) optimal scalar function; (c) the generated tool path.
Fig. 9. Contour parallel tool path for the face model. (a) Meshing result; (b) optimal scalar function; (c) the generated tool path.
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g h i

Fig. 10. Tool paths from smooth to iso-scallop and their analyses. (a) Smooth tool path; (b) optimal tool path; (c) iso-scallop tool path; (d) overlapping analysis for smooth
tool path; (e) overlapping analysis for optimal tool path; (f) overlapping analysis for iso-scallop tool path; (g) curvature analysis for smooth tool path; (h) curvature analysis
for optimal tool path; (i) curvature analysis for iso-scallop tool path.
Fig. 11. Comparison of Laplacian based tool path and the optimal tool path. (a) Laplacian based tool path; (b) optimal tool path; (c) overlapping analysis for Laplacian based
tool path; (d) overlapping analysis for optimal tool path.
only has to be constructed once, then it can be utilized to generate
tool paths for machining from rough to fine. The proposed frame-
work is applied to find an optimal tool path that takes smoothness
and iso-scallop requirements into consideration simultaneously.
Eq. (5) for controlling interval between neighbor iso-level curves
and Eq. (8) for measuring curvature of an iso-level curve are
derived to lay a foundation for the formulation of optimization
models.

It is likely that this theory has further potential in planning
other optimal tool path, and the derived formulas can also be
directly applied to level set based tool path planning methods,
e.g., [22].
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