000201145 001__ 201145
000201145 005__ 20181203023558.0
000201145 0247_ $$2doi$$a10.1002/mrm.24928
000201145 022__ $$a0740-3194
000201145 02470 $$2ISI$$a000339714900028
000201145 037__ $$aARTICLE
000201145 245__ $$aMR Image Reconstruction from Generalized Projections
000201145 260__ $$aHoboken$$bWiley-Blackwell$$c2014
000201145 269__ $$a2014
000201145 300__ $$a12
000201145 336__ $$aJournal Articles
000201145 520__ $$aPurpose: Currently, the time required for image reconstruction is prohibitively long if data are acquired using multidimensional imaging trajectories that make use of multichannel systems equipped with nonlinear gradients. Methods are presented that reduce the computational complexity of the iterative time-domain reconstruction algorithm down from O(N-4) to O(N-3). Theory: For generalized projections, a large class of multidimensional imaging trajectories, the encoding matrix can be focused to sparse bands by introducing an appropriate filter function along the frequency-encoding direction. The reconstruction can be speeded up by ignoring values below a pre-defined threshold level. Methods: Two methods are presented that differ in how the filter is incorporated into the reconstruction algorithm. The first method represents, without implementation of a threshold, a weighted version of the time-domain method, while the second method is equivalent to it. Results: Simulation and measurement results show that image reconstruction from high-resolution imaging data can be speeded up by up to two orders of magnitude. While the weighted reconstruction requires more iterations to reach an optimum than the second method, it is less sensitive to thresholding. Conclusion: For complex spatial encoding strategies that involve nonlinear gradient fields, fast and accurate image reconstruction methods are provided that are particularly efficient for high-resolution anatomical imaging. (C) 2013 Wiley Periodicals, Inc.
000201145 6531_ $$amagnetic resonance imaging
000201145 6531_ $$aprojections
000201145 6531_ $$anonlinear
000201145 6531_ $$agradient
000201145 6531_ $$areconstruction
000201145 6531_ $$aPatLoc
000201145 700__ $$aSchultz, Gerrit$$uUniv Med Ctr Freiburg, Dept Radiol, D-79106 Freiburg, Germany
000201145 700__ $$0245947$$aGallichan, Daniel$$g221045
000201145 700__ $$aReisert, Marco$$uUniv Med Ctr Freiburg, Dept Radiol, D-79106 Freiburg, Germany
000201145 700__ $$aHennig, Juergen$$uUniv Med Ctr Freiburg, Dept Radiol, D-79106 Freiburg, Germany
000201145 700__ $$aZaitsev, Maxim$$uUniv Med Ctr Freiburg, Dept Radiol, D-79106 Freiburg, Germany
000201145 773__ $$j72$$k2$$q546-557$$tMagnetic Resonance In Medicine
000201145 909C0 $$0252442$$pIPSB$$xU11993
000201145 909CO $$ooai:infoscience.tind.io:201145$$particle
000201145 937__ $$aEPFL-ARTICLE-201145
000201145 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000201145 980__ $$aARTICLE