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Abstract. The paper presents a one-dimensional hydro-mechanical
analysis of rainfall infiltration in a loose volcanic ash and the utilisation
of a factor of safety for the implementation of an early-warning system.
Three different rainy seasons with different rainfall patterns were anal-
ysed . The analysis aims to understand the influence of the antecedent
rainfall on the wetting front, the pore-water pressures and the factor of
safety. The analysis was carried out in the context of a Master project
of the first author at the Laboratory for Soil Mechanics of EPFL.

Keywords: groundwater seepage, unsaturated volcanic ash, rainfall-
induced landslide, infinity slope analysis.

1 Introduction

A shallow rainfall-induced landslide was triggered on 21¢ November 2005 on the
steep slopes of Irazu Volcano, Costa Rica. Three weeks later a second slide took
place. The slides did not cause any casualties or extensive damage to property
but lead to huge indirect costs due to the lose of productivity of local farmers and
industries. Protection measures were already put into place in order to mitigate
the risk but turned out to be ineffective [1].

The two slides were located in a thin layer of volcanic ash resting on a layer
of clay in some places and or pozzolan in others. The volcanic ash was subjected
to seasonal rainfall. The region has a long dry season followed by a short rainy
season. Furthermore, this region is subjected to cyclic variation cause by El Nino.
The study aims to analyse the influence of the different rainfall patterns on the
predisposition of the slope to fail. The analysis is carried out by means of finite
element simulation and infinite slope analysis. The simulation considered the
field measurements of rainfall of three different years with three very different
rainfall patterns.
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2 DMaterial Description

The volcanic ash is a cohesionless poorly graded sand of USCS type SC-SM. It
is composed of 48% of sand and 50% of silt. The grain-size distribution is shown
in figure 1. It has an internal friction angle of 35.5° and a specific gravity of
2.61. The ash is in a very loose state and has a density of 10 kN/m3. It was
deposited by air-fall during the 1963-65 eruption. This deposition mechanism
gave a grading to the deposited material. Boulders are located to the crater and
the ashes further on the hillslopes. The USGS [1] reports a large accumulation
of ash on the upper part of Irazu volcano despite its proximity to the crater.

A testing programme was set up to investigate the hydro-mechanical be-
haviour of the ash [2]. The soil water retention curve (SWRC) was obtained
with a controlled-suction pressure plate apparatus and no hydric hysteresis was
observed. Similar properties were observed on volcanic ash from Italy [4]. The
SWRC was fitted with a van Genuchten model [5] and is shown in Fig. 1. The
model parameters are summarized in table 1.

= Suest (1= Sures) [ ] 1)

where S, is the degree of saturation, Sy, rcs the residual degree of saturation, s
the matric suction and «, n and m the van Genuchten model parameters.

Table 1. The van Genucthen parameters for the volcanic ash
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Fig. 1. Grain-size distribution and soil water retention curve
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The permeability law was derived from the SWRC as suggested in [5] and
shown in Eq. 2. It is a cubic law expressed with the same parameters as the van
Genuchten SWRC. The saturated permeability is reported to be 6.4-1076 m/s.
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where k is the unit permeability and +,, the unit weight of water.

3 Constitutive Model

The material was modelled with the "Advanced Constitutive Model for Environ-
mental Geomechanics’ for unsaturated soil ACMEG-s [6]. It is a critical state
model based set within the generalised effective stress framework [8] and uses
Bishop’s effective stress [7] with the coupling parameter equal to the degree of
saturation [9] (Eq. 3). The main advantages of such a framework are that any
change in effective stress result in changes in strain and a smooth transition
between saturated and unsaturated conditions.

ol = UZ-Et + Sys - di; (3)

where o}; is the effective stress, o7%" the net stress and §;; the Kronecker delta.
ACMEG-s considers two yielding mechanisms (volumetric and deviatoric) and

its yield surface is defined by two yield equations (Eq. 5 and 4). Despite a double

yield function, only a single yield surface exists at any given time (Fig. 2).

,fiso - p/ - p/c *Tiso (4)

d-p
fdev =q— Mp/ 1-0- lOg ,p *Tdev (5)
pc

where p/, is the preconsolidation, d and b material parameters and 75, and 7gey
the deviatoric and isotropic mobilisation factors.

ACMEG-s has a non-associative flow rule for the deviatoric mechanism and
an associative for the volumetric. It has a standard Cambridge type flow rule

(Eq. 6). dy (M—2> (6)
deh) Y

where deb, and de!) are respectively the plastic volumetric and deviatoric strain
increments, « the dilatancy coefficient, M the critical state stress ratios.

ACMEG-s assumes a volumetric strain driven hardening rule (Eq. 7) in which
the compressibility coefficient § is a function of the matric suction (Eq. 8).

P = Do - exp (Beh) (7)
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Fig. 2. ACMEG-s yield surface

B = B0+ §2s (8)

where p.o and p/, are respectively the saturated and unsaturated preconsolidation
pressures, [y the saturated compressibility coefficient and (2 its unsaturated
enhancement coefficient.

The evolution of the preconsolidation pressure is defined by the loading-
collapse curve (LC) and shown in Eq. 9 and 10.

Pe=Deo {1 +7s - In (iﬂ for s > s, (9)
’ S

e

Pe =Dl for s < s (10)

where 7 are material parameters and s, the air-entry suction value.

Table 2. ACMEG-s parameters

Bulk modulus Krey 2.0- 10* kPa
Shear modulus Gres 1.5- 10* kPa
Elastic exponent n 0.5

Friction angle @’ 35.5°
Compressibility Coefficient Bo 9

Dilatancy coefficient alpha 0.8

Material parameter a 0.08
Material parameter b 0.01
Material parameter c 0.08
Material parameter d 2
Initialisation of dev. mech. Tdev 0.2
Initialisation of iso. mech. riso 0.3
LC-curve coefficient Vs 1.6

Compressibility enhancement coefficient {2 0
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The choice of the constitutive model was motivated by its ability of modelling
to model cohesionless material [10]. The model parameters were obtained from an
experimental programme consisting in three suction-controlled oedometer tests
and three saturated triaxial compression tests [2]. The initial conditions reflected
the field observations - loose and at low stresses. The model parameters were
derived from these tests and refined by curve-fitting using a single element Gauss
point routine [11] and are shown in Table 2.

4 One-Dimensional Transient Analysis of Rainfall
Infiltration

The aim of the numerical analysis is to investigate the influence of rainfall pat-
terns on the predisposition of a slope to fail considering both space and time.
Rainfall infiltration is a downward gravity-driven mechanism and may be anal-
ysed with a one dimensional description of the problem [12]. A 6 m deep and
1 m wide ash-filled column is modelled using the finite element programme
LAGAMINE [13,14]. The geometry, mesh and boundary conditions are shown in
Fig. 3. A groundwater table is placed at 4 m depth. The bottom surface of the
column is has a free drainage boundary condition. The boundary conditions are
applied to the surface to prevent water ponding. It aims to replicated the run-
off. The steep slopes prevent any ponding and the run-off water is immediately
evacuated by gravity. The sides of the column impervious. The initial conditions
of the volcanic ash are chosen to replicate the field investigation. The ash has
an initial void ratio of 1.6. In order to analysis the influence of the initial pore-
water pressure, each simulation is run twice with two different initial conditions.
Both have hydrostatic profiles but the second has a cut-off value at -20 kPa of
pore-water pressure. Fig. 3 illustrates these initial conditions.

The daily precipitation data was estimated by extrapolation from the daily
precipitation of the International Airport of Santamaria located 36 km away. The
data was obtained from the NOAA precipitation data base. Due to the unknown
duration of each rainfall, the daily precipitation has been discretized throughout
the day by applying a maximum intensity at midday and nil precipitation at
midnight while conserving the daily precipitation volume. This discretization is
conservative as it favours rainfall infiltration. However, The type of precipitation
is neglected due to the shear size of the data (e.g. drizzle or storms). Furthermore,
it is impossible to predict the local orographic effects in that region [1].

The transient pore-water pressure is obtained for each simulation and a factor
of safety is calculated with the infinite slope theory (Eq. 11). It assumes a slip
surface parallel to the ground surface and neglects the effect of neighbouring
slopes. It takes into account the destabilising effect of weight, the stabilising
effect of matric suction and the angle of the slope. The use of the this factor of
safety for the implementation of an early-warning system is fully discussed in
[11]. A 49° slope is used for all simulations.

d + (vH cos? 0 + Sy s)

FS =
vz sinf cosf

(11)
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where ¢’ is the intercept cohesion, ¢’ the shear strength angle, v the unit weight
of the soil, z the depth of the point considered in the analysis, # the angle of the
slope surface.

Pore-water pressure
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Fig. 3. Geometry, mesh, boundary and initial conditions of the one dimensional
analysis

The ash filled column replicates the infiltration process of a 49° slope. The
simulation were run as fully coupled meaning that wetting-induced strain was
permitted. Four depth are analysed (0.5, 1.0, 1.5 and 2.0 m) and shown in Fig.
4, 5 and 6. The term duration refers to the number of days with some rainfall
rather than the actual duration of a rainfall event.

4.1 2005 Rainy Season

The rainy season of year 2005 is simulated using the rainfall pattern shown in
Fig. 4a. The cumulative rainfall is 1200 mm and most of it occurred in September
and October. Very few days in these two month did not have any rain and the
maximum daily precipitation was 56 mm/day. The matric suction and the factor
of safety are shown in Fig. 4b and c.
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Fig. 4. Rainfall, pore-water pressure and factor of safety for the rainy season 2005

The first few days are subjected to small intensity long duration rainfalls
which rule out any influence of the initial conditions after twenty days. The
matric suction profiles in the ground are as from then the same. By the end of
August, the matric suction is 15 kPa at 2 m depth and 28 kPa at 0.5 m depth
and the factors of safety respectively 1.26 and 4.30. The early September showers
cause the matric suction and the factors of safety to drop and the rate of drop is
more significant at shallow depths. The matric suctions are 13 kPa at all depth
while the factor of safety is graded from 2.95 at 0.5m to 1.16 at 2 m. For the
following month, the rainfalls are uniform in intensity and duration. A series of
high intensity and long duration rainfalls occurs mid-October and is similar to
one in September. The matric suctions drop down to 8 kPa at 2m deep with a
factor of safety of 1.03. This date corresponds to the date of the actual landslide.

The 2005 results show that a single day of rainfall is not sufficient to affect
the stability of the ground at 2m depth. However, a series of rainfalls increases
the degree of saturation and the permeability of the ground and decreases the
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matric suction. Then only can a high intensity rainfall decrease significantly the
matric suction and give a critical factor of safety.

4.2 2008 Rainy Season

The rainy season of year 2008 is simulated using the rainfall pattern shown in
Fig. 5a. The cumulative rainfall was 1525 mm most of which occurred in August
and September. Unlike 2005, the rainfall is composed of less events but with
higher intensities. The maximum rainfall intensity is 133 mm/day. The matric
suction and the factor of safety are shown in Fig. 5b and c.
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Fig. 5. Rainfall, pore-water pressure and factor of safety for the rainy season 2008

The early August rain remove any influence of the initial matric suction. By
mid-August, the heavy rainfall infiltration have set the matric suction to 12 kPa
at all depths. The factor of safety at a depth of 2m is 1.12. Then, a single high
intensity rainfall occurs. The shallow layers respond to it very quickly with a
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rapid decrease in matric suction to 9 kPa while the 12 kPa are maintained at 2
m depth. However, the factor of safety is still high. The following is rather dry
and the soil is free to drain. Matric suction increases and stability is gained. A
long duration and high intensity series of rainfall occur at the end of September.
Despite the lower intensity, the consequence are dramatic. The matric suction
is between 5 and 7 kPa at all depth and the factor of safety is 0.94. October
and November are subject to sporadic showers which have an effect at shallow
depths but none at 2m depth.

The 2008 results show that single events mainly affect shallow depth unless
the soil has been subjected to antecedent rainfall. The effect of heavy rainfall are
limited by the permeability of the ground. The increase in permeability requires
some time while which the water flow is unable to fully saturated the pore space
giving a constant matric suction value to the entire profile.

4.3 2010 Rainy Season

The rainy season of year 2010 is simulated using the rainfall pattern shown in
Fig. 6a. The cumulative rainfall us 1557 mm and is similar to 2008. It is split
into three major events. A small intensity but long lasting series of precipitation
occurs in the month of August. It is followed by first high intensity rainfall event
with an intensity of 128 mmm/day. After two weeks of dry weather, a second
high intensity event occurs with an intensity of 133 mm/day. The matric suction
and the factor of safety are shown in Fig. 5b and c.

The first six weeks are subjected to continuous rainfall and both the matric
suction and the factor of safety gradually decrease to values of respectively 17
kPa and 3 at 0.5 m depth and 10 kPa and 1.08 at 2 m depth. The total amount
of rainfall is 603 mm. It is followed by the first high intensity rainfall event and
the matric rapidly drops down to 9 kPa at all depth. The rate of decrease is
more significant at shallow depths than at higher depths. The factor of safety
reaches its minimum value of 2.1 at 0.5 m depth. A lag-time of two 2 days is
required for the deeper soil to respond. It then has a matric suction of 4.5 kPa
and a factor of safety 0.9 at 2 m. At the end of this first series of high intensity
rainfalls occurs a few lower intensity events but nevertheless non-negligible. This
additional water is channelled into the soil because of the high permeability and
finally reaches the deeper soil. The matric suction drops to 3 kPa and the factor
of safety to 0.82. This event highlights the influence of the antecedent rainfall
on the response of the soil to a single event. The following month is rather dry
and the matric suction increases in the soil at all depths. The second series of
high intensity rainfalls occurs mid-October. The matric suction profile is inversed
with a matric suction of 4 kPa at 0.5 m depth and 6 kPa at 2m meters time
with a lag-time of 2 days. The factors of safety are respectively 1.51 and 0.97.
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Fig. 6. Rainfall, pore-water pressure and factor of safety for the rainy season 2010

5 Conclusion

The one-dimensional modelling of rainfall infiltration is a suitable approach as
long as no perched water tables are formed in the ground [12]. These may be
caused by a contrast in permeability between two materials or even within the
same material. This simple models excludes any topographic or stratigraphic
effects which may be in some cases significant [17,16,15]. Nevertheless, this simple
model allows to gain some insight on the hydraulic behaviour of soil subjected
to rainfall.

The use of a factor of safety illustrates the predisposition of a soil to fail.
It may be seen that deeper soil are less stable but are less sensitive to single
events than shallow soils. The actual value of the factor of safety is subjected
to some discussion as it relies on many assumptions (e.i. infinity slope analysis
and the rainfall patterns). The analysis neglected any anthropogenic or seismic
contributions.
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The finite element simulation of an ash filled column subjected to the 2005

rainy season rainfall predicted two landslides as observed in the field. However,
the 2008 and 2010 simulation also predicted failures which di not occur. It may
partly be explained by the estimation of the rainfall and its discretisation. Oro-
graphic effects may have also modified the precipitation both in time and in
space. Anthropogenic activities or tectonic activity may have also played a role
in the 2005 events. Nevertheless, the following conclusion may be drawn from
the analysis.

1.

Soil is sensitive at shallow depths to single events of rainfall but their pre-
disposition to fail is rather small.

. Rainfall infiltration increases the permeability allowing more water to pen-

etrate into the ground forming a wetting front.

. This wetting front is able to reach deeper strata and increases predisposition

of soil to fail.
Deeper soil is only then sensitive to a single events of rainfall.

. A lag-time of two days is observed between the rainfall event and the decrease

in matric suction at deeper depths.
The lag-time means that the risk of a slide is at its most well after the rainfall
events rather than during.

Acknowledgments. The authors would like to thank NOAA for sharing their
precipitation data.
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