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Abstract. We present the general notion of Borel fields of metric spaces and show some
properties of such fields. Then we make the study specific to the Borel fields of proper
CAT(0) spaces and we show that the standard tools we need behave in a Borel way. We
also introduce the notion of the action of an equivalence relation on Borel fields of metric
spaces and we obtain a rigidity result for the action of an amenable equivalence relation on
a Borel field of proper finite dimensional CAT(0) spaces. This main theorem is inspired by
the result obtained by Adams and Ballmann regarding the action of an amenable group on
a proper CAT(0) space.

1. Introduction
1.1. Overview of the results. One of the first links between amenability and negative
curvature is the result of Avez [6], which states that a compact Riemannian manifold with
non-positive sectional curvature is flat if and only if its fundamental group is of polynomial
growth. The amenability here is implicit and it was Gromov [26] who pointed out that
in this case the growth of the fundamental group is polynomial if and only if it is an
amenable group. After several generalizations obtained by Zimmer [39] and Burger and
Schroeder [9], Adams and Ballmann proved the following theorem.

THEOREM 1.1. [1, p. 184] Let X be a proper CAT(0) space. If G ⊆ Isom(X) is an
amenable group, then at least one of the following two assertions holds.
(i) There exists ξ ∈ ∂X which is fixed by G.
(ii) The space X contains a G-invariant flat.
A flat is a closed and convex subspace of X which is isometric to Rn for some n ∈ N. In
particular, a point x ∈ X is a flat of dimension zero.
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It is interesting with respect to our work to mention that in his article Zimmer also
proved the following theorem.

THEOREM 1.2. [39, p. 1012] Let F be a Riemannian measurable foliation with a
transversally (i.e., holonomy) invariant measure and finite total volume. Assume that
almost every leaf is a complete simply connected manifold of non-positive sectional
curvature. If F is amenable, then almost every leaf is flat.

Without going into all the details, a Riemannian measurable foliation has to be
understood as an equivalence relation on a measure space such that each equivalence class
(leaf ) is a smooth manifold endowed with a Riemannian structure that varies in a Borel
way. Amenability of the foliation is defined as the amenability of the induced relation on
a transversal (a Borel subset of the probability space that meets almost every leaf only
countably many times).

In this paper, we study an object close to one of Riemannian measurable foliation in
the context of CAT(0) spaces (or more generally of metric spaces), namely a Borel field of
metric spaces. Suppose that a Borel space � is given and that to each ω we assign a metric
space Xω. The definition sets what it means for such an assignment to be Borel. This has
been studied by some authors (see, e.g., [10, 13, 14] or [28]), often in the particular case
when all the Xω are a subspace of a given separable metric space X . This notion seems
to be the natural one to define the action of an equivalence relation (or more generally
of a groupoid). By adapting the techniques of [1] to the context of equivalence relations
and Borel fields of CAT(0) spaces we managed to prove the following theorem; see the
following for a precise meaning of the terminology.

THEOREM 1.3. Let (�, A, µ) be a standard probability space and R⊆�2 be an
amenable ergodic Borel equivalence relation which quasi preserves the measure. Assume
that R acts by isometries on a Borel field (�, X•) of proper CAT(0) spaces of finite
covering dimension. Then at least one of the following assertions is verified.

(i) There exists an invariant Borel section of points at infinity [ξ•] ∈ L(�, ∂X•).
(ii) There exists an invariant Borel subfield (�, A•), such that Aω ' Rn for almost every

ω ∈�.

Our result is a generalization of the result by Adams and Ballmann, just as the one
by Zimmer generalized the one by Avez. Recently, Caprace and Lytchak [12] proved
a parallel version of Adams and Ballmann’s result by replacing the locally compactness
assumption by the one of finite telescopic dimension. Inspired by this result and by the
tools we developed, Duchesne [18] managed to prove a version of the last theorem for a
Borel field of such spaces.

In order to prove our main result, we recall and develop the theory of Borel fields of
metric spaces. In doing so, we obtain in §2 some new results, especially Theorems 2.1 and
2.3, and Proposition 2.3. In §3, we give the first analysis of Borel fields of proper CAT(0)
spaces. The next section is devoted to the action of an equivalence relation on a Borel field
of metric spaces. In particular, we reformulate the notion of amenability for a relation in
this context. The last section contains the proof of the main theorem.
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1.2. Basic definitions and notations. Let (X, d) be a metric space. If x ∈ X and r is a
real number, we use the notation

B(x, r)= {y ∈ X | d(y, x) < r}, B(x, r)= {y | d(x, y)≤ r} and

S(x, r)= {y ∈ X | d(x, y)= r}

to denote respectively the open ball, the closed ball and the sphere centered at x of radius r .
Sometimes we also need to use the closure of the open ball, which is written B(x, r).

A metric space is called proper if all closed balls are compact.
A map γ : I → X from an interval of real numbers I to the space X is a geodesic if

it is isometric. We say that it is a geodesic segment if I is compact and a geodesic ray if
I = [0,∞[. The space X is geodesic if every pair of points can be joined by a geodesic.

For x, y ∈ X , we denote the image of a geodesic γ : [a, b] → X such that γ (a)= x
and γ (b)= y by [x, y] ⊆ X . A geodesic triangle with vertex x, y, z ∈ X is 4(x, y, z) :=
[x, y] ∪ [x, z] ∪ [y, z]. A comparison triangle for x, y, z ∈ X is a Euclidean triangle
4(x, y, z)⊆ R2 such that d(x, y)= d(x, y), d(x, z)= d(x, z), d(y, z)= d(y, z). It is
unique up to isometry. If q ∈ [x, y], we denote by q the point in [x, y] such that
d(x, q)= d(x, q).

Definition 1.1. A geodesic metric space X is CAT(0) if for every geodesic triangle
1(x, y, z) and every point q ∈ [x, y], the following inequality holds:

d(z, q)≤ d(z, q).

The general background reference concerning CAT(0) spaces is [8] (see also [7]). We
will introduce the various objects and definitions associated with CAT(0) spaces that we
need, such as the boundary, the projection on a convex subspace, and the angles, in §3,
where we will prove that these notions behave ‘well’ in the context of Borel fields of
CAT(0) spaces.

Besides CAT(0) spaces, other basic objects that we will consider in this paper are Borel
equivalence relations. By a Borel space we mean a set� equipped with a σ -algebra A and
we denote it by (�, A). If � is a completely metrizable separable topological space and
A is the σ -algebra generated by the open subsets, then (�, A) is called a standard Borel
space. A theorem of Kuratowski states that such spaces are all Borel isomorphic, provided
they are uncountable (see, e.g., [31]). A standard Borel space together with a probability
measure is called a standard probability space.

Definition 1.2. Let (�, A) be a standard Borel space. A Borel equivalence relation R is
a Borel subset R⊆�2 (where �2 is endowed with the product σ -algebra) which satisfies
the following conditions.
(i) For every ω ∈�, the set R[ω] := {ω′ ∈� | (ω, ω′) ∈R}, called the class of ω, is

finite or countably infinite.
(ii) The set R contains the diagonal 1� := {(ω, ω) | ω ∈�}, is symmetric in the sense

that R=R−1 (if for S ⊆�2 we define S−1
:= {(ω′, ω) | (ω, ω′) ∈ S}) and satisfies

the following transitivity property: if (ω, ω′), (ω′, ω′′) ∈R, then (ω, ω′′) ∈R.

Standard references for equivalence relations include [16, 21, 22, 29, 30] or [32]. For
a Borel subset A ⊆�, we denote by R[A] :=

⋃
ω∈A R[ω] the saturation of A, which is
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a Borel set, and we say that A is invariant if R[A] = A. If a countable group G acts in a
Borel way on�, then its action defines naturally the Borel equivalence relation RG , where
(ω, ω′) ∈RG if and only if there exists g ∈ G such that gω = ω′. Reciprocally, a now
classical result due to Feldman and Moore [21] states that each Borel equivalence relation
may be obtained by such an action.

If (�, A, µ) is now a standard probability space, we say that R quasi preserves
the measure µ if for every A ∈A such that µ(A)= 0, we have µ(R[A])= 0. This is
equivalent to the requirement that for each group G such that R=RG , the image measures
g∗(µ), where g ∈ G, are equivalent to µ (i.e., the measure g∗(µ) is absolutely continuous
with respect to µ, and conversely). In the case where the measure µ is invariant by G, we
say that R preserves the measure. The relation R is ergodic if each Borel saturated set is
such that µ(A)= 0 or µ(A)= 1.

2. Borel fields of metric spaces
2.1. Definitions and first results. A field of metric spaces on a set� is a family of metric
spaces {(Xω, dω)}ω∈� indexed by the elements of �. The set � is called the base of the
field, and we denote the field by (�, (X•, d•)) or (�, X•), or even just X• when the base is
implicit. A section of the field is the choice of an element of Xω for each ω ∈�, so it can
be thought of as an element of the product

∏
ω∈� Xω. We write a section x•, and for each

ω ∈�, xω is used to denote the given element of Xω. We denote by S(�, X•) the set of
all sections of the field (�, X•). Given two sections x•, y• ∈ S(�, X•), we introduce the
following distance function:

d•(x•, y•) : � 7→ [0,∞[
ω 7→ dω(xω, yω).

We are interested in fields of metric spaces on a Borel space.

Definition 2.1. Let (�, A) be a Borel space and (�, X•) be a field of metric spaces on �.
A Borel structure on (�, X•) is a subset L(�, X•)⊆ S(�, X•) such that:
(i) (compatibility) for all x•, y• ∈ L(�, X•), the function d•(x•, y•) is Borel;
(ii) (maximality) if y• ∈ S(�, X•) is such that d•(x•, y•) is Borel for all x• ∈ L(�, X•),

then y• ∈ L(�, X•); and
(iii) (separability) there exists a countable family D := {xn

•
}n≥1 ⊆ L(�, X•) such that

{xn
ω}n≥1 = Xω for all ω ∈�. Sometimes we will write Dω := {xn

ω}n≥1.
If there exists such a L(�, X•), we say that (�, X•) is a Borel field of metric spaces and
L(�, X•) is called the Borel structure of the field. The elements of L(�, X•) are called
the Borel sections. A set D satisfying condition (iii) is called a fundamental family of the
Borel structure L(�, X•).

Remark 2.1.
(i) Observe that Condition 2.1(iii) forces all the metric spaces Xω to be separable.
(ii) It follows from Lemmas 2.1 and 2.2 that if a field is trivial (i.e., all the Xω are the

same separable metric space X ), then the set of all Borel functions from � to X
is naturally a Borel structure on this field. This observation should reinforce the
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Actions of amenable equivalence relations on CAT(0) fields 25

intuition of thinking about the Borel sections as a replacement of Borel functions
which cannot be defined when the field is not trivial.

(iii) If �′ ⊆� is a Borel subset, then L(�′, X•) := {(x• |�′) | x• ∈ L(�, X•)} is a Borel
structure on the field (�′, X•), where x• |�′ denotes the section of S(�′, X•)
obtained by restricting the section x• to the subset �′.

(iv) Borel fields of metric spaces can also be presented as bundles (see, e.g., [14]).

We now describe two constructions that we will use to give a useful reformulation of
the maximality condition of Definition 2.1. Let {xn

•
}n≥1 be a sequence of elements of

S(�, X•) such that {xn
ω}n≥1 is a converging sequence in Xω for all ω ∈�. Then we can

define a new section x• ∈ S(�, X•) by xω := limn→∞ xn
ω for all ω ∈�. This section is

called the pointwise limit of the sequence {xn
•
}n≥1 and it is written limn→∞ xn

•
. Let {xn

•
}n≥1

be a sequence of elements of S(�, X•) and �=
⊔

n≥1 �n be a countable Borel partition
of �. Define a new section x• by setting x• |�n := xn

•
|�n for all n ≥ 1. This new section is

called a countable Borel gluing of the sequence with respect to the partition. If the partition
is finite, we call the section a finite Borel gluing.

LEMMA 2.1. Let (�, A) be a Borel space and (�, X•) be a field of metric spaces.
Suppose that the set L(�, X•)⊆ S(�, X•) is such that conditions (i) and (iii) of
Definition 2.1 are satisfied. Then condition (ii) of the same definition is equivalent to
saying:
(ii)′ L(�, X•) is closed under pointwise limits and countable Borel gluings,
or to saying:
(ii)′′ L(�, X•) is closed under pointwise limits and finite Borel gluings.

Proof. We will prove (ii)⇒ (ii)′′⇒ (ii)′⇒ (ii).
(ii)⇒ (ii)′′: this assertion follows easily by applying to the distance functions the facts

that a limit of a pointwise converging sequence of Borel functions is still Borel, and that a
countable Borel gluing of Borel functions is again a Borel function.

(ii)′′ ⇒ (ii)′: assume that x• ∈ S(�, X•) is the gluing of the sequence {yn
•
}n≥1 ⊆

L(�, X•) relative to the decomposition �=
⊔

n≥1 �n . For all n ≥ 1, we introduce the
section ỹ•n , defined by

ỹ•
n
|� j :=

{
y j
•
|� j if 1≤ j ≤ n,

y1
•
|� j if j ≥ n + 1.

By hypothesis, ỹ•n ∈ L(�, X•) for all n ≥ 1, and we have limn→∞ ỹ•n = x•, so that
L(�, X•) is closed under countable Borel gluings.
(ii)′⇒ (ii): suppose that y• ∈ S(�, X•) is such that d•(x•, y•) is Borel for all x• ∈

L(�, X•). Fix a fundamental family D := {xn
•
}n≥1 and define, for all k ≥ 1, a function

nk
•
:�→ N by

nk
ω :=min{n ∈ N | dω(xn

ω, yω)≤ 1/k}.

These functions are well-defined (because Dω is dense) and Borel because

{ω ∈� | nk
ω ≤ N } =

N⋃
j=1

(d•(x
j
•
, y•))

−1([0, 1/k]) ∈A for all N ≥ 1.
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For all k ≥ 1, we can define a section x
nk
•
• ∈ S(�, X•) by gluing the sequence {xn

•
}n≥1 in

this way:
xnk
•
•
|(nk
•)
−1({ j}):= x j

•
|(nk
•)
−1({ j}) for all j ≥ 1.

By hypothesis and construction, {x
nk
•
• }k≥1 ⊆ L(�, X•) and limk→∞ x

nk
•
• = y•, so we can

conclude that y• ∈ L(�, X•). 2

The following lemma gives two characterizations of the Borel sections, knowing only a
fundamental family.

LEMMA 2.2. Let (�, A) be a Borel space, (�, X•) be a Borel field of metric spaces of
Borel structure L(�, X•) and D be a fundamental family. Then

L(�, X•) = {y• ∈ S(�, X•) | d•(y•, z•) is Borel for every z• ∈D}
= {y• ∈ S(�, X•) | y• is a pointwise limit of countable Borel

gluings of elements of D}.

Proof. Let us prove the first equality. The inclusion [⊆] is obvious. For the reverse,
suppose that y• is in the right-hand set. Since D is a fundamental family, the equality

d•(x•, y•)= sup
z•∈D
|d•(x•, z•)− d•(z•, y•)|

holds for every x• ∈ L(�, X•). Therefore, d•(x•, y•) is a Borel function and thus y• ∈
L(�, X•). Note that the second equality was already verified in the proof of Lemma 2.1. 2

Example 2.1.
(i) As already said, a trivial field is a natural example of a Borel field of metric spaces.

It is important to keep in mind that, even in the trivial case, many different Borel
structures may exist on the same field.

(ii) A standard bundle (in the sense of Gaboriau and Alvarez, see, e.g., [3]) is a standard
Borel space X with a Borel projection π : X→� such that the fibers are countable.
The field {(π−1(ω), dω)}ω∈�, where dω is the discrete distance, is a Borel field when
endowed with the structure { f• :�→ X | f• is Borel and π( fω)= ω}. (A selection
theorem can be used to construct a fundamental family, see [3].)

(iii) A Borel equivalence relation on � is a particular example of a standard bundle. This
example can be turned into a more interesting one if the relation is graphed, so that
we can consider on each equivalence class the metric induced by the graph structure
instead of the discrete one (see, e.g., [24] for a definition of a graphed equivalence
relation).

(iv) A Borel field of Hilbert spaces as defined in [15] or a Borel field of Banach spaces
as defined in [4] are examples of Borel fields of metric spaces.

(v) Suppose that there exists a countable family D = {xn
•
}n≥1 ⊆ S(�, X•) such that

d•(xn
•
, xm
•
) is Borel for every n, m ≥ 1 and {xn

ω}n≥1 is dense in Xω for every ω ∈�.
Then it is easy to adapt the proof of Lemma 2.2 to show that

LD(�, X•) := {y• ∈ S(�, X•) | d•(x•, z•) is Borel for every z• ∈D}

is a Borel structure on (�, X•).
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Definition 2.2. Let (�, A) be a Borel space, and (�, X•) and (�, Y•) be two Borel fields
of respective Borel structures L(�, X•) and L(�, Y•).

A morphism between these two Borel fields is a family of maps ϕ• = {ϕω : Xω→
Yω}ω∈� such that for all x• ∈ L(�, X•), the section defined by ϕ•(x•) : ω 7→ ϕω(xω) is
in L(�, Y•). Sometimes we will simply write ϕ• : (�, Y•)→ (�, Y•) or ϕ• : X•→ Y•. We
denote by L̃(�, F(X•, Y•)) the set of morphisms from (�, X•) to (�, Y•).

A morphism ϕ• is called continuous (isometric, injective, surjective, bijective) if ϕω
is continuous (isometric, injective, surjective, bijective) for every ω ∈�. We will write
L̃(�, C(X•, Y•)) for the set of continuous morphisms and L̃(�, I(X•, Y•)) for the set of
isometric ones.

A continuous morphism ϕ• ∈ L̃(�, C(X•, Y•)) is invertible if ϕω is a homeomorphism
for every ω ∈� and if ϕ−1

•
(defined in the obvious way) is also a morphism.

Remark 2.2.
(i) Obviously, we could define a morphism for fields with different bases, but this is not

relevant in our context.
(ii) To verify that a family of continuous maps {ϕω : Xω→ Yω} is a morphism, it is

enough to check that ϕ•(D)⊆ L(�, Y•) for a fundamental family D of L(�, X•).
Indeed, this is an easy consequence of Lemma 2.2. In the same spirit, we can verify
that ϕ• ∈ L̃(�, C(X•, Y•)) is invertible if and only if ϕω is a homeomorphism for
every ω ∈�.

Suppose now that we choose for every ω ∈� a subset (possibly empty) Aω of Xω. Such
a choice is called a subfield and we would like to define when it is Borel. A natural way
of doing this is to suppose that �′ := {ω ∈� | Aω 6= Ø} is a Borel subset of � and that
L(�′, A•) := L(�′, X•) ∩ S(�′, A•) is a Borel structure on the field (�′, A•); observe
that (�, A•) is not in general a field of metric spaces. As L(�′, X•) ∩ S(�′, A•) is closed
under Borel gluings and pointwise limits†, and as condition (i) is obviously satisfied,
Lemma 2.1 naturally leads to the following definition.

Definition 2.3. Let (�, A) be a Borel space and (�, X•) a Borel field of metric spaces. A
subfield (�, A•) is called Borel if:
(i) �′ := {ω ∈� | Aω 6= Ø} ∈A; and
(ii) there exists a countable family of sections D′ = {yn

•
}n≥1 ⊆ L(�′, A•) such that

Aω ⊆ {yn
ω}n≥1 for every ω ∈�′.

The set �′ is called the base of the subfield and D′ is called a fundamental family of the
subfield.

Remark 2.3.
(i) (�′, A•) is a Borel field of metric spaces.
(ii) In condition (ii) of Definition 2.3, the closure {yn

ω}n≥1 is taken in Xω, which is why
we used ⊆ and not an equality. An obvious way to construct a Borel subfield is
to take a countable family {xn

•
}n≥1 ⊆ L(�, X•) and to choose a subfield A• such

† In this context, we think about (�′, A•) as a field, so that we are only interested in pointwise limits that are in
S(�′, A•). This does not mean that the set we consider is closed in S(�′, X•) or in L(�′, X•)
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that {xn
ω}n≥1 ⊆ Aω ⊆ {xn

ω}n≥1 for every ω ∈�. In particular, a Borel section is an
obvious example of a Borel subfield.

(iii) The previous construction can be generalized in the following way: if A• is a Borel
subfield of X• and B• is a subfield such that Aω ⊆ Bω ⊆ Aω for every ω ∈�, then
B• is also a Borel subfield of X•.

(iv) Suppose that {An
•
}n≥1 is a family of Borel subfields. Then the subfield A• :=⋃

n≥1 An
•
, defined by Aω :=

⋃
n≥1 An

ω, is also a Borel subfield. This can be shown
in three steps. First, we observe that the base �′ of A• is

⋃
n≥1 �n ∈A, where �n

denotes the base of An
•
. Then we construct a section z• ∈ L(�′, A•): pick sections

z1
•
∈ L(�1, A1

•
), z2

•
∈ L(�2\�1, A2

•
), z3

•
∈ L(�3\(�1 ∪�2), A3

•
) and so on; gluing

them together gives the desired section. Finally, we choose, for each n ≥ 1, a
fundamental family Dn of An

•
and we modify each of its elements by gluing it with

z• |�′\�n to obtain a subset D̃n of L(�′, A•). By construction, D′ :=
⋃

n≥1 D̃n is a
fundamental family of A•.

(v) Observe the following obvious property of transitivity for Borel subfields. Let
(�, A) be a Borel space, (�, X•) be a Borel field of metric spaces, (�, A•) be a
Borel subfield of (�, X•) of base �′ and (�, B•) be a subfield of (�, X•) such that
Bω ⊆ Aω for all ω ∈�. Then (�, B•) is a Borel subfield of (�, X•) if and only if
(�′, B•) is a Borel subfield of (�′, A•).

2.2. Equivalence classes. Suppose now that a Borel probability measureµ on (�, A) is
given. In this context, we can define the equivalence relation of equality almost everywhere
on the set of Borel sections and more generally on the set of Borel subfields. Two sections
(or two Borel subfields) are equal almost everywhere if the set where they differ is of
measure 0. We write x• =µ-a.e. y• (or A• =µ-a.e. B•) when two sections are equivalent, and
we denote by [x•] (or [A•]) the equivalence class of x• (respectively of A•). We write
L(�, X•) for the set of equivalence classes of Borel sections.

2.3. Borel subfields of open subsets. In the case of a subfield such that all the subsets
are open, there is an easy sufficient criterion to verify that it is Borel.

LEMMA 2.3. Let (�, A) be a Borel space, (�, X•) be a Borel field of metric spaces and
U• be a subfield such that Uω is open for every ω ∈�. If {ω ∈� | xω ∈Uω} ∈A is Borel
for all sections x• in a fundamental family of the Borel structure L(�, X•), then U• is a
Borel subfield.

Proof. Write D := {xn
•
}n≥1, a fundamental family, and �n := {ω ∈� | xn

ω ∈Uω} ∈A. By
density of {xn

ω}n≥1, and since Uω is open for all ω ∈�, we have that �′ := {ω ∈� |Uω 6=
Ø} =

⋃
n≥1 �n is Borel. For all n ≥ 1, we can define a Borel subfield (�, An

•
) by

An
ω :=

{
{xn
ω} if ω ∈�n,

Ø otherwise.

Then, by construction,
⋃

n≥1 An
•
⊆U• ⊆

⋃
n≥1 An

•
, and so U• is a Borel subfield by

Remarks 2.3(iii) and (iv). 2
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Example 2.2. If x• ∈ L(�, X•) and r• is a Borel non-negative function, then the subfield
of open balls B(x•, r•) defined by assigning to each ω the set B(xω, rω) is Borel. In fact,
if y• ∈ L(�, X•), then

{ω ∈� | yω ∈ B(xω, rω)} = (d•(x•, y•))
−1([0, r•[) ∈A.

The field B(x•, r•) of the closure of the open balls is also Borel because of Remark 2.3(iii).

2.4. Borel subfields of closed subsets. If every metric space Xω is complete, then there
is a sufficient and necessary criterion for a subfield of closed subsets to be Borel. We
choose the convention that the distance from a point to the empty set is infinite.

PROPOSITION 2.1. Let (�, A) be a Borel space, (�, X•) be a Borel field of complete
metric spaces and F• be a subfield of closed subsets. Then the following assertions are
equivalent.
(i) F• is a Borel subfield.
(ii) d•(x•, F•) :�→ R+ ∪ {∞}, ω 7→ dω(xω, Fω) is a Borel map for every x• ∈

L(�, X•).
(iii) d•(x•, F•) :�→ R+ ∪ {∞}, ω 7→ dω(xω, Fω) is a Borel map for every x• ∈D,

where D is a fundamental family of L(�, X•).

Proof (sketch). (iii) ⇒ (ii): Since the distance to a set is a continuous function, this
assertion is a consequence of Lemma 2.2.

Implication (iii) ⇐⇒ (i) was proved in the particular case of trivial fields by Castaing
and Valadier [13]. Notice that {ω ∈� | Fω 6= Ø} = (d•(x•, F•))−1(R+) for any x• ∈
L(�, X•), so we can suppose, without lost of generality, that this set is equal to �. The
trivialization theorem due to Valadier (see [36] and the remark below), the implication (ii)
⇐⇒ (iii), the completeness assumption and the property of transitivity of Borel subfields
(see Remark 2.3(v)) can therefore be combined to extend the result to the general case. 2

Remark 2.4. The trivialization theorem due to Valadier [36] states that for every Borel
field of metric spaces (�, X•), there exists an isometric morphism ϕ• : (�, X•)→ (�, U),
where U is the universal separable metric space constructed by Urysohn [35]. In his paper,
Valadier checks that the isometric embedding of a separable metric space X in U can be
done in a Borel way.

Example 2.3. Suppose that every Xω is geodesic. If x• is a Borel section and r• :�→ R+
is a Borel function, then the field of closed balls B(x•, r•) defined in the same way as in
Example 2.2, is Borel. Indeed, if y• ∈ L(�, X•), then

d•(y•, B(x•, r•))= dd•(y•, x•)− r•e
0,

where if α ∈ R, then

dαe0 =

{
α if α ≥ 0,

0 if α < 0.

In the measure case, we can show that the set of equivalence classes of a Borel subfield
of closed sets can be turned into a complete lattice (i.e., every subset has an infimum and
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a supremum) when it is endowed with the following order: if F• and G• are Borel subfields
of closed sets, then [F•] ≤ [G•] if Fω ⊆ Gω for almost every ω ∈�.

We will need the following proposition, which can be deduced from [28] (Theorem 3.5
and the explanation at the beginning of §4) as Proposition 2.1 has been deduced from [13].

PROPOSITION 2.2. Let (�, A, µ) be a standard probability space and X• be a Borel field
of complete metric spaces. Let {Fn

•
}n≥1 be a family of Borel subfields of closed subsets.

Then there exists a Borel subset �0 of measure one such that if
⋂

n≥1 Fn
•

is defined by
assigning to each ω the set (

⋂
n≥1 Fn

•
)ω :=

⋂
n≥1 Fn

ω , then (�0,
⋂

n≥1 Fn
•
) is a Borel

subfield of (�0, X•).

THEOREM 2.1. Let (�, A, µ) be a standard probability space and let X• be a Borel field
of complete metric spaces. Then the set of equivalence classes of Borel subfields of closed
subsets with the order of inclusion almost everywhere is a complete lattice.

More precisely, if {[Fβ
•
]}β∈B is a family of equivalence classes of Borel subfields of

closed subsets, then there exists a sequence of indices {βn}n≥1 ⊆ B such that[⋂
n≥1

F
βn

•

]
and

[⋃
n≥1

Fβn
•

]
are respectively the infimum and the supremum of the family {[Fβ

•
]}β∈B .

Before proving this theorem, we recall the notion of an essential supremum of a family
of Borel functions, whose existence is guaranteed by the following theorem.

THEOREM 2.2. [17, p. 71] Let (�, A, µ) be a standard probability space such that µ is
σ -finite. Let { fi :�→ R ∪ {±∞}}i∈I be a family of Borel functions. Then there exists a
Borel function g :�→ R ∪ {±∞} such that:
(i) for all i ∈ I , we have g(ω)≥ fi (ω) for almost every ω ∈�;
(ii) if h :�→ R ∪ {±∞} is a Borel function satisfying (i), then h(ω)≥ g(ω) for almost

every ω ∈�.
The function g is uniquely determined up to null sets and all functions in its class satisfy (i)
and (ii). Moreover, there exists a countable family of elements of I such that its supremum
satisfies (i) and (ii).

We call g an essential supremum of the family { fi }i∈I and we write g = sup essi∈I { fi }.

Proof of Theorem 2.1. First, observe the following criterion for a closed subset to be
included in another one. If X is a metric space, D ⊆ X is a dense subset and F1, F2 ⊆ X
are two closed subsets, then

F2 ⊆ F1 ⇐⇒ d(x, F2)≥ d(x, F1) for all x ∈ D. (1)

Now let {Fβ
•
}β∈B be a family of Borel subfields of closed subsets and fix D = {x i

•
}i≥1, a

fundamental family of the Borel structure L(�, X•). By Theorem 2.2, there exists, for

each i ≥ 1, a sequence of indices {β i
n}n≥1 such that supn≥1 d•(x i

•
, F

βi
n
• ) is an essential

supremum of the family of functions {d•(x i
•
, Fβ
•
)}β∈B . If we set B′ := {β i

n}n,i≥1, then we
can simultaneously construct an essential supremum for each family {d•(x i

•
, Fβ
•
)}β∈B by

taking supβ∈B′ d•(x i
•
, Fβ
•
). By Proposition 2.2, there exists a Borel subfield F• of closed
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subsets such that Fω =
⋂
β∈B′ Fβω for almost every ω ∈�, and we will show that it is the

infimum of the family {Fβ
•
}β∈B . Let β0 ∈ B be fixed. Then, for every i ≥ 1, we have

d•(x
i
•
, F•)=a.e. d•(x

i
•
,
⋂
β∈B′

Fβ
•
)
(1)
≥ sup

β∈B′
d•(x

i
•
, Fβ
•
)≥a.e. d•(x

i
•
, Fβ0
•
),

which shows, by the preliminary observation, that Fω ⊆ Fβ0
ω for almost every ω ∈�. Thus,

[F•] is a minorant and it is obvious from its definition that it is the biggest one.
The same argument can be made for the supremum by considering the essential infimum

of the families {d•(x i
•
, Fβ
•
)}β∈B , realized as the infimum taken over a subset B′′ ⊆ B. Then

[
⋃
β∈B′′ Fβ ] will be the supremum. To have the exact formulation of the conclusion of the

theorem, we only have to order the countable set B′ ∪ B′′ = {βn}n≥1. 2

2.5. Borel fields of proper metric spaces. In this section, X• will denote a Borel field
of proper metric spaces. We will show that the field assigning to each ω the space of
continuous functions on Xω is a Borel field of metric spaces. To do so, we will need the
following lemma.

LEMMA 2.4. Let X be a proper metric space and x0 ∈ X a fixed base point. Then the
following function is a metric on C(X) that induces the topology of uniform convergence
on compact sets:

δ : C(X)× C(X) → R
( f, g) 7→ inf{ε > 0 | supx∈B(x0,1/ε) | f (x)− g(x)|< ε}.

Moreover, if D ⊆ X is a dense countable subset, then the Q-algebra generated by the
functions {dx }x∈D and the constant function 1 is a dense countable subset of C(X).

Proof (sketch). The proof of the first part is an easy exercise. The second part can be
proven by applying for each R ≥ 1 the Stone–Weierstrass theorem (see, e.g., [25, p. 198])
to the space X ∩ B(x0, R) and the set of functions {dx }x∈B(x0,R)∩D . 2

Let (�, A) be a Borel space and X• a Borel field of proper metric spaces. We fix x0
•
∈

L(�, X•) and we consider the family of metrics δ• = {δω}ω∈� on C(X•)= {C(Xω)}ω∈�
given by Lemma 2.4.

THEOREM 2.3. The set

L(�, C(X•)) := { f• ∈ S(�, C(X•)) | f•(x•) is Borel for every x• ∈ L(�, X•)}

is a Borel structure on (C(X•), δ•). Moreover, the subfield C0(X•), where

C0(Xω)= { f ∈ C(Xω) | f (x0
ω)= 0},

is Borel.

Proof. This set is clearly closed under countable Borel gluings and pointwise limits, so,
by Lemma 2.1, we only have to check points (i) and (iii) of Definition 2.1.
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Fix ε > 0 and choose D, a fundamental family of the Borel subfield B(x0
•
, 1/ε) (see

Example 2.2). Pick f•, g• ∈ L(�, C(X•)). Then,

δω( fω, gω)≤ ε ⇐⇒ sup
x•∈D
| fω(xω)− gω(xω)| ≤ ε,

and so L(�, C(X•)) is compatible with the family of metrics δ• and point (i) of the
definition is verified.

Now observe that S(�, C(X•)) is naturally an algebra: if f•, g• ∈ S(�, C(X•)) and
λ ∈ R, we can define

( f•g•)ω := fωgω, ( f• + g•)ω = fω + gω and (λ f•)ω := λ fω.

It is clear from its definition that the subset L(�, C(X•)) is a subalgebra of S(�, C(X•)).
We now fix D = {xn

•
}n≥1, a fundamental family of the Borel field X•, and we define the

following elements of L(�, C(X•)):

dxn
•
: � → C(X•)

ω 7→
dxn

ω
: Xω → R

x 7→ dω(xn
ω, x)

and

1• : � → C(X•)

ω 7→
1ω : Xω → R

x 7→ 1.

We write AQ, the countable Q-subalgebra of S(�, C(X•)) generated by {dx•}x•∈D ∪
{1•}. Then AQ is contained in L(�, C(X•)) because this last set is an algebra that contains
the generators of AQ; moreover, { fω | f• ∈AQ} is dense in C(Xω) for every ω ∈� by
Lemma 2.4, so Condition 2.1(iii) is satisfied.

To prove that the subfield C0(X•) is Borel, it is enough to realize that if D is a
fundamental family of the field C(X•), then D̃ := { f• − f•(x0

•
) | f• ∈ L(�, C(X•))} is

obviously a fundamental family of the subfield. 2

We will show now that the intersection behaves better in proper spaces than in complete
ones (see Proposition 2.2).

PROPOSITION 2.3. Let (�, A) be a Borel space and let X• be a Borel field of proper
metric spaces. Let {Fn

•
}n≥1 be a family of Borel subfields of closed sets. Then the subfield⋂

n≥1 Fn
•

is a Borel subfield.

We will need the following lemma, whose proof is straightforward.

LEMMA 2.5. Let X be a proper metric space. Then the following assertions are true.
(i) Let F be a closed subset of X. Then, for every x ∈ X, the distance d(x, F) is

realized.
(ii) Let {Fn}n≥1 be a decreasing sequence of closed subsets of X. Then, for every x ∈ X,

we have d(x,
⋂

n≥1 Fn)= limn→∞ d(x, Fn)= supn d(x, Fn), where d(x, Ø)=∞,
by convention.
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Proof of Proposition 2.3. The proof proceeds in three steps.
(i) Proposition 2.1, applied twice, implies that the conclusion of the theorem is true in

the particular case when Fn+1
ω ⊆ Fn

ω for every ω ∈� and n ≥ 1, since d•(x•,
⋂

n≥1 Fn
•
)=

limn→∞ d•(x•, Fn
•
), by Lemma 2.5.

(ii) Let f• ∈ L(�, C(X•)) and a•, b• ∈ L(�, R). Let F• := f −1
•
([a•, b•]) be the subfield

defined by Fω = f −1
ω ([aω, bω]). We will show that F• is a Borel subfield. For every integer

n ≥ 1, we set U n
•
:= f −1

•
(]a• − 1/n, b• + 1/n[) for the subfield defined in a similar way

to F•. It is a Borel subfield by Lemma 2.3 because if x• ∈ L(�, X•), then

{ω ∈� | xω ∈U n
ω} = {ω ∈� | aω − 1/n ≤ fω(xω)≤ bω + 1/n},

and the latter set is Borel by the definition of L(�, C(X•)). By Remark 2.3, U n
•

is a Borel
subfield, so the sequence {U n

•
}n≥1 is a decreasing sequence of Borel subfields of closed

subsets such that
⋂

n≥1 U n
•
= F• (this equality is satisfied because every fω is continuous).

Thus, F• is a Borel subfield by the first step.
(iii) We will show now that if F• and G• are Borel subfields of closed subsets, then

so is F• ∩ G• (and the conclusion of the proposition will then follow by applying this
fact recursively and using step (i)). By Proposition 2.1, dF• , dG• ∈ L(�, C(X•)), so
F• ∩ G• = (dF• + dG•)

−1(0) is a Borel subfield by step (ii). 2

3. Borel fields of CAT(0) spaces
3.1. Basic properties. First, we recall some notation and terminology. A subset C ⊆ X
is convex if it contains any geodesic segment joining any two of its points. For such a
closed convex subset in a complete CAT(0) space, we denote by πC (x) the unique point
which satisfies d(x, πC (x))= d(x, C) := infy∈C d(x, y) [8, Proposition II.2.4]. This is
the projection of x on C and the projection map πC : X→ C does not increase distances.
The circumradius of a non-empty bounded set A ⊆ X is r(A) := inf{r > 0 | ∃x ∈ X, A ⊆
B(x, r)}. This infimum is achieved and there exists a unique point cA ∈ X such that
A ⊆ B(cA, r(A)) [8, Proposition II.2.7]. This point is called the circumcenter of A.

If (�, X•) is a field of metric spaces such that Xω is a CAT(0) space for all ω ∈�, we
call it a field of CAT(0) spaces. Monod was the first to consider such fields in [34].

Definition 3.1. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper CAT(0)
spaces, x•, y• ∈ L(�, X•) be two sections and (�, C•) be a Borel subfield of non-empty
closed convex sets.

We define
γx•,y• : [0, 1] → S(�, X•)

t 7→ [γx•,y•(t) : ω 7→ γxω,yω (t)],

where γxω,yω : [0, 1] → Xω is the unique geodesic with constant speed such that
γxω,yω (0)= xω and γxω,yω (1)= yω for all ω ∈�.

We also define πC•(x•) ∈ S(�, X•), where πCω (xω) is the projection of xω on Cω for
all ω ∈�.

We know that the field B(x•, r•) is Borel if x• ∈ L(�, X•) and r• is a non-negative Borel
function. Since we have on the one hand γx•,y•(t)= B(x•, td•(x•, y•)) ∩ B(y•, (1− t)
d•(x•, y•)) for all t ∈ [0, 1], and on the other hand πC•(x•)= C• ∩ B(x•, d•(x•, C•)),

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/etds.2012.122
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:05:36, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/etds.2012.122
https:/www.cambridge.org/core


34 M. Anderegg and Ph. Henry

we conclude, using Proposition 2.3, that the sections introduced in Definition 3.1 are
Borel. In the same spirit, we can define a circumradius function and a circumcenter section
whenever a Borel subfield of bounded sets is given.

LEMMA 3.1. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper CAT(0)
spaces and (�, B•) be a Borel subfield of bounded sets of (�, X•).
(i) The circumradius function r(B•) is Borel.
(ii) The section of circumcenters is Borel, i.e., cB• ∈ L(�, X•).

Proof. (i) Recall that if B ⊆ X is a bounded subset in a proper CAT(0) space, then we
have the equality r(B)= infx∈X {supy∈B d(x, y)}. So, define fω : Xω→ R by fω(xω)=
supyω∈Bω d(xω, yω) for all ω ∈�. We have f• ∈ L(�, C(X•)) because if D ⊆ L(�, X•),
D′ ⊆ L(�, B•) are fundamental families, then f•(x•)= supy•∈D′ d(x•, y•) for every x• ∈
L(�, X•). Consequently, we deduce that the function r(B•)= inf f• = infx•∈D f•(x•) is
Borel.

(ii) Observe that cB• = f −1
•
(r(B•)) is Borel (see the proof of Proposition 2.3,

step (ii)). 2

Other Borel functions appear naturally on Borel fields of CAT(0) spaces.
First, recall that for CAT(0) spaces it is possible to define several notions of angles.

The comparison angle at p between x, y, denoted by 6 p(x, y), is the corresponding
angle in a comparison triangle. This allows us to define an infinitesimal notion of
angle: if p, x, y ∈ X and c, c′ : [0, b], [0, b′] → X are two geodesic segments such that
c(0)= c′(0)= p and c(b)= x , c′(b′)= y, then the Alexandrov angle at p between x and
y is defined by 6 p(x, y) := lim supt,t ′→0

6 p(c(t), c′(t)), where the CAT(0) hypothesis
ensures the existence of this limit.

LEMMA 3.2. Let (�, A) be a Borel space and (�, X•) be a Borel field of proper CAT(0)
spaces.
(i) If x•, y•, p• ∈ L(�, X•) are such that xω 6= pω 6= yω for all ω ∈�, then the

comparison angle function 6 p•(x•, y•) is Borel.
(ii) If we replace in (i) the comparison angle by the Alexandrov angle, then the function

obtained is also Borel.

Proof. (i) This assertion follows directly from the law of cosines, which can be used to
write the angle in terms of the distances.

(ii) For each n ∈ N, let �n := {ω ∈� |min{dω(pω, xω), dω(pω, yω)} ≥ 1/n} ∈A, and
define two sections in L(�, X•) by

cn
•
|�n := B(p•, 1/n) ∩ B(x•, d•(p•, x•)− 1/n) and

c̃ n
•
|�n := B(p•, 1/n) ∩ B(y•, d•(p•, y•)− 1/n),

which are extended in an arbitrarily Borel way to �\�n . Since xω 6= pω 6= yω for all
ω ∈�, we have �=

⋃
n≥1 �n , and thus for every ω ∈�, there exists nω ∈ N such

that cn
ω = cω(1/n) and c̃ n

ω = c̃ω(1/n) for all n ≥ nω, where cω : [0, dω(pω, xω)] → Xω
(respectively c̃ω : [0, dω(pω, yω)] → Xω) is the geodesic from pω to xω (respectively yω).
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By [8, Proposition II.3.1], we have

6 p•(x•, y•)= lim
n→∞

2 arcsin
(

n

2
· d•(c

n
•
, c̃ n
•
)

)
,

and this shows that the function is Borel. 2

Recall [8, §II.8] that if X is a proper CAT(0) space, the boundary at infinity ∂X can
be defined as the set of equivalence classes of geodesic rays in X , where two rays are
equivalent (asymptotic) if they remain at a bounded distance from each other. Often we
write c(∞) for the equivalence class of the geodesic ray c, and a typical point of ∂X
is written ξ . Fixing a base point x0 ∈ X leads to a bijection between ξ ∈ ∂X and the
unique geodesic ray cx0,ξ , starting at x0 and such that c(∞)= ξ . This identification can be
used to define the conic topology (which turns out to be independent of the choice of x0):
ξn→ ξ if cx0,ξn (t)→ cx0,ξ (t) for all t ≥ 0. Another equivalent construction uses the map
i : X→ C0(X), defined by x 7→ dx − d(x, x0), where C0(X) is endowed with the topology
of uniform convergence on compact sets. In general, for an arbitrary proper metric space,
this map is not a homeomorphism onto its image, but it is if the space is geodesic [7]. It
can be shown that ∂X is homeomorphic to i(X)\i(X): to ξ ∈ ∂X and we can associate the
Busemann function bx0,ξ : X→ R, x 7→ limt→∞ d(x, cx0,ξ (t))− d(x0, cx0,ξ (t)). These
functions satisfy

bz,ξ (y)= bx,ξ (y)− bx,ξ (z), ξ ∈ ∂X, x, y, z ∈ X. (2)

For all ω ∈�, we now define the map iω : Xω −→ C0(Xω) by setting xω 7→ dxω −

d(xω, x0
ω), where x0

•
∈ S(�, X•) is a fixed section. This will enable us to deal with the

Borel structure on the fields of boundaries.

THEOREM 3.1. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper CAT(0)
spaces and x0

•
∈ L(�, X•).

(i) We have i• ∈ L̃(�, C(X•, C0(X•))), and the subfields i•(X•), i•(X•) are Borel,
where C0(X•) is endowed with the Borel structure inherited from (C(X•), δ•) (see
Theorem 2.3).

(ii) The field ∂X• is a Borel subfield of closed sets of i•(X•).

Proof. (i) Since x0
•
∈ L(�, X•), we observe that i•(x•)(y•)= d•(x•, y•)− d•(x•, x0

•
) is

Borel for every y• ∈ L(�, X•). So, i•(x•) ∈ L(�, C0(X•)), and i• is a morphism which
is obviously continuous. Consequently, i•(X•) is a Borel subfield of C0(X•) as well as
i•(X•).

(ii) Observe that if X is a proper CAT(0) space and x0 ∈ X is a fixed base point, we

have the equality ∂X =
⋂

n∈N i(X)\i(B(x0, n)). We use this trick to show the assertion

by using Proposition 2.3. Since i•(X•)\i•(B(x0
•
, n)) is a Borel subfield of open sets of

i•(X•) for all n ∈ N, we obtain that ∂X• =
⋂

n∈N i•(X•)\i•(B(x0
•
, n)) is also Borel. 2

Remark 3.1. In particular, Theorem 3.1 describes the sections of L(�′, ∂X•), where �′

is the base of the subfield ∂X•, which is equal to the set {ω ∈� | Xω is unbounded}. By
definition of the Borel structure on (�′, C0(X•)), the section ξ• ∈ S(�′, ∂X•) is Borel if
and only if the function bx0

• ,ξ•
(x•) is Borel for every x• ∈ L(�′, X•). Observe that this
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condition does not depend on the choice of x0
•
∈ L(�′, X•) because if y0

•
∈ L(�′, X•),

we have by0
• ,ξ•
(x•)= bx0

• ,ξ•
(x•)− bx0

• ,ξ•
(y0
•
) by (2). Therefore, ξ• is Borel if and only if

by•,ξ•(x•) is Borel for every x•, y• ∈ L(�′, X•).

The Borel structure of the field of boundaries is such that the natural sections and
functions associated are Borel.

LEMMA 3.3. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper unbounded
CAT(0) spaces and two sections x• ∈ L(�, X•), ξ• ∈ L(�, ∂X•). Define

cx•,ξ• : [0,∞[ → S(�, X•)
t 7→ cx•,ξ•(t) : ω 7→ cxω,ξω (t),

where cxω,ξω : [0,∞[→ Xω is the unique geodesic ray such that cxω,ξω (0)= xω and
cxω,ξω (∞)= ξω. Then we have cx•,ξ•(t) ∈ L(�, X•) for every t ∈ R+.

Proof. Let D ⊆ L(�, X•) be a fundamental family. Since i•(D) is also a fundamental
family for the structure L(�, i•(X•)), by Lemma 2.2, each Borel section in this set is a
pointwise limit of countable Borel gluings of elements of i•(D). In particular, there exists a
sequence {xn

•
}n≥1 ⊆D such that limn→∞ i•(xn

•
)= ξ•, and we suppose that dω(xn

ω, xω)≥ n
for allω ∈�. Consequently, we can define γx•,xn

•
(t) ∈ L(�, X•) at least for each t ∈ [0, n].

Now fix t ∈ R+. Since, by [8, Proposition II.8.19], limn→∞ γxω,xn
ω
(t)= cxω,ξω (t) for each

ω ∈�, we deduce cx•,ξ•(t)= limn→∞ γx•,xn
•
(t) ∈ L(�, X•). 2

Recall that for every η, ξ ∈ ∂X and x ∈ X , the Alexandrov angle between ξ and η in
x is defined by 6 x (ξ, η)= 6 x (cx,ξ (1), cx,η(1)) and the Tits angle between ξ and η by
6 (ξ, η)= supx∈X

6 x (ξ, η). The Tits angle defines a metric on the boundary, called the
angular metric.

LEMMA 3.4. Let (�, A) be a Borel space and (�, X•) be a Borel field of proper CAT(0)
spaces. Consider a section x• ∈ L(�, X•) and two sections ξ•, η• ∈ L(�, ∂X•).
(i) The Alexandrov angle function 6 x•(ξ•, η•) is Borel.
(ii) The Tits angle function 6 •(ξ•, η•) is Borel.

Proof. By definition, we have 6 x•(ξ•, η•)=
6 x•(cx•,ξ•(1), cx•,η•(1)), and by [8,

Proposition II.9.8(4)], 6 •(ξ•, η•)= 2 arcsin(limt→∞(1/2t) · d(cx•,ξ•(t), cx•,η•(t))). So,
we deduce from Lemmas 3.2 and 3.3 that these functions are Borel. 2

We turn now to some subfields of the field of metric spaces (�, (∂X•, 6 •)). Notice
that the latter is not always a Borel field of metric spaces because the topology induced
by the angular metric may be not separable. Despite this problem, we prove the following
theorem.

THEOREM 3.2. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper
unbounded CAT(0) spaces and (�, A•) be a Borel subfield of non-empty closed sets, with
respect to the conic topology, of (�, ∂X•).
(i) The circumradius function r(A•), with respect to the angular metric, is Borel.
Moreover, suppose that r(Aω) < π/2 for all ω ∈�.
(ii) The section of circumcenters is Borel, i.e., cA• ∈ L(�, ∂X•).
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Proof. The proof of (i) proceeds in three steps.
(a) For a CAT(0) space X and x0 ∈ X , define for each integer n ≥ 1 the function

6 n
: ∂X × ∂X → [0, π ]

(ξ, η) 7→ 6 n(ξ, η) := sup
t∈[1,n]

6 x0(cx0,ξ (t), cx0,η(t)).

This increasing sequence of functions verifies 6 (ξ, η)= limn→∞ 6
n(ξ, η)=

supn≥1
6 n(ξ, η) by [8, Proposition II.9.8(1)]. If ∂X is endowed with the conic topology,

then 6 n is a continuous function. The argument is as follows. The function fn :

[1, n] × (∂X)2→ [0, π ], (t, ξ, η) 7→ 6 x0(cx0,ξ (t), cx0,η(t)), is continuous, hence uni-
formly continuous. It is easy then to check that the function (ξ, η) 7→ 6 n(ξ, η)=

supt∈[1,n] f n(t, ξ, η) is continuous.
(b) We will now prove that if A ⊆ ∂X is a non-empty closed subset, then we have the

equality
r(A)= lim

n→∞
min
ξ∈∂X
{max
η∈A

6 n(ξ, η)}. (3)

Indeed, we have

r(A)
def.
= inf

ξ∈∂X
{sup
η∈A
{sup

x∈X

6 x (ξ, η)}} = inf
ξ∈∂X
{sup
η∈A
{sup

n≥1

6 n(ξ, η)}}

= inf
ξ∈∂X
{sup

n≥1
{sup
η∈A

6 n(ξ, η)}},

and by (a) and compactness, r(A)= infξ∈∂X {supn≥1{maxη∈A 6
n(ξ, η)}}. Now consider

the restriction 6 n
|∂X×A, which is uniformly continuous by (i), and also the function 6 n

max :

∂X→ [0, π ], ξ 7→maxη∈A{6
n(ξ, η)}, which is continuous. We will use the following

observation, whose proof is not a very difficult exercise.
Observation: Let Y be a compact metrizable space and {gn : Y → [a, b]}n≥1 be an

increasing sequence of continuous functions. Taking a pointwise limit gives a function g
which is obviously lower semi-continuous. Then min g = limn→∞ min gn . Moreover, if
xn is such that gn(xn)=min gn , then any accumulation point x satisfies g(x)=min g.

We can now easily deduce the formula (3) by applying the first assertion of the
observation to the sequence of functions gn(ξ) := 6

n
max(ξ), since r(A)=min g.

(c) Finally, if ξ•, η• ∈ L(�, ∂X•), then the function 6 n
•
(ξ•, η•) is Borel for every n ≥ 1

because, on the one hand, we have, by continuity,

6 n
•
(ξ•, η•)= sup

t∈[1,n]∩Q
6

x0
•
(cx0
• ,ξ•
(t), cx0

• ,η•
(t)),

and, on the other hand, since cx0
• ,ξ•
(t), cx0

• ,η•
(t) ∈ L(�, X•), the function 6 x0

•
(cx0
• ,ξ•
(t),

cx0
• ,η•

(t)) is Borel by Lemma 3.2. Consequently, if D ⊆ L(�, ∂X•) and D′ ⊆ L(�, A•)
are fundamental families, then we have

rad(A•)= lim
n→∞

min
ξ•∈D
{max
η•∈D′

6 n
•
(ξ•, η•)},

and this shows that the function is Borel.
We now undertake the proof of (ii). We will also perform this proof in three steps.
(a) By hypothesis, for each ω ∈�, the set Aω has a unique circumcenter cAω [8,

Theorem II.9.13 and Proposition II.2.7]. Therefore, the section cA• ∈ S(�, ∂X•) is well
defined.
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(b) Observe the following general fact. If (�, Y•) is a Borel field of compact spaces
and { f n

•
}n≥1 ⊆ L(�, C(Y•)) is a sequence of continuous morphisms which is increasing

(i.e., for each ω ∈�, n ≥ 1, it satisfies f n+1
ω ≥ f n

ω ), bounded (i.e., for each ω ∈� it
satisfies supn≥1 f n

ω <∞), and such that f• := limn→∞ f n
•

satisfies | f −1
ω ({min fω})| = 1

for all ω ∈�, then f −1
•
({min f•}) ∈ L(�, Y•). Indeed, if D ⊆ L(�, Y•) is a fundamental

family, we have min f n
•
= infx•∈D f•(x•) ∈ L(�, R), and therefore ( f n

•
)−1({min f n

•
}) is a

Borel field of closed subsets (see step (ii) of the proof of Proposition 2.3). Consequently,
we can pick a Borel section xn

•
in it and, by the observation made in the second step of (i),

f −1
•
({min f•})= limn→∞ xn

•
is Borel.

(c) Let D ⊆ L(�, ∂X•) and D′ ⊆ L(�, A•) be fundamental families. We have seen that

rad(A•)= lim
n→∞
{min
ξ•∈D
{max
η•∈D′

6 n
•
(ξ•, η•)}} = min

ξ•∈D
{ lim
n→∞
{max
η•∈D′

6 n
•
(ξ•, η•)}}.

Define gn
•
(ξ•) :=maxη•∈D′ 6

n
•
(ξ•, η•). We have gn

•
∈ L(�, C(∂X•)), and observe that the

sequence of morphisms {gn
•
}n≥1 is increasing, bounded, and that

g• := lim
n→∞

gn
•
∈ L̃(�, F(∂X•, R))

is such that
g−1
ω ({min(gω)})= {cAω } for each ω ∈�

because min gω = r(Aω) and cAω is unique. Therefore, by step (b), we obtain cA• ∈

L(�, ∂X•). 2

3.2. Limit set at infinity. The goal of this section is to associate a canonical Borel section
ξ• ∈ L(�, ∂X•) with a decreasing sequence {Cn

•
}n≥1 of Borel subfields of convex, closed,

non-empty subsets in a field of proper CAT(0) spaces which satisfies the hypothesis of
‘finite covering dimension’. The section we are looking for is obtained by considering the
circumcenter of the Borel field of limit sets at infinity.

Definition 3.2. Let X be a proper CAT(0) space and {Cn}n≥1 be a decreasing sequence of
convex, closed, non-empty subsets such that

⋂
n≥1 Cn = Ø. Since the space is proper, this

assumption is equivalent to the fact that limn→∞ d(x, πCn (x))=∞ for every x ∈ X . For
x ∈ X , we consider

L := {πCn (x)}n≥1 ∩ ∂X = {accumulation points of {πCn (x)}n≥1},

where the closure is taken relative to the conic topology on X . Since the projection on a
convex set does not increase the distance, this set is independent of the chosen point x . We
call this set L the limit set at infinity of the given sequence of subfields.

First, we show that this definition is independent of the choice of x ∈ X .

LEMMA 3.5. Let X be a proper CAT(0) space and {Cn}n≥1 as above. Then we have
diam Lx ≤ π/2 with respect to the angular metric.

Proof. By [8, Proposition II.2.4 (3)], we have

6
πCn (x)(x, πCm (x))≥ π/2
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if Cm $ Cn and n is large enough so that x /∈ Cn . In particular, we have
6
πCn (x)(x, πCm (x))≥ π/2, and thus

6 x (πCn (x), πCm (x))≤ π/2

if m > n are large enough so that x /∈ Cn and Cm $ Cn . Consider now any ξ, ζ ∈ Lx ⊆ ∂X
as well as two subsequences {πCnk

(x)}k≥1 and {πCmk
(x)}k≥1 such that πCnk

(x)→ ξ and
πCmk

(x)→ ζ for k→∞. By [8, Proposition II.9.16], we conclude that

6 (ξ, ζ )≤ lim inf
k→∞

6 x (πCnk
(x), πCmk

(x))≤ π/2

if mk > nk are as above. 2

The topological condition on X needed to ensure the uniqueness of the circumcenter of
a limit set at infinity is the following.

Definition 3.3. The order of a family E of subsets of a set X is the largest integer n such
that the family E contains n + 1 subsets with a non-empty intersection, or ∞ if no such
integer exists. If X is a metrizable space, it is possible to define the covering dimension
(also called the Čech–Lebesgue dimension) dim(X) by the following three steps.
(i) dim(X)≤ n if every finite open cover of X has a finite open refinement of order ≤n.
(ii) dim(X)= n if dim(X)≤ n and the inequality dim(X)≤ n − 1 does not hold.
(iii) dim(X)=∞ if the inequality dim(X)≤ n does not hold for any n.
We also define dimC (X) := sup{dim(K ) | K ⊆ X compact} and refer to [19, Ch. 7] for the
properties of a covering dimension and some equivalent definitions.

Remark 3.2. Some authors refer to dimC (X) as the geometric dimension of X (see,
e.g., [12]). Note that a CAT(0) space X such that dimC (X)= 0 is a singleton, and if it
satisfies dimC (X)= 1, it is an R-tree.

THEOREM 3.3. [23, Theorem 1.7 and Proposition 1.8]
(i) If X is a proper CAT(0) space, then the inequality dimC (∂X, 6 )≤ dim(X)− 1 holds.
(ii) If Y is a complete CAT(1) space such that dimC (Y ) <∞ and diam(Y )≤ π/2,

then there exists a constant δ > 0 which only depends on dimC (Y ), and such that
the inequality rad(Y )≤ π/2− δ < π/2 holds. In particular, there exists a unique
circumcenter cY for Y [8, Proposition II.2.7].

Consequently, the limit set at infinity of a decreasing sequence {Cn}n≥1 as above has
a unique circumcenter. Indeed, if L ⊆ ∂X is the limit set at infinity of such a sequence,
we have diam(L)≤ π/2 by Lemma 3.5. Since (∂X, 6 ) is a complete CAT(1) space [8,
Theorem II.9.13], the convex hull of L is such that diam(co(L))= diam(L)≤ π/2 [33,
Lemma 4.1]. By hypothesis and Theorem 3.3(i), we have dimC (∂X) <∞, and thus
dimC (co(L)) <∞. This allows us to apply Theorem 3.3(ii) to the complete CAT(1)
space co(L) and to conclude that rad(L)≤ rad(co(L)) < π/2 and that L has a unique
circumcenter.

PROPOSITION 3.1. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper
CAT(0) spaces with finite covering dimension, and {Cn

•
}n≥1 be a sequence of Borel

subfields of convex, closed, non-empty subsets which satisfies, for every ω ∈�, Cn
ω ⊇ Cn+1

ω

for every n ≥ 1 and
⋂

n≥1 Cn
ω = Ø.
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(i) The subfield L• of ∂X•, where, for every ω ∈�, Lω is the limit set at infinity of the
sequence {Cn

ω}n≥1, is Borel.
(ii) The section ξ• := cL• is Borel.

Proof. (i) Fix a section x0
•
∈ L(�, X•). By definition, we have

Lω = {πCn
ω
(x0
ω)}n≥1 ∩ ∂Xω for every ω ∈�,

but {πCn
•
(x0
•
)}n≥1 is a Borel subfield of X • since πCn

•
(x0
•
) ∈ L(�, X•) for every n ≥ 1.

Consequently, since X • is compact, the intersection of this Borel subfield with ∂X• is Borel
by Proposition 2.3. We conclude that L• is a Borel subfield of ∂X•, using Remark 2.3(v).

(ii) This follows directly from (i) and the fact that rad(Lω) < π/2 for every ω ∈�, using
Theorem 3.2. 2

Remark 3.3. The previous results also hold for a generalized sequence {Cα
•
}α∈R indexed

by R, provided we have the following condition: Cβ
ω =

⋂
α<β Cα

ω for every ω ∈� and

β ∈ R. The limit set at infinity is in this case given by Lω = {πCαω (x)}α∈R ∩ ∂Xω, and the
‘continuity’ condition ensures that if D is a dense subset of R, then

Lω = {πCαω (x)}α∈D.

This is used to prove that L• is a Borel subfield.

3.3. Adams–Ballmann decomposition. We now turn our attention to the Adams–
Ballmann decomposition of a proper CAT(0) space. First, we recall the following key
definition.

Definition 3.4. Let X be a proper CAT(0) space. A point ξ ∈ ∂X is called a flat point if
the associated Busemann function bξ is an affine function. Note that the set of flat points,
denoted by F , is Isom(X)-invariant.

The boundary of a product X × Y is isometric (when endowed with the angular metric)
to the spherical join of the boundaries, i.e., ∂X ∗ ∂Y (see [8, Definition I.5.13] for the
definition of the spherical join of two metric spaces and [8, Corollary II.9.11] for the proof
of the result). The following theorem states the existence of what we will call the Adams–
Ballmann decomposition of a CAT(0) space.

THEOREM 3.4. [1, p. 188] Let X be a proper CAT(0) space. Then there exists a real
Hilbert space E, a complete CAT(0) space Y and an isometric map i : X→ Z = Y × E
such that:
(i) i(F)= ∂E ∩ ∂(i(X))⊆ ∂Y ∗ ∂E ' ∂Z and the set of directions {v(i(ξ)) | ξ ∈ F}

generates H as a real Hilbert space;
(ii) the set Y ′ := πY (i(X)) is convex and dense in Y ; and
(iii) any isometry γ : X→ X extends uniquely in γ̃ : Z→ Z and γ̃ = (γ̃Y , γ̃E ).

It follows from this theorem that the angular and the conic topology on F coincide, that
the geometry on F is spherical and that F is closed and π -convex in ∂X . In order to adapt
this result in the context of Borel fields of proper CAT(0) spaces, we have to observe the
following.
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Remark 3.4.
(i) Let X be a proper CAT(0) space. If D is a dense subset of F , then E is generated

by {v(i(ξ)) | ξ ∈ D}. If F = Ø, then the decomposition is trivial with E = {∗} and
Y = X .

(ii) A careful analysis of the proof of Theorem 3.4 shows that one can construct the
decomposition such that the origin of E is πE (i(x0)), where x0 ∈ X is any chosen
point.

LEMMA 3.6. Let (�, A) be a Borel space and (�, X•) be a Borel field of proper CAT(0)
spaces. Then the subfield F• of ∂X•, defined by Fω, the set of flat points of ∂Xω for every
ω ∈�, is a Borel subfield of closed subsets.

Proof. We start by considering a proper CAT(0) space X and x0 a base point of X . For
every positive integer R, we introduce the function 1R

: C(X)→ R, defined by

1R( f ) := sup
z,z′∈B(x0,R)

sup
t∈[0,1]

| f (γz,z′(t))− (1− t) f (z)− t f (z′)|,

where we recall that γz,z′ is the geodesic from z to z′. It is straightforward to check that for
every positive integer R, the function 1R is continuous, when C(X) is endowed with the
uniform convergence on compact sets. Note that if D ⊆ X is a dense subset and f ∈ C(X),
we will obtain the same value for 1R( f ) by taking the supremum on B(x0, R) ∩ D and
[0, 1] ∩Q because in a CAT(0) space a geodesic varies continuously with its endpoints (see
[8, Proposition II.1.4]). We will use the functions 1R , which measure the lack of affinity
of functions in C(X) on the balls B(x0, R), to show that (�, F•) is a Borel subfield. We
fix x0

•
∈ L(�, X•) and we define 1•R ∈ S(�, C(∂X•)) by

1ω
R
: ∂Xω → R

ξ 7→ 1R(bξ,x0
ω
).

Indeed, 1ωR is continuous because it is the restriction of 1R
ω to ∂Xω. By definition of

F•, we have that F• =
⋂

R≥1(1•
R)−1({0}), so by Proposition 2.2, it remains to show that

(1•
R)−1({0}) is a Borel subfield. By the second step of the proof of this same proposition,

it is enough to show that
1•

R
∈ L(�, C(∂X•)).

So, we only have to check that 1•R(ξ•) is a Borel function whenever ξ• ∈ L(�, ∂X•).
For every R ≥ 1, we pick a fundamental family D R of the Borel subfield B(x0

•
, R) of

X•. Note that

1•
R(ξ•)= sup

z•,z′•∈D R
sup

t∈[0,1]∩Q
|bξ•,x0

•
(γz•,z′•(t))− (1− t)bξ•,x0

•
(z•)− tbξ•,x0

•
(z′
•
)|,

which is therefore Borel because the evaluation bξ•,x0
•

on Borel sections of X• is Borel
by definition, and since γz•,z′•(t) ∈ L(�, X•) for every t ∈ [0, 1] (see the comment after
Definition 3.1). 2

PROPOSITION 3.2. Let (�, A) be a Borel space and (�, X•) be a Borel field of proper
CAT(0) spaces. For every ω ∈�, we consider the Adams–Ballmann decomposition
iω : Xω→ Zω = Yω × Eω. Then there exist Borel structures L(�, Y•) and L(�, E•) on

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/etds.2012.122
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:05:36, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/etds.2012.122
https:/www.cambridge.org/core


42 M. Anderegg and Ph. Henry

the fields (�, Y•) and (�, E•) such that i• : (�, X•)→ (�, Z•) is an isometric morphism,
where the Borel structure on (�, Z•) is given by L(�, Y•)× L(�, E•). It can easily be
seen to be a Borel structure on (�, Z•).

Proof. We start by defining the Borel structure on E•. Fix x0
•
∈ L(�, X•). By

Remark 3.4(ii), we can choose the decomposition such that the origin of Eω is πEω (iω(x
0
ω))

for every ω ∈�. We pick D := {ξn
•
}n≥1 ⊆ L(�, ∂X•), a fundamental family of the

Borel subfield F•. By Remark 3.4(i), the sets {v(iω(ξn
ω))}n≥1 are total in Eω for every

ω ∈�. Moreover, if we denote by 〈·, ·〉ω the scalar product on Eω, we have that the
map �→ R, ω 7→ 〈v(iω(xωin)), v(iω(ξm

ω ))〉ω = cos(6 (ξn
ω, ξ

m
ω )), is Borel, since 6 (ξ•, η•)

is Borel for every ξ•, η• ∈ L(�, F•)⊆ L(�, ∂X•) (see Lemma 3.4). So, the family
{ξn
•
}n≥1 ⊆ S(�, E•) is a fundamental family in the sense of Dixmier [15, p. 145], and

so it generates a Borel structure

L(�, E•) := {e• ∈ S(�, E•) | 〈e•, v(i•(ξ
n
•
))〉• is a Borel function for all n ≥ 1}.

This is a structure in a Hilbert sense, but it is easy to see that it is a particular case of
a Borel structure on a field of metric spaces. We claim that πE•(i•(x•)) ∈ L(�, E•) for
every x• ∈ L(�, X•). We know that iω(ξn

ω) ∈ ∂Eω ⊆ ∂Yω ∗ ∂Eω = ∂Zω for every n ≥ 1
and ω ∈�. Thus, by the classical enumeration of Busemann functions in a product and in
a Hilbert space (keep in mind here that iω(x0

ω) is the origin of the Hilbert space Eω), we
have

〈πE•(i•(x•)), v(i•(ξ
n
•
))〉• =−bi•(x0

• ),i•(ξn
• )
(i•(x•))=−bx0

• ,ξ
n
•
(x•).

The last function being Borel (see Remark 3.1), we have therefore proven the claim.
Now we can deal with the structure on Y•. Let D = {xn

•
}n≥1 be a fundamental family of

the field X•. Then {πYω (iω(x
n
ω))}n≥1 is dense in Yω for every ω ∈�. Moreover,

dY•(πY•(i•(x
n
•
)), πY•(i•(x

m
•
)))=

√
dX•(xn

•
, xm
•
)2 − dY•(πY•(i•(xn

•
)), πY•(i•(xm

•
)))2

is a Borel function for every n, m ≥ 1. By Example 2.1(v), the family {πY•(i•(x
n
•
))}n≥1

defines a Borel structure L(�, Y•) on (�, Y•). As before, we can easily show that if x• ∈
L(�, X•), then dY•(πY•(i•(x

n
•
)), πY•(i•(x•))) is Borel for every n ≥ 1, i.e., πY•(i•(x•)) ∈

L(�, Y•).
Therefore, there exist Borel structures L(�, Y•) and L(�, Z•) such that i•(x) ∈

L(�, Y•)× L(�, Z•) for every x• ∈ L(�, X•), i.e., i• is a morphism. 2

There are two important subsets of F that are used in the proof of Theorem 1.1: the
subset A := {ξ ∈ F | −ξ ∈ F}, which is well defined since the geometry of F is spherical,
and P := {ξ ∈ F | 6 (ξ, A)= π/2}. Observe that these subsets are closed and π -convex,
that if we decompose X with respect to A then we have X ' Y × Rn and that P = Ø if
and only if A = F .

LEMMA 3.7. Let (�, A) be a Borel space and (�, X•) be a Borel field of proper CAT(0)
spaces. Then the subfields A• and P• of F• are Borel.

Proof. Recall that Fω ⊆ ∂Eω and observe that ∂Eω can be interpreted (topologically) as
the unit sphere of E•. From Proposition 3.2, we have that F• is a Borel subfield of ∂E•.
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Since Eω is a Hilbert space, we can consider −Fω ⊆ ∂Eω ⊆ Eω, and it is easy to be
convinced that Fω ∩ (−Fω)= Aω. As −F• is obviously a Borel subfield of compact
subsets of E•, then A• is a Borel subfield of F• by Proposition 2.3. Thus, 6 •(·, A•) ∈
L(�, C(F•)). Therefore, by the second step of the proof of this same proposition,
P• = 6 •(·, A•)−1({π/2}) is also a Borel field of closed subsets of F•. 2

4. Actions of equivalence relations
4.1. Definition. In the following, [R] denotes the full group of R, i.e., the group of
Borel automorphisms of � whose graphs are contained in R.

Definition 4.1. Let (�, A) be a standard Borel space, (�, X•) be a Borel field of metric
spaces and R⊆�2 be a Borel equivalence relation. An action of R on (�, X•) is given
by a family of bijective maps indexed by R, denoted by {α(ω, ω′) : Xω→ Xω′}(ω,ω′)∈R,
with the following conditions.
(i) (Cocycle rule). For every (ω, ω′), (ω′, ω′′) ∈R, α(ω′, ω′′) ◦ α(ω, ω′)= α(ω, ω′′).
Observe that condition (i) implies the existence of a natural action of [R] on
S(�, X•): if g ∈ [R] and x• ∈ S(�, X•), we can define a new section gx• by (gx•)ω =
α(g−1ω, ω)xg−1ω. As we are in the Borel context, we will also require the following.
(ii) The set L(�, X•)⊆ S(�, X•) is invariant under the action of [R].
We denote such an action by α :R y (�, X•).

If, moreover, for all (ω, ω′) ∈R, the map α(ω, ω′) is continuous (respectively isometric
or linear), we say that R acts by homeomorphisms (respectively by isometries or linearly).

4.2. Basic properties. If R acts by homeomorphisms, it is straightforward to see, using
Lemma 2.2, that condition (ii) is equivalent to g(D)⊆ L(�, X•) for all g ∈ [R], for any
fundamental family D ⊆ L(�, X•). By using the classical techniques of decompositions
and gluings, it is also possible to prove that it is enough to check Condition 4.1(ii) for every
element of a countable group G ⊆ [R] such that R=RG . Observe also that [R] acts on
the set of subfields of (�, X•) in total analogy with its action on sections.

PROPOSITION 4.1. Let (�, A, µ) be a standard probability space, (�, X•) be a Borel
field of metric spaces and R⊆�2 be a Borel equivalence relation which acts on (�, X•)
by homeomorphisms. Then [R] acts on the set of Borel subfields of (�, X•). Moreover, if
µ is quasi-invariant under R, then [R] acts on L(�, X•) and, more generally, it acts on
the equivalence classes of Borel subfields of (�, X•).

Proof. Let A• be a Borel field, �′ := {ω ∈� | Aω 6= Ø} its base and g ∈ [R]. To show
that the field g A• defined by (g A•)ω := α(g−1ω, ω)Ag−1ω is Borel, we observe that
{ω ∈� | (g A•)ω 6= Ø} = g�′ ∈A, and that if D ⊆ L(�′, A•) is a fundamental family of
A•, then g(D)⊆ L(g�′, g A•) satisfies Condition 2.3(ii). Under the hypothesis of quasi-
invariance of µ, if A• =µ-a.e. B•, then g A• =µ-a.e. gB•, since the set {ω ∈� | (g A•)ω =
(gB•)ω} = g{ω ∈� | Aω = Bω} is of null measure. 2

Definition 4.2. Under the hypothesis of Proposition 4.1, a section x• ∈ L(�, X•) is
called R-invariant (or simply invariant when the relation can be clearly identified) if
α(ω, ω′)xω = xω′ for all (ω, ω′) ∈R. We say that a section x• is almost R-invariant
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if there exists a Borel set A ∈A with µ(A)= 1 such that the equality holds for all
(ω, ω′) ∈R ∩ A2. Mutatis mutandis, we define R-invariant and almost R-invariant Borel
subfields. We will also use the terminology (almost) α-invariant whenever it is necessary
to be more precise.

Remark 4.1. It is straightforward to check that a Borel section x• (or a Borel subfield)
is (almost) R-invariant if and only if it is (almost) [R]-invariant. Therefore, the almost
invariance of a Borel section x• (or of a Borel subfield) is equivalent to the invariance of
its class [x•] ∈ L(�, X•). The existence of a countable group generating R [21] allows
us to always assume that the set A ∈A in Definition 4.2 is invariant. On the other hand,
if (�, Y•) is an invariant Borel subfield, then the action on (�, X•) induces an action on
(�, Y•). Putting this all together shows that, in the measure context, we can always assume,
without losing generality, that an almost-invariant Borel subfield is invariant.

We now show that an action of R on a Borel field of proper metric spaces (�, X•)
naturally gives rise to an action on the previously constructed Borel field (�, C(X•)).

LEMMA 4.1. Let (�, A) be a standard Borel space, (�, X•) be a Borel field of proper
metric spaces and R⊆�2 be a Borel equivalence relation. Suppose that an action
α :R y (�, X•) by homeomorphisms is given. Then there exists an induced action
α̃ :R y (�, C(X•)) by linear homeomorphisms.

Proof. The natural way to define the action is to write, for (ω, ω′) ∈R,

α̃(ω, ω′) : C(Xω) → C(Xω′)
fω 7→ fω ◦ α(ω′, ω).

It is clear that α̃(ω, ω′) is a homeomorphism (with respect to the topology of uniform
convergence on compact sets) because a homeomorphism between Hausdorff spaces
preserves compact sets. The cocycle rule is obviously satisfied, so it only remains to
check condition (ii) of Definition 4.1, i.e., that if f• ∈ L(�, C(X•)) and g ∈ [R], then
g f• ∈ L(�, C(X•)). To do this, we fix x• ∈ L(�, X•), and we observe that

(g f•)ω(xω)= fg−1ω(α(ω, g−1ω)(xω))= fg−1ω(g
−1(x•)g−1ω).

Consequently, we have g f•(x•)= ( f•(g−1x•)) ◦ g−1, and this shows that the evaluation
(g f•)(x•) is Borel because g−1x• ∈ L(�, X•) (since α is an action) and f•(g−1x•) is Borel
by definition of the Borel structure of the Borel field (�, C(X•)). So, we can conclude that
g f• ∈ L(�, C(X•)). 2

Moreover, if the field is a field of CAT(0) spaces, then the action extends to (�, ∂X•).

LEMMA 4.2. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper unbounded
CAT(0) spaces, R⊆�2 be a Borel equivalence relation and α :R y (�, X•) an action
by isometries. Then there exists an induced action α̃ :R y (�, X •) by homeomorphisms
and (�, ∂X•) is invariant.

Proof. Let X1 and X2 be two proper unbounded CAT(0) spaces and γ : X1→ X2 an
isometry. If we think of the boundary as the quotient of the geodesic rays, then the
extension γ̃ : X1→ X2 is purely geometric and is a homeomorphism such that γ̃ (∂X1)=

∂X2 [8, Corollary II.8.9]. As we used the notion of Busemann functions to define the Borel
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structure of the field of boundaries, we need to transpose the situation to this context. If
xi ∈ X i are base points of X i for i = 1, 2, then the map

γ̃0 : C0(X1) → C0(X2)

f 7→ γ̃0( f ) : y 7→ f (γ−1 y)− f (γ−1x2)
(4)

is a homeomorphism and it is such that the diagram

C0(X1) C0(X2)

X1 X2

//
γ̃0

//
γ?�

OO

i1

?�

OO

i2

commutes. It is easy to check that the two extensions coincide and that if ξ ∈ ∂X1, then
γ̃0(bx1,ξ )= bx2,γ̃ (ξ).

Now let us turn to the case of fields. Given a fixed section x0
•
∈ L(�, X•), we use (i) to

define, for each (ω, ω′) ∈R,

α̃(ω, ω′) : C0(Xω) → C0(Xω′)
f 7→ α(ω, ω′)( f ) : x 7→ f (α(ω′, ω)x)− f (α(ω′, ω)x0

ω′
).

This formula defines an action by homeomorphisms. We proceed as in the proof of
Lemma 4.1: the verification of the cocycle rule is straightforward, and an easy computation
shows that for every x• ∈ L(�, X•), g ∈ [R] and f• ∈ L(�, C0(X•)), we have

(g f•)(x•)= ( f•(g
−1x•)− f•(g

−1x0
•
)) ◦ g−1.

Thus, g f• is Borel. 2

4.3. Amenability. In this section, we define the amenability for an equivalence relation
in terms of actions on Borel fields of Banach spaces, and we also show that our definition
is equivalent to the one given originally by Zimmer [37].

Definition 4.3. Let (�, A) be a Borel space and (�, B•) be a field of Banach spaces
on �. Such a field is called Borel if there exists a Borel structure on (�, B•), which
is defined in the same way as in Definition 2.1 with the additional assumption that
L(�, B•)⊆ S(�, B•) is a vector space. This definition can be easily seen to be equivalent
to the ones given in [20, I, p. 77] or [4, p. 177], essentially by using Lemma 2.1.

We can consider for each ω ∈� the topological dual B∗ω, which is not separable in
general. Thus, the field (�, B∗

•
) is unable to satisfy Definition 4.3, but we still have the

following result.

LEMMA 4.3. Let (�, A) be a Borel space and (�, B•) be a Borel field of Banach spaces.
Define

L̃(�, B∗
•
) := {ϕ• ∈ S(�, B∗

•
) | ω 7→ 〈ϕω, xω〉 := ϕω(xω) is Borel

for every x• ∈ L(�, B•)}.

Then L̃(�, B∗
•
) is a vector space which satisfies the following properties.
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(i) For every ϕ• ∈ L̃(�, B∗
•
), the function ω 7→ ‖ϕω‖ω is Borel.

(ii) The space L̃(�, B∗
•
) is closed under pointwise limits and Borel gluings.

Moreover, if R⊆�2 is an equivalence relation and α :R y (�, B•) is a linear isometric
action, then the fiberwise adjoint maps given by α∗(ω, ω′) := (α(ω′, ω))∗ : B∗ω→ B∗

ω′

satisfy:
(iii) the cocycle rule α∗(ω

′, ω′′) ◦ α∗(ω, ω
′)= α∗(ω, ω

′′), for every (ω, ω′),

(ω′, ω′′) ∈R; and
(iv) g(L̃(�, B∗

•
))⊆ L̃(�, B∗

•
) for every g ∈ [R].

Thus, α∗ is an action in the sense of Definition 4.1 if the field is a Borel field of metric
spaces.

Proof. Properties (i) and (ii) are proved in [4, Definition A.3.6 and Lemma A.3.7, p. 179],
property (iii) is obvious and property (iv) can be proved exactly as in Lemma 4.1. 2

Definition 4.4. Let (�, A, µ) be a standard probability space and (�, B•) be a Borel field
of Banach spaces.
(i) Define

L1(�, B•) :=

{
x• ∈ L(�, B•)

∣∣∣∣ ‖x•‖1 := ∫
�

‖xω‖ω dµ(ω) <∞

}
,

and L1(�, B•) := L1(�, B•)/=µ-a.e.. Then L1(�, B•) endowed with the norm
‖ · ‖1 is a separable Banach space.

(ii) Define

L̃∞(�, B∗
•
) := {ϕ• ∈ L̃(�, B∗

•
) | ‖ϕ•‖• : ω 7→ ‖ϕω‖ω ∈ L∞(�, R)},

and L̃∞(�, B∗
•
) := L̃∞(�, B∗

•
)/=µ-a.e.. Then L̃∞(�, B∗

•
) is a Banach space when

it is endowed with the norm ‖ · ‖∞, where ‖ϕ•‖∞ is the ∞-norm of the function
‖ϕ•‖•.

For a detailed proof of these two assertions, which are close to that of the trivial field case,
we refer to [5] or [27].

In this context, the following result holds.

PROPOSITION 4.2. [4, Proposition A.3.9, pp. 179–180] Let (�, A, µ) be a standard
probability space and (�, B•) be a Borel field of Banach spaces. Then there exists an
isometric isomorphism between L̃∞(�, B∗

•
) and (L1(�, B•))∗ given by

L̃∞(�, B∗
•
) → (L1(�, B•))∗

[ϕ•] 7→ 〈[ϕ•], ·〉 : L1(�, B•) → R
[x•] 7→ 〈[ϕ•], [x•]〉 =

∫
�
〈ϕω, xω〉 dµ(ω).

When B is a Banach space, we use B≤1 (respectively B=1) to denote the closed ball
(respectively sphere) of radius 1. If A is a subset of B∗, then A

w∗
is the closure of A with

respect to the weak-∗ topology.

Definition 4.5. [4, Definition 4.2.1, p. 97] Let (�, A, µ) be a standard probability space
and (�, B•) be a Borel field of Banach spaces. We say that (�, C•) is a Borel subfield
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of convex, weak-∗ compact subsets of the field of closed balls of radius 1 in the duals
(�, B∗

•,≤1) if there exists a family of sections {ϕn
•
}n≥1 ⊆ (L̃∞(�, B∗

•
))≤1 such that

Cω = co({ϕn
ω}n≥1)

w∗
for µ-almost every ω ∈�,

where the closure of the convex hull is taken relatively to the weak-∗ topology. Note that
the set L̃(�, C•) := {[ϕ•] ∈ L̃∞(�, B∗

•
) | ϕω ∈ Cω for µ-almost every ω ∈�} is a convex

weak-∗ closed subset of the unit ball (L̃∞(�, B∗
•
))≤1 [4, Proposition 4.2.2, p. 97].

Remark 4.2. It can be shown [5] that there exists �′ ∈A of full measure and a family of
metrics {d∗ω}ω∈�′ such that L̃∞(�′, B∗

•
) is a Borel structure on the field (�′, (B∗

•,≤1, d∗
•
)).

A Borel subfield of convex, weak-∗ compact subsets is then a Borel subfield in the sense
of Definition 2.3.

Historically, Zimmer was the first to introduce the notion of amenability for an
equivalence relation. His definition can be formulated as a particular case of the following
definition; it corresponds to the case of a trivial field. To show that Zimmer’s definition
corresponds to the case of a trivial field of Banach spaces, the only thing to check is the
equivalence between an action of an equivalence relation on a trivial field (�, B) and a
Borel cocycle from R to Isom(B). This can easily be done using [38, Corollary 1.2].

Definition 4.6. Let (�, A, µ) be a standard probability space and R⊆�2 an equivalence
relation which preserves the class of µ.

We say that R is amenable if for every action α of R by linear isometries on a Borel
field of Banach spaces (�, B•), and almost α∗-invariant Borel subfield of convex, weak-∗
compact subsets (�, C•) of (�, B∗

•,≤1), there exists a Borel section ϕ• ∈ L̃(�, B∗
•
) which

is almost R-invariant and such that ϕω ∈ Cω for almost every ω ∈�.

We will now prove that hyperfiniteness µ-almost everywhere implies amenability in the
sense of Definition 4.6. Since Zimmer’s amenability is equivalent to almost hyperfiniteness
(see [11, 2]), this would show the equivalence between all definitions. The reader familiar
with the notion of measurable groupoids could also consult [4, Theorem 4.2.7].

Since we are in the measure theoretic context, we can suppose by hypothesis that there
exists a Borel action Z y� such that RZ =R. By analogy with [38, Theorem 2.1], we
can define an isometric representation of Z on L1(�, B•) by

(T (g)x•)ω =
dg∗(µ)

dµ
(ω) · α(g−1ω, ω)xg−1ω for every g ∈ Z, x• ∈ L1(�, B•),

where dg∗(µ)/dµ ∈ L1(�, R) is the Radon–Nikodym derivative. The adjoint
representation T∗ := (T−1)∗ acts on (L1(�, B•))∗ ' L̃∞(�, B∗

•
). Given ϕ• ∈

L̃∞(�, B∗
•
), it is straightforward to see that

(T∗(g)ϕ•)ω = α∗(g
−1ω, ω)ϕg−1ω.

This means that the adjoint representation is given by the fiberwise adjoint action.
Consequently, Z acts by homeomorphisms on L̃∞(�, B∗

•
) with respect to the weak-∗

topology, and thus on L̃(�, C•), because (�, C•) is supposed to be almost invariant.
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Since Z is amenable, there exists a fixed point [ϕ•], and any representant of the class has
the desired property.

In the following, we will use the amenability in the following particular context.

Example 4.1. Let K be a compact metric space and consider the space C(K )∗
≤1 endowed

with the weak-∗ topology. The map

δ : K → C(K )∗
≤1

x 7→ [δx : f 7→ f (x)]

is a homeomorphism onto its image such that δx ∈ C(K )∗
=1. Since C(K )∗

≤1 is
convex and weak-∗ compact by the Banach–Alaoglu theorem, we have the equality
C(K )∗

≤1 = co({±δx }x∈K )
w ∗

by the Krein–Milman theorem because the extremal points
are {±δx }x∈K . Moreover, the bijection

Prob(K )' {ϕ ∈ C(K )∗
≤1 | ϕ(1)= 1 and for all f ∈ C(K ) ( f ≥ 0⇒ ϕ( f )≥ 0)},

given by the Riesz’s representation theorem, allows us to consider the weak-∗ compact set
of probabilities in the dual, and it is well known that Prob(K )= co({+δx }x∈K )

w ∗
.

Now, if D ⊆ K is a dense subset, then, using the continuity of δ, we obtain C(K )∗
≤1 =

co({±δx }x∈D)
w ∗

and Prob(K )= co({+δx }x∈D)
w ∗

.
If (�, A, µ) is a standard probability space and (�, K•) is a Borel field of compact

metric spaces, then the preceding results and the introduction of the Borel sections
{δx•}x•∈D ⊆ L∞(�, C(K•)∗)≤1 for a given fundamental family D ⊆ L(�, K•) show that
the fields (�, C(K•)∗≤1) and (�, Prob(K•)) are Borel fields of convex, weak-∗ compact
sets in the sense of Definition 4.5. A section π• is Borel if the corresponding section
ϕπ• ∈ L(�, C(K•)∗), i.e., ϕπ•( f•) is Borel for every f• ∈ L(�, C(K•)).

Suppose now that an action by homeomorphisms α :R y (�, K•) is given.
Lemmas 4.1 and 4.3 allow us to define α∗(ω′, ω) := (̃α(ω′, ω)−1)∗.

The field (�, Prob(K•)) is obviously α∗-invariant since if µω′ ∈ Prob(Kω′), then
α∗(ω′, ω)µω′ is the image measure α(ω′, ω)∗(µω′). In particular, if R is amenable, then,
by definition, there exists a Borel section [µ•] ∈ L̃(�, Prob(K•)) which is α∗-invariant.

5. Proof of the main theorem
5.1. Fields of convex sets and invariant sections at infinity. Let (�, A, µ) be a standard
probability space. Given a Borel field (�, X•) of CAT(0) spaces, we introduce the
following notations:

S := {[C•] | [C•] is an invariant class of Borel subfields of non-empty

closed convex subsets},

M := {[C•] ∈ S | (�, C•) is minimal for≤}.

LEMMA 5.1. Let (�, A, µ) be a standard probability space, R an equivalence relation
which quasi-preserves µ, (�, X•) a Borel field of proper metric spaces and an isometric
action α :R y (�, X•).

If {[Cβ
•
]}β∈B is a totally ordered family (i.e., a chain) of S, then there exists a countable

family of indices {βn}n≥1 ⊆ B such that [Cβn+1
•
] ≤ [Cβn

•
] for each n ≥ 1, and such that

C• :=
⋂

n≥1 Cβn
•

satisfies [C•] ∈ S and [C•] ≤ [Cβ
•
] for all β ∈ B.
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Proof. By Theorem 2.1, there exists a countable family of indices {bn}n≥1 ⊆ B such that
the Borel subfield

C• :=
⋂
n≥1

Cbn
•

is such that [C•] ≤ [Cβ
•
], β ∈ B. By setting βn :=min{b1, . . . , bn} (where the minimum

is taken for the induced order by the chain), it follows that C• =
⋂

n≥1 Cβn
•

satisfies our
conditions (the invariance of the class follows from Remark 4.1). 2

THEOREM 5.1. Let (�, A, µ) be a standard probability space, R an ergodic equivalence
relation which quasi-preserves µ and (�, X•) a Borel field of proper unbounded CAT(0)
spaces with finite covering dimension.

If α :R y (�, X•) is an isometric action such that M= Ø, then there exists an almost-
invariant section ξ• ∈ L(�, ∂X•).

Proof. The proof proceeds in two steps.
(i) First, we show that under the hypothesis, there exists a sequence {[Cβn

•
]}n≥1 ⊆ [S]

such that the following conditions hold.
(a) [Cβn+1

•
] ≤ [Cβn

•
] for each n ≥ 1.

(b) [
⋂

n≥1 Cβn
•
] is the class of the empty subfield, i.e., the field A• defined by Aω = Ø,

for every ω ∈�.

By the transposition of Zorn’s lemma, there exists a chain {[Cβ
•
]}β∈B ∈ S without a lower

bound in S. So, by Lemma 5.1 applied to this chain, we conclude that the Borel subfield
[C•] := [

⋂
n≥1 Cβn

•
] is not in S. This means that µ({ω ∈� | Cω 6= Ø}) 6= 1. We then show

that this set is of null measure. By ergodicity, the invariant set {ω ∈� | Cω 6= Ø} is of
measure one or null (see Remark 4.1). Since the first possibility is impossible, we conclude
that [C•] is the class of the empty field.

(ii) Consider the subchain {Cβn
•
}n≥1 and the subfield C• given in (i). There exists�′ ∈A

of measure one such that the inclusion Cβn
ω ⊇ Cβn+1

ω holds and that Cω = Ø for every
ω ∈�′. So, by Proposition 3.1, we can consider the Borel field (�′, L•)≤ (�′, ∂X•)
of limit sets at infinity of the subchain, and this field has a unique Borel section of
circumcenters

ξ• := cL• ∈ L(�′, ∂X•).

To prove the invariance of [ξ•], it is enough to show that (�′, L•) is almost invariant. Recall
that for every ω ∈�′ and x ∈ Xω,

Lω := iω({πCβn
ω
(x)}n≥1) ∩ ∂Xω.

So, we have

α̃(ω, ω′)Lω
α̃ homeo.
= α̃(ω, ω′)iω({πCβn

ω
(x)}n≥1) ∩ ∂Xω′

α̃ ext. of α
= iω′(α(ω, ω′)({πCβn

ω
(x)}n≥1)) ∩ ∂Xω′

α isom.
= iω′({πα(ω,ω′)(Cβn

ω )
(α(ω, ω′)x)}n≥1) ∩ ∂Xω′

inv.
= iω′({πCβn

ω′
(α(ω, ω′)x)}n≥1) ∩ ∂Xω′ = Lω′ . 2
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5.2. R-quasi-invariant sections

Definition 5.1. Let (�, A) be a standard Borel space, R⊆�2 be a Borel equivalence
relation and (�, X•) be a Borel field of metric spaces. Assume that the relation R acts on
(�, X•) by isometries. We say that a section f• ∈ S(�, F(X•)) is R-quasi-invariant (or
simply invariant when the relation can clearly be identified) if there exists c :R→ R such
that

α̃(ω, ω′) fω := fω ◦ α(ω
′, ω)= fω′ + c(ω, ω′) for every (ω, ω′) ∈R. (5)

It can easily be checked that c is a cocycle, i.e., c satisfies c(ω, ω′′)= c(ω, ω′)+
c(ω′, ω′′).

LEMMA 5.2. Let (�, A) be a standard Borel space, R⊆�2 be a Borel equivalence
relation and (�, X•) be a Borel field of proper CAT(0) spaces. Assume that R acts on
(�, X•) by isometries. If f• ∈ L(�, C(X•)) is a quasi-invariant section such that fω is
convex for every ω ∈�, then the following assertions are verified.
(i) The sets

�inf=−∞ := {ω ∈� | inf fω =−∞},

�inf>−∞ := {ω ∈� | inf fω >−∞ and is not attained},

�min := {ω ∈� | inf fω is attained}

are Borel and invariant.
(ii) The subfield ( f• |�min −min( f• |�min))

−1({0}) is a Borel subfield of non-empty
closed and convex sets of (�min, X•), which is R |�min -invariant.

(iii) If we assume that Xω is of finite covering dimension for every ω ∈�inf, and we set
�inf :=�inf=−∞ ∪�inf>−∞, then there exists a section ξ• ∈ L(�inf, ∂X•) which is
R |�inf -invariant.

Proof. (i) The convexity assumption is not necessary to prove this assertion. The section
inf f• is Borel since, by continuity, inf f• = infx•∈D f•(x•), where D is a fundamental
family and thus �inf=−∞ = (inf f•)−1({−∞}). Now we fix x0

•
∈ L(�, X•). Because

f• ∈ L(�, C(X•)), we have

�min =
⋃
R∈N

(inf f• |B(x0
• ,R)
− inf f•)

−1({0}) ∈A,

and thus �inf>−∞ =�\(�inf=−∞ ∪�min) ∈A. The invariance of these sets follows
directly from equality (5).

(ii) Since f• is quasi-invariant, we have min fω =min fω′ + c(ω, ω′), and thus

α̃(ω, ω′)( fω −min fω)= fω′ + c(ω, ω′)−min fω = fω′ −min fω′ .

Consequently, the section f̃• ∈ L̃(�min, C(X•)), defined by f̃ω := fω −min fω, for every
ω ∈�min, is R |�min -invariant and such that ( f̃•)−1({0}) has the required properties.

(iii) If ω ∈�inf>−∞, we define f̃ω := fω − inf fω and Cn
ω := ( f̃ω)−1([0, 1/n]). The

sequence {Cn
•
}n≥1 satisfies the hypothesis of Proposition 3.1, and thus the section of

circumcenters of the limit sets at infinity is R |�inf>−∞ -invariant. If ω ∈�inf=−∞, we
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consider the generalized sequence {Cβ
•
}β∈R, defined by Cβ

ω := f −1
ω (] −∞,−β]), and

construct its field of limit sets at infinity, (�inf=−∞, L•). It is invariant since

α(ω, ω′)Cβ
ω = {α(ω, ω

′)x ∈ Xω′ | fω(x)≤−β}

= {y ∈ Xω′ | fω(α(ω
′, ω)y)≤−β}

= {y ∈ Xω′ | fω′(y)+ c(ω, ω′)≤−β} = Cβ+c(ω,ω′)
ω′

.

Consequently, the section of circumcenters is also R |�inf=−∞ -invariant. We conclude
the proof by gluing the two sections together. 2

The following proposition is an adaptation of [1, Lemma 2.5] and is a key step in the
proof of the main theorem.

PROPOSITION 5.1. Let (�, A) be a Borel space, (�, X•) be a Borel field of proper
CAT(0) spaces and let x0

•
∈ L(�, X•) and (�, B•)≤ (�, ∂X•) be a Borel subfield of

closed sets.
(i) Assume that π• ∈ L(�, Prob(B•)) is fixed. For every ω ∈� and x0

ω ∈ Xω, we define

bω : Xω → R
xω 7→

∫
Bω

bxω (ξ) dπω(ξ),

where, if xω ∈ Xω,
bxω : Bω → R

ξω 7→ bx0
ω,ξω

(xω).

Then b• ∈ L(�, C(X•)) and bω is convex for every ω ∈�.
(ii) If α :R y (�, X•) acts by isometries, such that (�, B•) and π• are invariant, then

the section b• is quasi-invariant.

Proof. (i) A Busemann function is convex, 1-Lipschitz, and so are integrals of such
functions. In particular, bω is convex and continuous for every ω ∈�. Moreover,
by Riesz’s representation theorem, used to define the Borel structure of the field of
probabilities (�, Prob(B•)) (see Example 4.1), the evaluation

b•(x•)=
∫

B•
bx•(ξ) dπ•(ξ)= ϕπ•(bx•)

is Borel since bx• ∈ L(�, C(B•)) for every x• ∈ L(�, X•) (see Remark 3.1).
(ii) This assertion is proved by the following calculation.

(̃α(ω, ω′)bω)(xω′) = bω(α(ω
′, ω)xω′)=

∫
Bω

bx0
ω,ξ
(α(ω′, ω)xω′) dπω(ξ)

(2)
=

∫
Bω
(bα(ω′,ω)x0

ω′
,ξ (α(ω

′, ω)xω′)− bα(ω′,ω)x0
ω′
,ξ (x

0
ω)) dπω(ξ)

α isom.
=

∫
Bω

bx0
ω′
,α(ω,ω′)ξ (xω′) dπω(ξ)

−

∫
Bω

bx0
ω′
,α(ω,ω′)ξ (α(ω, ω

′)x0
ω) dπω(ξ)
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=

∫
Bω

bxω′ (α(ω, ω
′)ξ) dπω(ξ)

−

∫
Bω

bα(ω,ω′)x0
ω
(α(ω, ω′)ξ) dπω(ξ)

π• inv.
=

∫
Bω′

bxω′ (ξ
′) dπω′(ξ

′)−

∫
Bω′

bα(ω,ω′)x0
ω
(ξ ′) dπω′(ξ

′)

= bω′(xω′)− bω′(α(ω, ω
′)x0

ω).

So, the function bω is quasi-invariant with c(ω, ω′)= bω′(α(ω, ω′)x0
ω). 2

5.3. Final proof. We now have the material to undertake the proof of the main theorem.

Proof of Theorem 1.3. Assume that assertion (i) is not satisfied. Theorem 5.1 implies the
existence of an almost-invariant Borel subfield C• of closed convex non-empty subsets
which is minimal for these properties. Without lost of generality, we can assume that
this field is invariant (see Remark 4.1). Let (�, F•) be the Borel subfield of flat points
of (�, ∂C•) and C• ↪→ E• × Y• the Adams–Ballmann decomposition (see Lemma 3.6 and
Proposition 3.2). Let P• be the Borel subfield of ∂C• introduced before Lemma 3.7. Define

�′ := {ω ∈� | Pω 6= Ø},

which is a Borel and invariant subset of �. Since R is ergodic, this set is either of full or
null measure. In the first case, there exists an invariant section

ξ• ∈ L(�, P•)⊆ L(�, ∂C•)⊆ L(�, ∂X).

Indeed, it is proven in [1] that rad(Pω) < π/2 when Pω 6= Ø, and therefore the section
of the circumcenters is Borel (see Theorem 3.2) and invariant. This contradicts the
assumption made at the beginning of the proof.

We can therefore assume that �\�′ is of full measure and we will not lose generality if
we assume that �′ = Ø. Then Cω = Eω × Yω, where Eω is a finite dimensional space and
∂Yω does not contain flat points for all ω ∈�. The Borel field ∂Y• is invariant by property
(iii) of the Adams–Ballmann decomposition in Theorem 3.4. We set

�′′ := {ω ∈� | ∂Yω = Ø},

which is an invariant and Borel subset of � and therefore of full or null measure. Assume
first that it is of full measure. Then (�′′, Y•) is a Borel field of bounded CAT(0) spaces
and therefore the section of the circumcenters cY• ∈ L(�′′, Y•) is Borel and invariant (see
Lemma 3.1). Thus, (�′′, E• × {cY•}) is a Borel subfield of flats of C• (and thus of X•)
which is invariant. Ergodicity obviously implies that the dimension is essentially constant.

So, we can assume that�′′ = Ø. Since the relation is amenable, there exists an invariant
Borel section of probabilities π• ∈ L(�, Prob(∂Y•)). By Proposition 5.1, the section of
convex functions

b• ∈ S(�, F(X•)),

defined, for x0
•
∈ L(�, C•) fixed, by

bω(x)=
∫
∂Yω

bξ,x0
ω
(x) dπω(ξ),
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is such that b• ∈ L(�, C(X•)) and that bω is convex for every ω ∈�. Moreover, it is quasi-
invariant. If we define fω to be the restriction of bω to Cω, then f• ∈ L(�, C(C•)) is again
quasi-invariant. Thus, by Lemma 5.2, the subsets

�inf := {ω ∈� | inf fω is not attained},

�min := {ω ∈� | inf fω is attained}

are invariant Borel subsets of �. By ergodicity, one of it has to be of full measure. Let
us prove that µ(�min)= 1 is not possible. In that case, B• := (b• |�min −min(b• |�min))

−1

({0}) would be an invariant Borel subfield of closed convex subsets and (by minimality of
C•) Bω = Cω would hold for almost every ω ∈�. This would mean that bω is a constant
function and that the points of ∂Yω in the support of πω are flats. This contradicts the
construction of Yω. Therefore, �inf has to be of full measure, but we have shown in
Lemma 5.2 that in this case we can construct an invariant section ξ• ∈ L(�inf, ∂Y•), and
this contradicts the original assumption of the proof. 2

We note in closing that it is very likely that our result might hold for any amenable Borel
groupoid; at least it has been checked for amenable G-spaces (see [5] or [18]).

Our result will be used in two forthcoming articles, one from each author.
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