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Abstract

Flow separation is relevant to many industrial applications, since it is detrimental to the aero-

dynamic performance of vehicles, induces vibrations in mechanical structures, but can also

contribute to improve mixing in combustion devices.

In this thesis, the fundamental problem of separated flow control is addressed using adjoint-

based methods applied to sensitivity analysis. Regions where steady control is the most effec-

tive to alter the flow are identified from so-called sensitivity maps. These maps are obtained

by solving adjoint equations, at the same computational cost as that of solving the uncon-

trolled flow. The effect of any small-amplitude control being predicted from these maps, they

provide useful information to find efficient control strategies, without the need to actually

compute the controlled flow. Sensitivity information can also be used as a building block in

iterative optimization algorithms aimed at designing optimal control configurations.

The problem is tackled from various angles by targeting several characteristic quantities of

separated flows: amplification of external forcing (time-harmonic) or external noise (stochas-

tic), geometric properties (position of separation and reattachment points, angle of the divid-

ing streamline at the wall, area of backflow region and recirculation region), linear stability

properties, and aerodynamic forces (drag, lift). The sensitivity of these quantities to control is

systematically assessed. In particular, passive control by means of a small device introduced

in the flow (e.g. a wire), and active control by means of blowing/suction at a solid wall are

considered.

The amplification of external perturbations is typically large in globally stable but convec-

tively unstable flows, because of non-normal effects, which might trigger bifurcation to un-

steadiness and turbulence. It is observed that such amplification can be drastically reduced

using appropriate control. In addition, in a backward-facing step flow the sensitivity of white

noise amplification is found to be well captured when considering only the optimal pertur-

bation at the most amplified frequency, thus simplifying control design.

In the steady flow past a wall-mounted bump, the position of the reattachment point is found

to be very sensitive to control, with a sensitivity map largely similar to that of the backflow

area and the recirculation area. In contrast, the separation point and the separatrix angles

appear robust. In the flow past a typical bluff body, namely a circular cylinder, the sensitivity

of the recirculation length is observed to be strongly correlated to that of the leading eigen-

mode’s growth rate close to the linear instability threshold.

Finally, lift and drag sensitivities to steady actuation are presented for the steady flow past

another bluff body, the square cylinder, at subcritical Reynolds number. It appears that lift

v



Acknowledgements

and drag can be modified independently with wall control if its location and orientation are

chosen carefully. More generally, the sensitivities of individual pressure and viscous forces

can be obtained from a modified adjoint problem, while the sensitivity of any combination

of lift and drag is readily obtained at no additional cost.

As evidenced by this thesis, a wide variety of steady flow properties can be analysed in terms

of sensitivity to steady control, opening interesting prospects for the control of separated

flows. This calls for extensions to unsteady flows and unsteady control configurations, either

with adjoint-looping to take into account the full flow dynamics, or with a suitable modelling

of time-averaged characteristics.

Key words: flow control, hydrodynamic instability, adjoint methods, sensitivity analysis, op-

timal control, harmonic response, separated flows
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Résumé

La séparation des écoulements concerne de nombreuses applications industrielles car elle

réduit les performances aérodynamiques, provoque des vibrations dans les structures méca-

niques, mais peut aussi contribuer à améliorer le mélange dans les dispositifs de combustion.

Dans cette thèse, le problème fondamental des écoulements séparés est abordé avec des mé-

thodes adjointes appliquées à l’analyse de sensibilité. Les régions où un contrôle stationnaire

est le plus efficace pour modifier l’écoulement sont identifiées à partir de cartes de sensibili-

tés. Ces cartes sont obtenues en résolvant des équations adjointes, au même coût de calcul

que pour résoudre l’écoulement non contrôlé. L’effet de n’importe quel contrôle de petite

amplitude étant prédit par ces cartes, elles fournissent des informations utiles à l’élabora-

tion de stratégies efficaces de contrôle, sans jamais avoir à calculer l’écoulement contrôlé. La

sensibilité est également une information qui peut être utilisée dans des algorithmes itératifs

d’optimisation visant à concevoir des configurations optimales de contrôle.

Ce problème est abordé sous plusieurs angles, en ciblant différentes quantités d’intérêt dans

les écoulements séparés : amplification d’un forçage externe (harmonique en temps) ou d’un

bruit externe (stochastique), propriétés géométriques (position des points de décollement et

de recollement, angles de la séparatrice à la paroi, aire de la zone d’écoulement inverse et de

la zone de recirculation), propriétés de stabilité linéaire, et forces aérodynamiques (traînée,

portance). La sensibilité au contrôle de ces quantités est analysée de manière systématique.

Sont considérés en particulier le contrôle passif au moyen de petits éléments introduits dans

l’écoulement (par exemple cylindre) et le contrôle actif par soufflage/aspiration à la paroi.

L’amplification de perturbations externes est typiquement grande dans les écoulements glo-

balement stables mais convectivement instables, en raison d’effets non-normaux qui peuvent

provoquer la transition vers un régime instationnaire ou turbulent. Il est observé que cette

amplification peut être réduite significativement en utilisant un contrôle approprié. De plus,

la sensibilité de l’amplification de bruit blanc dans l’écoulement autour d’une marche des-

cendante est bien capturée en ne considérant que la perturbation optimale à la fréquence la

plus amplifiée, simplifiant ainsi la conception du contrôle.

Dans l’écoulement stationnaire au dessus d’une bosse sur une plaque plane, la position du

point de recollement est très sensible au contrôle, avec une carte de sensibilité similaire à

celle des aires des zones d’écoulement inverse et de recirculation. A l’inverse, les angles de

la séparatrice à la paroi et le point de décollement sont robustes. Dans l’écoulement autour

d’un corps non profilé typique, le cylindre circulaire, la sensibilité de la longueur de recircu-

lation est fortement corrélée à celle du taux de croissance du mode propre dominant près du
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seuil d’instabilité.

Enfin, les sensibilités de la traînée et de la portance à un contrôle stationnaire sont présen-

tées pour l’écoulement autour d’un autre corps non profilé, le cylindre carré, à un nombre

de Reynolds sous-critique. Il apparaît que portance et traînée peuvent être modifiées indé-

pendamment avec un contrôle pariétal si sa position et son orientation sont bien choisies.

Plus généralement, les sensibilités des forces de pression et forces visqueuses peuvent être

calculées individuellement avec un problème adjoint modifié, et la sensibilité de n’importe

quelle combinaison de la traînée et de la portance est facilement obtenue sans coût supplé-

mentaire.

Comme cette thèse le suggère, une grande variété de propriétés des écoulements station-

naires peut être analysée en termes de sensibilité à un contrôle stationnaire, ouvrant des

perspectives intéressantes pour le contrôle des écoulements séparés. Ce travail demande à

être étendu aux écoulements et contrôles instationnaires, soit avec une méthode adjointe

par allers-retours prenant en compte la dynamique complète de l’écoulement, soit avec une

modélisation appropriée des caractéristiques moyennes.

Mots clefs : contrôle d’écoulements, instabilité hydrodynamique, méthodes adjointes, ana-

lyse de sensibilité, contrôle optimal, réponse harmonique, écoulements séparés
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Introduction

Separated flows

Separation occurs when a fluid detaches from the body along which it is flowing. Typical

situations where flows separate include bluff bodies, convex walls, and adverse pressure gra-

dients. These situations can be encountered in a wide range of natural and industrial config-

urations: water flow past islands or bridges, air around past mountains, buildings or chim-

neys, blood flow in arteries with stenosis or aneurysm, flow around vehicles, in combustion

engines, hydraulic and wind turbines, pumps, and so on.

In applications related to aerodynamics, separation causes a loss of performance: reduced

lift and stability, increased drag and energy consumption. Separation might also induce os-

cillations, leading to undesirable noise at best, and to accelerated mechanical fatigue or even

failure at worst. In contrast, separation is associated with a recirculation region, where the

fluid travels upstream against the main flow, which often enhances mixing and is therefore

desirable in combustion devices.

Separated flows are often remarkably unstable, as a consequence of the elongated shear layer,

where the Kelvin-Helmholtz instability can feed on the intense vorticity layer. Despite neg-

ative velocities in the recirculation region, wall-bounded flows are however most often only

convectively unstable and behave as “noise amplifiers” that selectively amplify external dis-

turbances (Chomaz, 2005). An archetype of these wall-bounded separated flows is the back-

ward facing step that will be analysed in chapter 3, and which is characterized by a geometri-

cally constrained separation point. In contrast, in separated flows in the wake of bluff bodies,

a pocket of absolute instability is often encountered in the lee of the obstacle which dictates a

flow “oscillator” behaviour (Chomaz, 2005). An archetype of oscillator flow is the flow around

a cylinder, investigated in section 4.3 and in chapter 5.

Control

Given the importance of flow separation, it is not a surprise that there is extensive research on

its control (Seifert & Pack Melton, 2006). Back in 1904, Prandtl used a suction mechanism to

modify the flow past a cylinder and demonstrate the role of the boundary layer in separation

1



Introduction

(a)

(b)

(c)

Figure 1 – Flow separation occurs in many situations: (a) around bluff bodies (sphere (Werlé,
1980), obstacles in a liquid stream, Kármán vortex street in clouds past a volcano), usually
leading to oscillations; (b) past convex walls (rounded step (Werlé, 1974), arterial stenosis);
(c) past streamlined objects in presence of an adverse pressure gradient (airfoil (Werlé, 1980),
airplane).
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(Schlichting, 1979). Driven by the development of aeronautics, many theoretical and experi-

mental studies followed. A very large range of strategies do exist now, including in increasing

order of complexity: (i) passive control, (ii) active open-loop control, with actuators requir-

ing energy, (iii) active closed-loop control, where sensors provide measurements (Fiedler &

Fernholz, 1990; Gad-el Hak, 1996; Choi, Jeon & Kim, 2008).

Based on the well-established modern linear control theory (Kim & Bewley, 2007), closed-

loop control theory has the potential to bring performance and robustness. However, Its

application to fluid flows still poses challenges, partly due to the large number of degrees of

freedom involved. Closed-loop control therefore relies either on the use of black-box con-

trollers (Henning & King, 2007; Beaudoin, Cadot, Aider & Wesfreid, 2006; Gautier & Aider,

2013) or on reduced order models, themselves built with identification methods (Tian, Song

& Cattafesta, 2006; Becker, King, Petz & Nitsche, 2007; Juillet, Schmid & Huerre, 2013), ex-

tracted from projection on bases (Rowley, 2005; Barbagallo, Sipp & Schmid, 2009; Bagheri,

Henningson, Hoepffner & Schmid, 2009; Ehrenstein, Passaggia & Gallaire, 2011), or moti-

vated by physical insight (Roussopoulos & Monkewitz, 1996; Alam, Liu & Haller, 2006).

Open-loop control has been successfully applied to separation control: heating, pulsed syn-

thetic jets, wall motion, as well as steady suction or blowing at the wall (McLachlan, 1989;

Fiedler & Fernholz, 1990; Schumm, Berger & Monkewitz, 1994; Seifert, Darabi & Wygnanski,

1996; Garnier, Pamart, Dandois & Sagaut, 2012). Although theoretical analyses start to ad-

dress the question (Sipp, 2012), the determination of the most effective forcing location and

frequency is often left to extensive experimental or numerical parameter sweeps (Greenblatt

& Wygnanski, 2000).

Passive control strategies rely either on geometry modification, from heuristic golf ball dim-

ples to systematic shape optimisation (Mohammadi & Pironneau, 2001), or on devices such

as cavities, plates, ribbons or vortex generators (Prasad & Williamson, 1997; Weickgenannt

& Monkewitz, 2000; Pujals, Depardon & Cossu, 2010). Even rods or wires of small size, if

inserted in well-chosen regions of the flow, can have a significant impact on flow instabil-

ity, vortex shedding frequency, drag and lift forces, and the size of the recirculation region

(Strykowski & Sreenivasan, 1990; Igarashi, 1997; Sakamoto, Tan & Haniu, 1991; Dalton, Xu

& Owen, 2001; Parezanović & Cadot, 2012). In particular, Strykowski & Sreenivasan (1990)

found that vortex shedding in the laminar wake of a circular cylinder could be completely

suppressed using this kind of small control cylinder. Testing systematically all locations, they

built detailed maps showing where control was successful (figure 2(a)). Parezanović & Cadot

(2012) used the same method in the turbulent flow past a D-shaped cylinder, taking measure-

ments at an impressive 5000 locations to make sensitivity maps of vortex shedding frequency,

pressure drag and recirculation length.
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(a)

(b)

↓

Figure 2 – Effect of a small control rod on vortex shedding in the wake of a circular cylin-
der. (a) Regions where vortex shedding is suppressed at different Reynolds numbers. From
Strykowski & Sreenivasan (1990). (b) Variation of the leading eigenvalue’s growth rate: red
regions are destabilizing, blue regions are stabilizing. Re = 46.8 (Marquet et al., 2008).

Adjoint-based methods

Although extensive parameter studies provide much useful information, they suffer from

being highly time consuming. One way to tackle the problem of efficient control design is

through sensitivity analysis, and more generally, adjoint-based methods. As detailed in chap-

ter 1, the central idea is to compute how a flow property would be affected by any small-

amplitude variation of a given control variable, in a single calculation, i.e. without ever com-

puting the actually controlled flow. This tour de force, definitely puzzling when first encoun-

tered, is made possible by the derivation of a suitable adjoint problem. This kind of analysis

was popularized in hydrodynamics by Hill (1992), who obtained a sensitivity map giving the

effect of a small control wire on the most unstable eigenvalue of the linearized flow past a cir-

cular cylinder (responsible for vortex shedding when Re ≃ 47), and reproduced experimental

results from Strykowski & Sreenivasan (1990). Still in the context of linear stability, Bottaro,

Corbett & Luchini (2003) applied the same technique to a parallel flow to compute the sen-

sitivity of eigenvalues (growth rate and frequency) to flow modification. They showed that

minute changes in the base flow velocity profile could destabilize a plane channel flow. More

recently, Marquet et al. (2008) revisited the circular cylinder flow (figure 2(b)), using linear

analysis to assess the effect of an infinitely small control cylinder on the stability of the main

cylinder flow. They first perform a global stability analysis of the uncontrolled flow and deter-

mine the growth rate and frequency of the vortex shedding eigenmode. Then, they compute

4



the eigenvalue variation induced by the control from the inner product between a sensitiv-

ity function (computed with the adjoint method, and representing the variational derivative

of the eigenvalue with respect to a source of momentum in the flow field) and a localized

body force mimicking the presence of the control cylinder. Finally, they determine regions of

interest where the control cylinder would stabilize the vortex shedding eigenmode or mod-

ify its frequency. The approach is an attractive alternative to time-consuming “trial and er-

ror” methods since it allows to explore all possible positions of the control cylinder without

ever calculating any controlled state. Meliga, Sipp & Chomaz (2010) extended the method

to compressible flows and considered additional types of control such as heating and wall

blowing or suction. Giannetti & Luchini (2007) also studied the sensitivity of eigenvalues to

perturbations of the eigenvalue problem itself and to force-velocity coupling, and Giannetti,

Camarri & Luchini (2010) generalized the approach to time-periodic base flows. Other exam-

ples include Fani, Camarri & Salvetti (2012) and Tchoufag, Magnaudet & Fabre (2013), who

considered respectively the flow in more complex geometries and fluid-structure interaction.

The method was recently extended by Brandt, Sipp, Pralits & Marquet (2011) to compute

the sensitivity of harmonic gain, i.e. the asymptotic amplification of harmonic forcing in

stable flows. While global eigenvalues are important to characterize absolutely unstable flows

(oscillators), harmonic gain is more relevant for convectively unstable flows (noise amplifiers)

(Chomaz, 2005).

In another context, shape optimization is a famous example of optimal design based on sen-

sitivity analysis (Mohammadi & Pironneau, 2001; Jameson, Martinelli & Pierce, 1998), where

e.g. the sensitivity of aerodynamic forces to a small-amplitude displacement of the surface

everywhere on the body is obtained in a single calculation, and used in an iterative way to

minimize drag or optimize other objective functions. Sensitivity is also used in adaptive mesh

refinement to minimize numerical errors (Hoffman, 2005).

Sensitivity analysis belongs to the larger group of adjoint-based methods, which are highly

versatile, as showed by their many applications in fluid dynamics (Luchini & Bottaro, 2014).

One typical use of these methods is to compute initial perturbations which undergo the

largest amplification after some time T (Butler & Farrell, 1992; Corbett & Bottaro, 2000; Black-

burn, Barkley & Sherwin, 2008). The concept of optimal perturbation and optimal transient

growth is of importance since it might be linked with “by-pass transition” in flows which are

predicted to be linearly stable at any Reynolds number but actually become unsteady or tur-

bulent. Large transient growth as well as large harmonic gain are the consequence of the

non-normality of the Navier–Stokes operator (Trefethen, Trefethen, Reddy & Driscoll, 1993;

Chomaz, 2005). When small-amplitude perturbations are considered, optimal perturbations

can be obtained by computing the norm of a matrix (i.e. solving an eigenvalue problem or

a singular value problem), but if the full nonlinear dynamics are taken into account then

adjoint equations are needed (Pringle & Kerswell, 2010; Cherubini, De Palma, Robinet & Bot-

taro, 2011; Rabin, Caulfield & Kerswell, 2012). Objective functions other than energy are also

attracting attention: for example Monokrousos, Bottaro, Brandt, Di Vita & Henningson (2011)

5
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consider viscous dissipation as a measure of turbulence, Foures, Caulfield & Schmid (2013)

use an ∞-norm to spatially localize perturbations, and Foures, Caulfield & Schmid (2014)

efficiently optimize the mixing of a passive scalar using variance as well as a “mix-norm” tar-

geting large-scale structures.

Another major application of adjoint-based methods is the optimal control of unsteady, fully

nonlinear flows, where linear control tools such as Riccati-based feedback (Kim & Bewley,

2007) might fail. This setting allows for unsteady and non-small control. Bewley, Moin &

Temam (2001) achieved a spectacular relaminarization of a turbulent channel flow, and com-

pared the performance of several objective functions. This method was also used in an at-

tempt to control the separated flow past a wall-mounted bump (Passaggia & Ehrenstein,

2013). A similar approach is at the heart of estimation methods, for example in weather fore-

casting.

Present work

This thesis explores the potential of sensitivity analysis for the control of separated flows.

Solving adjoint equations, sensitivity maps are computed to assess the effect of steady control

in the flow or at the wall. Quantities which are not commonly targeted are considered here,

for instance global indicators characterizing the flow geometry. The flow over a backward-

facing step is used as a typical noise amplifier, and the flow past a cylinder as a typical os-

cillator. In addition, the flow above a wall-mounted bump, introduced a decade ago by Mar-

quillie & Ehrenstein (2002), is also selected as a representative of more complex flows that

are neither pure amplifiers (since they become globally unstable at large Reynolds number),

nor pure oscillators (since the dynamics above threshold is far more complex than periodic

vortex shedding); furthermore, geometrical properties of this flow are rich, with a separation

point free to move along the bump surface depending on the Reynolds number.

The outline is the following. Chapter 1 gives a brief overview of adjoint-based methods for

constrained optimization and sensitivity, with examples of applications in hydrodynamics:

optimal growth, optimal control, sensitivity of eigenvalues. Chapter 2 deals with the ampli-

fication of harmonic forcing in the flow past a wall-mounted bump. Sensitivity analysis is

used to design a simple open-loop wall suction control allowing to reduce amplification, as

confirmed both numerically and experimentally. Chapter 3 extends this study to the am-

plification of stochastic noise, with an application to the flow past a backward-facing step.

Chapter 4 tackles the problem of separation control from a different viewpoint, considering

geometric quantities in separated flows: position of separation and reattachment points, an-

gle of the separating streamline at the wall, and area of the backflow region and recirculation

region. Illustrations are given in a wall-bounded flow and in the flow past a bluff body. An

application of Interactive Boundary Layer theory is also presented, as an efficient means to

compute separated flows. Finally, chapter 5 is dedicated to the sensitivity analysis of aerody-

namic forces and illustrated with the flow past a square cylinder.
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Chapter 1

Adjoint-based methods for

optimization and sensitivity

This chapter modestly aims at giving a brief overview of adjoint-based methods for con-

strained optimization and sensitivity analysis. Section 1.1 introduces governing equations

used throughout this chapter and the whole thesis. Section 1.2 presents the concept of La-

grange multipliers and adjoint equations in a general setting. Sections 1.3 to 1.5 give classical

examples in hydrodynamic stability: optimal growth, optimal control, and eigenvalue sen-

sitivity. Most of the contents are based on existing literature (Schmid & Henningson, 2001;

Gallaire, 2002; Cordier, 2009; Cossu, 2014).

1.1 Governing equations

This short section first gathers the main governing equations used throughout this thesis.

Considering the two-dimensional flow of an incompressible fluid, its motion is governed by

the Navier–Stokes equations for the state variable Q(x, t ) = (U(x, t ),P(x, t )), where U denotes

the velocity field of components U and V in the streamwise and cross-stream directions x

and y , and P denotes the pressure field:

∇·U = 0, ∂t U+U ·∇U+∇P −Re−1∇2U = 0. (1.1)

Here Re = U∞L/ν is the Reynolds number based on some characteristic length L, a refer-

ence velocity U∞ and the fluid kinematic viscosity ν. Given appropriate boundary and initial

conditions, these equations can be discretized in space and time and solved with a time-

marching technique. If one looks for a steady base flow Q(x), the time derivative in equations

(4.56) vanishes, ∂t U = 0, and the solution of the fixed-point problem

∇·U = 0, U ·∇U+∇P −Re−1∇2U = 0 (1.2)
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Chapter 1. Adjoint-based methods for optimization and sensitivity

can be obtained with an iterative technique. When perturbations q′(x, t ) = (u′(x, t ), p ′(x, t ))

are superimposed on the flow, their evolution is governed by the perturbation equations:

∇·u′ = 0, ∂t u′+U ·∇u′+u′ ·∇U+u′ ·∇u′+∇p ′−Re−1∇2u′ = 0. (1.3)

If these perturbations are of small amplitude compared to the base flow, one can neglect the

nonlinear term ∇u′ ·u′ and obtain the linearised perturbation equations

∇·u′ = 0, ∂t u′+U ·∇u′+u′ ·∇U+∇p ′−Re−1∇2u′ = 0. (1.4)

Further, it is possible to analyse the linear stability of the base flow using the normal mode

decomposition q′(x, t ) = q(x)eσt + c.c., where c.c. stands for complex conjugate, and solving

the resulting eigenvalue problem:

∇·u = 0, σu+U ·∇u+u ·∇U+∇p −Re−1∇2u = 0. (1.5)

Alternatively, one can investigate the linear harmonic response of the flow, i.e. the evolution

of perturbations generated by a small-amplitude harmonic forcing f′(x, t )= f(x)e iωt +c.c.:

∇·u = 0, iωu+U ·∇u+u ·∇U+∇p −Re−1∇2u = f. (1.6)

In shorthand notation, equations (1.1) to (1.6) become:

B∂t Q+N(Q) = 0 (unsteady Navier–Stokes equations), (1.7)

N(Q) = 0 (steady Navier–Stokes equations), (1.8)

B∂t q′+N(Q+q′)−N(Q) = 0 (nonlinear perturbation equations), (1.9)

B∂t q′+NL(Q)q′ = 0 (linearized perturbation equations), (1.10)

σBq+NL(Q)q = 0 (linearized eigenvalue problem), (1.11)

iωBq+NL(Q)q = (f,0)T (small-amplitude harmonic forcing), (1.12)

where B is a “mass” operator such that B (U,P)T = (U,0)T , N is the steady nonlinear Navier–

Stokes operator, and NL(Q) = dN/dQ is the corresponding linear operator (linearised around

the base flow Q).

1.2 Optimization and sensitivity

In a given flow, what are the initial perturbations that experience the largest growth over some

time interval? Can one reduce this growth using steady or unsteady control? If so, where

should the steady control be located to have the maximal effect? What time-dependent law

is the most efficient for unsteady control? How are flow properties such as eigenvalues or

aerodynamic forces affected by a small amplitude control?
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1.2. Optimization and sensitivity

Lagrange multipliers are an elegant and powerful method to address these questions and

many others. This method allows us to look for the optimum (maximum of minimum) of an

objective function, given some constraints to be satisfied. The central idea is to transform a

difficult constrained optimization problem into an easier unconstrained one.

1.2.1 Unconstrained optimization

Consider a simple example, with a finite number of discrete variables. The function J (q,c)=
−(q−3)2−(c−2)2+1 is to be maximized. It has a global unconstrained maximum J (3,2) = 1,

shown as a triangle in figure 1.1. A hiker aiming for the summit of this hill could just walk

towards it. But what if, in a more general case, this maximum cannot be found explicitly

because J is too complex or not even known analytically? Our hiker is now surrounded by

fog and cannot see the global landscape. One may resort to one of many numerical meth-

ods. Some are heuristic and based on a wide, global exploration of the parameter space: J

is evaluated at several locations (x, y), based on which an approximate response surface func-

tion is built and successively refined as more evaluations are performed in regions where the

maximum is expected and/or where the accuracy of the response surface function is deemed

insufficient. Other heuristic methods like the downhill simplex method (or amoeba method)

use local evaluations of J at a few locations to guess which neighbouring region should be

explored next. A large class of deterministic methods is based on gradients (assuming contin-

uous first derivatives): starting from a guess location (x, y) and using the local gradient infor-

mation (indicating the direction of steepest slope), one moves iteratively toward a stationary

point of J . Such methods include for example the straightforward steepest descent/ascent al-

gorithm and one of its classical improvements, the conjugate gradient algorithm. This would

correspond to our hiker evaluating the slope in order to decide where to head for. If he turns

into a diver, he might also want to find the deepest point below lake Geneva (figure 1.2). In

the following, focus is on gradient-based methods. One way to compute the local gradient is

with finite differences:

∇J =
(

dJ

dq
,

dJ

dc

)T

≃
(
J (q +ǫq,c)−J (q,c)

ǫ
,
J (q,c +ǫc)−J (q,c)

ǫ

)T

. (1.13)

1.2.2 Constrained optimization

What if now a constraint is enforced? Our hiker still looks for the highest point but he must fol-

low a given path (black lines in figure 1.1). The unconstrained maximum cannot be reached

any more. Instead, one looks for the largest value of J while staying on the constraint path

h(q,c) = 0. In the previous simple example, if the constraint is h(q,c) = c − q − 1 = 0, one

can substitute c = q +1 into J (q,c(q)) =−(q −3)2 − (q −1)2 +1, set the derivative dJ /dq =
−2(2q −4) to zero and solve for q , obtaining finally (q,c) = (2,3) and J =−1.

However, more complex problems do not allow such an explicit substitution. For instance,
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Figure 1.1 – The global maximum of J (q,c) =−(q −3)2 − (c −2)2 +1 is J (3,2) = 1. If a given
constraint h(q,c) = 0 has to be satisfied, then the constrained maximum is different: black
lines show two examples, h = c −q −1 and h = c −sin(2q).
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tion J (q,c) = (q − 1)2 + 10(q2 − c)2. The steepest descent algorithm (purple) successively
moves down along the steepest gradient (slope) until the minimum J (1,1) = 0. The conju-
gate gradient algorithm (black) combines current and previous gradient information to speed
up convergence in the long, narrow flat valley.
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1.2. Optimization and sensitivity

the constraint might be h(q,c) = c − sin(2q) or the Navier–Stokes equations. One way to cir-

cumvent this difficulty is to note that, at the constrained maximum, the constraint h = 0 is

tangent to the contour level of the objective function J (if it were not, one could move along

the constraint and increase J , i.e the hiker could walk along the path and reach a higher

place). This implies that the objective function and the constraint have parallel gradients:

∇J =λ∇h. (1.14)

Combining the objective function and the constraint into a new, single function

L (q,c ,λ)=J (q,c)−λh(q,c), (1.15)

it can be observed that ∇L = 0 if (1.14) is satisfied. In other words, a stationary point of

L is reached at the constrained maximum of J . The function L is called Lagrangian (or

augmented objective function) and λ is a Lagrange multiplier enforcing the constraint h = 0.

In the previous example, the Lagrangian is L (q,c ,λ) = −(q −3)2 − (c −2)2 +1−λ(c − q −1).

Setting to zero its derivatives yields the system

∂L /∂q =−2(q −3)+λ= 0, (1.16)

∂L /∂c =−2(c −2)−λ= 0, (1.17)

∂L /∂λ= c −q −1 = 0, (1.18)

resulting in (q,c) = (2,3), of course similar to the constrained maximum found previously.

What is the benefit of introducing L ? The original problem of finding a maximum of J (q,c)

subject to the constraint h(q,c)= 0, which might be extremely difficult in general, is replaced

by an easier and familiar unconstrained optimization problem for L (q,c ,λ). This problem

can be solved using gradient-based methods mentioned in 1.2.1. Strictly speaking, one does

not look for extrema any more but for stationary points; if the problem is nonlinear (which is

the case for h(q,c) = c − sin(2q)), typical iterative resolution methods (e.g. Newton method)

still require the computation of gradients.

Unfortunately, computing gradients with finite differences using (1.13) is impractical if the

number of variables is large, and if a single evaluation of J or h is time-consuming. For

instance, if the constraint involved in the problem is a differential equation, like the Navier–

Stokes equations, a single evaluation of h(q,c) = 0 for a given control c requires a potentially

costly simulation; if the control has several degrees of freedom, computing the gradient re-

quires as many costly simulations. This is where another advantage of Lagrange multipliers

appears, as detailed in the next section.
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1.2.3 Adjoint methods

Let us jump at once to problems of interest in hydrodynamics stability and flow control. Con-

sider for example that the state variable q denotes velocity and pressure fields, the control

variable c is a volume force or a boundary condition, the constraint h(q,c) = 0 to be satisfied

by the flow and the control is the Navier–Stokes equations or one of the equations presented

in 1.1, and the objective function J (q,c) is any flow-dependent scalar quantity one wishes

to maximize or minimize using the control variable. Assuming in a first step that the prob-

lem is time-independent and equations are discretized, so that variables are vector-valued

quantities, the problem reads:

max
c

J (q,c), subject to h(q,c) = 0. (1.19)

Introducing the Lagrange multiplier q† associated with h = 0, the Lagrangian is

L (q,c,q†) =J (q,c)−q† ·h(q,c), (1.20)

whose stationarity yields the following relations:

∂L

∂q
=

∂J

∂q
−

(
∂h

∂q

)T

q† = 0, (1.21)

∂L

∂c
=

∂J

∂c
−

(
∂h

∂c

)T

q† = 0, (1.22)

∂L

∂q†
=−h = 0. (1.23)

By construction, equation (1.23) is the constraint. In (1.21)-(1.22), transposition comes from

the i th component of ∂L /∂q being ∂J /∂qi −∂
(
c†

k
hk

)
/∂qi = ∂J /∂qi − c†

k
∂hk /∂qi , and sim-

ilarly for ∂L /∂c. As mentioned earlier, this system of equations for (q,c,q†) is in general

nonlinear, and solving it with an iterative technique involves gradient calculations which are

prohibitively time-consuming if performed with finite differences (1.13) for each degree of

freedom.

However, inspection reveals that the gradient of the original objective function with respect

to control can be obtained via the Lagrange multiplier:

dJ

dc
=

∂J

∂c
+

(
dq

dc

)T ∂J

∂q
(1.24)

=
∂J

∂c
+

(
dq

dc

)T (
∂h

∂q

)T

q†. (1.25)

Partial derivatives ∂J /∂c and ∂h/∂q can usually be derived analytically, but one does not

know how the flow field q depends on the control c. This can be obtained indirectly by differ-
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entiating the constraint (1.23),

dh

dc
=

∂h

∂c
+
∂h

∂q

dq

dc
= 0, (1.26)

and substituting into (1.25):

dJ

dc
=

∂J

∂c
−

(
∂h

∂c

)T

q†. (1.27)

Here, both ∂J /∂c and ∂h/∂c are known analytically. Therefore, one can evaluate the gradient

of the objective function with respect to control as follows: (i) solve the constraint h(q,c) = 0

to obtain the flow q for a given control c; (ii) compute the Lagrange multiplier q† by solving

equation (1.21); (iii) substitute into (1.27). This procedure requires only two simulations per

gradient evaluation, irrespective of the number of degrees of freedom. In other words, the

original constrained optimization problem (1.19) can be tackled very efficiently through the

introduction of a Lagrange multiplier.

An alternative way to derive (1.27) is to notice that if the constraint is satisfied then L = J

and, additionally, if equation (1.21) is satisfied too then the total derivative

dL

dc
=

∂L

∂c
+

(
dq

dc

)T ∂L

∂q
+

(
dq†

dc

)T
∂L

∂q†
(1.28)

reduces to ∂L /∂c (since ∂L /∂q = 0 and ∂L /∂q† = 0); in this case,

dJ

dc
=

dL

dc
=

∂L

∂c
=

∂J

∂c
−

(
∂h

∂c

)T

q†. (1.29)

The method of Lagrange multipliers can be generalized to differential equations, involving

operators acting on continuous variables, rather than a set of discrete equations Lions (1971).

The problem still reads

max
c

J (q,c), subject to h(q,c) = 0, (1.30)

where the Lagrangian is now defined with an inner product rather than a dot product:

L (q,c,q†)=J (q,c)−
(

q†
∣∣∣ h(q,c)

)
. (1.31)

The inner product is for example a space integral over the fluid domain or at boundaries if

the problem depends on space, q = q(x), c = c(x). It might also involve time integration for

unsteady problems q = q(x, t ), c = c(x, t ).

To express the stationarity of L , one needs to use the Fréchet derivative, defined for an oper-
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ator A as:
(
∂A

∂s

∣∣∣∣ δs

)
= lim

ǫ→0

A(s+ǫδs)−A(s)

ǫ
. (1.32)

The following system is obtained:

(
∂L

∂q

∣∣∣∣ δq

)
=

(
∂J

∂q

∣∣∣∣ δq

)
−

(
q†

∣∣∣
∂h

∂q
δq

)
= 0 ∀δq ⇔

∂J

∂q
−

(
∂h

∂q

)†

q† = 0, (1.33)

(
∂L

∂c

∣∣∣∣ δc

)
=

(
∂J

∂c

∣∣∣∣ δc

)
−

(
q†

∣∣∣
∂h

∂c
δc

)
= 0 ∀δc ⇔

∂J

∂c
−

(
∂h

∂c

)†

q† = 0, (1.34)
(
∂L

∂q†

∣∣∣∣ δq†
)
=−

(
δq†

∣∣∣ h
)
= 0 ∀δq† ⇔ h = 0. (1.35)

In these equations, the superscript † applied to an operator denotes the associated adjoint

operator, defined as

( a | Ab) = (A†a |b) ∀a,b. (1.36)

Note that the adjoint operator A† is inner product-dependent.

The system (1.33)-(1.35) is formally equivalent to (1.21)-(1.23). Steps similar to the derivation

of (1.27) or (1.29) lead to the expression of the gradient

dJ

dc
=

∂J

∂c
−

(
∂h

∂c

)†

q†, (1.37)

where the Lagrange multiplier q† is solution of (1.33). This equation is called an adjoint equa-

tion, and q† is the adjoint variable. Computing adjoint operators (∂h/∂c)† and (∂h/∂q)† using

(1.36) typically involves integration by parts, which creates boundary terms (largely speaking,

i.e. for space and/or time) completing (1.33).

The following sections present three classical examples of applications of adjoint-based meth-

ods in hydrodynamics, where they have attracted a growing interest over the past decades

due to their versatility: (i) optimal growth: computation of the initial condition which leads

to the largest energy amplification over a given time interval; (ii) optimal control: computa-

tion of a time-dependent control aiming at minimizing energy (at a final time horizon or over

an entire time interval); (iii) eigenvalue sensitivity: computation of sensitivity maps showing

where flow modification and control have the largest effect on eigenvalues (i.e. on the growth

rate and frequency of an instability, for instance).

1.3 Optimal growth

Consider a base flow Q(x) or Q(x, t ) solution of the steady or unsteady Navier–Stokes equa-

tions (4.56) or (4.57), and an initial perturbation q′
0(x) = q′(x,0) superimposed onto the base
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flow at t = 0. What is the maximal amplification this perturbation can undergo from t = 0

to a given time t = T ? Measuring amplification in terms of energy E (t ) =
(

q′(x, t )
∣∣ q′(x, t )

)
=∫

Ω
q′(x, t )2 dΩ, the objective function to be maximized is J (q,c) = E (T )/E (0). The state vari-

able is the perturbation q′(x, t ) whose evolution is governed by the perturbation equations

(1.3) or (1.4), while the control variable is c = q′
0. The question can be formulated as

max
q′

0

∫
Ω

q′(x,T )2 dΩ∫
Ω

q′(x,0)2 dΩ
=max

q′
0

(
q′ ∣∣ q′)

(
q′

0

∣∣ q′
0

) subject to (1.3) or (1.4). (1.38)

If the base flow is steady and the linearized evolution of small-amplitude perturbations is

considered, this problem can actually be recast as an eigenvalue problem: writing (1.4) for-

mally as ∂t q′ = Aq′, the solution at any time is given by q′(x, t )= exp(At )q′
0(x) and (1.38) reads

max
q′

0

(
eAt q′

0

∣∣ eAt q′
0

)
(

q′
0

∣∣ q′
0

) = max
q′

0

((
eAt

)†
eAt q′

0

∣∣∣ q′
0

)

(
q′

0

∣∣ q′
0

) . (1.39)

The maximum of this Rayleigh quotient is the norm of the operator
(
eAt

)†
eAt for the inner

product used here, and can therefore be computed as its largest eigenvalue (or equivalently as

the squared largest singular value of eAt ) using classical algorithms. The optimal perturbation

is the associated eigenvector (respectively the associated right singular vector).

If the base flow is unsteady or if the fully nonlinear pertubation dynamics are considered, the

above procedure is no longer possible. Instead, the method presented in 1.2 can be used:

a Lagrangian is introduced to enforce the constraints (governing equation and initial condi-

tion),

L (q,q0,q†,q†
0) =

(
q

∣∣ q
)

(
q0

∣∣ q0
) −

∫T

0

(
q†

∣∣∣ ∂t q−A(q)
)

dt −
(

q†
0

∣∣∣ q(0)−q0

)
, (1.40)

where for the sake of simplicity primes and space dependence are omitted and the perturba-

tion equation is formally noted ∂t q = A(q). Stationarity conditions with respect to Lagrange

multipliers give back the constraints, those with respect to the state and control variables

yield:

∂L

∂q
= 0 ⇒ ∂t q† +

(
dA

dq

)†

q† = 0, q†(T ) =
2q(T )(
q0

∣∣ q0
) , (1.41)

q†
0 = q†(0), (1.42)

∂L

∂q0
= 0 ⇒ q†

0 = 2q0

(
q(T )

∣∣ q(T )
)

q0q0
. (1.43)

The adjoint equation (1.41) for q† is to be integrated backward in time with terminal condi-
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tion q†(T ) = 2q(T )/
(

q0
∣∣ q0

)
. Eliminating q†

0 in (1.42)-(1.43) gives the condition

q†(0)−2q0

(
q(T )

∣∣ q(T )
)

(
q0

∣∣ q0
) = 0, (1.44)

or the gradient of the objective function with respect to the control variable (1.37):

dJ

dq0
= q†(0)−2q0

(
q(T )

∣∣ q(T )
)

(
q0

∣∣ q0
) . (1.45)

This can be used in a gradient-based algorithm to converge iteratively towards a maximum

of J as follows: given a current (non-optimal) value of the control, i.e. initial perturbation

q0 = q(0), solve the perturbation equation forward in time, then solve the adjoint equation

initialised with q†(T ) = 2q(T )/
(

q0
∣∣ q0

)
backward in time, compute the gradient dJ /dq0

knowing q†(0), update the value of q0 based on the gradient information, and repeat. For

instance, with the steepest ascent algorithm the update is in the direction of the gradient

qk+1
0 = qk

0 +αk dJ /dq0. The step size can be either heuristic (fixed, proportional to the norm

of the gradient, etc) or determined with a search along the gradient direction (line search),

with a trade-off between computational time (each evaluation of J being a Navier–Stokes

simulation) and detailed exploration of the phase space (potentially reducing the number of

steps to reach convergence). As in Newton algorithms, it is also possible to use (1.44) (as if

the gradient was zero) to set qk+1
0 = q†

0
k (

qk
0

∣∣ qk
0

)
/2

(
q(T )k

∣∣ q(T )k
)

and iterate. This heuristic

method amounts to the particular choice of step size αk =
(

qk
0

∣∣ qk
0

)
/2

(
q(T )k

∣∣ q(T )k
)
.

1.3.1 Application to the Ginzburg-Landau equation

In this section, optimal growth is illustrated with a simple toy model. The nonlinear one-

dimensional Ginzburg-Landau (GL) equation describes well spatially developing flows such

as jets and wakes. It governs the spatio-temporal evolution of the complex variable q(x, t ),

which represents perturbation around the base flow close to the onset of instability:

∂q

∂t
=−κ

∂q

∂x
+µq +ν

∂2q

∂x2
−η|q |2q +c , q(x,0) = q0(x), q(±∞, t )= 0. (1.46)

where the control c(x, t ) extends in the whole domain Ω. This governing equation ∂t q =
A(q)+c is indeed simpler than the Navier–Stokes equations but does include terms of advec-

tion, diffusion, instability, as well as a saturating nonlinear effect (Roussopoulos & Monke-

witz, 1996; Lauga & Bewley, 2004). Coefficients κ(x),µ(x),ν(x) and η(x) allow us to tune the

GL equation to the particular problem at hand. Here they are chosen so as to model the wake

behind a circular cylinder, which becomes unstable for Reynolds numbers larger than the

instability threshold Re ≤ Rec = 47 (where Re is built on the free-stream velocity and the cylin-

der diameter), resulting in vortex shedding behind the cylinder, as shown in Figure 1.3, and

even to turbulence for even larger Re. Coefficients in (1.46) depend on Re, and although they

are derived close to Rec the resulting GL equation has been shown to provide useful results
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1.3. Optimal growth

for a wide range of Reynolds numbers.

Figure 1.3 – Kármán vortex street behind a cylinder at Re > Rec = 47 (from Van Dyke (1982),
photograph by S. Taneda).

Figures 1.4(a)-(c) show the evolution of the state q and its energy E (t ) =
(

q(x, t )
∣∣ q(x, t )

)
for

the uncontrolled system in a stable case (Re = 20) and an unstable case (Re = 100), starting

from a given initial perturbation q0(x) of energy E0 = 1. For Re < Rec the amplitude of the

state decreases everywhere with time, whereas for Re >Rec it increases in the region 0. x . 5

before reaching a limit cycle due to saturation from the nonlinear term −η|q |2q . In both

cases perturbations are advected downstream, but when Re > Rec they are amplified in the

unstable region before decaying downstream, leading to a global instability.

By construction, the linearized operator dA/dq = −κ∂/∂x +µ+ν∂2/∂x2 becomes unstable

at Re = Rec , as illustrated in figure 1.4(d ) showing its eigenspectrum, i.e. its eigenvalues σ =
σr +iσi . At Re = 20 all eigenvalues have a negative real part and the system is stable, whereas

at Re = 100 > Rec some eigenvalues have a positive real part and the system is unstable. As

Re increases, more eigenmodes become unstable, the perturbations are amplified faster, and

one can expect the system to become more difficult to control.

Optimal growth has been computed analytically by Cossu & Chomaz (1997) for the linear GL

equation. Figure 1.5 shows their results as a function of maximization time T , for different

values of the bifurcation parameter µ. The asymptotic behaviour is governed by linear sta-

bility properties: perturbations are amplified when the flow is globally unstable (curve e),

saturate when the flow is just neutrally stable (curve d ), and decay when the flow is stable

(curves a, b, c). However, large transient growth (≃ 104) is observed in some situations when

the flow is locally unstable (curve c). This result was interpreted as an effect of convective

(streamwise) non-normality, as opposed to component-type non-normality, responsible for

the lift-up effect and Orr mechanism in parallel flows.

1.3.2 Application to hydrodynamics

Nowadays the computation of optimal growth is also tractable for flows in two and three di-

mensions. Ehrenstein & Gallaire (2008) evaluated linear transient growth in the flow past a
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Figure 1.4 – Nonlinear GL equation in the stable (left, Re = 20) and unstable (right, Re = 100)
regimes. (a) Energy of the perturbations. (b) Real part (- -) and amplitude (—) at t = 0, 4, 50.
(c) Spatio-temporal evolution of the real part of the perturbations. (d ) Growth rate σr and
frequency σi of leading eigenvalues of the linearized operator A.
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T

||exp(AT )||

Figure 1.5 – Maximal transient growth versus time for the linear Ginzburg-Landau equation,
when the flow is globally unstable (curve e), neutrally stable (curve d ), or globally stable
(curves a, b, c). From Cossu & Chomaz (1997).

T

E (T )

Figure 1.6 – Linear optimal transient growth in the flow past a wall-mounted bump. Re = 590.
(Ehrenstein & Gallaire, 2008)

wall-mounted bump, whose geometry was originally designed to reproduce the pressure dis-

tribution on the upper surface of an airfoil at high angle of attack, and is now a typical wall-

bounded noise amplifier flow. A very large growth is observed for short times (figure 1.6),

again due to convective non-normality, and followed by slower amplification, itself modu-

lated by oscillations interpreted as the beating of a set of weakly unstable modes.

Using adjoint-looping, Cherubini et al. (2011) computed the nonlinear optimal growth in a

boundary layer (figure 1.7). Nonlinear optimal perturbations are similar to their linear coun-

terpart for short times, but as T is increased the difference is marked: linear perturbations

decay since the flow is stable (Re = 300) while nonlinear perturbations keep growing. Their

spatial structures are significantly different too.
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T

E (T )

Figure 1.7 – Linear (�) and nonlinear (•) optimal transient growth versus optimization time
T . Insets show, for T = 75, the initial perturbation at t = 0 (upper panel) and the correspond-
ing response at t = T (lower panel). Re = 300. From Cherubini et al. (2011).

1.4 Optimal control

Here the aim of the control is to drive perturbations to zero using the smallest amount of

control as possible. The optimization problem can be cast for example as follows:

min
c

J (q,c) subject to ∂t q = A(q)+c, (1.47)

where

J (q,c) =
l

2T

∫T

0
( c | c)dt +

ω1

2T

∫T

0

(
q

∣∣ q
)

dt +
ω2

2

(
q(T )

∣∣ q(T )
)
+ c.c. (1.48)

Real-valued parameters l ,ω1 and ω2 are relative weights, ( a | b) =
∫
Ω

a ·b dΩ denotes the one-

dimensional Hermitian inner product, and c.c. stands for complex conjugate. The first term

in J penalizes control (l being the “cost” of the control), while the second and third terms

aim at reducing the energy of the perturbations, respectively over the whole time interval

[0,T ] or at the final time t = T . Weights can be varied to modify the importance of suppress-

ing perturbations relative to the perceived cost of the control. Since only relative amplitudes

matter, ω1 can actually be fixed to 1. The associated Lagrangian reads:

L (q,c,q†) =J (q,c)−
∫T

0

(
q†

∣∣∣ ∂t q−A(q)−c
)

dt , (1.49)

and stationarity conditions give, in addition to the constraint:

∂L

∂q
= 0 ⇒ ∂t q† +

(
dA

dq

)†

q† =−
ω1

T
q, q†(x,T ) =ω2 q(x,T ), (1.50)

∂L

∂c
= 0 ⇒ q† +

l

T
c = 0. (1.51)
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The gradient of the objective function with respect to control is obtained from (1.51):

dJ

dc
= q† +

l

T
c. (1.52)

For the nonlinear Ginzburg-Landau equation (1.46), for instance, the adjoint equation (1.50)

reads

∂q†

∂t
+
∂(κq†)

∂x
+µq† +

∂2(νq†)

∂x2
−ηq2q† −2η|q |2q† =−

ω1

T
q, (1.53)

q†(x,T ) =ω2 q(x,T ), q†(±∞, t ) = 0, (1.54)

and as in 1.3, it has to be solved backward in time from a terminal condition q†(x,T ). Similar

to 1.3 too is the fact that this terminal condition is linked to the terminal energy term in J ,

while the gradient of J is linked to the control term. The new element in this problem is the

distributed energy term in J which gives rise to a forcing term in the adjoint equation.

Note that if the system is linear, then the optimal control problem with terms penalizing the

control and the distributed energy (l 6= 0, ω1 6= 0, ω2 = 0 in (1.48 )) reduces to a differential

Riccati equation in general, and to an algebraic Riccati equation if T →∞ and if the system is

time-invariant. Similar to classical proportional feedback, the control is taken “proportional”

to the state in a multi-dimensional meaning, c = Kq, where the feedback gain K does not

depend on q and can be computed “offline” (beforehands) if the dimension of the system is

not too large (see Kim & Bewley (2007) for a review). Besides numerous successes in parallel

flows, Gallaire, Chomaz & Huerre (2004) for instance applied the method to the control of

the static instability associated to vortex breakdown in a straight pipe, exploiting the natural

separation of variables in this flow to obtain a down-sized Riccati equation. In most spatially

developing flows however, the dimensions of the linearized Navier-Stokes equations are so

large that model reduction is necessary. Building a suitable model that both captures the

uncontrolled flow behaviour and also allows to take into account the controlled dynamics

remains a challenge (see Bagheri et al. (2009) or Barbagallo et al. (2009) for recent advances).

1.4.1 Application to the Ginzburg-Landau equation

Lauga & Bewley (2004) assessed the performance of a linear controller (designed from a Ric-

cati equation) on the fully nonlinear GL equation, starting from the fully developed flow

(limit-cycle mimicking vortex-shedding in the wake of a cylinder). Varying the cost l of the

control, they managed to restabilize the system up to Re ≃ 125 with a single actuator at x = 0

(figure 1.8). It is remarkable that linear control performs so well so far from the instability

threshold and from the linearisation point.

It was tempting to compute a fully nonlinear control for the same GL equation using adjoint-

looping. An iterative method was used to solve the problem. At each step k :
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Figure 1.8 – Maximum Reynolds number for stability of the nonlinear Ginzburg-Landau equa-
tion with optimal linear control applied at x = 0, versus cost l of the control. From Lauga &
Bewley (2004).

1. the state equation is solved forward in time for qk (x, t ), with the current tentative con-

trol ck (x, t ),

2. the adjoint equation is solved backward in time for q†k
(x, t ) with the terminal condi-

tion q†k
(x,T ) =ω2 qk (x,T ),

3. a convergence criterion is evaluated to decide whether to stop or not,

4. the sensitivity of the objective function (dJ /dc)k = q†k + l ck/T is evaluated,

5. a new control ck+1 is calculated according to an update procedure.

Typically, the new control is calculated as ck+1 = ck +αk d k where d is a descent direction

and α the step size. The steepest descent algorithm uses the gradient itself as descent di-

rection, dk = −(dJ /dc)k , but this method becomes very slow in some situations such as in

narrow valleys where the gradient is large in one direction and small in another one, which

might cause the algorithm to take many small steps (see figure1.2). The conjugate gradi-

ent algorithm avoids this problem by successively eliminating previous descent directions,

d k =−(dJ /dc)k +βk d k−1, where βk =
(

r k
∣∣ r k − r k−1

)
/
(

r k−1
∣∣ r k−1

)
and r k =−(dJ /dc)k .

A number of methods exist to choose the step size αk , from the simplest fixed step size

method, αk =α, to more or less refined methods performing a line search (approximate one-

dimensional minimization) along the descent direction minαJ (ck +αd k ). Here the Brent

method (Press, Teukolsky, Vetterling & Flannery, 1994) is used, which brackets a minimum

with three points and successively moves closer to it, evaluating J at the expected minimum

based on values at the bracketing points.
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1.4. Optimal control

Convergence criteria can be based on the norm of the sensitivity ||(dJ /dc)k || < ǫ, on the

variation of the control ||ck − ck−1|| < ǫ, or on the variation of the objective function |J k −
J k−1| = |J (qk ,ck )−J (qk−1,ck−1)| < ǫ. Here the retained criterion is based on the relative

variation of the objective function at current and previous steps,

3

2

|J k −J k−1|+ |J k−1 −J k−2|
|J k |+ |J k−1|+ |J k−2|

< ǫ, (1.55)

with ǫ= 10−5, which prevents early stopping when the algorithm takes a step associated with

a small variation of J .

In the following some results are given for a particular choice of control c(x, t ) = ĉ(t )S(x),

where only the time variation ĉ(t ) is optimized, while S(x) is a fixed shape function, namely

a Gaussian centred on x = 0 and of standard deviation (characteristic width) 0.3.

Numerical calculations are performed with a spatial discretization based on Hermite func-

tions (Bagheri et al., 2009). Time integration of the GL equation (1.46) and the adjoint equa-

tion (1.50) is done with the Crank-Nicolson method. The uncontrolled system is first simu-

lated until the saturated limit cycle is well established, then control is turned on at t = 0 and

optimization is performed on [0,T ] with the control guess value c0(x, t )= 0.

Figure 1.9(a) shows the energy of the controlled system after optimization, for Re = 70, l = 100

and ω2 = 0. The system is fully stabilized, the energy being reduced by a factor 100 before

t ≃ 30. Figure 1.9(b) shows the intensity c(t ) of the optimal control. It is smooth and goes

to zero as perturbations are damped, meaning that no control is spent once the system is

stabilized.
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Figure 1.9 – (a) Energy of the controlled system after optimization. The dashed line indicates
the initial energy value, i.e. the energy level of the limit cycle (here E0 ≃ 10.5). (b) Intensity of
the optimal control: real part ℜ(c(t )) (- -) and amplitude |c(t )| (—).

Figure 1.10(a) shows the effect of Re and horizon time T . The system is stabilized for Re = 50

and Re = 70 provided T is large enough. However, the energy is not reduced significantly

for Re ≥ 90 with this choice of l and ω2. This might be due to a fundamental limitation, the

system being impossible to control at high Reynolds number with the particular control con-
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figuration chosen here (single actuator at x = 0), or this might be related to the descent al-

gorithm getting trapped in a local minimum (recall that the problem is nonlinear). In the

present case, one-dimensional “cuts” in the control space show that the objective function

has indeed more and more local minima as Re increases.
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Figure 1.10 – Terminal energy after optimization for different horizon times. (a) Effect of
Reynolds number for l = 100, ω2 = 0. (b) Effect of the cost of control for Re = 50, ω2 = 0.
(c) Effect of receding horizon predictive control for Re = 110, l = 10−3, ω2 = 0. (d ) Effect of
penalizing terminal energy with ω2 6= 0 for Re = 110, l = 10−3.

Figure1.10(b) illustrates the effect of l at Re = 50 and for ω2 = 0. Making the control cheaper

by decreasing l allows to damp perturbations more quickly.

One way to circumvent the increasing difficulty to control the system is to use receding hori-

zon predictive control (RHPC). The idea is to divide the time interval [0,T ] into shorter sub-

intervals or “windows”, possibly with some overlap, and to optimize independently over each

of them. Considering smaller intervals reduces the number of control degrees of freedom and

makes the objective function smoother. RHPC is only sub-optimal in the sense that it does

not aim at minimizing the original objective function over [0,T ], but it might prove more effi-

cient. Figure1.10(c) compares results from optimal control over [0,T ] and from RHPC over 4

time windows with 50% overlap, at Re = 110 and for l = 10−3, ω2 = 0. RHPC is able to reduce

the amplitude of perturbation for large time horizons, a first step to full stabilization.

So far, no penalization term for terminal energy was considered, ω2 = 0. Letting ω2 = 1 in
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1.5. Eigenvalue sensitivity

the same configuration (Re = 110, l = 10−3) and with the same RHPC setting now results in

a very efficient stabilization, as shown in figure1.10(d ). However it comes at the price of a

longer computational time, so this trade-off must be considered in the choice of the relative

weights.

1.4.2 Application to hydrodynamics

Among the vast literature on adjoint flow control, let us point out two studies, one Riccati-

based and the other adjoint-looping-based, that are particularly relevant to the boundary

layer flow over a wall-mounted bump (also studied in this thesis from the point of view of

open-loop control of harmonic response in chapter 2 and separation characteristics in chap-

ter 4).

Ehrenstein et al. (2011) applied Riccati-based linear control to the nonlinear bump flow in

the stable regime, with a volume actuator just downstream of the bump, and without full

state information (six sensors in the recirculation region measuring wall shear stress), using

a reduced order model of global eigenmodes to make the computation tractable. As shown in

figure 1.11(a), with a suitable projection to build this reduced order model, the controller is

able to damp optimal perturbations after the large initial growth (the latter is unaffected since

perturbations are only felt with some delay, when they reach the first sensor downstream of

the bump).

Next, Passaggia & Ehrenstein (2013) attempted to control the same flow in the unstable regime

using adjoint-based nonlinear control, with wall actuation in the bump region and full state

information. It proved more difficult: the vortex-shedding dynamics was attenuated but the

flow remained unsteady (figure 1.11(b)). Typical issues involved in nonlinear optimization

(local minima) and adjoint looping (computation time, memory requirements) appeared in

this particular problem too.

1.5 Eigenvalue sensitivity

As mentioned in the introduction, there has been an increased interest in the sensitivity of

eigenvalues over the past years, since it not only allows for a better understanding of insta-

bility mechanisms in “oscillator” flows, but also establishes a guideline (sensitivity maps) to

optimal steady flow control design (Hill, 1992; Marquet et al., 2008; Meliga et al., 2010; Fani

et al., 2012). In addition, it also enables to lump steady flow control into amplitude equa-

tions that characterize the bifurcation close to the instability threshold (see Meliga & Gallaire

(2011) for instance).
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Figure 1.11 – Energy of the flow past a wall-mounted bump, showing the effect of control.
(a) Linear control built on a reduced order model of gobal modes. Appropriate projection
for the reduced order model yields an efficient attenuation of optimal perturbations in the
stable regime Re = 590 (Ehrenstein et al., 2011). (b) Adjoint-based nonlinear control manages
to attenuate perturbations in the unstable regime Re = 605 (Passaggia & Ehrenstein, 2013).
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1.5.1 Sensitivity to flow modification

Consider the eigenvalue problem (1.5) for flow perturbationsσBq+NL(Q)q = 0 resulting from

linearization of the Navier–Stokes equations. The objective function is the eigenvalue J =
σ and the control variable the base flow Q, i.e. the sensitivity to base flow modification is

investigated. Note that here the objective function does not depend explicitly on any other

variable but is rather an independent variable on its own. The Lagrangian reads

L f (σ,q,Q,q†) =σ−
(

q†
∣∣∣ σBq+NL(Q)q

)
, (1.56)

and its stationarity yields

∂L f

∂q
= 0 ⇒ σB†q† +NL(Q)†q† = 0, (1.57)

∂L f

∂σ
= 0 ⇒

(
q†

∣∣∣ Bq
)
= 1, (1.58)

∂L f

∂Q
= 0 ⇒

(
∂

∂Q

(
NL(Q)q

))†

q† = 0, (1.59)

or:

∇·u† = 0, −σu† +U ·∇u† −u† ·∇UT +Re−1∇2u† +∇p† = 0, (1.60)
(

q†
∣∣∣ Bq

)
= 1, (1.61)

dσ

dQ
=−u† ·∇uH +u ·∇u†. (1.62)

The result is an adjoint equation (adjoint eigenvalue problem) for q†, together with a nor-

malization condition (since the adjoint equation is linear and homogeneous, its solution is

defined up to a multiplicative factor). Therefore, the sensitivity of a given eigenvalue is readily

computed from (1.62), where only the associated direct eigenvector and adjoint eigenvector

need to be solved.

1.5.2 Sensitivity to control

Now the sensitivity of the eigenvalue to control is investigated. The objective function is still

J =σ and the eigenvalue problem is still a constraint for σ and q, but the control variable is

control, e.g. a force C or wall actuation Uc , and the base flow is another state variable subject

to its own constraint (the forced Navier-Stokes equations). The Lagrangian reads:

Lc (σ,q,Q,C,Uc ,q†,Q†,U†
c )=L f (σ,q,Q,q†)−

(
Q†

∣∣∣ N(Q)−C
)
−

〈
U†

c |U−Uc

〉
, (1.63)

where 〈a |b〉 =
∫
Γw

a ·b dΓ is the one-dimensional Hermitian inner product on walls. Clearly,

derivatives with respect to σ and q yield the exact same normalization condition and adjoint

eigenvalue problem as for the sensitivity to flow modification above, since Lc is made of L f
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Sensitivity analysis

Experimental measurements

x

y

Figure 1.12 – Eigenfrequency variation caused by the introduction of a small control cylinder
(diameter d = 0.04) in the flow past a D-shaped cylinder at Re = 13000. Upper half: adjoint-
based sensitivity analysis (Meliga et al., 2012); lower half: measurements (Parezanović &
Cadot, 2012).

and two inner products where σ and q do not appear. Other derivatives yield:

∂Lc

∂Q
= 0 ⇒

(
dN(Q)

dQ

)†

Q† =
dσ

dQ
, (1.64)

U†
c =−P †n−Re−1∇U†n, (1.65)

∂Lc

∂(C,Uc )
= 0 ⇒

dσ

dC
= U†,

dσ

dUc
= U†

c . (1.66)

The adjoint equation (1.64) for U† is linear (dN(Q)/dQ = NL(Q) is the linearized Navier–Stokes

operator) and non-homogeneous, the forcing term being precisely the sensitivity to base flow

modification derived in 1.5.1:

∇·U† = 0, −U ·∇U† +U† ·∇UT −Re−1∇2U† −∇P † =
dσ

dQ
. (1.67)

The other adjoint variable U†
c appears to be the adjoint stress at the wall (1.65), i.e. a by-

product obtained at no additional cost once Q† is known. It comes from integration by part

in space (using the divergence theorem).

Recently, Meliga, Pujals & Serre (2012) extended this method to turbulent flows, deriving ad-

joint equations for the full system governing both the flow and the turbulent variable of their

unsteady Reynolds-averaged Navier–Stokes model. Considering the flow past a D-shaped

cylinder at Re = 13000, they evaluated the sensitivity of the (mean flow) leading eigenvalue to

the presence of a small control cylinder. Comparison with eigenfrequency sensitivity maps

measured by Parezanović & Cadot (2012) was excellent (figure 1.12).
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1.5.3 Lagrangian-free method

The sensitivity of an eigenvalue to base flow modification (1.62) can actually be obtained

using an alternative method. First, consider a general eigenvalue problem Ax = σx. A small

variation δA of the operator yields at first order:

(A+δA)(x+δx) = (σ+δσ)(x+δx) ⇒ Aδx+δAx = δσx+σδx (1.68)

Keeping only fist-order terms, and taking the inner product with the adjoint eigenvector y

associated with σ (such that A†y =σy):

(
y
∣∣ Aδx

)
+

(
y
∣∣ δAx

)
=

(
y
∣∣ δσx

)
+

(
y
∣∣σδx

)
(1.69)

(
A†y

∣∣∣ δx
)
+

(
y
∣∣ δAx

)
=

(
y
∣∣ δσx

)
+

(
σy

∣∣ δx
)

(1.70)
(

y
∣∣ δAx

)
= δσ

(
y
∣∣ x

)
(1.71)

δσ=
(

y
∣∣ δAx

)
(

y
∣∣ x

) . (1.72)

This is a classical result for the variation of an eigenvalue caused by general operator modifi-

cation (Trefethen et al., 1993; Chomaz, 2005; Giannetti & Luchini, 2007).

Second, applying this relation to the eigenvalue problem (1.5) for flow perturbations, and

choosing the normalization
(

q†
∣∣ q

)
= 1, the eigenvalue variation resulting from a base flow

modification δQ is

δσ=
(

q†
∣∣∣−δ(NL(Q))q

)
=

(
q†

∣∣∣ −
(
∂

∂Q

(
NL(Q)q

))
δQ

)
=

(
−

(
∂

∂Q

(
NL(Q)q

))†

q†

∣∣∣∣∣ δQ

)
. (1.73)

Therefore, since δσ= ( dσ/dQ | δQ), (1.62) is recovered: dσ/dQ =−u† ·∇uH +u ·∇u†.

1.6 In this thesis

In the following chapters, focus is on sensitivity analysis, similar to section 1.5, applied to

several quantities relevant to separated flows:

1. eigenvalues J =σ;

2. harmonic gain in stable flows, i.e. gain from a small-amplitude harmonic forcing f to

the asymptotic response u (Brandt et al., 2011) J =G2 = ( u | u)/( f | f);

3. geometric properties of separation:

• location of stagnation points J (Q) = xs/r (Q) (separation and reattachment points

characterized by zero wall shear stress, τs/r = ∂nUt (xs/r ) = 0);
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• angle between the separatrix and the wall at stagnation points J (Q) = αs/r (Q) =
tan−1 (−3∂ntUt /∂nnUt )xs/r

;

• area of the backflow region where the flow goes upstream, J (Q) = Aback (Q) =∫

Ω

1Ωback
(x)dΩ;

• area of the recirculation region J (Q) = Arec (Q) =
∫

Ω

1Ωrec
(x)dΩ;

4. aerodynamic drag and lift coefficients: J (Q) =CD/L(Q) = 2ex ·
∮

Γw

Pn−Re−1(∇U+∇UT )·

ndΓ.

These quantities can be grouped into two categories: 3 and 4 depend explicitly on the flow,

while 1 and 2 depend implicitly on the flow. In all cases, sensitivity to control requires the

solution of a linear non-homogeneous adjoint equation forced by the sensitivity to flow mod-

ification. Sensitivity to flow modification, however, differs depending on the category: for 3

and 4 it is known analytically from J = J (Q); for 1 and 2 the objective function is rather a

variable on its own J = j which appears in a constraint, and in this case (as in section 1.5)

sensitivity to flow modification is obtained from a linear homogeneous adjoint equation and

a normalization condition.
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Amplification of harmonic forcing

This chapter is dedicated to the computation of sensitivity maps of the optimal harmonic

gain, using as a representative configuration the flow above a wall-mounted bump, a geome-

try introduced in the context of laminar flows by Marquillie & Ehrenstein (2002, 2003) and fur-

ther studied by Gallaire, Marquillie & Ehrenstein (2007); Ehrenstein & Gallaire (2008); Ehren-

stein et al. (2011); Passaggia, Leweke & Ehrenstein (2012); Passaggia & Ehrenstein (2013). Not

only is this separated flow of interest for its topological properties, which will be analyzed in

section 4.1 (for instance the separation point is free to move, in contrast with the celebrated

backward-facing step, studied in chapter 3), but it also exhibits a very elongated and thin

shear layer, of great interest for the resulting stability properties.

At Reynolds number below about 600 the flow behaves as an extremely intense noise am-

plifier, and becomes globally unstable for Re & 600, immediately exhibiting several unstable

modes suspected to interact to produce low-frequency fluctuations, referred to as flapping

(Ehrenstein & Gallaire, 2008). This complex behaviour above threshold differentiates this flow

from prototypical oscillator flows, like bluff body wakes such as those studied in section 4.3

and chapter 5.

Section 2.1 studies altogether (i) the sensitivity of the harmonic response below threshold, (ii)

the sensitivity of unstable modes above threshold, and (iii) the effect of a linearly designed

control. To investigate this latter effect, two types of unsteady nonlinear direct numerical

simulations (DNS) are performed: DNS of the flow submitted to external harmonic forcing

or random noise below threshold, and DNS of the intrinsic dynamics of the unforced flow

above threshold.

From an experimental point of view, the conjunction of strong amplification below threshold

and of the complex global stability behaviour above threshold makes the well-controlled re-

alization of this flow particularly challenging. Two experimental campaigns, respectively in

air and water, are reported in section 2.2.
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2.1 Paper: Open-loop control of noise amplification in a separated

boundary layer flow
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2.1. Control of noise amplification in a separated boundary layer flow

Open-loop control of noise amplification

in a separated boundary layer flow

E. Boujo1, U. Ehrenstein2 and F. Gallaire1

1LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2Aix Marseille Université, CNRS, Centrale Marseille, IRPHÉ UMR 7342, F-13384, Marseille, France

Physics of Fluids 25, 124106 (2013)

Linear optimal gains are computed for the subcritical two-dimensional separated boundary-

layer flow past a bump. Very large optimal gain values are found, making it possible for small-

amplitude noise to be strongly amplified and to destabilize the flow. The optimal forcing

is located close to the summit of the bump, while the optimal response is the largest in the

shear layer. The largest amplification occurs at frequencies corresponding to eigenvalues

which first become unstable at higher Reynolds number. Non-linear direct numerical simu-

lations show that a low level of noise is indeed sufficient to trigger random flow unsteadiness,

characterized here by large-scale vortex shedding.

Next, a variational technique is used to compute efficiently the sensitivity of optimal gains to

steady control (through source of momentum in the flow, or blowing/suction at the wall). A

systematic analysis at several frequencies identifies the bump summit as the most sensitive

region for control with wall actuation. Based on these results, a simple open-loop control

strategy is designed, with steady wall suction at the bump summit. Linear calculations on

controlled base flows confirm that optimal gains can be drastically reduced at all frequen-

cies. Non-linear direct numerical simulations also show that this control allows the flow to

withstand a higher level of stochastic noise without becoming non-linearly unstable, thereby

postponing bypass transition.

In the supercritical regime, sensitivity analysis of eigenvalues supports the choice of this con-

trol design. Full restabilization of the flow is obtained, as evidenced by direct numerical sim-

ulations and linear stability analysis.

1 Introduction

Flows can undergo bifurcation well below the critical Reynolds number Rec predicted by lin-

ear stability analysis. Examples of such subcritical flows include both parallel flows (e.g. Cou-

ette and Hagen-Poiseuille, which are linearly stable for any Reynolds number, i.e. Rec =∞
(Schmid & Henningson, 2001)) and non-parallel flows (e.g. jets, backward-facing step). Clas-

sical linear stability theory, which focuses on the long-term fate of small perturbations, pre-

dicts that all linear eigenmodes are damped for Re < Rec . However, it has become clear in

the past decades that perturbations can be amplified by non-modal mechanisms, a phe-

nomenon that modal linear stability analysis fails to capture (Trefethen et al., 1993). If large
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enough, amplification of these perturbations might destabilize the flow and trigger unsteadi-

ness or spatial symmetry breaking, thus leading to subcritical bypass transition.

While eigenvalues are not relevant to characterize such flows, non-modal mechanisms are

well described by two complementary ideas: transient growth of initial conditions, and asymp-

totic amplification of forcing. These mechanisms are a result of the non-normality of the lin-

earized Navier-Stokes operator which governs the dynamics of perturbations. For example,

non-normality leads to large transient growth in parallel flows through the two-dimensional

Orr mechanism and, more importantly, the three-dimensional lift-up effect (Butler & Farrell,

1992); in non-parallel flows, large transient growth is observed because of convective non-

normality (Chomaz, 2005). For such flows, transient growth is a well-established notion, and

most attempts to control convectively unstable flows naturally focus on reducing the largest

possible transient growth, or “optimal growth” (Corbett & Bottaro, 2001). A great variety of

control types and strategies exist (see e.g. reviews by Fiedler & Fernholz (1990); Gad-el Hak

(1996); Choi et al. (2008)). Several techniques have been used to reduce transient growth,

both active and passive. Among active control, the design of closed-loop schemes has re-

ceived a lot of attention. Based on modern control theory (review by Kim & Bewley (2007)),

and applied to physics-based reduced-order models (Rowley, 2005; Ehrenstein et al., 2011)

or to models obtained from system identification (Tian et al., 2006; Henning & King, 2007),

it has proven robust enough to be implemented in experiments. Based on Lagrangian opti-

mization, receding-horizon predictive control was able to successfully relaminarize a plane

channel flow at a centerline Reynolds number of 1712 (Bewley et al., 2001). Open-loop con-

trol has also been proposed as a successful strategy to mitigate instabilities experimentally,

be it active or passive (e.g. Fransson, Brandt, Talamelli & Cossu (2004) and Pujals et al. (2010)

to mention a few recent achievements).

As a complementary notion to transient growth, optimal response to harmonic forcing (or

“optimal gain”) has drawn increasing attention too in the past years. Åkervik, Ehrenstein, Gal-

laire & Henningson (2008) computed the optimal gain in a flat-plate boundary layer using

a reduced-order model of global eigenmodes. Alizard, Cherubini & Robinet (2009) used the

same method to obtain the optimal gain in a flat plate boundary layer with adverse-pressure-

induced separation. The optimal gain can also be calculated directly from the linearized

Navier–Stokes operator, as did Garnaud, Lesshafft, Schmid & Huerre (2013) for an incom-

pressible axsymmetric jet, Sipp & Marquet (2013) for a flat plate, and Dergham, Sipp & Robi-

net (2013) for a rounded backward-facing step.

Recently, Brandt et al. (2011) introduced Lagrangian-based sensitivity analysis to quantify

the sensitivity of the largest asymptotic amplification to steady control, and applied it to

a flat plate boundary layer. Lagrangian-based sensitivity analysis is a variational formula-

tion which allows us to compute gradients at low cost through the use of adjoint variables.

In particular, it can be applied to flow control with the aim of modifying eigenvalues (see

Luchini & Bottaro (2014) for a recent, general review of adjoint equations). Hill (1992) de-

rived the corresponding variational formulation and computed the sensitivity of the most
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Figure 2.1 – Bump geometry y = yb(x), inlet velocity profile (U ,V ) = (UBl asi us ,0), time-
dependent forcing F(t ), steady volume control C and steady wall control Uc .

unstable eigenvalue to passive control in the incompressible flow past a circular cylinder.

He reproduced most sensitive regions previously identified experimentally by Strykowski &

Sreenivasan (1990), where a secondary, small control cylinder could suppress vortex shed-

ding. Sensitivity analysis has then been used by several authors to compute the sensitivity of

eigenvalues in absolutely unstable flows. Marquet et al. (2008) studied the effect of base flow

modification and steady control in the bulk in the same flow as Hill (1992) and reproduced

most sensitive regions. Meliga et al. (2010) managed to control the first oscillating eigenmode

in the compressible flow past an axisymmetric body, considering its sensitivity to steady forc-

ing in the bulk (with mass, momentum or energy sources) and at the wall (with blowing/suc-

tion or heating). Meliga et al. (2012) also computed the sensitivity of the shedding frequency

(eigenfrequency of the leading global mode to the mean flow) in the fully turbulent wake past

a bluff body and reproduced experimental data for the flow forced by a small control cylinder.

The extension of sensitivity analysis to optimal gain by Brandt et al. (2011) now opens the way

to the control of convectively unstable flows.

In this study, the flow past a wall-mounted bump is considered. This separated flow is char-

acterized by a long recirculation region, high shear, strong backflow, and exhibits large tran-

sient growth (Ehrenstein & Gallaire, 2008; Ehrenstein et al., 2011). Optimal gains are com-

puted at different frequencies, and a sensitivity analysis is systematically performed in order

to identify regions where they can be reduced with steady open-loop control. This paper is

organized as follows. Section 2 describes the problem, including geometry and governing

equations. The uncontrolled subcritical flow is studied in section 3 by computing linear opti-

mal gains and characterizing noise amplification with DNS (direct numerical simulation). In

section 4, a sensitivity analysis is performed in order to identify regions where optimal gains

are most affected by steady control. Based on the results, we design one specific control

configuration, with wall suction at the bump summit, and demonstrate its effectiveness in

reducing not only linear optimal gains but also non-linear noise amplification. In section 5,

we investigate flow stabilization in the supercritical regime: sensitivity analysis applied to

global eigenvalues supports the choice of wall suction at the bump summit, which is further

confirmed by results from DNS and linear stability analysis. Conclusions are drawn in sec-

tion 6.
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2 Problem description and governing equations

The flow past a 2D bump mounted on a flat plate is considered. The bump geometry y = yb(x)

is shown in figure 2.1 and is the same as in Bernard, Foucaut, Dupont & Stanislas (2003); Mar-

quillie & Ehrenstein (2003) and following studies (Ehrenstein & Gallaire, 2008; Ehrenstein

et al., 2011; Passaggia et al., 2012). The incoming flow has a Blasius boundary layer profile,

characterized by its displacement thickness δ∗ at the reference position x = 0. The bump

summit is located at x = xb = 25δ∗, and the bump height is h = 2δ∗. All quantities in the

problem are made dimensionless with inlet velocity U∞ and inlet boundary layer displace-

ment thickness δ∗. The Reynolds number is defined as Re =U∞δ∗/ν, with ν the fluid kine-

matic viscosity.

The fluid motion in the domain Ω is described by the velocity field U = (U ,V )T and pressure

field P . The state vector Q = (U,P)T is a solution of the two-dimensional incompressible

Navier–Stokes equations

∇·U = 0, ∂t U+U ·∇U+∇P −Re−1∇2U = F+C in Ω,

U =Uc on Γc , (2.1)

U = 0 on Γw \Γc .

In the most general case, F(t ) is a time-dependent volume forcing, which will be specified as

harmonic forcing or stochastic noise in sections 3-4. A steady control is applied through a

volume force C in the flow, or through blowing/suction velocity Uc in some regions Γc of the

wall. The no-slip condition applies on other parts of the wall Γw \Γc .

Without forcing (F = 0), the steady-state base flow Qb = (Ub ,Pb)T satisfies:

∇·Ub = 0, Ub ·∇Ub +∇Pb −Re−1∇2Ub = C in Ω,

Ub = Uc on Γc , (2.2)

Ub = 0 on Γw \Γc .

To obtain the equation which governs the evolution of perturbations under small-amplitude

forcing F = f′, the flow is written as the superposition of the steady-state base flow and small

time-dependent perturbations, Q = Qb +q′. Linearizing equations (4.56) yields:

∇·u′ = 0, ∂t u′+Ub ·∇u′+u′ ·∇Ub +∇p ′−Re−1∇2u′ = f′ in Ω,

u′ = 0 on Γw . (2.3)
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Figure 2.2 – Recirculation length as function of Reynolds number. Solid line: steady-state
base flow calculated in the present study. Symbols: steady state computations (+) and time-
averaged recirculation length of oscillatory flow field (×) obtained by Marquillie & Ehrenstein
(2003).

3 Response to forcing: noise amplification

3.1 Base flow

The steady-state base flow Qb is obtained with an iterative Newton method. A two-dimensional

triangulation of the computational domain Ω (0 ≤ x ≤ 400, yb ≤ y ≤ 50) is generated with the

finite element software FreeFem++ (http://www.freefem.org), and equations (2.2) are solved

in their variational formulation, with the following boundary conditions: Blasius profile Ub =
(UBl asi us ,0)T at the inlet, no-slip condition Ub = 0 on the wall, symmetry condition ∂yUb =
Vb = 0 at the top border, and −Pbn+Re−1∇Ubn = 0 at the outlet, with n the outward unit

normal vector. P2 and P1 Taylor-Hood elements are used for spatial discretization of velocity

and pressure, respectively.

Figure 2.2 shows the recirculation length obtained for different Reynolds numbers. It can be

seen that lc increases linearly with Re, a behavior already observed experimentally and nu-

merically in a variety of separated flows, both wall-bounded and past bluff bodies: backward-

facing step (Sinha, Gupta & Oberai, 1981), bump (Passaggia et al., 2012), cylinder (Zielinska,

Goujon-Durand, Dušek & Wesfreid, 1997; Giannetti & Luchini, 2007), etc. The value of lc at

Re = 500 and 600 changed by 0.15% and 0.10% when refining the computational mesh so as

to increase the number of elements by 50%. Results from DNS by Marquillie & Ehrenstein

(2003) are also reported for reference, where values up to Re ≤ 600 correspond to steady state

computations and those for Re > 600 are obtained from time-averaged oscillatory flow fields.

Slight differences stem from different choices of domain size and boundary conditions: in

their direct numerical simulations, outlet and upper boundaries are located at x = 200 and

y = 80, and the boundary conditions are respectively (U ,V ) = (1,0) and an outflow advec-

tion condition well suited for DNS. In the present study, the upper boundary is lower (y = 50)

37



Chapter 2. Amplification of harmonic forcing

and the outlet much farther (x = 400), and a stress-free boundary condition is prescribed at

both boundaries since it is adapted to steady-state flows and appears as a natural condition

when using finite elements. The present Newton method allows us to obtain base flows well

beyond the critical Reynolds number and to confirm the linear dependency of lc with Re.

3.2 Optimal gain

When harmonic forcing F(x, y, t ) = f(x, y)e iωt is applied to a stable flow, the asymptotic re-

sponse is harmonic at the same frequency ω, q′(x, y, t )= q(x, y)e iωt . Then (2.3) becomes:

∇·u = 0, iωu+Ub ·∇u+u ·∇Ub +∇p −Re−1∇2u = f. (2.4)

In the following, the amplitude of perturbations q is measured in terms of their kinetic energy

Ep =
∫
Ω
|u|2 dΩ= ||u||22 with ||.||2 the L2 norm induced by the Hermitian inner product (a|b) =∫

Ω
a∗ ·b dΩ. The forcing amplitude is measured in a similar way with the L2 norm ||f||22 =∫

Ω
|f|2 dΩ. For a given frequency ω and a given forcing f, the asymptotic energy amplification

is the gain G(ω) = ||u||2/||f||2. In particular, it is of interest to determine the optimal forcing

fopt which leads to the largest energy amplification, i.e. the optimal gain:

Gopt (ω) =max
f

||u||2
||f||2

. (2.5)

In this study, optimal gains are computed using the same procedure as Garnaud et al. (2013)

After spatial discretization, the linear dynamical system (2.4) is written as (iωB+L)q = BPf,

with P a prolongation operator from the velocity-only space to the velocity-pressure space.

The optimal gain (2.5) is recast as

Gopt (ω) =max
f

||q||q
||f|| f

, (2.6)

where the pseudonorm ||q||2q = qH Qq q and the norm ||f||2
f
= fH Q f f are discretized versions

of the L2 norm. Rearranging the expression of G2
opt (ω) = max

f
||(iωB+L)−1BPf||2q /||f||2f , the

optimal gain can be expressed as the leading eigenvalue of the Hermitian eigenvalue problem

Q−1
f PH BH (iωB+L)−H Qq (iωB+L)−1BPf =λf. (2.7)

The operator (iωB+L)−1 is also called “resolvent” and the optimal gain Gopt (ω) the “resol-

vent norm”. The largest eigenvalue max(λ) =G2
opt (ω) and the associated eigenvector fopt are

computed using an implicitly restarted Arnoldi method. Operators Q−1
f

and (iωB+L)−1 are

obtained via LU decompositions. Operators L and B are obtained by spatially discretizing

the linear system (2.4) with the same method, same mesh and same elements as for the base

flow.

Previous studies using DNS (Marquillie & Ehrenstein, 2003) and linear global stability anal-
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Figure 2.3 – (a) Optimal linear gain at Re = 300, 400, 500 and 580. (b) Variation of the maximal
optimal gain with Reynolds number, and (c) frequency of this maximum.

ysis (Ehrenstein & Gallaire, 2008) reported a critical Reynolds number Rec between 590 and

610. In this section, noise amplification is calculated for the subcritical bump flow at Reynolds

numbers Re ≤ 580.

Figure 2.3 shows the optimal gain Gopt (ω), its maximum value Gmax = max
ω

(Gopt (ω)) and

the corresponding frequency ωmax . The latter increases between 0.15 and 0.25, while the

maximal optimal gain increases exponentially with Re and reaches values larger than 108

at Re = 580. This is in agreement with observations for other separated flows, for example

pressure-induced recirculation bubbles (Alizard et al., 2009). The large gain values found

here suggest that an incoming noise of very low amplitude might be linearly amplified so

much that it would eventually become of order one and possibly modify the base flow, or

even completely destabilize the overall flow behavior.

Largest values of optimal gain are obtained for frequencies corresponding to the most un-

stable global eigenvalues (e.g. 0.15 ≤ ω ≤ 0.30 for the eigenvalues with largest growth rate

near critical conditions in Ehrenstein & Gallaire (2008)). This is also true at lower values of

Re even though these eigenvalues are strongly stable, a phenomenon known as “pseudoreso-

nance” and a direct consequence of non-normality (Trefethen et al., 1993). No peak is found

at the low frequency corresponding to the flapping observed in DNS (ω ≃ 0.04 in Marquillie

& Ehrenstein (2003)).

Figure 2.4 shows the spatial structure of the optimal forcing and optimal response at Re = 580.

The optimal forcing is located near the summit of the bump and at the beginning of the shear

layer, with structures tilted against the base flow (which points to a contribution from the

Orr mechanism to the total amplification (Åkervik et al., 2008; Dergham et al., 2013)). The

forcing exhibits a layer-like structure in the y direction, and these layers become thinner as

ω increases. The optimal response has a wave packet-like structure in the x direction, whose

wavelength decreases with ω. At low frequency, ω. 0.1, the response is located downstream

of the reattachment point and is typical of the convective Tollmien-Schlichting instability

(Ehrenstein & Gallaire, 2005; Åkervik et al., 2008; Alizard & Robinet, 2007; Dergham et al.,
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Figure 2.4 – (a) Optimal forcing and (b) optimal response at Re = 580 for different frequencies
ω. The real part of the streamwise component is shown. The dashed line shows the base flow
separating streamline.

2013). At intermediate frequencies, the response is located along the shear layer, and its struc-

ture is reminiscent of the most unstable global eigenmodes for the same flow (Ehrenstein &

Gallaire, 2008), typical of Kelvin-Helmholtz instability in shear flows. This intermediate range

includes frequencies of largest optimal gain Gopt (see figure 2.3). At higher frequency, ω& 0.8,

the optimal forcing and response (not shown) are spread over a wide region and correspond

to the combined effect of advection and diffusion (Dergham et al., 2013).

3.3 Direct numerical simulations

In this section, the full non-linear Navier–Stokes system (4.56) is solved with direct numeri-

cal simulations, using the same procedure as Marquillie & Ehrenstein (2003). In the follow-

ing, the subcritical flow at Re = 580 is forced with F = f(x, y)φ(t ). This volume forcing will

serve a twofold role: section 3.3.1 focuses on harmonic forcing, so as to investigate the fully

non-linear asymptotic response, while section 3.3.2 deals with stochastic forcing, in order

to mimic random noise. The spatial structure of the forcing is chosen as a divergence-free

“double Gaussian” already used by Ehrenstein et al. (2011) and illustrated in figure 2.5:

fx = −(y − y f )A exp

(
−

(x −x f )2

2σ2
x

−
(y − y f )2

2σ2
y

)
,

fy =
σ2

y

σ2
x

(x −x f )A exp

(
−

(x −x f )2

2σ2
x

−
(y − y f )2

2σ2
y

)
. (2.8)

with a variable amplitude A, a center located at x f = 5, y f = 4, and characteristic width and

height σx = 0.5, σy = 1.0. The Gaussian-type forcing f is sufficiently far from the wall so that

its L2 norm is very close to the theoretical value A
√

π
2σxσ

3
y

(
1+σ2

y /σ2
x

)
one would obtain in
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Figure 2.5 – Spatial structure of the divergence-free Gaussian forcing (2.8): (a) streamwise
and (b) cross-stream components.

an unbounded domain, yielding ||f|| ≃ 2A. It should be stressed that F(t ) aims at modelling

an external forcing, and should not be confused with volume control C or wall control Uc .

3.3.1 DNS with harmonic forcing

In this section the forcing is chosen as F = f(x, y)φ(t ) with a harmonic time-dependency:

φ(t )= e iωt . We introduce notations for different measures of harmonic amplification used in

the following:

• Linear optimal gain (“resolvent norm”) Gopt (ω), already defined by equation (2.5): largest

energy amplification over all possible forcings f(x, y), it is solution of the eigenvalue

problem (2.7);

• Actual linear gain Gl i n(ω): energy amplification actually obtained for our particular

choice of forcing (2.8) in a fully linearized setting, it is simply calculated by solving the

linear system (2.4), i.e. Gl i n(ω) = ||q||q /||f|| f = ||(iωB+L)−1BPf||q /||f|| f ;

• Linear DNS gain GDNS (ω): energy amplification ||q||/||f|| measured in non-linear DNS

forced by our particular choice of forcing (2.8) in the linear regime, i.e. with forcing

amplitudes small enough for non-linear effects to be negligible.

Figure 2.6(a) displays the evolution of the energy of the perturbations Ep (t ) = ||q′(t )||2 =
||Q(t )−Qb ||2 for different forcing amplitudes, at ω = 0.25. For small values of A, the flow

quickly reaches a steady-state regime, as Ep reaches an almost constant value, and the flow is

harmonic as indicated by the regular velocity signal and the peaked power spectrum shown

in figures 2.6(c ,d ). From the results in this small-amplitude forcing regime, it is possible to

measure the amplification from forcing to response, or linear DNS gain GDNS = ||q||/||f|| =
E 1/2

p /2A. The variation of the mean asymptotic energy E p (mean value of Ep (t ) after the tran-

sient regime) with A is shown in figure 2.6(b) in logarithmic scale. For small values of A, the
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totic energy in the steady-state regime as function of the forcing amplitude A. The dashed
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obtained from DNS calculations with small-amplitude forcing. The dashed line indicates for
reference the optimal gain Gopt (reported from figure 2.3).

slope of the curve is 2 as expected, and the linear DNS gain is GDNS ≃ 1.6×105. This value

should be compared to the actual linear gain Gl i n (ω). Values of Gl i n and GDNS are given in

figure 2.7 and show good agreement.

For larger values of the forcing amplitude, non-linear effects become non-negligible and the

energy amplification starts to depart from the linear gain. At some point, close to Ac ≃ 2×10−6

in the case illustrated here, transition to a different regime occurs. The flow is destabilized

and becomes non-harmonic, as indicated by figures 2.6(c ,d ): although a sharp peak is still

present at the forcing frequency, the field now also contains a whole range of low and mid

frequencies. The perturbation energy jumps to a larger value. This phenomenon is a subcrit-

ical transition: small finite-amplitude perturbations are large enough to make the initially

stable flow move away from a weakly non-linear oscillatory state to a disordered one. Increas-

ing A further does not modify significantly the mean asymptotic energy, which saturates at

E p ≃ 100.

3.3.2 DNS with stochastic forcing

In this section the forcing is chosen as F = f(x, y)φ(t ) with a stochastic time-dependency: φ(t )

is a random noise of normal distribution (zero mean, unit variance). After investigating the

response to harmonic forcing and comparing with linear results in section 3.3.1, the aim is

now to model a more realistic noise.

The time evolution of Ep (t ) and the variation of E p with forcing amplitude are shown in fig-

ures 2.8(a,b). Qualitatively, they are very similar to their counterparts for harmonic forcing.

In particular, E p is proportional to A2 for small amplitudes, increases more quickly after a
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critical value Ac ≃ 10−5, and then saturates. Ac is larger and the transition smoother than in

the harmonic forcing case. This is consistent with the fact that a random white noise excites

all frequencies, thus only part of the total forcing energy is available at amplified frequen-

cies. This results in a larger forcing amplitude needed to obtain the same destabilizing effect.

However, the level of noise that the system can withstand is still very low, which shows that

the subcritical bump flow is a strong noise amplifier, easily destabilized by incoming noise

(Chomaz, 2005).

Figure 2.8(c- f ) shows streamwise velocity time series and power spectra computed from the

streamwise velocity signals measured over 1500 ≤ t ≤ 8000 at y = 1, from upstream (x = 80)

to downstream (x = 140) of the reattachment point. Interestingly, power spectra shift to-

wards lower frequencies as x increases, which is consistent with the fact that linear opti-

mal response moves downstream when ω decreases (see figure 2.4). For the lower forcing

amplitude A = 10−7, power spectra in figure 2.8(e) are maximal in the range of frequencies

0.15 .ω. 0.30, close to the range where linear gain (thick curve) is large. The agreement be-

tween linear optimal gain and non-linear DNS power spectra is best at x = 120, where optimal

responses are mostly located for this range of frequencies and in particular at ωmax = 0.23

(figure 2.4). For the larger forcing amplitude A = 10−5, power spectra in figure 2.8( f ) are the

same as those for A = 10−7 inside the recirculation region. Downstream, however, they ex-

hibit two distinct groups of frequencies: the same as for A = 10−7, and another one at lower

frequencies, related by a factor 1/2. Inspection of velocity fields in this case, shown in fig-

ure 2.9, reveals a secondary subharmonic instability reminiscent of vortex pairing: structures

downstream have a wavelength twice as large as the primary wavelength observed upstream,

λ2 = 2λ1. For larger forcing amplitudes, the flow is more complex because of even stronger

non-linear effects, and wavelengths are slightly increased. Note that perturbations in the lin-

ear regime (figure 2.9(a)) are very similar to the linear optimal response at ω = 0.25 (figure

2.4(b)), close to the most amplified frequency.

4 Sensitivity analysis

4.1 Sensitivity of optimal gain

In order to design an efficient open-loop control strategy aiming at reducing the optimal

gain, it is important first to understand the effect of a given control on Gopt (ω). Following

Brandt et al. (2011), a variational technique formulated in a Lagrangian framework is used

to evaluate the linear sensitivity of the optimal gain with respect to control. Considering the

small variation of G2
opt (ω) resulting from a small source of momentum δC in the domain

Ω and small-amplitude wall blowing/suction δUc on the control wall Γc , the sensitivities to

these two types of control can be defined as δG2
opt = (∇CG2

opt |δC)+〈∇Uc
G2

opt |δUc〉, where the

second term is a one-dimensional inner product on the control boundary 〈a |b〉 =
∫
Γc

a∗ ·b dΓ.

Through the use of a Lagrangian that includes the definition of the optimal gain (2.6), one
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Figure 2.8 – Response to stochastic forcing at Re = 580. (a) Time evolution of the perturbation
energy Ep . Dashed lines correspond to A = 3×10−5 and 3×10−4. (b) Mean asymptotic energy
in the steady-state regime as function of the forcing amplitude A. (c ,d ) Time series of the
streamwise perturbation velocity u′ measured at y = 1 and x = 80 and 140 for (c) A = 10−7
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Figure 2.9 – Subharmonic instability occurs as a manifestation of non-linear effects when
forcing amplitude is large enough. Amplitude of the stochastic forcing: (a) A = 10−7, (b) A =
10−5, (c) A = 3×10−5, (d ) A = 10−4. Contours of streamwise perturbation velocity, t = 2000,
Re = 580. The axes are not to scale.
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2.1. Control of noise amplification in a separated boundary layer flow

finds the expressions

∇CG2
opt = U†, ∇Uc

G2
opt = P †n+Re−1∇U†n, (2.9)

where the adjoint base flow Q† = (U†,P †)T is the solution of the linear, non-homogeneous

system of equations

∇·U† = 0, −Ub ·∇U† +U† ·∇UT
b
−∇P † −Re−1∇2U† =∇UG2

opt in Ω,

U† = 0 on Γw , (2.10)

and ∇UG2
opt = 2G2

opt Re(−fopt ·∇uH
opt +u∗

opt ·∇fopt ) is the sensitivity to base flow modification,

when the forcing is normalized as ||fopt || = 1. Note that the expression for ∇UG2
opt assumes

arbitrary base flow variation. As mentioned by Brandt et al. (2011), it is possible to restrict this

sensitivity field to divergence-free base flow modifications by solving a subsequent Poisson

equation.

For each frequency ω of interest, the optimal forcing and response are computed according

to the method described in section 3.2, and the sensitivity to base flow modification ∇UG2
opt

is calculated. Then, the sensitivities to control are obtained as follows: first, the variational

formulation of (4.10) is discretized and solved using FreeFem++ (with the same mesh and

elements as for base flow calculation); second, sensitivities (2.9) are evaluated. The boundary

conditions used to compute the adjoint base flow are U† = 0 at the inlet and on the wall,

∂yU † =V † = 0 at the top border, and P †n+Re−1∇U†n+U†(Ub ·n) = 0 at the outlet.

Figure 2.10 displays the streamwise component of the sensitivity of G2
opt to base flow modi-

fication, denoted as ∇U G2
opt =∇UG2

opt ·ex , at Re = 580. It shows where a modification of the

base flow δU = (δU ,0)T has the largest effect on the optimal gain at each frequency, and if

Gopt would increase or decrease, according to δG2
opt = (∇UG2

opt |δU). Two elongated regions

of large sensitivity are located in the shear layer and move upstream with ω: a region of nega-

tive sensitivity along the separatrix, and a region of positive sensitivity just above. The interior

of the recirculation region is sensitive too at intermediate (i.e. most amplified) frequencies,

with structures reminiscent of the optimal response (figure 2.4(b)).

Figure 2.11(a) shows the streamwise component of the sensitivity of G2
opt to volume control,

denoted as ∇Cx
G2

opt =∇CG2
opt ·ex , at Re = 580. The optimal gain is the most sensitive to con-

trol in the shear layer. However, several observations make difficult the design of an efficient

and robust open-loop control based on steady volume control. First, the location of largest

sensitivity (in absolute value) depends on ω: it is close to the reattachment point at lower fre-

quencies, and moves upstream as frequency increases. Thus, control applied at the location

of maximal sensitivity at one frequency will not be optimal at other frequencies. Second, the

sign of the sensitivity depends on space: thin regions of opposite sign are located close to
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Figure 2.10 – Normalized sensitivity of optimal gain to base flow modification in the stream-
wise direction, ∇UG2

opt /G2
opt , at Re = 580 and frequencies ω= 0.05,0.15, . . . 0.55. The vertical

dashed line is the base flow separatrix. The axes are not to scale.

each other (e.g. vertically in the shear layer and, for intermediate ω, horizontally in the recir-

culation region). Slightly misplacing a force intended to reduce the optimal gain might actu-

ally increase it. Third, in some locations the sign of the sensitivity is varying with frequency.

Therefore, without choosing its location carefully, a control might reduce the optimal gain at

some frequencies and increase it at others. Despite these limitations, one can focus on most

amplified frequencies and find a location where volume control reduces the optimal gain at

these frequencies. At (x, y) = (75,3.5) for instance (black circles in figure 2.11(a)), the sensi-

tivity ∇Cx
G2

opt is positive for 0.15 ≤ ω ≤ 0.45, and small for frequencies outside this range. A

force at this location and oriented along −ex should therefore have an overall reducing effect

on noise amplification. We will come back to this control configuration later on.

We now look at the sensitivity of optimal gain to wall control. Figure 2.11(b) shows the nor-

malized sensitivity to wall control ∇Uc
G2

opt /G2
opt . Arrows show the orientation of positive sen-

sitivity, i.e. wall control in the same direction and orientation as the arrows would increase

the optimal gain. The sensitivity is essentially normal to the wall, indicating that normal ac-

tuation has a much stronger effect than tangential actuation (more specifically: one to two

orders of magnitude). The sensitivity appears to be maximal at the summit of the bump for

all frequencies. The maximum point-wise L2 norm along the wall (inset in figure 2.11(b))

follows with ω the same trend as Gopt , meaning that wall control authority is larger at fre-

quencies which are more amplified. In addition, one can observe that ∇Uc
G2

opt changes sign

with ω at some locations (e.g. upstream of the bump, and in the downstream half of the recir-

culation region); however, at the bump summit it is oriented towards the fluid domain for all

frequencies, and therefore wall suction at this location would reduce Gopt for all frequencies.
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Figure 2.11 – Sensitivity of optimal gain to control at Re = 580 and frequencies ω =
0.05,0.15, . . . 0.55. (a) Normalized streamwise component of the sensitivity to volume control,
∇Cx

G2
opt /G2

opt . Black circles indicate the location of volume control (x, y) = (75,3.5) discussed
in the text and in figure 2.12. The axes are not to scale. (b) Normalized sensitivity to wall con-
trol, ∇Uc

G2
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opt , rescaled for each frequency by the largest point-wise L2 norm on the wall

max
x

||∇Uc
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opt /G2
opt ||2. This maximal value is shown by symbols in the inset (where the solid

line is an indicative fit through the data). The grey region shows the streamwise extension of
the bump. The dashed line is the base flow separatrix.
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Figure 2.12 – Variation of the optimal gain at Re = 580 when applying at (x, y) = (75,3.5) a
steady volume control of amplitude Cx in the streamwise direction. (a) Prediction from sen-
sitivity analysis (SA, red solid line) and non-linear controlled base flows (NL, blue symbols)
at ω = 0.25. The main plot is in logarithmic scale, the inset in linear scale (the sensitivity
is a straight line). (b) Gopt (ω) for Cx = 0 (thick solid line), Cx = −0.01 (thin solid line) and
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The above considerations on the sensitivity to volume control and wall control suggest de-

signing the following open-loop control: no actuation in the domain, C = 0, and vertical

wall suction Uc = (0,Uc )T at the bump summit x = xb . In the following, the Gaussian pro-

file Uc (x) = W exp(−(x − xb)2/σ2
c )/(σc

p
π), with 2D flow rate W , will be applied at the wall

(x, yb(x)).

In order to validate the sensitivity calculations, comparisons were made for several volume

and wall control configurations. We present results for two particular configurations in fig-

ures 2.12 and 2.13. First, figure 2.12(a) shows the variation of the optimal gain at ω = 0.25

when a steady volume force in the streamwise direction C = (Cx ,0)T is applied in the flow at

(x, y) = (75,3.5). Predictions from linear sensitivity analysis (with δG2
opt = (∇CG2

opt |δC)) are

compared to calculations of Gopt on non-linear controlled base flows. The agreement is ex-

cellent for the slope, with the sensitivity prediction (solid line) tangent to the curve for actual

base flows (dashed line) at zero-amplitude control. However, strong non-linear effects are at

hand, with the difference between the two curves quickly growing with |Cx |. Figure 2.12(b)

shows the actual optimal gain for different control amplitudes. At Cx = −0.01, the optimal

gain is reduced for frequencies 0.1 <ω< 0.4. At Cx =−0.02 (dashed line), further reduction is

obtained for 0.1 < ω < 0.25 but not for higher frequencies as strong non-linear effects come

into play; compared to the uncontrolled case, an increase of Gopt is observed for ω ≥ 0.35.

Note that the effect of a small control cylinder placed in the flow as in the experiment of

Strykowski & Sreenivasan (1990) can be modelled by a volume force of opposite direction

and same amplitude as the drag force felt by the control cylinder (Hill, 1992; Marquet et al.,

2008; Meliga et al., 2010). Here, at (x, y)= (75,3.5), the flow is in the streamwise direction (1%

of cross-stream velocity), and given the velocity magnitude, a volume control of Cx = −0.01

would correspond to a control cylinder diameter d = 0.007.
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Figure 2.13 – Variation of the optimal gain at Re = 580 when applying vertical wall blowing/-
suction at the bump summit. (a) Prediction from sensitivity analysis (SA, red solid line) and
non-linear controlled base flows (NL, blue symbols). The main plot is in logarithmic scale
and shows that G2

opt varies exponentially with flow rate. In linear scale (inset), the sensitivity
is a straight line. (b) Reduction of Gopt (ω) with flow rates W =−0.010, -0.035, -0.100.

Figure 2.13(a) shows the variation of the optimal gain at ω= 0.25 when vertical wall actuation

(blowing/suction) is applied at the bump summit. Predictions from linear sensitivity analysis

(with δG2
opt = 〈∇Uc

G2
opt |δUc〉) are compared to calculations of Gopt on non-linear controlled

base flows (with wall blowing/suction actually modelled as a boundary condition). It appears

that Gopt varies exponentially with W (straight line in logarithmic scale). Again, the agree-

ment is very good, and non-linear effects strong. Therefore, sensitivity analysis proves useful

in identifying sensitive regions to design efficient control configurations, but the final quanti-

tative control performance can only be assessed with non-linear simulations or experiments.

Figure 2.13(b) shows the actual optimal gain for different suction flow rates, and confirms

the efficiency of this control strategy: reasonably small control flow rates achieve a dramatic

reduction of Gopt for all frequencies, thereby potentially increasing the level of noise the flow

can withstand without being destabilized.

4.2 Reduction of non-linear noise amplification

The behavior of the controlled flow is assessed by DNS at Re = 580. The same series of sim-

ulations as in section 3.3 is performed, now with the steady open-loop control designed in

section 4.1, with flow rate W =−0.035. Figure 2.14 compares the actual harmonic gain in the

uncontrolled and controlled flows, with the forcing structure given by (2.8). It shows that the

control achieves a significant reduction of about 200 to 300 for the most dangerous frequen-

cies, which are now only amplified by a factor 103 instead of 105.

Results for harmonic and stochastic forcing are summarized in figure 2.15, which represents

the standard deviation of Ep (t ) after the transient regime and gives an indication of how

much the energy of the perturbations fluctuates. Typically, amplitudes larger by a factor

100 are needed to reach the same level of energy fluctuations. This is consistent with gain
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Figure 2.16 – Flow restabilization at Re = 580 in direct numerical simulations with steady ver-
tical wall suction at the bump summit (flow rate W =−0.035). (a) Energy of the perturbations
(calculated with the final steady-state as reference base flow). (b) Streamwise velocity of the
total flow at (x, y) = (80,1). The subcritical flow, stationary for t < 0, is perturbed from t = 0
with stochastic forcing of amplitude A = 3×10−4, and control is turned on at t = 1000.

reductions of about 200 to 300 observed for the optimal gain in figure 2.13(b) and, as men-

tioned above, for the actual gain in figure 2.14. The conclusion is the same for harmonic and

stochastic forcing: control reduces noise amplification dramatically. The controlled flow can

withstand much higher levels of noise than the uncontrolled one before being destabilized.

As an illustration, figure 2.16 shows the result of a DNS where the flow is forced with stochas-

tic noise of amplitude A = 3×10−4, large enough to destabilize the flow. Control with flow

rate W = −0.035 is turned on at t = 1000. The flow is restabilized and becomes stationary.

This new steady-state (different from the steady-state at the same Reynolds number with-

out forcing nor control) is used as the reference base flow for the calculation of Ep , which

quickly drops to zero after control is turned on. The streamwise velocity signal measured at

(x, y) = (80,1) changes from negative to positive, showing that there is no backflow any more

at this location and indicating that wall suction shortens the recirculation region.

5 Flow stabilization

We turn our attention to the supercritical regime. Unlike in the subcritical regime, it is not

possible to assess the performance of any control in terms of its effect on optimal gain since

the flow is unstable and the notion of asymptotic harmonic response is irrelevant. The nat-

ural tool to be used is global linear stability analysis. With a global mode decomposition

for perturbations q′(x, y, t )= q(x, y)eσt , the linearized Navier–Stokes equations (2.3) without

forcing yield the eigenvalue problem

∇·u = 0, σu+Ub ·∇u+u ·∇Ub +∇p −Re−1∇2u = 0, (2.11)
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Figure 2.17 – Global linear eigenspectrum at Re = 620 of the uncontrolled flow and of the flow
controlled with vertical wall suction at the bump summit with flow rate W = −0.015, -0.025,
-0.035, -0.040.

where complex eigenvalues σ = σr + iσi of positive (resp. negative) real part correspond to

unstable (resp. stable) eigenmodes q. The aim of the control is now to reduce the growth rate

σr of unstable modes.

The eigenvalue problem (2.11) is discretized as (σB+L)q = 0, where L = L(U) is the Jacobian

matrix, and solved at Re = 620 with the method described in Ehrenstein & Gallaire (2008). Lin-

earization is first performed around the uncontrolled base flow, then around a series of base

flows controlled by vertical wall suction at the bump summit with increasing flow rates. In the

uncontrolled case, the flow is globally unstable: we recover the eigenspectrum of Ehrenstein

& Gallaire (2008) shown in figure 2.17 and characterized by two distinct branches of eigen-

values. The most unstable branch corresponds to a family of global modes of similar spatial

structure localized around the reattachment point and associated with a Kelvin-Helmholtz

instability of the shear layer. The other branch corresponds to weakly unstable convective

modes, typical of Tollmien-Schlichting instability in boundary layers. As the control ampli-

tude is increased, both branches become less unstable, until all modes are fully restabilized

for W ≃−0.040. Eigenvalues which are stable in the uncontrolled case are not destabilized by

the control. Therefore the control strategy designed in section 4.1 has a direct and selective

effect on unstable eigenvalues, efficiently moving them to the stable half-plane without desta-

bilizing other eigenvalues. This trend could be expected because the main effect of normal

wall suction is to shorten the recirculation region and reduce the strength of the shear layer,

thus mitigating shear instabilities. Since noise amplification in the subcritical regime and un-

stable global eigenmodes in the supercritical regime are different manifestations of the same

type of mechanisms (Orr, Tollmien-Schlichting, and more importantly Kelvin-Helmholtz as

already mentioned in section 3.2), it seems reasonable that a well-chosen control can have a

stabilizing effect on both.
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Figure 2.18 – Sensitivity analysis of the most unstable eigenvalues at Re = 620. (a) Sensitivity
of the growth rate of modes 1 to 9 (Kelvin-Helmholtz branch) to vertical wall control. The
dashed line shows the bump summit location. (b) Effect of vertical wall control at the bump
summit, as predicted by sensitivity analysis. Red solid lines indicate a flow rate W =−0.005.
The lower panel is a close-up view of eigenvalues 1 to 3, comparing sensitivity analysis (SA,
red solid lines) and linear stability analysis results for non-linear base flows controlled with
W =−0.001 and −0.002 (NL, blue circles).

More insight can be gained using a systematic sensitivity analysis to investigate the effect of

steady wall control on most unstable eigenvalues. Similar to section 4.1 for the optimal gain,

the variation of a given eigenvalue σ resulting from a small wall actuation δUc is written as

δσ= 〈∇Uc
σ|δUc〉. Here a discrete method is employed to compute the sensitivity ∇Uc

σ. The

above eigenvalue shift is equivalent to δσ= (∇Uσ|δU), where the base flow modification δU

caused by wall actuation is solution of the linear system LδU = δUc , solved for each wall

location, while the sensitivity ∇Uσ is computed once only as
(
∇ULq

)H
q†, with q† the adjoint

mode associated with the global mode q.

Figure 2.18(a) shows results for the most unstable eigenmodes of the Kelvin-Helmholtz branch.

At the bump summit (x = 25) the sensitivity of their growth rate to vertical actuation along ey

is positive, therefore vertical wall suction has a stabilizing effect on all these modes. Any other

control configuration would be less effective. For instance, vertical wall blowing at x = 30

would be slightly more effective in stabilizing modes 3 and 5, but would require more control

amplitude, and might also destabilize mode 9. Figure 2.18(b) shows that convective eigen-

modes (σi ≤ 0.15) are weakly sensitive. Global eigenvalues calculated from non-linear base

flows controlled at the bump summit with small-amplitude vertical suction (W =−0.001 and

−0.002) closely follow prediction from sensitivity analysis, as illustrated in the close-up view.

Finally, direct numerical simulations were performed at several supercritical Reynolds num-

bers. Since the flow is naturally unstable, no forcing was added, and self-sustained oscilla-

tions characterized by low-frequency, large-scale vortex shedding developed (Marquillie &
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Figure 2.19 – Flow restabilization at Re = 620 in direct numerical simulations with steady
vertical wall suction at the bump summit (flow rate W = −0.035). Same notations as figure
2.16. The supercritical flow is naturally unsteady, no perturbation is added, and control is
turned on at t = 1000. Dots correspond to the times of snapshots in figure 2.20.

Ehrenstein, 2003). Steady vertical wall suction at the summit was turned on at t = 1000. Fig-

ure 2.19 illustrates how the flow was fully restabilized at Re = 620 with control amplitude of

W = −0.035. (The eigenspectra of figure 2.17 suggest that the flow is still unstable with this

flow rate. This is due to the different domain size and numerical methods used in the linear

stability analysis and in the DNS.) As in the subcritical case, the streamwise velocity mea-

sured at (x, y) = (80,1) is largely fluctuating in the uncontrolled regime, but quickly reaches

a steady value once control is turned on. It changes from negative without control to posi-

tive with control, because wall suction shortens the recirculation region. The energy of the

perturbations (with the final steady-state taken as reference base flow) quickly decreases to

zero as the flow is stabilized and perturbations are advected downstream. Snapshots of the

vorticity field in figure 2.20 clearly depicts how large-scale perturbations are advected while

the control efficiently prevents the formation of new structures and finally drives the flow to

a perfectly steady state.

Other direct numerical simulations at Re = 620, which is only slightly supercritical, yielded

stable flows with a control amplitude as low as W =−0.010, while with W =−0.035 the flow

could be restabilized for Re ≥ 700. We did not attempt to determine accurate threshold values

of restabilizing control amplitudes Wc (Re).

6 Conclusions

The maximal possible linear amplification of harmonic forcing was computed at several fre-

quencies in the globally stable 2D separated boundary layer past a wall-mounted bump. Very

large values of the linear optimal gain confirmed the strong non-normal character of this flow,

which had already been evidenced by large transient growth in previous studies (Ehrenstein
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Figure 2.20 – Flow restabilization in the supercritical regime, Re = 620, in DNS with steady
vertical wall suction at the bump summit (flow rate W =−0.035): contours of vorticity of the
total flow at t = 0, 500, 1000. . . 2500. The black dot shows the location of the point (x, y) =
(80,1) where the velocity signal of figure 2.19 is recorded. The axes are not to scale.

& Gallaire, 2008; Ehrenstein et al., 2011). DNS confirmed that a small-amplitude noise, har-

monic or stochastic in time, could lead to a subcritical bifurcation by destabilizing the flow

and triggering random unsteadiness.

Using sensitivity analysis, regions where steady control has a desirable reducing effect on op-

timal gains were identified. A simple open-loop control inspired by this analysis successfully

reduced linear asymptotic response to harmonic forcing at all frequencies. DNS revealed that

this control efficiently dampened noise amplification in the non-linear regime too, which

demonstrates that linear analysis captures the essential mechanisms involved in non-modal

growth, and is able to delay bypass transition in such separated open flows.

The success of the present sensitivity-based control method is encouraging. While being

based on physical grounds, it keeps the final design both simple and efficient. The control

strategy, optimally designed in the subcritical regime, is able not only to dampen noise am-

plification and delay bypass transition in the subcritical regime, but also to restabilize the
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unstable flow in the supercritical regime.

We plan to pursue this study further. First, an ongoing experiment will tell whether this con-

trol strategy is robust to 3D effects, and to noise with realistic time and space distributions.

Second, it would be useful to circumvent the need to repeat sensitivity analysis at each fre-

quency of interest; this will require finding a suitable surrogate for optimal gain.
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2.2 Experimental study

In section 2.1, the optimal location for wall actuation was determined based on a linear sen-

sitivity analysis targeting the harmonic gain response below instability threshold (Re ≃ 600).

This design was also found efficient above threshold, using a linear eigenvalue sensitivity

analysis. Nonlinear direct numerical simulations demonstrated the effectiveness of the cho-

sen control scheme in restabilizing the flow.

This section aims at confirming these results experimentally, by demonstrating the stabilizing

action of a well-chosen actuation region, namely the summit of the bump. Two experimen-

tal campaigns, respectively in air and water, are reported. The first campaign took place in

2010 at LFMI (EPFL). Wind-tunnel measurements of the length of the recirculation region ev-

idenced transition to unsteadiness at low Reynolds number, possibly induced by large noise

amplification, and in agreement with previous numerical and experimental studies (Mar-

quillie & Ehrenstein, 2003; Passaggia et al., 2012). The second campaign was made possible

in 2013 by a collaboration with IRPHÉ (Aix-Marseille Université, Centrale Marseille, CNRS).

Measurements in a water channel confirmed the effectiveness of the simple open-loop con-

trol proposed in 2.1 based on sensitivity analysis. To this end, suction was applied through

a porous medium. It should be mentioned that such experiments are extremely challeng-

ing, not only because of the three-dimensional nature of any real flow, but also because of

the strong amplification potential below threshold, together with a complex global stability

behaviour above threshold.

2.2.1 Recirculation length transition

The experimental facility used in the first campaign is a vertical closed-circuit, low-speed

wind-tunnel with low turbulent intensity ≃ 0.3 %. It has also been used to study, among oth-

ers, streaks instability in a laminar boundary layer (Rüedi, 2002). The closed test-section is

120 mm high, 760 mm wide and 3290 mm long (figure 2.21). Its roof has an adjustable slope,

which allows to control the longitudinal pressure gradient and the boundary layer develop-

ment. A rounded-leading-edge aluminium flat plate of thickness 6 mm, width 700 mm and

length 2770 mm is mounted in the test section to produce a laminar boundary layer, together

with a bump of height h = 6 mm, its summit being fixed at xb = 675 mm from the leading

edge. It is invariant in the spanwise direction, and its profile yb(x) is the same as in Bernard

et al. (2003) and following numerical studies (Marquillie & Ehrenstein, 2002, 2003; Ehrenstein

& Gallaire, 2005, 2008). The surfaces of the plate and the bump are made black by anodizing

so as to reduce laser reflections. A Pitot tube (MKS 698A + MKS 270) mounted on a side wall

upstream of the bump measures the dynamic pressure∆P = ρU 2
∞/2, from which are deduced

the free-stream velocity U∞ and the Reynolds number Reh/2 =U∞h/2ν based on the bump

(half) height. Lengths have been chosen so as to yield Reδ∗ = Reh/2 = 600 when U∞ = 3 m/s,

whereas in 2.1 and previous studies, Reδ∗ = U∞δ∗/ν is the Reynolds number based on the

boundary layer displacement thickness at the upstream location x = xb −25δ∗.
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Figure 2.21 – Experimental set-up: (a) side view and (b) top view (units: mm). For clarity,
vertical dimensions (along y) are stretched by a factor 4.
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Figure 2.22 – Mean velocity fields obtained by PIV at Reh/2 = 450 (from two fields of view
46 ≤ x ≤ 118 and 79 ≤ x ≤ 167), averaging N = 100 instantaneous fields. Streamwise velocity
U ∈ [−0.5,3.0] m/s.

Particle image velocimetry was used to measure the mean length of the recirculation re-

gion downstream of the bump. Many other methods exist to determine wall shear stress τ

(Naughton & Sheplak, 2002) such as surface fence, wall pulsed wire, oil film interferometry

(Fernholz, Janke, Schober, Wagner & Warnack, 1996) or more recent MEMS (Löfdahl & Gad-

el Hak, 1999). Stagnation points where τ= 0 can also be deduced by direct visualization, but

in the present case surface oil flow visualization (Lu, 2010) and tuft visualization were diffi-

cult because of the low speed. An already available PIV system (Vonlanthen & Monkewitz,

2013) was a practical, easy-to-calibrate and non-intrusive alternative technique. The flow is

seeded with diethyl hexyl sebacate (DEHS) particles of mean diameter 1.6 µm. A pulsed Nd-

YAG laser of wavelength 532 nm (Quantel Brilliant Twins B) and a set of lenses produce a thin

sheet illuminating the flow in a vertical x − y plane in the centre of the test section. Pairs of

images are acquired with a 4008 × 2672 px camera (TSI PowerView Plus CCD with Nikkor 105

mm f/1.8 lens) and post-processed with an in-house code (Ursenbacher, 2000) to obtain two-

dimensional velocity fields. Figure 2.22 shows the mean flow at Reh/2 = 450, averaged from

100 instantaneous fields. Then, points of zero streamwise velocity U are interpolated with a

law y(x)= aebx+cedx , whose extrapolation to y = 0 gives the location of the stagnation point.

Figure 2.23 shows an example of such processing at Reh/2 = 450.
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Figure 2.23 – Illustration at Reh/2 = 450 of the method to compute the recirculation length
from the mean flow: (a) points where U = 0 in each pixel column (×) and each pixel row (◦),
and interpolation curve y(x)= aebx +cedx from which the reattachment point is determined.
(b) same curve reported onto the mean field of figure 2.22.
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Figure 2.24 – Recirculation length: numerical results versus Reδ∗ (◦) from Marquillie & Ehren-
stein (2003), and experimental measurements versus Reh/2 (—).

Figure 2.24 shows the recirculation length lc as a function of Reynolds number. PIV measure-

ments and numerical results from Marquillie & Ehrenstein (2003) both grow with increasing

Reynolds number before they reach a maximum, and then decrease with increasing Re. At

lower Reynolds number the flow is steady and the recirculation length is increasing, while

after transition the mean recirculation length of the unsteady flow is decreasing, as typically

occurs in many separated flows (Sinha et al., 1981; Zielinska et al., 1997). In the present ex-

periment, transition occurs at Reh/2 ≃ 350, in good agreement with Passaggia et al. (2012),

and is not as sharp as in numerical simulations. It is worth mentioning that the set-up and

Reynolds number in this experiment and in previous studies differ: numerical results are re-

ported for Reδ∗ with a constant ratio h/δ∗, while the present measurements are for Reh/2 with

fixed bump height and location. In order to keep h/δ∗ constant as the free-stream velocity

increases and the boundary layer displacement thickness decreases, it would be necessary to

change the bump size or location as in Passaggia et al. (2012).
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Figure 2.25 – Standard deviation of streamwise and cross-stream velocity fluctuations (from
N = 100 measurements) versus Reynolds number Reh/2, at several points inside and outside
the recirculation region: x = 115 (+), 135 (◦), 155 (×) mm, and y = 4 (solid lines), 6 (dashed
lines), 8 (dash-dotted lines) mm.

Figure 2.25 shows the standard deviation of velocity fluctuations ur ms and vr ms at nine points

of coordinates x = 115,135,155 mm, y = 4,6,8 mm. Their smooth increase with Reynolds

number suggests that transition in this flow might be due to noise amplification rather than

to an intrinsic instability. However, care is needed since results might be affected by the dif-

ferent set-up (fixed bump position) and by three-dimensional effects observed in particular

at the lateral walls.

2.2.2 Open-loop control using wall suction

The second measurement campaign was conducted in a free-surface water channel at IRPHÉ.

The set-up and methods are largely similar to those described in Passaggia et al. (2012). The

test section is 500 mm high, 380 mm wide and 1500 mm long (figure 2.26). An aluminium

bump of height h = 5 mm was located at the fixed location 500 mm from the sharp leading

edge of a 20 mm thick Plexiglas flat plate. A suction mechanism was added to the original

set-up (figure 2.27): a slit of width 3 mm and length L = 243 mm is opened through the whole

height of the bump down to a cavity inside the flat plate (20 mm wide and 11 mm deep), and

tubes connects 6 holes in the cavity floor to a gear pump (ISMATEC BVP-Z). The slit in the

bump and the cavity in the flat plate are filled with porous material (Porex polyethylene of

average pore size 40-100 µm) in order to make the flow homogeneous (in the spanwise di-

rection and inside the slit and the cavity) and to ensure that the flow sees a smooth surface

when passing over the slit. The pump adjustable rotation speed has been calibrated against

flow rate W . New PIV measurements were performed and processed with the software DPIV-

Soft (Meunier & Leweke, 2003) to check the free-stream velocity calibration and to measure

the boundary layer thickness δ(x) = γ
p
νx/U∞, with γ a proportionality factor. With fixed

bump height h and location xb , operating conditions in the plane (Reδ∗ ,h/δ∗) are located

along a straight line parametrized by the free-stream velocity, as shown in figure 2.28 and in

agreement with the theoretical relation

h

δ∗
=

(
Reδ∗

γ2
+25

)
h

xb
, (2.12)
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Figure 2.26 – Experimental set-up (from Passaggia et al. (2012)).

Figure 2.27 – Close-up view (vertical cut) of the bump and its slit above the flat plate, the
cavity (filled with porous medium), and one of the holes connected to the pump.

obtained by combining the Reynolds number Reδ∗ = U∞δ∗/ν, the reference displacement

thickness δ∗ = γ
p
νx∗/U∞, and the reference location x∗ = xb −25δ∗ where δ∗ is measured.

These operating conditions allow us to cover all regimes identified in Passaggia et al. (2012):

quasi-steady flow at very low Reδ∗ , but above all weak transverse instability for Reδ∗ . 500

and low-frequency flapping for larger Reδ∗ .

A series of visualizations were performed at different free-stream velocities with and without

suction. Fluorescein dye was injected in the recirculation region, and side views of the cen-

ter plane illuminated with an Argon laser sheet were recorded at 30 fps. Figure 2.29 shows

typical images of the uncontrolled flow (W = 0). In addition to low-frequency flapping, high-

frequency oscillations are also observed at large Reδ∗ values (lower snapshots). They appear

very regular and might be related to a Kelvin-Helmholtz instability of the shear layer. Note

that the separation point moves slightly upstream (consistent with chapter 4). As an alterna-

tive view, vertical cuts at fixed x locations are shown in figure 2.30 as y − t spatio-temporal

diagrams. They illustrate spatial amplification, with a larger displacement of the shear layer

downstream, as well as high-frequency oscillations at large Reδ∗ .

More quantitative data was extracted by processing images with two different methods, mea-

suring at different x locations: (i) the height of the separatrix ysep (easily identified since

fluorescein is often concentrated in the shear layer and absent outside the recirculation re-
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Figure 2.28 – Operating conditions (red solid line and diamonds) in the plane (Reδ∗ ,h/δ∗)
with the present set-up (fixed bump position xb = 500 mm from the flat plate leading edge,
fixed bump height h = 5 mm). Stability diagram (black dashed lines and other symbols) re-
produced from Passaggia et al. (2012).

gion), and (ii) the total intensity I integrated vertically. Figure 2.31 shows the power spec-

trum density obtained from the temporal signal ysep (t )/δ∗ measured at x = x∗ + 40δ∗. A

high-frequency peak is visible at f h/U∞ ≃ 0.14 for Reδ∗ ≥ 500. Its amplitude increases with

Reδ∗ , similar to the low-frequency peak at f δ∗/U∞ . 0.01 identified in Passaggia et al. (2012)

(note the different scaling, pointing to different mechanisms).

Figures 2.32 and 2.33 show how the flow at Reδ∗ = 448 is modified when control is turned on.

The total flow rate varies between W = 0 and 1.17 L/min, which corresponds to an equivalent

non-dimensional flow rate per unit spanwise length varying between W /LU∞δ∗ = 0 and 0.21

(of the same order ≃ 0.1 as in 2.1). Unsurprisingly, the shear layer is deflected downwards and

the separation point moves downstream, resulting in a much smaller recirculation region.

The shear layer appears to fluctuate much more at weak suction (second row from top) than

other cases.

The spatio-temporal evolution of the controlled flow at Reδ∗ = 448 is shown in figure 2.34.

Compared to the uncontrolled case (top row), fluctuations visible downstream globally have

a smaller amplitude with larger flow rates W /LU∞δ∗ = 0.14 and 0.21 (two bottom rows). How-

ever, the high-frequency instability observed only for Reδ∗ . 500 in the uncontrolled case

now appears to be triggered at low suction flow rate (second row). As an explanation, cavity

oscillations can be ruled out since: (i) the porous media is carefully flush-mounted in the

slit, (ii) typical frequencies for such cavity oscillations are more than one order of magnitude

larger (given the dimensions and velocities in the present flow) than those observed here, and

(iii) the same oscillations appeared at low W in complementary experiments with suction
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Figure 2.29 – Dye visualization snapshots of the uncontrolled flow at Reδ∗ = 383, 509, 538, 593,
619 (top to bottom).
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Figure 2.30 – Spatio-temporal y − t diagrams of the uncontrolled flow at x = x∗+30δ∗, x∗+
35δ∗, x∗+40δ∗ (left to right), and Reδ∗ = 383, 448, 509, 566, 619 (top to bottom).
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Figure 2.31 – Power density spectra of the shear layer height for the uncontrolled flow at x =
x∗+40δ∗.

↓
W

Figure 2.32 – Snapshots showing the effect of wall control on the flow at Reδ∗ = 448: suction
flow rate W = 0, 0.39, 0.78, 1.17 L/min, i.e. W /LU∞δ∗ = 0, 0.07, 0.14, 0.21 (top to bottom).

↓
W

Figure 2.33 – Effect of wall control on the mean flow at Reδ∗ = 448: suction flow rate W = 0,
0.39, 0.78, 1.17 L/min, i.e. W /LU∞δ∗ = 0, 0.07, 0.14, 0.21 (top to bottom).
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Figure 2.34 – Spatio-temporal y − t diagrams of the controlled flow: suction flow rate
W /LU∞δ∗ = 0, 0.07, 0.14, 0.21 (top to bottom) at x = x∗ + 30δ∗, x∗ + 35δ∗, x∗ + 40δ∗ (left
to right).

installed downstream of the separation. These oscillations might rather be related to a thin-

ning of the shear layer caused by wall suction, resulting in a more unstable Kelvin-Helmholtz

mechanism. This destabilizing effect (increased shear) is therefore competing with the pri-

mary stabilizing effect of suction (shorter recirculation length). Further investigation would

yield additional insight into this phenomenon.

Figure 2.35 shows the normalized standard deviation of the separatrix height σ̃(ysep ) and of

the intensity integrated vertically σ̃(I ), at Reδ∗ = 448. In the uncontrolled case (thick line), per-

turbations are clearly amplified as they travel downstream. With weak wall suction (dashed

line), the Kelvin-Helmholtz instability is triggered, and shear layer oscillations are amplified

by up to 4 at x = x∗+45δ∗. Far downstream, the breakdown of the recirculation region pro-

vokes strong disorder in the flow, and the shear layer is not well-defined any more. Intensity

fluctuations, however, can be measured even in this case. They confirm that perturbations

are quickly amplified, earlier (x ≃ x∗+40δ∗ to x∗+45δ∗) than in the uncontrolled case, where

vortex shedding is visible only from x ≃ x∗+50δ∗. When wall suction is increased (thin solid

lines), shear layer fluctuations come back to their uncontrolled level, and intensity fluctua-

tions downstream are reduced.

In conclusion, these observations are consistent with the numerical simulation results of sec-

tion 2.1. The shear layer length is reduced by suction, limiting the overall amplification.
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Figure 2.35 – Normalized standard deviations of shear layer height and dye intensity for wall
suction flow rates W = 0 L/min (black thick line), 0.20 (red dashed line), and 0.39, 0.59,
0.98 L/min (blue thin lines).
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Amplification of stochastic forcing

The amplification of harmonic perturbations and the sensitivity of the optimal harmonic

gain were studied in chapter 2, in the flow past a wall-mounted bump. The harmonic view-

point is relevant in a linear framework since arbitrary time signals can be decomposed as

Fourier components. Although harmonic amplification was found to be successfully reduced

by wall suction at the bump summit, the design of this control configuration was not straight-

forward because all frequencies had to be taken into account simultaneously. In this regard,

one might ask if it is possible to consider instead the response to stochastic perturbations,

and thus deal with a single quantity of interest.

In this chapter, the amplification of white noise is investigated, taking advantage of a con-

venient expression of the stochastic gain (statistically stationary variance of the response) in

terms of individual harmonic gains at each frequency. Then, the sensitivity of the stochastic

gain is simply computed as a weighted sum of the sensitivities of optimal and sub-optimal

harmonic gains. In the flow past a backward-facing step, it is found that the sensitivity of

the stochastic gain is well captured by that of the optimal harmonic gain at the optimal fre-

quency, both for volume control and for wall control, which greatly simplifies control design.

Although further studies are needed to confirm or invalidate the generality of this result for

convectively unstable open flows, we hypothesize that it might hold (i) if amplification is

large in a particular range of frequencies and (ii) if the optimal harmonic gain is well sepa-

rated from sub-optimal gains in this range.

Paper: Sensitivity and open-loop control of stochastic response in a

noise amplifier flow: the backward-facing step
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Sensitivity and open-loop control of stochastic response

in a noise amplifier flow: the backward-facing step

E. Boujo and F. Gallaire

LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Submitted to Journal of Fluid Mechanics

A variational technique is proposed to evaluate the sensitivity of noise amplification in glob-

ally stable open flows. Existing sensitivity methods are extended in two ways, with the aim of

dealing with a realistic representation of incoming noise: (i) perturbations are time-stochastic

rather than time-harmonic, (ii) perturbations are localized at the inlet rather than distributed

in space.

The sensitivity of the stochastic response with respect to flow modification and to steady con-

trol is computed in the canonical flow over a backward-facing step. The stochastic response

can be reduced by passive control by inserting a small cylinder in regions of large positive

streamwise velocity downstream of the step. Active control by means of wall blowing and

suction is effective too, in particular on the step vertical wall and on upstream horizontal

walls. Boundary control upstream of the step is found to shorten the lower or upper recir-

culation regions when applied on the lower or upper wall, respectively, in accordance with

sensitivity analysis of the recirculation length.

One key observation for both volume control and boundary control is that sensitivity maps of

stochastic noise are largely similar to sensitivity maps of the optimal harmonic perturbation

at the most amplified frequency. This suggests that the design of steady control in strong

noise amplifier flows can be simplified and conducted by focusing on the most dangerous

perturbation at the most dangerous frequency.

1 Introduction

In his famous pipe flow experiment, Reynolds (1883) observed transition to turbulence and

showed that the critical value of a governing non-dimensional parameter, to be later coined

Reynolds number, was strongly dependent on the level of external noise. However, linear sta-

bility theory predicts the Hagen-Poiseuille flow to be asymptotically stable for any value of Re

(Schmid & Henningson, 2001). It is now well understood that linear stability theory success-

fully captures bifurcations and instability mechanisms for some flows (e.g. Rayleigh–Bénard

convection, Taylor–Couette flow between rotating cylinders, or flow past a cylinder), but fails

for other flows: the Navier–Stokes equations which govern fluid motion constitute a non-

normal system, able to amplify perturbations through non-modal mechanisms (Trefethen

et al., 1993); then, if amplification is large enough it may drive the system away from lin-
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early stable solutions. Non-normal stable systems can exhibit large transient growth G(t ) =
||u(x, t )||/||u(x,0)||, i.e. temporary amplification of initial conditions u(x,0), as well as large

harmonic gain G(ω)= ||u(x)||/||f(x)||, i.e. asymptotic amplification of the response u(x)cos(ωt )

to external harmonic forcing f(x)cos(ωt ). Classical linear algebra techniques allow one to

find the largest amplification possible together with optimal perturbations, i.e. those specific

structures associated with maximal transient growth or harmonic gain. Extensive literature

exists about the calculation of transient growth (Butler & Farrell, 1992; Corbett & Bottaro,

2000; Blackburn et al., 2008) and harmonic gain (Åkervik et al., 2008; Alizard et al., 2009; Gar-

naud et al., 2013; Sipp & Marquet, 2013; Dergham et al., 2013).

A question of fundamental importance is whether these non-modal amplification mecha-

nisms are robust or not: if they are significantly altered by small flow modifications, one can

design control strategies with a wide variety of applications such as mixing enhancement,

aerodynamic performance improvement, or noise and vibration reduction. To investigate

this point, adjoint methods are particularly well suited, as they provide maps of sensitivity

showing regions where a given quantity of interest is the most affected by small-amplitude

flow modification or steady control. Since the actual modified flow is not needed, sensitivity

analysis allows for a fast and systematic control design, without resorting to time-consuming

parameter studies. In the context of linearly unstable flows, Hill (1992) used such a variational

technique to derive the gradient of the leading eigenvalue with respect to flow modification

and to steady control, and successfully reproduced maps of vortex shedding suppression ob-

tained experimentally by Strykowski & Sreenivasan (1990). Similar methods were later ap-

plied to eigenvalues in several parallel and non-parallel configurations (Bottaro et al., 2003;

Marquet et al., 2008; Meliga et al., 2010). For unstable flows, Brandt et al. (2011) followed a

similar technique to give an expression for the sensitivity of the optimal harmonic gain G(ω)

with respect to flow modification and to steady control in the volume or at the wall. They

applied their formula to parallel and non-parallel flat-plate boundary layers and discussed

the sensitivity of G(ω) for Tollmien–Schlichting and lift-up instability mechanisms. Boujo,

Ehrenstein & Gallaire (2013) used this method to identify sensitive regions in the separated

flow past a wall-mounted bump. Choosing an appropriate location, they designed a simple

open-loop wall actuation able to delay noise-induced subcritical transition. They observed,

however, that sensitivity to volume control was dependent on frequency, indicating that a

given control could reduce G(ω) at some frequencies but increase it at others. In this case,

the effect of control on the overall response of the stochastically driven flow is unclear, and

control design is uneasy.

In this paper, we extend sensitivity methods for linearly stable flows in two ways. First, we

compute the sensitivity of amplification when the flow is subject to stochastic forcing rather

than harmonic forcing. This step takes advantage of the relation between stochastic and har-

monic amplification (Farrell & Ioannou, 1996). It allows us to consider the overall response

of the flow to external noise, and to combine sensitivities at individual frequencies into a sin-

gle sensitivity. Second, we derive an expression for the sensitivity of amplification when the

flow is forced at the inlet rather than in the whole domain, with the aim of dealing with a
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Figure 3.1 – Sketch of the geometry.

realistic model of incoming perturbations in convectively unstable open flows. The method

is illustrated with the two-dimensional incompressible flow past a backward-facing step, a

canonical noise-amplifier flow.

This paper is organized as follows. Section 2 recalls how to characterize the response to har-

monic and stochastic forcing located in the volume or at the inlet, and presents the sensitivi-

ties of these responses. Section 3 details the numerical method and its validation. Then, the

harmonic response of the backward-facing step flow for a specific set of Reynolds number

Re and step expansion ratio Γ is presented in section 4, and a connection with local stability

analysis is established. Results about sensitivity are given in section 5: section 5.1 is dedi-

cated to the sensitivities of harmonic and stochastic responses and reveals the predominant

role of the optimal harmonic response at the optimal frequency; in section 5.2 the sensitivity

analysis is validated against nonlinear calculations for illustrative examples of control; sec-

tion 5.3 looks at the link with the sensitivity of recirculation lengths; section 5.4 investigates a

possible method to take advantage of pressure differences in order to use passive wall control;

finally section 5.5 investigates other Re-Γ configurations. Conclusions are drawn in section 6.

2 Problem formulation

2.1 Flow configuration

We consider the flow over a backward-facing step, shown schematically in figure 3.1. Geomet-

rical parameters are the inlet height hi n , the step height hs , and the outlet height H =hs+hi n ,

any set of these three values uniquely defining the step to outlet expansion ratio Γ= hs /H or,

equivalently, the outlet to inlet expansion ratio e = H/hi n = 1/(1−Γ). Throughout this pa-

per we will consider the classical geometry Γ = 0.5 (e = 2), and a smaller step characterised

by Γ = 0.3 (e ≃ 1.43). The vertical wall and outlet lower wall define the x = 0 and y = 0 axes

respectively. The incoming flow is assumed to have a fully developed parabolic Poiseuille pro-

file of maximum (centerline) velocity U∞ at the inlet Γi n located at x =−Li n , while the outlet

is at x = Lout . The reference length is chosen as L = H/2 and the reference velocity as U∞.

The Reynolds number is consequently defined as Re = LU∞/ν, where ν is the fluid kinematic

viscosity.

The steady-state base flow (Ub ,Pb ) is solution of the stationary, incompressible Navier–Stokes
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equations in the domain Ω, with no-slip boundary conditions at the walls Γw :

∇·Ub = 0,

Ub ·∇Ub +∇Pb −Re−1∇2Ub = 0,

Ub = 0 on Γw .

(3.1)

2.2 Response to forcing

In the following, we consider the response of a stable steady-state base flow to forcing. The

focus of this paper is on stochastic inlet forcing, but we mention harmonic and/or volume

forcing to help understanding and highlight differences. More details can be found for ex-

ample in Farrell & Ioannou (1996) and Schmid & Henningson (2001). We first recall how the

response to a small-amplitude harmonic forcing f′(x, t ) = f(x)eiωt is characterised. Since the

flow is linearly stable, the asymptotic response is also harmonic at the same frequency. The

forcing therefore introduces perturbations (u′, p ′)(x, t ) = (u, p)(x)eiωt to the base flow whose

dynamics are governed by the linearised equations

∇·uvol = 0,

iωuvol +Ub ·∇uvol +uvol ·∇Ub +∇pvol −Re−1∇2uvol = fvol ,

uvol = 0 on Γi n ∪Γw ,

(3.2)

for volume forcing in Ω, and by

∇·ui n = 0,

iωui n +Ub ·∇ui n +ui n ·∇Ub +∇pi n −Re−1∇2ui n = 0,

ui n = fi n on Γi n ,

ui n = 0 on Γw

(3.3)

for inlet forcing on Γi n (Garnaud et al., 2013). We write formally (3.2) as uvol = Rvol (ω)fvol

and (3.3) as ui n = Ri n(ω)fi n , where in both cases R(ω) is the resolvent operator. For a given

forcing, one simply needs to invert a linear system to obtain the response. We introduce

the usual Hermitian scalar product (a |b) =
∫
Ω

a ·b dΩ =
∫
Ω

aH b dΩ or (a |b) =
∫
∂Ω a ·b dΓ =∫

∂Ω aH b dΓ for complex fields defined respectively in the domain or on (part or all of) the

boundary, where · and ·H stand for conjugate and conjugate transpose. The norm induced

by this scalar product is used to measure amplification in the flow, or harmonic gain G(ω) =
||u||/||f||. A natural quantity to look for is the largest value the gain may take, or optimal gain,

together with the associated “most dangerous” forcing, or optimal forcing. This worst-case

scenario is classically investigated by introducing the adjoint operator of the resolvent, and

recasting the harmonic gain as a Rayleigh quotient

G2(ω) =
||u||2

||f||2
=

(Rf |Rf)

(f | f)
=

(R†Rf | f)

(f | f)
. (3.4)
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The largest value of G is by definition the induced norm of the resolvent ||R||, which can be

calculated as the largest singular value of R. Alternatively, solving the symmetric eigenvalue

problem R†Rfk = G2
k

fk yields a set of real positive eigenvalues G2
1 ≥ G2

2 ≥ G2
3 . . . and a set of

orthogonal eigenvectors fk , from which one deduces the optimal gain:

G1(ω) = max
f

||u||
||f||

=
||u1||
||f1||

. (3.5)

The response of the flow to the optimal forcing is the optimal response u1 = Rf1. One can

similarly define sub-optimal gains, forcings and responses as Gk = ||uk ||/||fk ||, uk =Rfk (Gar-

naud et al., 2013; Dergham et al., 2013).

We now turn our attention to stochastic forcing. We assume that the flow is continuously

forced by componentwise uncorrelated, white noise of unit variance, expressed as f′(x, t ) =∫∞
−∞ f(x,ω)eiωt dω and such that E

(
f j (x,ω1) fk (x,ω2)

)
= δ j kδ(ω1 −ω2)/2π where E (·) denotes

the mean or expected value of a random variable. Unless one has specific knowledge about

temporal and spatial characteristics of incoming perturbations, this assumption has the ad-

vantage of being both reasonable and simple. The stochastic response is then characterised

by the stationary ensemble variance (Farrell & Ioannou, 1996; Zhou, Doyle & Glover, 1996)

E = E
(
||u||22

)
=

1

2π

∫∞

−∞
Tr

(
R(ω)†R(ω)

)
dω, (3.6)

which can be expressed in terms of eigenvalues of R†R:

E =
1

2π

∫∞

−∞

∑

k

G2
k (ω)dω=

1

π

∫∞

0

∑

k

G2
k (ω)dω=

∑

k

Ik . (3.7)

For convenience we call E the stochastic gain, in contrast with the harmonic gain G(ω).

2.3 Sensitivity of harmonic and stochastic gain

In this section we give the expressions of sensitivities (gradients) of harmonic and stochas-

tic gains with respect to flow modification and to steady control. They are gradients, which

allow us to identify regions of the domain Ω and the wall Γw where gains are most sensitive,

and to predict the effect of small-amplitude flow modification and control on the asymptotic

amplification of harmonic and stochastic perturbations.

Starting with harmonic gain, we look for the two-dimensional sensitivity field ∇UG2
1 defined

in Ω such that a modification δU of the base flow induces a variation of the (squared) optimal

gain δG2
1 = (∇UG2

1 |δU). Using a Lagrangian-based variational technique, Brandt et al. (2011)

derived an expression for the sensitivity of the optimal harmonic gain for the case of volume

forcing. This expression is straightforwardly generalised to any sub-optimal gain Gvol ,k , k >
1, replacing the optimal forcing fvol ,1 and optimal response uvol ,1 by the kth sub-optimal
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forcing and response:

∇UG2
vol ,k = 2G2

vol ,k Re{−∇uH
vol ,k · fvol ,k +∇fvol ,k ·uvol ,k }. (3.8)

Using the same technique, we derived an expression for the case of inlet forcing:

∇UG2
i n,k = 2Re{−u†

i n,k ·∇uH
i n,k +ui n,k ·∇u†

i n,k } (3.9)

where the adjoint perturbation (u†
i n,k , p†

i n,k ) is a solution of the linear system u†
i n,k =R†

vol
ui n,k :

∇·u†
i n,k = 0,

−iωu†
i n,k +Ub ·∇u†

i n,k −u†
i n,k ·∇UT

b +∇p†
i n,k +Re−1∇2u†

i n,k = ui n,k ,

u†
i n,k = 0 on Γi n ∪Γw .

(3.10)

In the case of sensitivity to volume forcing (3.8), no adjoint variable needs to be computed

(Brandt et al., 2011). This comes from the fact that the operator R†
vol

Rvol involved in the vol-

ume forcing problem and associated gain sensitivity is self-adjoint (see figure 3.2(a)). In other

words, even though an adjoint perturbation has to be included in the Lagrangian a priori, cal-

culations show that it can be replaced by G2
vol

fvol : indeed, equation (3.3) is uvol = Rvol fvol

and implies R†
vol

uvol =R†
vol

Rvol fvol =G2
vol

fvol ; at the same time, detailed calculations lead

to the adjoint perturbation equation u†
vol

=R†
vol

uvol , and therefore u†
vol

=G2
vol ,k fvol . The sit-

uation is quite different for inlet forcing. The operator R†
i n

Ri n involved in the inlet forcing

problem is self-adjoint too (fig. 3.2(b)), but the operator R†
vol

Ri n needed to obtain the asso-

ciated sensitivity is not (fig. 3.2(c)). Consequently, the adjoint perturbation (u†
i n

, p†
i n

) which

appears in the expression of sensitivity to inlet forcing (3.9) has to be computed on its own.

Interestingly, note that although we are dealing with inlet forcing, the adjoint perturbation is

a solution of an equation forced in the volume by the response ui n .

Next, we turn to the sensitivity of harmonic gain to steady volume control C in Ω and steady

wall control Uc on Γw . The former sensitivity is a two-dimensional field such that a small-

amplitude volume control produces the variation δG2
k
= (∇CG2

k
|δC), while the latter is a one-

dimensional field defined on Γw such that δG2
k
= (∇Uc

G2
k
|δUc ). Again, one can generalise the

expression of Brandt et al. (2011) for optimal gain to any sub-optimal gain:

∇CG2
k =U†

k
, (3.11)

∇Uc
G2

k =P †
k

n+Re−1∇U†
k

n, (3.12)

where n is the outward unit normal vector, and the adjoint base flow (U†
k

,P †
k

) is solution of

the following linear system forced by the sensitivity to base-flow modification ∇UG2
k

defined
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(a) Volume forcing: gain and sensitivity

Rvol

R†
vol

uvol

fvol

G2
vol

fvol = u†
vol

(b) Inlet forcing: gain

Ri n

R†
i n

ui n

fi n

G2
i n

fi n

(c) Inlet forcing: sensitivity

Ri n

R†
vol

ui n
u†

i n

fi n

Figure 3.2 – Quantities and operators involved in the computation of the harmonic gain
and of its sensitivity. (a) In the case of volume forcing, the gain is given by G2

vol
fvol =

R†
vol

Rvol fvol = R†
vol

uvol , the operator R†
vol

Rvol is self-adjoint, and the adjoint perturba-

tion u†
vol

= G2
vol

fvol does not need to be computed to evaluate the gain sensitivity (3.8). (b)

In the case of inlet forcing, the gain is given by G2
i n

fi n =R†
i n

Ri nfi n =R†
i n

ui n , where the oper-

ator R†
i n

Ri n is self-adjoint. (c) However, the adjoint perturbation u†
i n

= R†
vol

ui n needed to

evaluate the gain sensitivity (3.9) must be computed explicitly because the operator R†
vol

Ri n

is not self-adjoint.
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in (3.8)-(3.9):

∇·U†
k
= 0, −Ub ·∇U†

k
+U†

k
·∇UT

b −∇P †
k
−Re−1∇2U†

k
=∇UG2

k , (3.13)

U†
k
= 0 on Γi n ∪Γw . (3.14)

This time, the same method holds for both inlet and volume forcing, so we omitted subscripts

i n and vol in (3.12)-(3.14).

Finally, by linearity of the stochastic gain (3.7), its sensitivity can be expressed in terms of the

sensitivity of harmonic gains

∇∗E =
1

π

∫∞

0

∑

k

∇∗G2
k (ω)dω=

∑

k

∇∗Ik (3.15)

where the subscript ∗ stands for either U, C or Uc for the sensitivity to base-flow modification,

volume control or wall control respectively. Again, expression (3.15) is valid for both inlet and

volume forcing.

3 Numerical method and validation

All calculations are performed using methods described in Boujo et al. (2013). The finite

element software FreeFem++ is used to generate a two-dimensional triangulation of the do-

main Ω and, based on P2 and P1 Taylor-Hood elements for velocity and presure respectively,

to build all the discrete operators involved in calculations of base flow, eigenvalue and sen-

sitivity, from their corresponding continuous expression in variational form. Steady-state

base flows are obtained with an iterative Newton method, while eigenvalue calculations are

conducted with an implicitly restarted Arnoldi method. Careful validation and convergence

study (described below) led us to set the outlet length to Lout = 50 for Γ= 0.5 and Lout = 250

for Γ = 0.3, the entrance length to Li n = 5 for both geometries, and a mesh density distri-

bution yielding 216340 and 298484 elements (0.98 and 1.36 million degrees of freedom) for

Γ= 0.5 and Γ= 0.3 respectively.

Our choice of outlet length Lout is such that the outlet velocity profile is well developed for

all conditions: specifically, it ensures that the difference between the base flow and the fully

developed parabolic Poiseuille profile ∆U (y) =Ub (Lout , y)−UP (y) is less than 1% for Γ= 0.5

and 3% for Γ= 0.3, both in L2 norm ||∆U ||2 (relative to ||UP ||2) and L∞ norm ||∆U ||∞ (relative

to UP (y∗) at the height y∗ of largest |∆U |). Validation included a three-dimensional stability

analysis: using global modes u′(x, y, z, t ) = u(x, y)eiβz+σt we calculated the critical Reynolds

number Rec (i.e. the smallest Re for which one global mode becomes unstable, Re{σ} ≥ 0) and

corresponding spanwise wavenumberβc . Results are given in table 3.1 and show an excellent

agreement with those of Barkley, Gomes & Henderson (2002) and Lanzerstorfer & Kuhlmann

(2012), with differences smaller than 0.5%. We also looked at the positions of reattachment

and separation points (xlr , xus , xur ) (characterised by zero wall shear stress, see fig. 3.1) for
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Γ 0.5 0.3
Lin 1 5 10 1 5 10

(a) BGH02 (748, 0.91) - - - - -
(b) LK12 (748, 0.92) (714, 0.88) (714, 0.88) - - (2948, 1.02)
(c) BG14 (750, 0.92) (715, 0.88) (715, 0.88) (3206, 1.13) (2966, 1.01) (2964, 1.01)

Table 3.1 – Critical Reynolds number and spanwise wavenumber (Rec ,βc ) for different expan-
sion ratios Γ and entrance lengths Li n : (a) Barkley et al. (2002), (b) Lanzerstorfer & Kuhlmann
(2012), (c) present study.

Lin 1 5 10

(a) BGH02 (11.91, 9.5, 20.6) - -
(b) BG14 (11.93, 9.45, 20.60) (11.82, 9.34, 20.59) (11.82, 9.34, 20.59)

Table 3.2 – Locations (xlr , xus , xur ) of lower reattachment point, upper separation point and
upper reattachment point at Re = 600, for Γ = 0.5 and different entrance lengths Li n : (a)
Barkley et al. (2002), (b) present study.

Γ = 0.5. At all Reynolds numbers up to Re ≤ 1000, our values were indistinguishable with

data extracted from figures in Barkley et al. (2002) and Blackburn et al. (2008). At Re = 600

we find the values given in table 3.2, in excellent agreement with those reported by Barkley

et al. (2002). The secondary recirculation zone appears at the upper wall at Re = 272, xu = 8.2,

consistent with the values Re ≃ 275, xu ≃ 8.1 of Blackburn et al. (2008). Tables 3.1 and 3.2

show that the choice Li n = 5 is justified since all values are well converged. Mesh indepen-

dence was checked by increasing the number of elements by 20% with a global and uniform

refinement, which led to less than 0.05% variation for critical conditions (Reynolds number

and wavenumber) and the locations of stagnation points.

The stochastic response (3.7) and its sensitivities (3.15) are evaluated as follows. Integrals

Ik and ∇∗Ik are calculated using a trapezoidal rule with nω = 41 points regularly distributed

over the range of frequencies ω ∈ [0;ωc ]. Halving or doubling nω modifies the value of E by

less than 1%. The cut-off frequency is set to ωc = 2 and kept fixed throughout the study. This

value is well above the main peak of G1(ω) at ω0 = 0.5, so as to include the contribution of

amplification mechanisms, while optimal and sub-optimal forcings and responses at higher

frequencies correspond only to advection and diffusion; therefore the exact value of E does

depend on ωc but qualitative results are unaffected (see appendix 3). Sums over k are com-

puted with the full set of optimal and sub-optimals. The effect of taking a limited number of

sub-optimals is reported in appendix 3. Note that although evaluating E and ∇∗E is relatively

costly, computations are largely parallelisable since different frequencies can be treated inde-

pendently.
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Figure 3.3 – Optimal harmonic gain for inlet forcing, Γ= 0.5, Re = 100, 200. . ., 600.

4 Harmonic response

In this section we present results about the response of the flow to small-amplitude harmonic

forcing. Although the focus of this paper is on stochastic forcing at the inlet of the domain as

a realistic model of random perturbations advected by the flow, we mention here harmonic

forcing since it is a building block of the stochastic problem, and forcing in the volume for

comparison purposes. The configuration Γ = 0.5, Re = 500 is considered unless otherwise

stated.

Figure 3.3 shows the optimal harmonic gain for inlet forcing, for Γ = 0.5. The maximal opti-

mal gain increases from 6.33 at Re = 100 to 5.83×103 at Re = 600, the optimal frequency being

close to ω0 = 0.5 for all Reynolds numbers. Focusing on Re = 500 from now on, we compare

the optimal harmonic gain for inlet forcing and volume forcing in figure 3.4. We observe that

the gain is larger in the case of volume forcing. This is a consequence (i) of the choice of the

norm used to measure forcing amplitude (two-dimensional versus one-dimensional), and (ii)

of the greater efficiency with which two-dimensional forcing structures (somewhat artificially

allowed to occupy the whole domain) excite the flow, compared to one-dimensional forcing

structures restricted to the inlet. The maximum gain is maxGi n,1 = 1.29×103 at ω0 = 0.49 for

inlet forcing, and maxGvol ,1 = 7.46×103 at ω0 = 0.48 for volume forcing. The latter values are

in excellent agreement with those reported by Marquet & Sipp (2010b): maxGvol ,1 = 7.5×103

at ω0 = 0.47. Sub-optimal branches in figure 3.4 have a much lower gain and mainly corre-

spond to advection and diffusion. As pointed out by Marquet & Sipp (2010b), the flow re-

sponse should therefore be dominated by the optimal response. Boujo et al. (2013) observed

this behaviour in a direct numerical simulation of a different geometry, with a predominance

of the optimal response at optimal frequency. As discussed later, the sensitivity of the stochas-

tic gain is also dominated by the sensitivity of the optimal harmonic gain at the optimal fre-

quency.

Their oscillations have a shorter wavelength as ω increases, consistent with most studies of
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Figure 3.4 – Optimal harmonic gain for (a) inlet and (b) volume forcing. Γ = 0.5, Re = 500.
Insets show the same data and a few sub-optimal gains in logarithmic scale.

harmonic optimal gain in convective flows (Alizard et al., 2009; Garnaud et al., 2013; Dergham

et al., 2013; Boujo et al., 2013). The volume optimal forcing is maximal close to the step corner

for all frequencies. The optimal response is maximal downstream of the step corner: close

to the upper reattachment point at ω = 0.1, farther downstream as ω increases towards the

optimal frequency ω0 ≃ 0.5, then farther upstream as frequency continues to increase. In-

terestingly, the optimal inlet forcing fi n,1(y) in figure 3.5(b) is very similar to the profile of

optimal volume forcing in figure 3.5(a)) close to the inlet fvol ,1(x → −L+
i n

, y). Furthermore,

these optimal inlet and volume forcings lead to very similar structures of optimal response

(except for slight differences best seen at low frequency near the step corner and the lower

recirculation region). Garnaud et al. (2013) observed the same phenomenon over a broad

range of frequencies. At higher frequencies, where amplification is small, the optimal inlet

forcing tends to a plug profile and the response is concentrated at the step corner (figure 3.6).

Interesting complementary information can be obtained from a local linear stability analysis,

where the flow is assumed parallel. At each streamwise location, the Orr-Sommerfeld equa-

tion was first solved for the temporal problem, i.e. the eigenvalue problem of the complex

frequency ω(T ) for a given real streamwise wavenumber k . We found at most one unstable

eigenmode for all values of x and k . Next, the same Orr-Sommerfeld equation was solved for

the spatial problem, i.e. the eigenvalue problem of the complex wavenumber k (S) for a given

real frequency ω. Gaster’s relation (Gaster, 1962) was used to estimate the spatial growth rate

−k (S)
i

= ω(T )
i

/cg from the temporal growth rate ω(T )
i

and the group velocity cg = ∂ω(T )
r /∂k (T )

r ,

and to identify the correct eigenvalue close to the neutral curve where k (S)
i

= ω(T )
i

= 0. Fig-

ure 3.7 shows the temporal and spatial growth rates at several locations. The flow is unstable

between x = 0 and x = 27, which agrees well with the range where streamwise velocity pro-

files (fig. 3.7(a)) contain one or two inflection points. The temporal growth rate (fig. 3.7(b)) is

decreasing monotonously with x since shear gradually weakens downstream, while the spa-

tial growth rate (fig. 3.7(c)) is also globally decreasing with x but not monotonously at some

frequencies, consistent with results from Kaiktsis, Em Karniadakis & Orszag (1996) for close
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timal harmonic response (right; real part of cross-stream component v1): (a) volume forcing
and corresponding response, (b) inlet forcing and corresponding response. Γ= 0.5, Re = 500.
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conditions (Γ ≃ 0.49, Re ≃ 510). This is best seen in figure 3.8(a), showing that −k (S)
i

(x) has

a local maximum around 9 . x . 11, i.e. between upper separation and lower reattachment.

The spatially unstable domain in the x−ω plane is summarized in figure 3.8(b). As frequency

increases, the unstable region quickly widens, from x ≃ 9-11 at ω = 0, to a long region ex-

tending downstream up to x = 27 at ω = 0.5, before shrinking back towards the step corner

x = 0, until the flow finally becomes stable everywhere for high frequencies ω ≥ 2.2. The

downstream neutral curve is followed closely by the location xmax where the energy density

of the global optimal harmonic response is maximal,

xmax = argmax
x

∫
||u1(x, y)||22 dy, (3.16)

consistent with the idea that perturbations grow spatially as long as −k (S)
i

> 0, and then decay.

One can quantify more precisely how much perturbations are amplified as they propagate

through the unstable region; to this aim, we computed the integral amplification factor

g (ω) = exp

(∫
−k (S)

i
(ω, x)dx

)
(3.17)

over the unstable region, as reported in figure 3.8(c). The maximum amplification is obtained

close to ω= 0.5, in very good agreement with the global optimal harmonic gain. The shapes

of g (ω) and Gi n,1(ω) are comparable too, except at higher frequencies ω& 2; in this frequency

range the local flow is stable, whereas in the global flow non-parallel effects and component-

type non-normality (e.g. Orr mechanism) are at work. Overall, figures 3.8(b)-(c) indicate that

the agreement between local and global stability analyses is remarkable. Note that Blackburn

et al. (2008) obtained a maximum energy at x = 27 in a two-dimensional direct numerical sim-

ulation with small-amplitude perturbations (Gaussian white noise) at the inlet, consistent

with Kaiktsis et al. (1996) and in very good agreement with our spatial and global analyses.
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Figure 3.7 – (a) Profiles of streamwise velocity for Γ = 0.5, Re = 500, with inflexion points
shown as dots. (b) Temporal and (c) spatial growth rates from local stability analysis.

5 Sensitivity and control of harmonic and stochastic gains

5.1 Sensitivity maps

In this section we present sensitivities of the optimal harmonic gain and of the stochastic

gain, in the case of inlet forcing. Figure 3.9 shows sensitivities to base flow modification

in the streamwise direction: regions of positive (resp. negative) sensitivity indicate where

a small-amplitude increase of streamwise velocity would increase (resp. decrease) the gain.

The optimal harmonic gain Gi n,1 is most sensitive at the step corner, and in elongated regions

parallel to the upper and lower shear layers (fig. 3.9(a)). However, the sign of the sensitivity

changes with ω almost everywhere in the channel, meaning that a given modification of the

base flow would increase Gi n,1 at some frequencies and decrease it at others. This was also

observed by Boujo et al. (2013) for the flow past a wall-mounted bump, and they empirically

proposed to design their control based on frequencies close to the optimal one. This ap-

proach appears justified for the present flow geometry and conditions since the sensitivity of

the stochastic gain E (fig. 3.9(b)) is essentially similar to that of Gi n,1 at the optimal frequency

ω0 = 0.5. Therefore, reducing the response to stochastic forcing is tantamount to reducing

the optimal harmonic gain at optimal frequency, which brings substantial benefits in terms

of simplicity and computational cost.

In the same way, figure 3.10 shows sensitivities to streamwise volume control: regions of

positive (resp. negative) sensitivity indicate where a small-amplitude body force pointing in

the +x direction would increase (resp. decrease) the gain. Again, elongated regions of large
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sensitivity are found along the shear layers, but also in the lower recirculation zone, while

the step corner is less prevalent. For the harmonic optimal gain (fig. 3.10(a)), variations with

ω are still present, for instance near the upper wall upstream of the upper separation point.

But in this case too, stochastic gain exhibits a sensitivity (fig. 3.10(b)) dominated by that of

the harmonic optimal gain at optimal frequency.

It is common, both experimentally and numerically, to use a wire or small cylinder as a sim-

ple open-loop device aiming at controlling, for instance, aerodynamic forces or vortex shed-

ding (Strykowski & Sreenivasan, 1990; Igarashi, 1997; Mittal & Raghuvanshi, 2001; Dalton

et al., 2001; Cadot, Thiria & Beaudoin, 2009; Parezanović & Cadot, 2009, 2012). Sensitivity

analysis is well suited to estimate the effect of a small control cylinder of diameter d , us-

ing (i) the sensitivity to volume forcing already computed, and (ii) a simple model for the

control force C exerted by the cylinder on the flow, namely a force opposite to the drag felt

by the cylinder in a steady uniform flow at the local velocity Ub(x, y) (Hill, 1992; Marquet

et al., 2008; Meliga et al., 2010; Pralits, Brandt & Giannetti, 2010; Fani et al., 2012): δC(x, y) =
−1

2 dCd (x, y)||Ub(x, y)||Ub(x, y)δ(x − xc , y − yc), where δ is the two-dimensional Dirac delta

function, and the drag coefficient Cd depends on the local Reynolds number Red (x, y) =
||Ub(x, y)||d/ν. Here we choose d = 0.05, corresponding to Reynolds numbers Red ≤ 25 ev-
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Figure 3.11 – Effect of a small control cylinder of diameter d = 0.05 on (a) optimal harmonic
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erywhere in the flow. We therefore use the following composite expression for the drag coef-

ficient:

0.5 ≤Red ≤ 25 : Cd = a +bRec
d , a = 0.85, b = 10.6, c =−0.72,

Red ≤ 0.5 : Cd =
8π

Red S

(
1−

Re2
d

32

(
S −

1

2
+

5

16S

))
,

(3.18)

where S = 1
2 −γ− log (Red /8) and γ is Euler’s constant. The former expression is a fit of exper-

imental data from Tritton (1959) and in-house numerical results, the latter is an extension of

Oseen’s formula Cd = 8π/Red S for low Reynolds numbers (Oseen, 1910; Proudman & Pearson,

1957) derived by Tomotika & Aoi (1951). In practice, the exact value at low Reynolds number

is of little importance: although the drag coefficient goes to infinity like ∼ 1/(Red log Red ) as

Red → 0 as an artificial consequence of the aerodynamic definition of Cd , the actual force

exerted on the cylinder goes to zero like ∼ Red /log Red . The effect of a small control cylin-

der is shown in figure 3.11. The amplification of stochastic noise decreases when the control

cylinder is inserted in a long region corresponding roughly to the region of large velocity, and

conversely increases when the control cylinder is inserted in the outer vicinity of recircula-

tion regions where shear is large. Recirculation regions themselves have no significant effect.
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Finally, sensitivities to wall control are shown in figure 3.12. Arrows point in the direction of

positive sensitivity: at each point along the wall, blowing or suction in the direction of the

arrow at that point would increase the gain. More generally, an actuation direction whose

scalar product with the sensitivity is positive would increase the gain, while an actuation di-

rection orthogonal to the sensitivity would have no first-order effect. The sensitivity of the

harmonic optimal gain (fig. 3.12(a)) is essentially normal to the wall and, again, changes sign

with frequency, except notably at the inlet lower wall. The sensitivity of the stochastic gain

(fig. 3.12(b)), once again mostly dominated by that of the harmonic optimal gain at optimal

frequency, is maximum just upstream of the step corner. Given the sign of the sensitivity, wall

suction at this location should reduce the amplification of random perturbations. The step

corner is often chosen for wall control in this and related flows (Pastoor, King, Noack & Tad-

mor, 2005; Beaudoin et al., 2006; Henning & King, 2007; Hervé, Sipp, Schmid & Samuelides,

2012). However, other locations have a sensitivity of comparable magnitude, such as the

vertical wall (where blowing should reduce E ) or the upper wall of the inlet channel (where

suction should reduce E ). They might offer interesting alternatives depending on technical

feasibility constraints.

5.2 Validation

We illustrate the effect of steady wall control on the flow and use this opportunity to validate

the sensitivity analysis. We consider several locations upstream and downstream of the step

corner, both at the lower and upper walls, as represented in figure 3.13(a). For the sake of

simplicity, and since we observed that sensitivity to wall-normal control was much larger

than that of tangential control, we use blowing and suction in the normal direction only. We

choose Gaussian actuation profiles Vc (x) = (−n · ey )W exp(−(x − xc )2/σ2
c )/(σc

p
π) for con-

trol on horizontal walls, and Uc (y) = (−n · ex )W exp(−(y − yc )2/σ2
c )/(σc

p
π) for control on

the vertical wall; the characteristic width is σc = 0.1 and the flow rate W , positive for blow-

ing and negative for suction since n points outward. We compare predictions from sensitiv-

ity analysis for harmonic and stochastic gains (obtained from sensitivity fields according to

δG2
i n,k = (∇Uc

G2
i n,k |δUc ), δE = (∇Uc

E |δUc ), and results from full gain calculations for flows

actually controlled with the Gaussian actuation profile applied as a boundary condition.

Figure 3.13(b) shows the effect of steady blowing and suction at the upper wall upstream

of the step (configuration 4) on the harmonic optimal gain and the first two sub-optimal

gains at the optimal frequency ω0 = 0.5. Predictions from sensitivity analysis (solid lines) are

in good agreement with full calculations (symbols), as could be expected for small control

amplitudes (less than 0.01, to be compared to the inlet flow rate 2U∞hi n/3 = 2/3). The effect

of wall suction on the optimal gain at other frequencies is shown in figure 3.13(c). For the

stochastic gain, we observe in figure 3.13(d ) a good agreement too, but also non-negligible

non-linear effects for some configurations, especially configuration 5.
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5.3 Recirculation length

For reference, we show in figure 3.14 the effect of wall actuation on the length of the lower re-

circulation region, ll = xlr , and the length of the upper recirculation region, lu = xur −xus . We

compare actual results from controlled flows and predictions from sensitivity analysis (Boujo

& Gallaire, 2014) applied to the three stagnation points. Relatively small control amplitudes

have a significant impact on both recirculation lengths. Inspection of individual contribu-

tions (not shown) reveals that the two upstream stagnation points xus and xlr are much more

sensitive than xur . Variations conform to intuition: removing momentum at the lower wall

(W1,W2,W3 < 0) or injecting momentum at the upper wall (W4,W5 > 0) tends to deflect the

flow downwards, which moves xus and xlr upstream, thereby shortening the lower recircu-

lation region, δll < 0, and elongating the lower one, δlu > 0. Comparing figures 3.13(d ) and

3.14(a)-(b) for actuation upstream of the corner and on the vertical wall (configurations 1,2

and 4) reveals an interesting correspondence: the stochastic gain E is reduced with suction

(W1,W4 < 0), which corresponds to a shorter lower recirculation region δll < 0 when using

suction on the lower wall (W1 < 0), and to a shorter upper recirculation region δlu < 0 when

using suction on the upper wall (W4 < 0). This is actually true for any control location x . 1

on horizontal walls, as appears when inspecting the sensitivity fields of ll and lu (not shown

here) and comparing with the sensitivity of E : actuation on the lower (resp. upper) wall re-

duces the stochastic gain when it shortens the recirculation region on the lower (resp. upper)

wall.
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5.4 Towards passive wall actuation

Wall control allows us to choose the actuation direction (blowing or suction) and orientation

(angle) freely. This is an advantage over volume control where, typically, a small cylinder

can only produce a force in the direction of the flow. The price to pay is a more complex

actuation system and a potentially higher power requirement to drive this system, unless

one takes advantage of pressure differences: connecting wall regions of relative higher and

lower pressure with a small channel could induce natural suction and blowing at the inlet

and at the outlet, respectively. This configuration would not require any mechanical device

and would therefore constitute a means of passive control.

This could be implemented in the backward facing-step flow between the lower wall up-

stream of the corner (suction at higher pressure) and the vertical wall (blowing at lower pres-

sure): figure 3.15(a) shows that pressure (solid line) along the horizontal wall is larger than

on the vertical wall. At the same time, the sensitivity of E to wall normal actuation (dash-

dotted line) is such that the stochastic response can precisely be reduced with blowing on

the horizontal wall and suction on the vertical wall.

A crude but simple estimate of the expected reduction in E can be obtained by assuming that

connecting points A and B of coordinates xA = (xA ,hs) and xB = (0, yB ) with a straight chan-

nel results in a fully developed plane Poiseuille flow of mean velocity Um = Re h2
c ∆P/12lc ,

where ∆P = P A −PB > 0 is the pressure difference, and hc and lc =
√

x2
A
+ (hs − yB )2 are the

channel height and length. Assuming further that at both ends the induced flow is localized

at points A and B , the velocity vector is

δU(xA) =δU(xB ) =Um

(
cosθ

−sinθ

)
=

Um

lc

(
|xA|

hs − yB

)
, (3.19)

where θ > 0 is the angle between the channel axis and the horizontal ex . Taking the inner

product with the sensitivity yields the stochastic response reduction

δE =
Re h2

c ∆P

12l 2
c

(
∇Uc

E (xA)+∇Uc
E (xB )

)
·
(

|xA|
hs − yB

)
, (3.20)

and a similar expression for harmonic gains G2
k

(ω). When choosing the locations of the chan-

nel inlet and outlet, a trade-off exists between pressure difference, channel length, channel

angle, and sensitivity: for instance, choosing A far upstream increases both ∆P and lc , which

have opposite effects on the channel velocity; on the other hand, choosing A close to the

step corner allows us to benefit from a larger sensitivity but increases the angle between the

jet and the wall normal in B .

Figure 3.15(b) shows the optimal harmonic gain reduction for xA = −1, yB = 0.75 and hc =
0.15, as estimated with (3.20) from geometry, pressure and sensitivity information only (solid

line), and as obtained from the controlled flow with the channel included in the computa-
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Figure 3.15 – (a) Passive control by means of a channel connecting regions of high and low
pressure (solid line). The induced flow results in wall suction in A and wall blowing in B , and
reduces the stochastic response E as predicted by the sensitivity to wall normal actuation (the
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as observed in figure 3.12). (b) Reduction in optimal harmonic gain for xA = −1, yB = 0.75
and channel height hc = 0.15. Dash-dotted line: uncontrolled flow, solid line: estimation
from (3.20) (Poiseuille flow concentrated in A and B ), symbols: actual optimal harmonic gain
for the flow with channel.

tional mesh (symbols). In spite of strongly simplifying assumptions, the estimated reduction

has the correct order of magnitude. Note that the channel velocity scales like h2
c , thus only a

limited benefit can be expected when using small channels.

5.5 Other flow configurations

After a detailed study of the configuration Γ= 0.5,Re = 500 in previous sections, we consider

now two other configurations where the sensitivity of stochastic gain is more likely to differ

from the sensitivity of the optimal harmonic gain at the optimal frequency. In the first config-

uration we keep the same geometry (Γ= 0.5) but decrease the Reynolds number to Re = 200;

in the second one we use a smaller step with expansion ratio Γ = 0.3 at the stable Reynolds

number Re = 2800 (recall that Rec > 2900 for this expansion ratio, as mentioned in section 3).

From the harmonic gains shown in figure 3.16 we can make the following remarks: (i) reduc-

ing the Reynolds number makes the peak of Gi n,1 less marked, thus possibly increasing the

relative importance of frequencies other than the optimal one, as well as the importance of

sub-optimal forcings relative to the optimal one; (ii) a double peak appears when reducing

the step height, which might result in contributions of equal importance from two well sepa-

rated frequencies (ω0 = 0.31 and ω′
0 = 0.55 in the present case).

Figures 3.17 and 3.18 show sensitivities to wall control for these two flows. Although slight

differences can be noticed, the stochastic gain still has a sensitivity largely dominated by the
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Figure 3.16 – Optimal harmonic gain and sub-optimal gains for inlet forcing. (a) Γ= 0.5,Re =
200, (b) Γ= 0.3,Re = 2800.

sensitivity of the harmonic optimal gain at optimal frequency ω0. In particular, locations of

maximal sensitivity of E appear to be captured robustly by the sensitivity of Gi n,1(ω0). There-

fore, even though integrating over a range of frequencies (i.e. performing a weighted average)

should have a smoothing effect, the net result is almost unaffected by frequencies far from

the optimal one. Close inspection shows that all sensitivity fields (for base flow modification,

volume control and wall control) change continuously with ω around the optimal frequency,

and slowly enough for their integral to be eventually dominated by ∇∗G2
i n,1(ω0). For instance,

the two distinct peaks in Gi n,1 for Γ= 0.3, Re = 2800 (fig. 3.16(b)), are actually associated with

very similar sensitivity fields. Regarding the insignificant contribution of sub-optimals k ≥ 2,

even for a separation factor with the optimal as small as ∼5-6 at ω0 and∼2-3 at other frequen-

cies for Γ= 0.5, Re = 200 (fig. 3.16(a)), we conclude that the sub-optimals play a role only at

even lower Reynolds numbers, where amplification mechanism are weak anyway. Therefore,

sensitivity analysis and steady control design can be conducted with good confidence on the

optimal harmonic gain at the optimal frequency alone, rather than on the full stochastic re-

sponse, thereby dramatically reducing the computational cost of the process.

6 Conclusion

The response of the two-dimensional flow past a backward-facing step to time-harmonic and

time-stochastic forcing localized at the inlet was analysed numerically. In the stable regime,

very large amplification was observed, both for harmonic forcing (in a range of preferred fre-

quencies) and for stochastic noise, typical of globally stable convectively unstable noise am-

plifier flows. Very good agreement with a local spatial stability analysis was found, in terms

of most amplified frequencies and of streamwise locations showing the largest response.

To study in a systematic way the effect of small-amplitude steady control in the domain or at

the wall, a variational technique was used to derive analytical expressions for the sensitivity
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Figure 3.17 – Sensitivity of (a) optimal harmonic gain and (b) stochastic gain to wall control.
Γ= 0.5, Re = 200.
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Figure 3.18 – Sensitivity of (a) optimal harmonic gain and (b) stochastic gain to wall control.
Γ= 0.3, Re = 2800.
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of harmonic and stochastic amplification. The sensitivity of the stochastic response is ex-

pressed as a simple combination of sensitivities of the harmonic response. Sensitivity maps

resulting from this analysis allow us to identify most sensitive regions (where amplification

can be controlled, i.e. increased or decreased, the most efficiently) without computing the

actual controlled flows. For several Reynolds number and step heights, it was observed that

the sensitivity of the stochastic response was dominated to a large extent by the sensitivity

of the optimal harmonic response at the most amplified frequency. This suggests that the

design of a passive control aiming at reducing the amplification of stochastic noise can be

performed by targeting the optimal harmonic response at the optimal frequency only.

Possible extensions of this method include the analysis of unsteadiness (unsteady flow and/or

control), and of three-dimensionality (three-dimensional flow and/or control).
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Appendix A. Influence of inlet length

Figures 3.19 and 3.20 show how the harmonic optimal gain, forcing and response depend on

inlet length. In the case of volume forcing, the optimal gain Gvol ,1 is not affected by the inlet

length (fig. 3.19(a)), since the optimal forcing is well localized near the step corner and not

much energy is introduced in the upstream inlet region. This is also illustrated for ω = 0.5

in figure 3.20(a). In the case of inlet forcing, the optimal gain varies significantly when the

inlet length is increased from Li n = 1 to Li n ≃ 5 (fig. 3.19(b)), consistent with the observation

of Garnaud et al. (2013). Here Gi n,1 decreases with Li n due to viscous effects which smooth

out perturbations when they enter the flow farther away upstream of the step corner, i.e. up-

stream of the locally unstable region. Figure 3.20(b) shows that the optimal response keeps

the same spatial structure although the inlet optimal forcing does vary with Li n due to a phase

effect (as mentioned in section 3, the inlet optimal forcing is similar to the profile of the vol-

ume optimal forcing close to x = L+
i n

, and here we fix the phase at x = 0, y = 1.5 for all cases).

Appendix B. Influence of cut-off frequency

Figure 3.21 shows the effect of the cut-off frequency in the integral evaluation of the stochas-

tic response. Increasing ωc yields a slight increase in E because the optimal harmonic gain

Gi n,1(ω) saturates to a finite value at large frequencies ω & 2. However for large Reynolds

numbers this saturated value is negligible compared to the peak value maxωGi n,1(ω), and

therefore E is unaffected by the exact value of the cut-off frequency, provided it is larger than
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Figure 3.19 – Optimal harmonic gain for (a) volume and (b) inlet forcing for different inlet
lengths: Li n = 1 (dashed line), Li n = 5 (dash-dotted line) and Li n = 10 (solid line). Insets
show the convergence of the maximum gain value with increasing inlet length.
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Figure 3.20 – Influence of inlet length (Li n = 1, 5 and 10 from top to bottom) on optimal har-
monic forcing (left; real part of streamwise component f1·ex ) and optimal harmonic response
(right; real part of cross-stream component v1): (a) volume forcing and corresponding re-
sponse, (b) inlet forcing and corresponding response. Γ= 0.5, Re = 500, ω= 0.5.
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(dashed line).
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the optimal frequency, ωc &ω0 = 0.5.

Appendix C. Influence of k and Re

As mentioned in section 5, the stochastic gain E and its sensitivities ∇∗E are mostly influ-

enced by optimal harmonic quantities G2
1 and ∇∗G2

1 , especially at larger Reynolds numbers.

Figure 3.22 quantifies this phenomenon. At Re = 300, the contribution from the optimal har-

monic gain alone reaches more than 97% of E , while that of the first sub-optimal gain k = 2

amounts to a mere 1%. At a Reynolds number as low as Re = 100, Gi n,1 contributes for 85%,

Gi n,2 for 5%, and 25 sub-optimals are enough to reach 99% of E .
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Chapter 4

Control of flow separation: a geometric

perspective

In this chapter, the geometric properties of separated flows are directly used as control objec-

tives. This enables us to derive sensitivity maps of some of the main geometrical quantities in

these flows, such as the recirculation length. The method is first demonstrated in section 4.1

on the flow above a wall-mounted bump, already analysed in chapter 2. Section 4.2 is a brief

interlude on the approximate computation of separated flows using the Interactive Bound-

ary Layer theory, which allows for an efficient computation of separation properties. Finally,

section 4.3 deals with the sensitivity of the recirculation length in a typical oscillator flow, the

flow around a circular cylinder, and demonstrates the ambiguity of geometric quantities as

surrogate for stability properties above instability threshold.

4.1 Paper: Manipulating flow separation: sensitivity of stagnation

points, separatrix angles and recirculation area to steady actua-

tion
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Manipulating flow separation: sensitivity of stagnation points,

separatrix angles and recirculation area to steady actuation

E. Boujo and F. Gallaire

LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Submitted to Proceedings of the Royal Society A

A variational technique is used to derive analytical expressions for the sensitivity of several

geometric indicators of flow separation to steady actuation. Considering the boundary layer

flow above a wall-mounted bump, the six following representative quantities are considered:

the locations of the separation point and reattachment point connected by the separatrix, the

separation angles prevailing at these stagnation points, the backflow area and the recircula-

tion area. For each geometric quantity, linear sensitivity analysis allows us to identify regions

which are the most sensitive to volume forcing and wall blowing/suction. Validations against

full nonlinear Navier−Stokes calculations show excellent agreement for small-amplitude con-

trol for all considered indicators. With very resemblant sensitivity maps, the reattachment

point, the backflow and recirculation areas are seen to be easily manipulated. In contrast,

the upstream separation point and the separatrix angles are seen to remain extremely robust

with respect to external steady actuation.

1 Introduction

Flow separation leads in many aerodynamic situations to performance loss, such as reduced

lift, increased drag, enhanced fluctuations or noise production. In contrast, separation yields

a recirculation region that is often desirable in combustion devices. It is thus not a sur-

prise that there is extensive research on the control of flow separation (Seifert & Pack Melton,

2006). Attempts include, in decreasing order of complexity, closed-loop separation control,

harmonic or steady active open-loop control and passive control devices.

Studies on closed loop control strategies remain few: while Alam et al. (2006) have provided

an analytical approach to closed-loop separation control, based on a kinematic theory of

unsteady separation (Haller, 2004), most experimental approaches rely either on low-order

reduced models, extracted by physical means or using identification methods (Juillet et al.,

2013), or the design of black box controllers (Henning & King, 2007; Gautier & Aider, 2013).

Open-loop control has been successfully applied to separation control: harmonically pulsed

synthetic jets (Seifert et al., 1996; Garnier et al., 2012), as well as steady suction or blowing at

the wall (e.g. McLachlan (1989) and other references in Fiedler & Fernholz (1990), or Wilson,

Schatzman, Arad, Seifert & Shtende (2013) as a combination of steady suction and pulsed

blowing). The determination of the best placement and frequency of the actuators was of-
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ten left to extensive parameter sweeps resorting to intensive experimental or computational

campaigns.

Passive control strategies rely on the optimisation of the geometry or on the addition of ap-

pendices, like vortex generators (Pujals et al., 2010). Their efficient and robust design requires

ideally so-called sensitivity maps, which allow one to optimally act on the flow, again to the

expense of intensive experimental or computational campaigns. A recent example is pro-

vided by Parezanović & Cadot (2012), who studied the influence of a thin control wire on the

frequency, drag and recirculation length of the wake behind a D-shaped cylinder.

In all these control methods, an essential aspect is determining meaningful and unambigu-

ous control variables. Among those the manipulation of the separation or reattachment lo-

cations (Wang, Haller, Banaszuk & Tadmor, 2003; Alam et al., 2006), the recirculation length

(Boujo & Gallaire, 2014) or the recirculation area (Gautier & Aider, 2013) appear as valuable

and accessible geometric descriptors of the flow. The existence of a link between the geomet-

ric properties of separated flows and their stability properties and associated aerodynamic

loads is indeed now well accepted.

It is known for instance that the destabilization of the wake of a bluff body as the critical

Reynolds number is overcome takes place simultaneously with a decrease of the recirculation

length caused by the mean flow distortion maintained by the progressive development of the

instability (Zielinska et al., 1997). Therefore, if one is willing to enhance mixing or reduce

flow-induced structural vibrations, then it is natural to target the recirculation length. More

recently, Parezanović & Cadot (2012) established a clear correlation between base pressure

increase (and therefore drag reduction) and mean recirculation area increase in the wake of

a D-shaped cylinder at Re ∼ 105, suggesting the direct targeting of the separation properties

as a promising control strategy. It is worth also noticing that, in some control attempts (Choi,

Hinze & Kunisch, 1999; Passaggia & Ehrenstein, 2013), without being directly targeted, a mod-

ification of the recirculation length was observed as a by-product of the control scheme.

The present study is dedicated to the determination of analytical expressions for the sensi-

tivity to steady actuation of the following six geometric indicators of flow separation: the

locations of the two separation points which connect the separatrix, the separation angles

prevailing at these separation points, the backflow area and the recirculation area. The flow

configuration considered is the boundary layer flow above a wall-mounted bump, on which

several open-loop (Boujo et al., 2013) and closed-loop (Passaggia & Ehrenstein, 2013) control

strategies have been tested numerically.

Section 2 introduces the quantities of interest. Section 3 presents the concepts of sensitiv-

ity analysis. Section 4 derives the expression of sensitivity to base flow modification for the

quantities of interest. Section 5 gives results and validation.
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Figure 4.1 – Sketch of the bump flow. The flow separates at xs and reattaches at xr (black
dots). The separatrix (blue solid line) encloses the recirculation region (blue shade) of area
Arec and makes angles αs , αr with the wall. Velocity profiles are shown with black lines. The
curve where Ux = 0 (red dashed line) delimits the backflow area (red shade) of area Aback .
The bump wall geometry is parametrized by yw (x) and the separatrix by ysep (x). The axes
are not to scale.

2 Characteristic quantities in separated flows

The evolution of the recirculation length in separated flows with the increase in Reynolds

number Re is well documented (Taneda, 1956; Acrivos, Leal, Snowden & Pan, 1968; Nishioka

& Sato, 1978; Zielinska et al., 1997; Barkley et al., 2002; Marquillie & Ehrenstein, 2003; Gi-

annetti & Luchini, 2007; Passaggia et al., 2012). For instance, in the flow around a circular

cylinder, the recirculation length is known to increase with Re in the steady laminar regime

while it starts to decrease in mean value as Re is further increased in the unsteady laminar

regime. In the present study, we turn our attention to several characteristic quantities which

describe the separation, in complement to the recirculation length: the locations of the two

separation points (xs and xr ) which connect the separatrix, the separation angles (αs and αr )

prevailing at these separation points, the backflow area Aback and the recirculation area Arec .

As an archetypical flow configuration, we consider the flow of a boundary layer above a wall-

mounted bump studied through DNS (Marquillie & Ehrenstein, 2003) and through global

stability analysis (Ehrenstein & Gallaire, 2005).

Figure 4.1 is a schematic of typical flow separation. The recirculation region is delimited

by the wall and the separating streamline. This particular streamline, or separatrix, makes

angles αs and αr at the separation point xs and reattachment point xr , respectively. The

wall geometry is described by yw (x) and the separatrix by ysep (x), where x is the streamwise

direction.

In this paper we focus on the following quantities:

1. The location of stagnation points, i.e. separation point xs and reattachment point xr ,

characterized by zero wall shear stress

τs/r = ∂nUt (xs/r ) = 0; (4.1)
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2. The angle between the separatrix and the wall at the separation and reattachment

points, given by Lighthill’s formula (Lighthill, 1963)

tan(αs/r ) = −3
∂ntUt

∂nnUt

∣∣∣∣
xs/r

; (4.2)

3. The area of the backflow region Ωback = {(x, y) |Ux < 0}

Aback =
Ï

Ω

1Ωback
(x)dΩ; (4.3)

4. The area of the recirculation region enclosed between the separatrix and the wallΩrec =
{(x, y) |xs ≤ x ≤ xr , yw (x) ≤ y ≤ ysep (x)},

Arec =
Ï

Ω

1Ωrec
(x)dΩ. (4.4)

The steady-state flow U(x) is calculated by solving the Navier–Stokes equations with a finite

element method and an iterative Newton procedure (see details and validation in Boujo et al.

(2013) and Boujo & Gallaire (2014)) on a mesh highly refined near stagnation points. Stagna-

tion points are found according to (4.1) with a bisection on the wall shear stress ∂nUt . Angles

are calculated using Lighthill’s formula (4.2), and are found to agree very well with geomet-

ric angles measured between the wall and the separatrix integrated from U(x) with a fourth-

order Runge-Kutta method. Areas (4.3)-(4.4) are computed with a trapezoidal rule for the

two-dimensional integration of the backflow region and recirculation region.

Figure 4.2 illustrates how the backflow and recirculation regions grow with Reynolds number

in the bump flow. Figure 4.3 shows that the reattachment point moves downstream linearly

with Re, which is typical of steady separated flows. The areas Aback and Arec show the same

trend but increase more than linearly since the backflow and recirculation regions become

not only much longer but also slightly higher. The separation point moves a little upstream

but stays downstream of the bump summit (xb = 25). The reattachment angle is fairly con-

stant, 180−αr ≃ 13−15◦. The separation angle measured relative to the wall decreases from

αs = 19◦ to 13◦ between Re = 100 and 700, but measured relative to ex it is small and almost

constant, αs + θw all ≃ 6− 8◦. These observations indicate that the main effect of Re is to

elongate the recirculation region, while the flow remains mostly horizontal.

3 Sensitivity analysis

In this section, analytical expressions are given for the sensitivity of quantities of interest

(4.1)-(4.4) to flow modifications, volume forcing and blowing/suction at the wall.

The sensitivity to flow modification of a quantity of interest, say φ, is a field defined through
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Figure 4.2 – Separatrix (blue solid line) and curve of zero streamwise velocity Ux = 0 (red
dashed line), at Re = 100,300,500 and 700. The axes are not to scale.
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Figure 4.3 – Variation with Reynolds number of characteristic separation quantities: recircu-
lation and backflow areas Arec and Aback , separation and reattachment locations xs and xr ,
separation and reattachment angles αs and αr relative to the wall (the dashed line shows the
“absolute” separation angle αs +θw all , i.e. measured relative to ex ).
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the first-order variation δφ induced by a small flow modification δU,

δφ=
(
∇Uφ |δU

)
, (4.5)

and it can be computed as:

dφ

dU
δU = lim

ǫ→0

φ(U+ǫδU)−φ(U)

ǫ
. (4.6)

Here (a |b) =
Î

Ω
a ·b dΩ denotes the two-dimensional inner product in Ω. In other words,

the sensitivity ∇Uφ = dφ/dU is the gradient of φ with respect to flow modification. Antici-

pating on section 4, we summarize below the sensitivities to flow modification of stagnation

points (4.20), separatrix angles (4.34), and areas (4.46)-(4.52):

δxs/r = (∇Uxs/r |δU) = −
1

√
1+ y ′2

w

∂nδUt

∂ntUt

∣∣∣∣∣∣∣
xs/r

,

δαs/r = (∇Uαs/r |δU)=−
3

A2 +9B 2


A∂nt −B∂nn +

A′B −B ′A

B
√

1+ y ′2
w

∂n


δUt

∣∣∣∣∣∣∣
xs/r

,

δAback = (∇U Aback |δU) =−
∮

Γback

δUx

∂nUx
dΓ,

δArec = (∇U Arec |δU) =
∫xr

xs

−1

Ux (x, ysep (x))

(∫ysep (x)

yw (x)
δUx (x)dy

)
dx.

In practice, the base flow cannot be modified arbitrarily and one has to resort to an external

control, e.g. passive obstacle, heating, magnetic field, geometry modification, wall motion,

wall blowing or suction, etc. This control in turn alters the velocity field. Here we focus on

steady control, either in the domain Ω by means of a body force (source of momentum) C, or

at the wall Γw by means of blowing/suction with velocity Uc . However the method is general

and easily handles other types of control.

Sensitivities to volume control and wall control can be defined through the variation δφ in-

duced by small-amplitude control,

δφ= (∇Cφ |δC)+〈∇Uc
φ |δUc〉, (4.7)

where 〈a |b〉 =
∫
Γw

a · b dΓ denotes the one-dimensional inner product on Γw . Sensitivities

∇Cφ=dφ/dC and ∇Uc
φ= dφ/dUc can be computed as:

dφ

dC
δC = lim

ǫ→0

φ(C+ǫδC)−φ(C)

ǫ
,

dφ

dUc
δUc = lim

ǫ→0

φ(Uc +ǫδUc )−φ(Uc )

ǫ
. (4.8)

Taking into account the definition of φ, and enforcing the Navier–Stokes equations to be sat-
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Figure 4.4 – Sketch of tangent and normal vectors to the wall at (x, y)= (x, yw (x)).

isfied by the flow, a Lagrangian method yields the sensitivities

∇Cφ=U†, ∇Uc
φ=−P †n−Re−1∇U†n, (4.9)

where the adjoint flow (U†,P †)T is solution of the non-homogeneous linear equations

∇·U† = 0, −U ·∇U† +U† ·∇UT −∇P † −Re−1∇2U† =∇Uφ, (4.10)

with boundary condition U† = 0 at the wall. The forcing term in (4.10) is the sensitivity of φ

to flow modification (4.6), which must therefore be computed beforehand, using expressions

derived in detail in section 4 for all quantities of interest (4.1)-(4.4). Using the same finite

element method as for the determination of the base flow, sensitivities (4.9) are obtained

by solving the adjoint equations (4.10) in weak form, particularly convenient to express the

forcing term ∇Uφ.

4 Derivation of sensitivities to flow modification

In this section, analytical expressions are derived for the sensitivity of quantities of interest

(4.1)-(4.4) to flow modification.

We recall for later use that the wall Γw is parametrized by (x, y) = (x, yw (x)), as shown in

figure 4.4. Unit vectors tangent and normal to the wall are noted t and n, and ∂t , ∂n stand for

derivatives along t and n.

4.1 Stagnation points

As expressed in (4.1), steady separation and reattachment points xs = (xs , yw (xs )) and xr =
(xr , yw (xr )) are characterized by zero wall shear stress. Following Boujo & Gallaire (2014),

stagnation points are redefined in terms of characteristic functions:

xs =
∫x∗

0
H (τ(x)) dx =

∫x∗

0
G (x) dx, (4.11)

xr =
∫∞

x∗
H (−τ(x)) dx +x∗ =

∫∞

x∗
1−G (x) dx +x∗, (4.12)
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Figure 4.5 – Wall shear stress and associated Heaviside functions appearing in the expression
of the stagnation points (4.11)-(4.12).

where τ(x) = ∂nUt |(x,yw (x)) is the wall shear stress, H is the Heaviside step function defined as

H (γ< 0) = 0, H (γ> 0) = 1, and x∗ is any streamwise location inside the recirculation region.

As illustrated in figure 4.5, the integrand in (4.11) is equal to 1 upstream of the separation

point, therefore integrating over 0 ≤ x ≤ x∗ does indeed yield the coordinate xs . Similarly,

the integrand in (4.12) is equal to 1 upstream of the reattachment point, and integrating in x

yields the coordinate xr .

We assume for the sake of clarity that reattachment occurs far enough downstream where the

wall is horizontal and τ(xr )= ∂yUx

∣∣
(xr ,yw (xr )), which is verified in practice for all the Reynolds

numbers considered. A flow modification δU makes the reattachment point move by the

following amount:

δxr = lim
ǫ→0

xr (U+ǫδU)−xr (U)

ǫ
(4.13)

= lim
ǫ→0

1

ǫ

∫
[H (−τ(x)−ǫδτ(x))−H (−τ(x))] dx (4.14)

=
∫

−
dH

dγ

∣∣∣∣
γ=−τ(x)

δτ(x)dx (4.15)

=
∫

−
(

dτ

dx
(x)

)−1 dG

dx
(x)δτ(x)dx (4.16)

=
∫

−
(

dτ

dx
(x)

)−1

δ(x −xr )δτ(x)dx (4.17)

=−
δτ(xr )

dxτ|(xr ,yw (xr )
(4.18)

where (4.16) comes from the chain rule differentiation
d(1−G)

dx
(x) =−

dH

dγ

∣∣∣∣
γ=−τ(x)

dτ

dx
(x), and

(4.17) is the result of
dG

dx
(x) = δ(x − xr ) with δ(x) the Dirac delta function, since G increases
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Figure 4.6 – Sensitivity of stagnation points xs , xr , with respect to streamwise volume control
Cx . Left: Re = 100, right: Re = 500. The blue solid line is the separatrix, the red dashed line is
the curve where Ux = 0.

from 0 to 1 at x = xr . Finally:

δxr = (∇Uxr |δU) =−
∂yδUx

∂x yUx

∣∣∣∣
xr

. (4.19)

The variation of the separation point is obtained in a similar way, with only slight sign dif-

ferences. First, the chain rule derivation of G(x) = H (τ(x)) reads
dG

dx
(x) =

dH

dγ

∣∣∣∣
γ=τ(x)

dτ

dx
(x).

Second, the expression in terms of Dirac delta is
dG

dx
(x) =−δ(x − xs ) since G decreases from

1 to 0 at x = xs . Taking into account the wall geometry, one obtains:

δxs = (∇Uxs |δU)= −
1

√
1+ y ′2

w

∂nδUt

∂ntUt

∣∣∣∣∣∣∣
xs

. (4.20)

Expression (4.20) is valid for the reattachment point too, where y ′
w = 0, t ≡ ex , and n ≡ ey .

Figure 4.6 shows the sensitivity of stagnation points to volume control in the streamwise di-

rection Cx = C ·ex obtained at Re = 100 and 500 using (4.19)-(4.20) and the method presented

in section 3. Red (resp. blue) regions indicate where a localized, small-amplitude body force

oriented along ex would move stagnation points upstream, δxs/r > 0 (resp. downstream,

δxs/r < 0). The separation point is mostly sensitive near xs . The reattachment point is sensi-

tive near xr , but also at the bump summit, in the whole shear layer along the separatrix, and

in the recirculation region.
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4.2 Separation and reattachment angles

It is remarkable but not well known that the angle between the separatrix and the wall can be

expressed analytically as a function of flow quantities at the stagnation point, as expressed

in (4.2). We recall briefly Lighthill’s original presentation (Lighthill, 1963). For the sake of

simplicity we assume first that the wall is flat and horizontal, yw (x) = 0. A Taylor expansion

of the streamwise velocity near the wall, y ≪ 1, reads

Ux (x, y)=Ux (x,0)+∂yUx (x,0) y +∂y yUx (x,0)
y2

2
+O (y3). (4.21)

This expression is conveniently recast using (i) the no-slip condition Ux (x,0) = 0, (ii) the

vorticity ω(x,0) = −∂yUx (x,0), and (iii) the streamwise momentum equation ∂y yUx (x,0) =
Re∂x p(x,0):

Ux (x, y)=−ω(x,0) y +
Re

2
∂x p(x,0) y2 +O (y3). (4.22)

Equivalently, the stream function defined as Ux = ∂yψ reads

ψ(x, y) =−
1

2
ω(x,0) y2 +

Re

6
∂x p(x,0) y3 +O (y4). (4.23)

The separatrix ψ = 0 is thus described by ysep (x) = 3ω(x,0)/Re∂x p(x,0) and separates from

or reattaches to the wall with the angle α such that

tan(α) =
dysep

dx
=

3

Re

(
∂xω

∂x p
−ω

∂xx p

(∂x p)2

)

=
3

Re

∂xω

∂x p
=−3

∂x yUx

∂y yUx

(4.24)

because ω(xs/r ,0) = 0. Equation (4.24) is valid for a curved or inclined wall too, hence recov-

ering (4.2). A longer but similar derivation is possible following the steps of Haller (2004) for

unsteady flows, and of course the same expression is also obtained if taking all quantities as

steady in his final expression.

To derive the sensitivity of the angle, we introduce the function f defined on the wall

f (U, x) = tan−1
(
−3

∂ntUt

∂nnUt

∣∣∣∣
(x,yw (x))

)
, (4.25)

where U and x are treated as independent variables. The separation and reattachment angles

are equal to αs/r = f (U, xs/r ). Their variation with flow modification is

δαs/r = (∇Uαs/r |δU)=
(
∂ f

∂U
+

∂ f

∂x

∣∣∣∣
xs/r

dxs/r

dU

∣∣∣∣ δU

)
, (4.26)

111



Chapter 4. Control of flow separation: a geometric perspective

 

 

−3

3

 

 

−3

3

25 50
0

2

4

 

 

−30

30

25 50 75 100 125
 

 

−30

30

y

xx

∇Cx
αs

∇Cx
αr

Figure 4.7 – Sensitivity of separation and reattachment angles αs , αr , with respect to stream-
wise volume control Cx . Left: Re = 100, right: Re = 500. The blue solid line is the separatrix,
the red dashed line is the curve where Ux = 0.

where the first term of the sensitivity is the direct angle variation due to the change in tangen-

tial velocity Ut , while the second term is the indirect angle variation due to the displacement

of the stagnation points xs/r . Before deriving in detail each of the terms of (4.26) we give their

expression below:

(
∂ f

∂U

∣∣∣∣ δU

)
= −3

A∂ntδUt −B ∂nnδUt

A2 +9B 2

∣∣∣∣
xs/r

, (4.27)

∂ f

∂x

∣∣∣∣
xs/r

δxs/r =−3
B ′A− A′B

A2 +9B 2
δxs/r , (4.28)

δxs/r =
(

dxs/r

dU

∣∣∣∣ δU

)
= (∇Uxs/r | δU) , (4.29)

where

A(x) = ∂nnUt (x, yw (x)), (4.30)

B (x)= ∂ntUt (x, yw (x)), (4.31)

A′(x) = 3
y ′′

w

1+ y ′2
w

∂nnUn +
√

1+ y ′2
w∂nnt Ut , (4.32)

B ′(x) =
y ′′

w

1+ y ′2
w

(∂nnUt +2∂ntUn )−
√

1+ y ′2
w∂nntUn . (4.33)

Combining equations (4.26)-(4.33) yields:

δαs/r = (∇Uαs/r |δU)

=−
3

A2 +9B 2


A∂nt −B∂nn +

A′B −B ′A

B

√
1+ y ′2

w

∂n


δUt

∣∣∣∣∣∣∣
xs/r

.
(4.34)

Figure 4.7 shows the sensitivity of separatrix angles to streamwise volume control obtained at

Re = 100 and 500 using (4.34). Like stagnation points, the separation angle is mostly sensitive
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near xs , and the reattachment angle near xr . These sensitivity maps show complex structures,

with regions of opposite signs close to each other. This indicates that a small displacement of

the forcing location could result in changing the sign of the variation δα.

We now turn to the derivation of the three terms in (4.26). The latter term (4.29) is precisely

the variation of stagnation points (4.19)-(4.20). Next, the variation of f with flow modification

(at fixed x) is:

δ f =
(
∂ f

∂U

∣∣∣∣ δU

)
= lim

ǫ→0

f (U+ǫδU, xs/r )− f (U, xs/r )

ǫ
, (4.35)

where, at first order:

f (U+ǫδU, xs/r ) = tan−1
(
−3

∂nt (Ut +ǫδUt )

∂nn (Ut +ǫδUt )

)

= tan−1
(
−3

∂ntUt

∂nnUt
−3ǫ

∂nnUt ∂ntδUt −∂ntUt ∂nnδUt

(∂nnUt )2

)

= tan−1
(
−3

∂ntUt

∂nnUt

)
−

3ǫ

1+
(
−3 ∂nt Ut

∂nnUt

)2

∂nnUt ∂ntδUt −∂ntUt ∂nnδUt

(∂nnUt )2

= tan−1
(
−3

∂ntUt

∂nnUt

)
−3ǫ

∂nnUt ∂ntδUt −∂ntUt ∂nnδUt

(∂nnUt )2 +9(∂nt Ut )2
,

(4.36)

which yields expression (4.27).

Finally, the variation of f (U, x) = tan−1 (−3B (x)/A(x)) with x (for fixed flow conditions) is

derived in a similar way, with straightforward composition of derivatives of tan−1 and of a

quotient:

δ f =
∂ f

∂x

∣∣∣∣
xs/r

δxs/r =−3
1

1+ (3B/A)2

AB ′−B A′

A2
(4.37)

=−3
B ′A− A′B

A2 +9B 2
δxs/r , (4.38)

which yields expression (4.28). However, some care is needed when computing the deriva-

tives of A and B . Although the streamwise derivative of the total velocity field at the wall ∂x U

is related in a simple way to the tangential derivative ∂t U by geometric considerations,

dx U|(x,yw (x)) = (∂x + y ′
w∂y )U =

√
1+ y ′2

w ∂t U, (4.39)

this is true neither for individual velocity components nor for velocity derivatives. For exam-

ple:

dx (∂nUt )|(x,yw (x)) 6= (∂x + y ′
w∂y )(∂nUt ) =

√
1+ y ′2

w ∂t (∂nUt ). (4.40)

This is because the tangential velocity Ut = U · t depends on x not only through U but also
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through the local tangent vector t = t(x) = t(x, yw (x)). Similarly, the normal derivative ∂n =
∇·n depends on x because the normal vector n= n(x) = n(x, yw (x)) does. In (4.40), one must

therefore take into account dx t and dx∂n . The calculation is straightforward but tedious when

expressing all quantities in the basis (ex ,ey ); instead, one can make a systematic use of the

nabla operator:

dx (∂nUt ) = dx ((∇·n)(U · t))

=∇· (dx n)(U · t)+ (∇·n)(dx U · t)+ (∇·n)(U ·dx t)

=∇·
(
−

y ′′
w

1+ y ′2
w

t

)
(U · t)+ (∇·n)

(√
1+ y ′2

w ∂t U · t

)
+ (∇·n)

(
U ·

y ′′
w

1+ y ′2
w

n

)

= −
y ′′

w

1+ y ′2
w

∂tUt +
√

1+ y ′2
w ∂ntUt +

y ′′
w

1+ y ′2
w

∂nUn

=
y ′′

w

1+ y ′2
w

(∂nUn −∂tUt )+
√

1+ y ′2
w ∂ntUt .

(4.41)

Compared to (4.40), two additional terms coming from the derivatives of ∂n and t clearly

appear. The calculation of A′ and B ′ follows similar steps.

4.3 Backflow area

The backflow area (4.3) can be expressed as

Aback =
Ï

Ω

1Ωback
(x)dΩ=

Ï

Ω

H (−Ux (x))dΩ. (4.42)

Its sensitivity is derived in the same vein as that of stagnation points (section 4.1):

δAback = lim
ǫ→0

Aback (U+ǫδU)− Aback (U)

ǫ

= lim
ǫ→0

1

ǫ

Ï

Ω

[H (−Ux (x)−ǫδUx (x))−H (−Ux (x))] dΩ

=
Ï

Ω

−
dH

du

∣∣∣∣
u=−Ux

δUx (x)dΩ

=
Ï

Ω

(∂nUx )−1 (∇1Ωback
(x) ·n)δUx (x)dΩ

=
Ï

Ω

− (∂nUx )−1δΓback
(x)δUx (x)dΩ

=−
∮

Γback

δUx

∂nUx
dΓ,

(4.43)

whereΓback is the boundary of the backflow region Ωback , and ∂nUx is the outward derivative

normal to Γback . Here we used the chain-rule derivation ∇1Ωback
(x)·n =−

dH

du

∣∣∣∣
u=−Ux

∂nUx (x),
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Figure 4.8 – Sensitivity of backflow and recirculation areas Aback , Arec , with respect to stream-
wise volume control Cx . Left: Re = 100, right: Re = 500. The blue solid line is the separatrix,
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and a higher-order generalization of the one-dimensional relation

∫
φ(x)

dH (x −x0)

dx
dx =

∫
φ(x)δ(x −x0)dx =φ(x0), (4.44)

namely:

−
Ï

Ω

φ(x)∇1Ωback
(x) ·ndΩ=

Ï

Ω

φ(x)δΓback
(x)dΩ=

∮

Γback

φ(x) (4.45)

where δΓback
is the two-dimensional delta function associated to 1Ωback

, and n the outward

normal of Γback . Therefore

δAback = (∇U Aback |δU) =−
∮

Γback

δUx

∂nUx
dΓ. (4.46)

The sensitivity of Aback to volume control obtained using (4.46) is shown in figure 4.8. Re-

gions of large sensitivity extend from upstream of the bump summit all the way to the reat-

tachment point, with opposite signs below and above the separatrix.

4.4 Recirculation area

We first rewrite the recirculation area (4.4) as

Arec =
Ï

Ω

1Ωrec
(x)dΩ=

∫xr

xs

∫ysep (x)

yw (x)
dy dx. (4.47)

Then we notice that it is possible to give an Eulerian characterization of the separatrix, namely

that the flow rate through any vertical cross section of the recirculation region is zero:

∫xr

xs

∫ysep (x)

yw (x)
Ux (x)dy dx = 0. (4.48)
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The sensitivity of the recirculation area with respect to flow modification is

δArec = lim
ǫ→0

Arec (U+ǫδU)− Arec (U)

ǫ
(4.49)

= lim
ǫ→0

1

ǫ

∫xr +ǫδxr

xs+ǫδxs

∫ysep (x)+ǫδysep (x)

yw (x)
dy dx. (4.50)

Next, we use (4.48) to obtain the first-order variation of the separatrix height:

δysep (x) =−
1

Ux (x, ysep (x))

∫ysep (x)

yw (x)
δUx (x)dy. (4.51)

Substituting into (4.50), splitting integration intervals into [yw , ysep ]∪[ysep , ysep+ǫδysep ] and

[xs +ǫδxs , xs ]∪ [xs , xr ]∪ [xr , xr +ǫδxr ], and keeping first-order terms finally leads to

δArec = (∇U Arec |δU) =
∫xr

xs

−1

Ux (x, ysep (x))

(∫ysep (x)

yw (x)
δUx (x)dy

)
dx. (4.52)

The sensitivity of Arec to volume control obtained using (4.52) is shown in figure 4.8. As could

have been expected, it is very similar to the sensitivity of the backflow area.

5 Results

5.1 Sensitivity maps

Figures 4.6, 4.7 and 4.8 already presented the sensitivity of all quantities of interest (4.1)-(4.4)

to volume control. This sensitivity information can be used to compute the effect of a small

control cylinder of diameter d inserted in the flow at (xc , yc ). This effect is modelled as a

steady volume force opposed to the hypothetical drag force the control cylinder would feel if

it were invested by the uniform flow xc = U(xc , yc ):

δC(x, y)=−
1

2
d Cd (x, y) ||U(x, y)||U(x, y)δ(x −xc , y − yc) (4.53)

where Cd is the cylinder drag coefficient. Its value depends on the local Reynolds number

Red (x, y)= ||Ub (x, y)||d/ν, which we compute from a fit of experimental and numerical data

(Boujo et al., 2013; Boujo & Gallaire, 2014). From (4.7) and (4.72), quantities of interest vary

according to:

δφ= (∇Cφ |δC)=−
1

2
d Cd (xc ) ||U(xc )||∇Cφ(xc ) ·U(xc ). (4.54)

Figure 4.9 shows the effect of a cylinder of diameter d = 0.05 at Re = 500. The separation point

and separation angle are mostly affected if the cylinder is inserted close to xs , and hardly vary

otherwise. The reattachment angle is sensitive close to xr , and is weakly increased if the con-

trol cylinder is located in the shear layer. Overall, these three quantities appear robust since
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Figure 4.9 – Effect of a control cylinder of diameter d = 0.05 on separation and reattachment
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500. The blue solid line is the separatrix, the red dashed line is the curve where Ux = 0. The
black dot shows the position of the control cylinder (xc , yc ) = (25.7,2.5) used for validation in
section 4.1.

they cannot be modified easily (scales next to color bars confirm that their variations are of

small amplitude). The reattachment point is much more sensitive and is predicted to move

downstream if the control cylinder is inserted in the shear layer (particularly at the bump

summit) or upstream, and should instead move slightly upstream for a cylinder farther away

from the wall. Backflow and recirculation areas are affected in a fairly similar way, increas-

ing when the control cylinder is located near the bump summit or upstream, and decreasing

when the cylinder is farther above the bump or the early recirculation region.

Figure 4.10 shows sensitivity to wall control. Arrows point in the direction of positive sensi-

tivity. All quantities are significantly more sensitive to normal actuation than to tangential

actuation (axes are to scale, so that arrows show the actual orientation relative to the wall).

Separation and reattachment angles are naturally most sensitive close to xs and xr , respec-

tively. More interestingly, αs is also sensitive upstream of the bump and αr at the bump

summit and in the whole recirculation region. The separation point xs is sensitive only at the

bump summit. Finally, xr , Aback and Arec are efficiently controlled by wall actuation at the

bump summit and to a lesser extent in the whole recirculation region; unsurprisingly, these

three quantities have very similar sensitivities. Note that the sensitivities of αs and xs are

very large at xs , and the sensitivity of αr is very large at xr ; for clarity, longest arrows at these
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Figure 4.10 – Sensitivity of separation/reattachment angles αs ,αr , locations xs , xr and back-
flow area Aback to wall control Uc . Arrows point in the direction of positive sensitivity. The
dashed line is the separatrix. Re = 500.

locations are not shown.

Figures 4.9-4.10 allow to identify regions where quantities of interest are affected the most by

control and to which extent.

5.2 Validation and control

In this section, we illustrate how control configurations can be designed based on sensitiv-

ity information. We also validate the method by comparing sensitivity predictions against

nonlinear results obtained from actually controlled flows at Re = 500.

Figure 4.11 shows how separatrix angles, stagnation locations, and backflow and recircula-

tion areas vary when applying small-amplitude vertical wall suction (Uc = 0,Vc < 0) over

5 ≤ x ≤ 23, with total flow rate W . All quantities decrease, although not by the same amount:

the reattachment point moves significantly upstream, inducing a large reduction in backflow

and recirculation areas. Separatrix angles decrease only slightly. The separation point is vir-

tually fixed, reminiscent of the fact that it is fairly independent of Re in the uncontrolled case

(figure 4.3). The agreement between sensitivity predictions (straight solid lines) and actual re-

sults (symbols) is excellent at small flow rate. However, nonlinear effects are non-negligible

when W & 0.1−0.2 and in all cases, make actual variations smaller than predicted by sensi-

tivity analysis.

Figure 4.12 shows variations of quantities of interest when a small control cylinder of diam-

eter d = 0.05 is inserted in the flow at xc = (xc , yc ) = (25.7,2.5) (this location is shown in fig-
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Figure 4.11 – Effect of wall suction applied over 5 ≤ x ≤ 23 with total flow rate W , at Re =
500. (a) Variation of characteristic separation quantities (recirculation and backflow areas,
stagnation locations, separation and reattachment angles). Thick solid lines show theoretical
predictions from sensitivity analysis, while symbols show results from nonlinear calculations.
(b) Separatrix for the uncontrolled flow (W = 0, thick line), and W = 0.2, 0.4 and 0.6 (thin
lines).

ure 4.9 with a black dot). All quantities increase with the cylinder diameter, especially the

reattachment point and recirculation and backflow areas, while the separatrix angles and

separation point are less affected. Again, nonlinear effects are observed when d & 0.05. Note

that (4.73) is linear in δC but not in d (since the drag coefficient depends on d ), therefore

sensitivity predictions in figure 4.12 are not straight lines. We also report results obtained

with the control cylinder included in the computational mesh (grey filled symbols) in order

to assess the assumption of uniform flow underlying (4.72). Differences can be noticed when

d & 0.05, but sensitivity analysis does provide useful qualitative information regarding the

influence of small passive control devices.

6 Conclusion

Considering the boundary layer flow above a wall-mounted bump as a prototype for sepa-

rated flows, a variational technique was used to derive analytical expressions for the sensitiv-
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Figure 4.12 – Effect of a small control cylinder of diameter d inserted in the flow at (xc , yc ) =
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ity of several geometric indicators of flow separation to steady actuation: the locations of the

two stagnation points (xs and xr ), the angles of the separatrix (αs and αr ) at these points, the

backflow area Aback and the recirculation area Arec . For each geometric quantity, analytical

expressions for the linear sensitivity to base flow modification ∇U∗ were obtained. This gra-

dient information was further translated in sensitivity maps to localized volume forcing and

wall blowing/suction through the introduction of the adjoint base flow, governed by linear

adjoint equations forced by the previously determined gradient ∇U∗. A suitable modelling

of the addition of a small control cylinder as a localized force depending on the local velocity

allowed to obtain sensitivity maps relevant to experimental studies.

Validations against full nonlinear Navier–Stokes calculations showed an excellent agreement

for small-amplitude control for all considered indicators. With very resemblant sensitivity

maps, the reattachment point, the backflow and recirculation areas were seen to be easily ma-

nipulated. In contrast, the upstream separation point and the separation and reattachment

angles were found to remain extremely robust with respect to external steady actuation.

The present analysis, however, is limited to steady actuation and calls for a generalization to

the sensitivity of mean recirculation properties to harmonic forcing, which is known to be a

more realistic, reliable and efficient experimental control scheme. Additionally, the recent de-

velopment of fast imaging techniques has now made these geometric descriptors accessible

in real-time (Gautier & Aider, 2013), highlighting the need for the generalization of current

open-loop control optimization tools to the dynamic closed-loop control of separation. The

recent development of a solid theory for unsteady separation (Haller, 2004; Weldon, Peacock,

Jacobs, Helu & Haller, 2008) provides a firm ground for this challenging objective.
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4.2 Interactive Boundary Layer for flow separation

As shown in 4.1, topological properties such as stagnation point locations and backflow/re-

circulation areas are important in separated flows, both because they are relevant to char-

acterize these flows, and because they lend themselves to control applications. Although

experimental techniques are available for real-time measurement of these properties, nu-

merical simulations are still challenging and time consuming, especially at large Reynolds

number. Traditional simplified methods like the ideal fluid / boundary layer decomposition

allow to drastically reduce computation time, but cannot handle flow separation. More re-

fined approximate methods do exist, however, which can successfully compute separated

flows. These include Interactive Boundary Layer (IBL) theory and Triple Deck theory. This

section presents the application of IBL to the separated flow past a wall-mounted bump in-

troduced in chapter 2 and further studied in 4.1. Results show that IBL predicts well the lo-

cation of stagnation points, the maximum wall shear stress and the strongest backflow for a

wide range of Reynolds numbers and bump heights. The ability to quickly produce accurate

results could be useful in control applications where computation time is of importance, or

when parametric sweeps are needed.

It should be mentioned that this study is the result of a collaboration with P.-Y. Lagrée (Insti-

tut Jean le Rond d’Alembert, Université Pierre et Marie Curie, CNRS), who brought both the

knowledge and the numerical tool. The central idea of IBL is to couple in a strong way the

outer inviscid fluid and the inner viscous boundary layer (BL). The outer ideal fluid is a solu-

tion of the inviscid Euler equations (Navier–Stokes equations in the limit 1/Re = 0) with slip

boundary conditions at the wall (Un = 0 but Ut 6= 0; indeed, crudely neglecting viscous terms

lowers the order of the highest derivative from 2 to 1, and not all physical boundary condi-

tions can be satisfied simultaneously). While it is known that satisfactory lift predictions can

be obtained from the ideal fluid, classical boundary layer theory is required to correct the sin-

gularity at the wall by introducing a thin viscous layer (of thickness scaling like 1/
p

Re), which

fulfils the no-slip condition (U = 0). In this approach, due to Prandtl (Prandtl, 1928), the BL

is coupled to the ideal fluid in a “one-way” weak manner (simply matching the ideal fluid ve-

locity at the wall and the BL velocity at infinity; see figure 4.13(a)). This treatment allows us

for instance to predict the BL flow over a flat plate under zero pressure gradient and to obtain

the corresponding drag force D, for example D ∝W
√

ρµLU 3
∞ for a flat plate of width W and

length L, where ρ is the fluid density and µ its dynamic viscosity. Second-order effects can be

added with a further improvement, which consists in taking into account the BL thickness as

an apparent wall displacement, recomputing the ideal fluid and BL, and iterating until con-

vergence (figure 4.13(b)). However, all these methods fail if wall shear stress becomes zero

and the flow separates (Goldstein (1948) singularity). One of the first successes in going be-

yond the point of separation was obtained Catherall & Mangler (1966), who solved an inverse

BL, prescribing its thickness and computing the velocity (instead of prescribing velocity from

the ideal fluid and computing the BL thickness). IBL relies on a strong coupling of the ideal

fluid and this inverse BL resolution (see figure 4.13(c) and Lagrée (2010)).
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(a) Classical BL: one-way, weak coupling.

yw Ideal Fluid Ue Boundary layer δ

(b) Second-order BL with strong coupling.

yw +δn Ideal Fluid U n
e Boundary layer δn+1

(c) Interactive BL: strong coupling, inverse BL.

δn Boundary layer U n
BL

yw +δn Ideal Fluid U n
e

(U n
BL −U n

e ) → δn+1

Figure 4.13 – Several methods to solve the boundary layer. Given a wall geometry yw , the
ideal fluid yields the outer velocity Ue . (a) In the classical BL method, the BL is solved to
get the displacement thickness δ from the outer velocity (weak coupling). (b) Second-order
effects can be obtained by adding the BL displacement to the wall geometry, the ideal fluid
then seeing the apparent wall yw +δ (strong coupling). (c) IBL solves the inverse BL (the outer
velocity is obtained from the thickness), coupling is strong. Only IBL handles separated flows.
From Lagrée (2010).

More theoretical details can be found in Cebeci & Cousteix (1999); Sychev, Ruban, Sychev

& Korolev (1998); Veldman (2001); Dechaume, Cousteix & Mauss (2005); Cousteix & Mauss

(2004) and numerical aspects in Le Balleur (1978). Examples of applications include aerody-

namics (Drela & Giles, 1987; Lock & Williams, 1987; Aftosmis, Berger & Alonso, 2006), arterial

flows (Lorthois, Lagrée, Marc-Vergnes & Cassot, 2000; Lagrée, Van Hirtum & Pelorson, 2007),

and geophysical flows (Lagrée, 2000).

In the present study, the same bump geometry as in chapter 2 is used, but its height is varied

between h/δ∗ = 0 and 2 (figure 4.14). Recall that the bump summit is located at x = xb , and

δ∗ is the displacement thickness of the incoming boundary layer measured at x = xb −25δ∗.

The IBL flow is solved using boundary layer equations expressed with different reference

lengths in the streamwise and cross-stream directions, leading to non-dimensional cordi-

nates x = x/L and ỹ = y
p

ReL/L, with Reynolds number ReL = U∞L/ν. Here the length

L = xb/2 is chosen, i.e. the bump position xb = 2 is kept fixed for all configurations. The

numerical inlet is located at x = 1, where the displacement thickness is δ̃ = 1.72 (since the
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Figure 4.14 – Bump geometry for h/δ∗ = 1 and 2.

BL develops according to δ = 1.72
p
νx/U∞). The following relations for bump height and

Reynolds number can be derived:

ReL =
Reδ∗

2

(
25+

Reδ∗

1.722

)
, h̃ =

h

δ∗

√
2Reδ∗

25+Reδ∗/1.722
. (4.55)

This scaling is illustrated in figure 4.15. According to (4.55), the bump height in BL units

tends to h̃ = 1.72
p

2h/δ∗ as Reδ∗ → ∞. As shown in figure 4.16), ReL is of order 104 for the

values Reδ∗ ≤ 700 considered here. For comparison with Navier–Stokes simulations (method

detailed in chapters 2, 3 and 4), all results are expressed in terms of Reδ∗ and units of δ∗.

Figure 4.17 shows the conditions (Reδ∗ ,h/δ∗) for incipient separation, i.e. when the smallest

wall shear stress is exactly zero and the flow is on the verge of separating. The aqreement

between IBL and NS is excellent. Figure 4.18 shows wall shear stress distributions for several

conditions. The overall shape is well captured, with a slight decrease before the bump due

to flow deflection, a large increase to a maximum before the bump summit (vertical dashed

line) due to acceleration and BL thinning, followed by a large decrease and possibly separa-

tion. For h/δ∗ = 0.5 the flow is attached everywhere at all Reδ∗ , for h/δ∗ = 1.0 there is sepa-

ration in a short region at Reδ∗ = 200, and for h/δ∗ = 1.5 the recirculation region extends far

downstream. Figure 4.19 shows the pressure gradient at the wall for the same conditions. The

overall shape is well captured too, although the strong decrease upstream of the bump sum-

mit is slightly underestimated. Figure 4.20 shows the minimum shear stress along the wall,

the largest backflow velocity and the location of stagnation points. The overall agreement is

good, although differences can be observed for the largest values of h. This is not surpris-

ing since IBL, like other BL methods, is designed primarily not only for large Re but also for

small wall variations h ≪ L. Although the minimal wall shear stress is consistently underesti-

mated (in absolute value), conditions for separation (thick dashed line) and locations of both

stagnation points are very well predicted (as visible in figures 4.17-4.18 too).

The success of the IBL method is the first step towards a one-dimensional description of de-

tached flows. Integral methods, like the von Kármán-Polhausen method (Schlichting, 1979;

Lagrée, 2010), contain indeed a similar strong coupling between the boundary layer and the

free-stream region, while the normal variable has been integrated out: they bear the promise

for the design of even more efficient control strategies.
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(a) Physical
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(b) NS
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(c) IBL

δ̃= 1.72

Figure 4.15 – Comparison of (a) physical flow set-up, (b) configuration used in Navier–
Stokes simulations, and (b) configuration used in IBL calculations, for h/δ∗ = 2 and Reδ∗ =
U∞δ∗/ν = 100, 400, 700. The boundary layer starts at x = 0 and develops according to
δ(x) = 1.72

p
νx/U∞. The reference displacement thickness δ∗ = δ(x∗) is measured at the

reference location x∗ = xb−25δ∗ (vertical dashed lines), where xb is the location of the bump
summit. In Navier–Stokes simulations, all configurations are identical: the bump summit
is located 25δ∗ after the inlet x∗, where the BL displacement thickness is δ∗. In IBL cal-
culations, the bump has a fixed position xb = xb/L = 2 while its height increases towards
h̃ = 1.72

p
2 h/δ∗ as the Reynolds number increases. The numerical inlet is at x = 1.
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Figure 4.16 – Variation of IBL Reynolds number ReL and IBL bump height h̃ with Reδ∗ , for
h/δ∗ = 1 (dashed line) and h/δ∗ = 2 (solid line).
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Figure 4.17 – Conditions of incipient separation (minx τ= 0). Red solid line: IBL; blue dashed
line: NS. Black dots correspond to conditions in figures 4.18-4.19.
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Figure 4.18 – Profiles of wall shear stress for h/δ∗ = 0.5, 1 and 1.5. In each panel Reδ∗ = 200,
400, 600. Red solid line: IBL; blue dashed line: NS.
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Figure 4.19 – Profiles of pressure gradient at the wall for h/δ∗ = 0.5, 1 and 1.5. In each panel
Reδ∗ = 200, 400, 600. Red solid line: IBL; blue dashed line: NS.
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Figure 4.20 – Comparison of results from IBL (left) and NS (right): minimum wall shear stress
(top), largest backflow velocity (middle), location of separation/reattachment points (bot-
tom, where same colours code for the same bump height 0.75 ≤ h/δ∗ ≤ 2).
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4.3 Paper: Controlled reattachment in separated flows: a variational

approach to recirculation length reduction
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Controlled reattachment in separated flows:

a variational approach to recirculation length reduction

E. Boujo and F. Gallaire

LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Journal of Fluid Mechanics 742, 618–635 (2014)

A variational technique is used to derive analytical expressions for the sensitivity of recircu-

lation length to steady forcing in separated flows. Linear sensitivity analysis is applied to the

two-dimensional steady flow past a circular cylinder for Reynolds numbers 40 ≤ Re ≤ 120,

both in the subcritical and supercritical regimes. Regions which are the most sensitive to

volume forcing and wall blowing/suction are identified. Control configurations which re-

duce the recirculation length are designed based on the sensitivity information, in particular

small cylinders used as control devices in the wake of the main cylinder, and fluid suction at

the cylinder wall. Validation against full non-linear Navier-Stokes calculations shows excel-

lent agreement for small-amplitude control. The linear stability properties of the controlled

flow are systematically investigated. At moderate Reynolds numbers, we observe that regions

where control reduces the recirculation length correspond to regions where it has a stabilising

effect on the most unstable global mode associated to vortex shedding, while this property

does not hold any more at larger Reynolds numbers.

1 Introduction

Separation occurs in flow configurations with abrupt geometry changes or strong adverse

pressure gradients. In practical engineering applications, separation is generally associated

with low-frequency fluctuations which can have undesirable effects, e.g. deterioration of ve-

hicle performance, fatigue of mechanical structures, etc. The control of separated flows is

therefore an active research area. Part of the ongoing research work focuses on the lami-

nar regime, where separated flows are steady at low Reynolds number and become unsteady

above a threshold value. In this regime, stability theory can help design control strategies

by providing insight into the physical phenomena involved in the transition to unsteadiness

through, for example, the transient growth of particular initial perturbations, or the bifurca-

tion of unsteady eigenmodes. Examples of separated flows commonly studied as archetypical

configurations because of their fundamental interest include bluff bodies (e.g. square and cir-

cular cylinders), backward-facing steps, bumps, stenotic geometries, and pressure-induced

separations over flat plates.

Sensitivity analysis uses a variational approach to calculate efficiently the linear sensitivity

of some quantity to a modification of the flow or to a given actuation, thus suppressing the

need to resort to exhaustive parametric studies. Hill (1992) applied sensitivity analysis to the
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flow past a cylinder and computed the sensitivity of the most unstable growth rate to passive

control by means of a second smaller cylinder, and successfully reproduced most sensitive

regions previously identified experimentally by Strykowski & Sreenivasan (1990). Since then,

sensitivity analysis gained popularity and was applied to evaluate sensitivity to flow modifi-

cation or to passive control in various flows, both in local and global frameworks.

For example, Corbett & Bottaro (2001) designed a control strategy based on such a variational

technique in order to reduce optimal transient growth in boundary layers. This was achieved

by computing the sensitivity of an objective function involving energy, which was then itera-

tively minimized. Such quadratic cost functionals are very often employed in control theory,

but sensitivity analysis can be applied to non-quadratic quantities as well. Bewley et al. (2001)

minimized several kinds of cost functionals and successfully relaminarized the turbulent flow

in a plane channel using wall transpiration. Bottaro et al. (2003) used a variational approach

to compute the sensitivity of eigenvalues to base flow modification in the parallel plane Cou-

ette flow, as well as the most destabilising modification. Marquet et al. (2008) studied the

sensitivity of the cylinder flow leading eigenvalue to base flow modification and to steady

forcing in the bulk and, again, reproduced the regions of Strykowski & Sreenivasan (1990).

Meliga et al. (2010) managed to control the first oscillating eigenmode in the compressible

flow past a slender axisymmetric body by considering its sensitivity to steady forcing, both

in the bulk (with mass, momentum or energy sources) and at the wall (with blowing/suction

or heating). Recently, Brandt et al. (2011) also applied sensitivity analysis to evaluate the ef-

fect of steady control on noise amplification (maximal energy amplification under harmonic

forcing in steady-state regime) in a globally stable flat-plate boundary layer.

In the present study, sensitivity analysis is applied to another quantity of interest in separated

flows: the length of the recirculation region lc . Many authors observed that in separated

flows the recirculation length increases with Re (below the onset of instability): circular cylin-

der (experimental study by Taneda (1956), numerical study by Giannetti & Luchini (2007)),

backward-facing step (experimental study by Acrivos et al. (1968), numerical study by Barkley

et al. (2002)), wall-mounted bump (numerical study by Marquillie & Ehrenstein (2003), ex-

perimental study by Passaggia et al. (2012)), etc. As the recirculation region gets longer, both

maximal backward flow and maximal shear increase. From a local stability viewpoint, this

tends to destabilise the flow. In addition, since the shear layer elongates, incoming or devel-

oping perturbations are amplified over a longer distance while advected downstream, and

any region of absolute instability is increased in length too. When the flow becomes unstable

and unsteady, as is the case for the cylinder flow above threshold (Re > Rec ), the mean recir-

culation length decreases (Nishioka & Sato, 1978). This is interpreted as the result of a mean

flow correction, and the decrease in the mean value of lc naturally appears as a characteristic

global order parameter of the bifurcation (Zielinska et al., 1997).

The recirculation length therefore appears as a relevant macroscopic scalar parameter to

characterize separated flows. This motivates the design of control strategies which directly

target lc , rather than eigenmode growth rates, transient growth, or noise amplification. In
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Figure 4.21 – Schematic of the problem geometry and computational domain.

other words, we propose control strategies which do not focus on the fate of perturbations

but act upon a feature of the base flow itself.

We choose to design control configurations based on the steady-state base flow, and con-

sider both subcritical and supercritical Reynolds numbers, 40 ≤ Re ≤ 120. In the supercritical

regime Re > Rec , the uncontrolled steady-state base flow is linearly unstable and the actual

flow observed in experiments or numerical simulations is unsteady; but the sensitivity of

the steady-state recirculation length is of interest since reducing lc might restabilise the flow.

The stability of the controlled flow will be assessed systematically to determine when this

approach is relevant.

This paper is organized as follows. Section 2 details the problem formulation and numeri-

cal methods. In particular, analytical expressions are derived for sensitivity of recirculation

length to base flow modifications and to steady control, both volume forcing and wall blow-

ing/suction. Results are presented in section 3: regions sensitive to forcing are identified, and

several control configurations which allow to reduce lc are selected to illustrate the method

and to validate the sensitivity analysis against fully non-linear simulations. The linear stabil-

ity properties of these controlled flows are investigated and discussed in section 4. Conclu-

sions are drawn in section 5.

2 Problem formulation and numerical methods

The sensitivity of the recirculation length in a two-dimensional incompressible cylinder flow

is investigated. A cylinder of radius R is located in a uniform flow. The fluid motion is de-

scribed by the velocity field U = (U ,V )T of components U and V in the streamwise and cross-

stream directions x and y , and the pressure field P . The state vector Q = (U,P)T is solution of

the two-dimensional incompressible Navier–Stokes equations

∇·U = 0, ∂t U+U ·∇U+∇P −Re−1∇2U =C (4.56)
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where Re = U∞D/ν is the Reynolds number based on the cylinder diameter D = 2R , the

freestream velocity U∞ and the fluid kinematic viscosity ν, and C is a steady volume forc-

ing in the bulk. The following boundary conditions are prescribed: uniform velocity profile

Ub = (U∞,0)T at the inlet Γi n , symmetry condition ∂yUb = 0,Vb = 0 on lateral boundaries

Γl at , outflow condition −Pbn+ Re−1∇Ubn = 0 on Γout , where n is the normal unit vector

oriented outward the domain, blowing/suction Ub = Uw on the wall control region Γc , and

no-slip condition Ub = 0 on the remaining cylinder wall region Γw \Γc . In this paper attention

is restricted to steady flows Qb (x, y) which satisfy:

∇·Ub = 0, Ub ·∇Ub +∇Pb −Re−1∇2Ub = C. (4.57)

2.1 Sensitivity of recirculation length

Assuming the flow is symmetric with respect to the symmetry axis y = 0, the recirculation

length is defined as the distance from the cylinder wall rearmost point (R ,0) to the reattach-

ment point xr = (xr ,0) as shown in figure 4.21:

lc = xr −R . (4.58)

The reattachment point is characterized by zero streamwise velocity, U (xr ,0) = 0, and can

therefore be computed with a bisection method on Uc (x) =U (x,0) along the symmetry axis.

Throughout this study, only flow modifications and forcings which are symmetric with re-

spect to the symmetry axis will be considered; they result in symmetric flows, thus ensuring

that the recirculation length (4.58) is well defined.

2.1.1 Sensitivity to base flow modification

Considering a small modification of the base flow δQ, the variation of the recirculation length

is expressed at first order as

δlc = (∇Qlc |δQ) (4.59)

where ∇Qlc = (∇Ulc ,∇P lc)T is the sensitivity to base flow modification, (a |b) =
∫
Ω

ā · b dΩ

denotes the two-dimensional inner product for real or complex fields, and the overbar stands

for complex conjugate.

To allow for the calculation of this sensitivity, the recirculation length is rewritten as

lc =
∫∞

R
H (−Uc (x)) dx =

∫∞

R
G (x) dx, (4.60)

where Uc (x) =U (x,0) is the streamwise velocity on the symmetry axis and H is the Heaviside

step function defined as H (α) = 0 for α< 0 and H (α)= 1 for α> 0. As illustrated in figure 4.22,
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Figure 4.22 – (a) Streamwise velocity along the symmetry axis at Re = 20,40. . . 120. (b) Inte-
grand in the definition of the recirculation length (4.60), illustrated at Re = 60.

the integrand is equal to 1 in the recirculation region where Uc (x) < 0, and is equal to 0 down-

stream, therefore integrating along x from the rear stagnation point gives the recirculation

length.

Using the same Lagrangian formalism as Hill (1992), the recirculation length variation due to

a base flow modification δQ = (δU,δP)T is obtained as:

δlc = lim
ǫ→0

1

ǫ
[lc (Q+ǫδQ)− lc (Q)] (4.61)

= lim
ǫ→0

1

ǫ

∫∞

R
[H (−Uc (x)−ǫδUc (x))−H (−Uc (x))] dx (4.62)

=
∫∞

R
−

dH

dU

∣∣∣∣
U=−Uc (x)

δUc (x)dx (4.63)

=
∫∞

R

(
dUc

dx
(x)

)−1 dG

dx
(x)δUc (x)dx (4.64)

=
∫∞

R
−

(
dUc

dx
(x)

)−1

δ(x −xr )δUc (x)dx (4.65)

=−
δUc (xr )

dxUc |x=xr

, (4.66)

where (4.64) comes from the differentiation of G(x) = H (−Uc (x)) using the chain rule,
dG

dx
(x)

= −
dH

dU

∣∣∣∣
U=−Uc (x)

dUc

dx
(x), and (4.65) is the result of

dG

dx
(x) = −δ(x − xr ) with δ(x) the Dirac

delta function, since G jumps from 1 to 0 at x = xr . If, for example, the streamwise ve-

locity at the original reattachment point increases, then the recirculation region is short-

ened: this is understood physically as Uc (xr ) becoming positive and the reattachment point

moving upstream, while mathematically δUc (xr ) > 0 and (4.61)-(4.66) yield δlc < 0 (because

dxUc |x=xr
> 0, see figure 4.22).
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The sensitivity to base flow modification is identified as:

∇Ulc =−
1

dxUc |x=xr

(
δ(xr ,0)

0

)
, ∇P lc = 0, (4.67)

where δ(x, y) is the two-dimensional Dirac delta function, such that the inner product (4.59)

between the two fields ∇Qlc and δQ is indeed δlc as expressed by (4.66).

In wall-bounded flows, where reattachment occurs at the wall (e.g. behind a backward-facing

step or a bump, or on a flat plate with adverse pressure gradient), the reattachment point is

not characterized by zero streamwise velocity U (xr ,0) = 0, but instead by zero wall shear

stress, i.e. ∂yU |x=xr ,y=0 = 0 with the wall assumed horizontal and located at y = 0 for the sake

of simplicity. In this case the sensitivity reads:

∇Ulc =−
1

∂x yU |x=xr ,y=0

(
δ(xr ,0)∂y

0

)
, ∇P lc = 0. (4.68)

The sensitivity field ∇Qlc in (4.67)-(4.68) is valid for any arbitrary base flow modification

δU. As noted by Brandt et al. (2011), it is possible to derive a restricted sensitivity field for

divergence-free base flow modifications. In the case of the cylinder flow, where (4.67) results

in a localized Dirac delta function at the reattachment point in the x direction only, this re-

stricted sensitivity field appears to present a dipolar structure.

2.1.2 Sensitivity to forcing

Now the sensitivity of the recirculation length to steady forcing is investigated. One considers

a small-amplitude forcing: volume force in the bulk δC(x, y), or blowing/suction δUw on part

of the cylinder wall. The recirculation length variation at first order is

δlc = (∇Clc |δC)+〈∇Uw
lc |δUw 〉 (4.69)

where 〈a |b〉 =
∫
Γc

ā·b dΓdenotes the one-dimensional inner product on the control boundary.

The same Lagrangian formalism as in the previous section yields the sensitivities

∇Clc = U†, ∇Uw
lc = U†

w =−P †n−Re−1∇U†n, (4.70)

where the so-called adjoint base flow Q† = (U†,P †)T is a solution of the non-homogeneous

linear system of equations

∇·U† = 0, −Ub ·∇U† +U† ·∇UT
b −∇P † −Re−1∇2U† =∇Ulc , (4.71)

with the boundary conditions U† = 0 on Γi n ∪Γw ∪Γc , symmetry condition ∂yU † = 0,V † = 0

on Γl at , and P †n+Re−1∇U†n+U†(Ub ·n) = 0 on Γout .
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2.1.3 Effect of a small control cylinder

It is of practical interest to study the effect of a particular kind of passive control on recircula-

tion length and eigenvalues, namely a small control cylinder of diameter d ≪D similar to the

one used by Strykowski & Sreenivasan (1990) to suppress vortex shedding in a limited range

of Reynolds number above instability threshold. The effect on the base flow of a small control

cylinder located at xc = (xc , yc ) is modelled as a steady volume force of same amplitude as the

drag force acting on this control cylinder, and of opposite direction:

δC(x, y)=−
1

2
dCd (x, y)||Ub(x, y)||Ub(x, y)δ(x −xc , y − yc ) (4.72)

where Cd is the drag coefficient of the control cylinder and depends on the local Reynolds

number Red (x, y) = ||Ub(x, y)||d/ν. Finally, variations of the recirculation length and eigen-

value (see section 4) are calculated from δlc = (∇Clc |δC) and δσ= (∇Cσ |δC):

δlc (xc , yc ) = −
1

2
dCd (xc , yc )||Ub(xc , yc )||∇Clc(xc , yc ) ·Ub(xc , yc ), (4.73)

δσ(xc , yc ) = −
1

2
dCd (xc , yc )||Ub(xc , yc )||∇Cσ(xc , yc) ·Ub(xc , yc). (4.74)

For a diameter d = D/10 and for the set of Reynolds numbers Re and locations (xc , yc) chosen

hereafter, the Reynolds number of the control cylinder falls in the range 1 ≤ Red ≤ 15. The

expression of Hill (1992) has been generalized in this range according to Cd (Red ) = a +bRec
d

,

based on a set of experimental data from Finn (1953) and Tritton (1959) and from numerical

results obtained by the authors, yielding a = 0.8558,b = 10.05,c =−0.7004.

2.2 Linear stability

Writing the flow as the superposition of a steady base flow and time-dependent small per-

turbations, Q(x, y, t )= Qb(x, y)+q′(x, y, t ), linearising the Navier–Stokes equations (4.56) and

using the normal mode expansion q′(x, y, t )= q(x, y)eσt , with σ=σr + iσi , the following sys-

tem of equations is obtained:

∇·u = 0, σu+Ub ·∇u+u ·∇Ub +∇p −Re−1∇2u = 0, (4.75)

together with the following boundary conditions: u = 0 on Γi n∪Γw ∪Γc , symmetry condition

∂y u = 0, v = 0 on Γl at , and outflow condition −pn+Re−1∇un = 0 on Γout . Solving this gener-

alized eigenvalue problem yields global modes q and associated growth rateσr and pulsation

σi .

The sensitivity of an eigenvalue to base flow modification, defined by δσ= (∇Uσ |δU), can be
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computed as

∇Uσ=−u† ·∇ūT + ū ·∇u†, (4.76)

where q† = (u†, p†)T is the adjoint mode associated with σ. The sensitivity to steady forcing,

defined by δσ= (∇Cσ |δC)+〈∇Uw
σ |δUw 〉, can be computed as

∇Cσ= U†, ∇Uw
σ= U†

w =−P †n−Re−1∇U†n (4.77)

where this time the adjoint base flow (U†,P †)T is a solution of the linear system

∇·U† = 0, −Ub ·∇U† +U† ·∇UT
b −∇P † −Re−1∇2U† =∇Uσ, (4.78)

with boundary conditions U† = 0 on Γi n ∪ Γw ∪ Γc , ∂yU † = 0,V † = 0 on Γl at , and P †n +
Re−1∇U†n+U†(Ub ·n)+u†(ū ·n) = 0 on Γout . It is possible to relate the sensitivity of a given

eigenvalue and the individual sensitivities of its growth rate and pulsation, δσr,i = (∇Uσr,i |δU)

according to ∇Uσr = Re{∇Uσ} and ∇Uσi =−Im{∇Uσ}. The same relations hold for sensitivity

to forcing.

2.3 Numerical method

All calculations are performed using the finite element software FreeFem++ to generate a two-

dimensional triangulation in the computation domain Ω shown in figure 4.21, of dimensions

−50 ≤ x ≤ 175, −30 ≤ y ≤ 30, with the center of cylinder located at x = 0, y = 0. Bold lines

indicate boundaries. The mesh density is successively increased from outer boundaries, thin

dash-dotted lines, bold dash-dotted line, and cylinder wall. The resulting mesh has 246083

triangular elements. Variational formulations associated to the equations to be solved are

spatially discretized using P2 and P1 Taylor-Hood elements for velocity and pressure respec-

tively.

Base flows are computed using an iterative Newton method to solve equations (4.57), con-

vergence being reached when the residual is smaller than 10−12 in L2 norm. The eigenvalue

problem (4.75) is solved using an implicitly restarted Arnoldi method. Adjoint base flows

involved in the calculation of recirculation length sensitivity and eigenvalue sensitivity are

obtained by inverting the simple linear systems (4.71) and (4.78).

Convergence was checked by calculating steady-state base flows with different meshes. Re-

ducing the number of elements by 21%, the recirculation length varied by 0.2% or less over

the range of Reynolds numbers 30 ≤ Re ≤ 120. Values of drag coefficient and recirculation

length over this same Re range are given in table 4.1 together with results from the literature.

Compared to Giannetti & Luchini (2007), the maximum relative difference on lc was 2%, of

the same order as the values they report, while CD differed by less than 1.7% from values

computed by Henderson (1995). From linear stability calculations, the onset of instability

characterized by σr = 0 was found to be Rec = 46.6, in good agreement with the values re-
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CD lc Rec

20 40 60 100 120 20 40 60 100 120
H95 2.06 1.54 1.31 1.08 1.01
ZGDW97 0.94 2.28 3.62 6.30
GL07 2.05 1.54 0.92 2.24 (3.6) (6.2) (7.5) 46.7
SL07 46.6
MSJ08 46.8
Present study 2.04 1.52 1.30 1.07 1.00 0.92 2.25 3.57 6.14 7.42 46.6

Table 4.1 – Drag coefficient CD and recirculation length lc for different values of Re, and criti-
cal Reynolds number Rec . (Bracketed numbers are estimated from a figure.) H95: Henderson
(1995); ZGDW97: Zielinska et al. (1997); GL07: Giannetti & Luchini (2007); SL07: Sipp & Lebe-
dev (2007); MSJ08: Marquet et al. (2008).

ported in the literature. Also, the frequency σi of the most unstable global mode differed by

less than 1.2% from results of Giannetti & Luchini (2007).

3 Results

In this section we consider subcritical and supercritical Reynolds numbers, 40 ≤ Re ≤ 120,

and focus on the steady-state recirculation length. Its sensitivity to flow modification and to

control is presented in section 3.1, and examples of control configurations which reduce lc

are detailed in section 3.2. Stability properties are discussed later in section 4.

3.1 Sensitivity of recirculation length

Figure 4.23(a) shows the sensitivity of recirculation length to bulk forcing in the streamwise

direction, ∇Cx
lc = ∇Clc · ex . By construction, sensitivity analysis predicts that forcing has a

large effect on lc in regions where sensitivity is large. To be more specific, lc can be reduced

by forcing along ex in regions of negative sensitivity ∇Cx
lc < 0: in the recirculation region (in

particular close to the reattachment point), and near the sides of the cylinder just upstream

of the separation points; lc can also be reduced by forcing along −ex in regions of positive

sensitivity ∇Cx
lc > 0: at the outer sides of the recirculation region (in particular close to the

reattachment point).

As mentioned in section 2.1.3, it is convenient in an experiment to use a small, secondary

cylinder as a simple passive control device which produces a force which aligned with the

local flow direction and depending non-linearly on the local velocity, as given by (4.72). The

effect δlc of such a control cylinder was computed from ∇Clc according to (4.73). Results for

a control cylinder of diameter d = 0.10D are shown in figure 4.23(b). The recirculation length

increases (δlc > 0) when a control cylinder is located on the sides of the main cylinder up-

stream of the separation point , or in the shear layers; it decreases (δlc < 0) when a control

cylinder is located farther away on the sides of the shear layers. The minimal value of δlc /lc
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Figure 4.23 – (a) Normalized sensitivity of recirculation length to bulk forcing in the stream-
wise direction, ∇Cx

lc/lc . (b) Normalized effect of a small control cylinder of diameter d =
0.10D on recirculation length, δlc/lc . From top to bottom: Re = 40,60,80,100,120. The
dashed line is the steady-state base flow separatrix. Black circles show the locations of control
cylinders for configuration B discussed in section 4.3.
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Figure 4.24 – Sensitivity of recirculation length to wall actuation ∇Uw
lc . Flow is from left to

right. Numbers correspond to the L∞ norm of ∇Uw
lc /lc .
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x

y θ

δVw

Figure 4.25 – Sketch of control configuration W.

becomes less negative as Re increases, meaning that a control cylinder of constant diame-

ter becomes gradually less effective at reducing lc . Interestingly, regions associated with lc

reduction correspond qualitatively well to regions where vortex shedding was suppressed in

the experiments of Strykowski & Sreenivasan (1990) (figure 20 therein) for the same diameter

ratio. This point is further discussed in section 4.

Figure 4.24 shows the sensitivity of recirculation length to steady wall actuation, ∇Uw
lc . Since

the variation of lc is given by the inner product δσ = 〈∇Uw
σ |δUw 〉, wall control oriented

along the arrows increases lc . In particular, the recirculation length is increased by wall blow-

ing where arrows point towards the fluid domain, and by wall suction where arrows point

inside the cylinder. The numbers above each plot correspond to the L∞ norm of the rescaled

sensitivity field ∇Uw
lc/lc . This norm increases (roughly linearly) with Re, indicating that the

relative control authority is increasing. The shape of the sensitivity field does not vary much

with Re, and reveals that the most efficient way to reduce lc is to use wall suction at the top

and bottom sides of the cylinder, in a direction close to wall normal.

3.2 Control of the recirculation length

The sensitivity fields obtained in the previous section can be used to control recirculation

length. To illustrate this process, two control configurations predicted to reduce lc are tested

at two representative Reynolds numbers Re = 60 and 120, and for different control ampli-

tudes:

- configuration B (“bulk”; sketched in figure 4.23): volume forcing with two control cylinders

located symmetrically close to the point where lc reduction is predicted to be maximal,

at x∗ = (x∗,±y∗) = (1.2,±1.15) at Re = 60 and x∗ = (2.4,±1.3) at Re = 120;

- configuration W (“wall”; sketched in figure 4.25): vertical wall suction at the top and bot-

tom sides, π/3 ≤ |θ| ≤ 2π/3, with velocity δVw .

Figure 4.26 shows the recirculation length variation δlc for these configurations. In addition

to predictions from sensitivity analysis (dashed lines), this figure shows non-linear results

(solid lines) obtained by computing the actual controlled flow and its recirculation length for

each configuration and each amplitude. In configuration B, the effect of control cylinders is
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Figure 4.26 – Variation of recirculation length with control amplitude (δC in configuration B,
|δVw | in configuration W). (a) Re = 60, (b) Re = 120. Dashed lines show predictions from sen-
sitivity analysis, solid lines are non-linear results. Symbols correspond to control cylinders of
diameter d = 0.05D (�) and d = 0.10D (�).

modelled by the volume force (4.72); in configuration W, wall actuation is implemented as a

velocity boundary condition with uniform profile. As expected, lc is reduced, and the agree-

ment between sensitivity analysis and non-linear results is excellent, with slopes matching at

zero-amplitude, whereas non-linear effects appear for larger amplitudes. Non-linear simula-

tions indicate that at Re = 60, controlling with two cylinders of diameter d = 0.10D reduces

lc by more than 65%; a reduction of about 50% is achieved with control cylinders of diameter

0.05D, and with wall suction of intensity δVw = 0.12. At Re = 120, control cylinders of diame-

ter d = 0.10D reduce lc by more than 40%; a reduction of about 30% is achieved with control

cylinders of diameter 0.05D, and with wall suction of intensity δVw = 0.04.

Figure 4.27 shows examples of controlled flows, illustrating how the recirculation region is

shortened. In configuration B, control cylinders of diameter d = 0.10D located at (x∗,±y∗)

make the flow deviate and accelerate. As a result, the streamwise velocity increases between

the two control cylinders in a long region extending far downstream, and the reattachment

point moves upstream. In configuration W, fluid is sucked at the cylinder sides, which brings

fluid with high streamwise velocity closer to the wall region, which in turn makes the recircu-

lation region shorter.

4 Effect on linear stability

In the previous section, sensitivity analysis was performed on the steady-state base flow. It

provided information on the sensitivity of the recirculation length and allowed to design effi-

cient control strategies. These results are relevant only if the controlled flow is stable. Indeed,

when increasing the Reynolds number above its critical value Rec , the cylinder flow becomes

linearly unstable, with a Hopf bifurcation leading to unsteady vortex shedding; one should

therefore investigate whether the flow is stabilised by the control. In the subcritical regime

Re < Rec , one should also check that the flow is not destabilised by the control.
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Re = 60; right: Re = 120. (a)-(b) configuration B: two control cylinders of diameter d = 0.10D

located at (x∗,±y∗); (c)-(d ) configuration W: suction of amplitude δVw = 0.05 and 0.03 re-
spectively.

At Re = 60, one pair of complex conjugate eigenvalues (“mode 1”) associated with the von

Kármán street is unstable. Figure 4.28(a) shows the variation of the leading growth rate σ1,r

with control amplitude. Both configurations B and W have a stabilising effect on the leading

global mode. Full restabilisation is achieved with two control cylinders of diameter d ≃ 0.04D,

or with wall suction of intensity δVw ≃ 0.08. These control configurations do not destabilise

other eigenmodes for any of the amplitudes tested.

A second pair of eigenvalues becomes unstable (“mode 2”) at Re ≃ 110 (Verma & Mittal, 2011).

Figure 4.28(b) shows the variation of σ1,r and σ2,r with control amplitude at Re = 120. Bulk
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W B
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Figure 4.28 – Variation of leading growth rates with control amplitude. (a) Re = 60, (b) Re =
120. Same notations as in figure 4.26.
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forcing has a stabilising effect on both unstable modes, but does not achieve full restabili-

sation. The straightforward strategy which allowed to stabilise the flow at Re = 60, namely

placing control cylinders where the sensitivity analysis predicts they have the largest reduc-

ing effect on lc , is therefore not successful at Re = 120. Wall forcing has a stabilising effect on

mode 2 but a destabilising effect on mode 1 for reasonable control amplitude, and again the

flow is not restabilised.

To investigate why control configurations which shorten the recirculation region also have a

stabilising effect at Re = 60, but not at Re = 120, it is interesting to consider the sensitivity of

the leading eigenvalue. Figure 4.29 compares the effect of a small control cylinder (d = 0.10D)

on lc , calculated from (4.73) and already shown in figure 4.23(b), and its effect on σ1,r , calcu-

lated from (4.74). At Re = 40 and 60, δlc and δσ1,r have very similar spatial structures. This

means that a small control cylinder, when located where it reduces the recirculation length,

almost always has a stabilising effect on the most unstable global mode. However, this simi-

larity gradually disappears as Re increases. Regions where δlc and δσ1,r have opposite signs

grow in size, and at Re= 120 they extend along the whole shear layers, both inside and outside

the recirculation region. To ease comparison, the contour where two symmetric control cylin-

ders (d = 0.10D) render mode 1 just neutrally stable (i.e. where δσ1,r = −σ1,r /2) is reported

on the map of δlc . At Re = 60 this stabilising region overlaps with the region of recirculation

length reduction, but as Re increases it moves upstream towards the region of recirculation

length increase. In other words, control cylinders located where they reduce lc are efficient

in stabilising mode 1 at low Re, but gradually lose this ability at higher Re. In the latter regime,

one may wonder if increasing the recirculation length is not a better way to stabilise the flow.

It must be pointed out that the stabilising region shrinks as Re increases anyway, consistent

with observations from Strykowski & Sreenivasan (1990) and Marquet et al. (2008).

All stabilising contours for Re ≥ 50 are gathered in figure 4.30(a). The characteristic shrinking

of the stabilising region is confirmed. Also shown for Re ≥ 40 are the locus of two particular

points: xl , where a control cylinder yields the largest lc reduction, and xσ, where a control

cylinder has the maximal stabilising effect on mode 1. It can clearly be observed that xl and

xσ move in opposite directions, with xl eventually going outside the stabilising region. Quan-

titative values of δlc and δσ1,r are given in figures 4.30(b)-(c). With control cylinders located

at xl , a recirculation length reduction of more than 35% can be achieved for any Re ≤ 120.

(With xc = xσ, the reduction is of course not as large, and the recirculation length actually in-

creases when Re & 65.) As stressed previously, however, the corresponding controlled steady-

state base flow will be observed only if stable, i.e. if δσ1,r /σ1,r ≤ 1/2 (region labelled S). This

is the case if xc = xσ (at least for Re ≤ 120). But when control cylinders are located at xl , al-

though they do have a stabilising effect (δσ1,r ≤ 0), the latter is too small to restabilise the

flow when Re & 70.

The same phenomenon is observed with sensitivity to wall forcing. Figure 4.31(a) shows the

sensitivity of the most unstable growth rate to wall forcing. It compares very well with the

results of Marquet & Sipp (2010a, figure 3 therein at Re = 60). Unlike the sensitivity of recircu-
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σ1,r along the cylinder wall.

lation length (figure 4.24) which keeps more or less the same structure at all Reynolds num-

bers, ∇Uw
σ1,r varies substantially. In particular, at the top and bottom sides of the cylinder,

wall-normal suction changes from largely stabilising to slightly destabilising. This translates

into ∇Uw
lc and ∇Uw

σ1,r being very similar at Re = 40 but very different at Re = 120. Accord-

ingly, the pointwise inner product of these two fields shown in figure 4.31(b) is positive every-

where on the cylinder wall at Re = 40 but negative everywhere at Re = 120. As a result, control

configurations which shorten the recirculation length necessarily have a stabilising effect on

mode 1 at low Reynolds numbers and a destabilising effect at higher Reynolds numbers. It

should be noted that at Re = 100, it is still possible to reduce lc and at the same time have a

stabilising effect on mode 1 by using wall suction in a narrow region near θ=±π/2.

5 Conclusions

In this study, the sensitivity of recirculation length to steady forcing was derived analytically

using a variational technique. Linear sensitivity analysis was applied to the two-dimensional

steady flow past a circular cylinder for both subcritical and supercritical Reynolds numbers

40 ≤ Re ≤ 120. Regions of largest sensitivity were identified: lc increases the most when small

147



Chapter 4. Control of flow separation: a geometric perspective

control cylinders are located close to the top and bottom sides of the main cylinder, and

decreases the most when control cylinders are located farther downstream, outside the shear

layers; regarding wall forcing, lc is most sensitive to normal blowing/suction at the sides of

the cylinder. Validation against full non-linear Navier-Stokes calculations showed excellent

agreement for small-amplitude control.

Using linear stability analysis, it was observed that control configurations which reduce lc

also have a stabilising effect on the most unstable eigenmode close to Rec , both for bulk forc-

ing and wall forcing. This property gradually disappears as Re is increased. This is explained

by the spatial structures of the sensitivities of lc and σ1,r , which are very similar at low Re, but

increasingly decorrelated at larger Re. Therefore, reducing the base flow recirculation length

is an appropriate control strategy to restabilise the flow at moderate Reynolds numbers. At

larger Re, aiming for an increase of lc is actually more efficient. In any case, one should keep

in mind that results concerning lc reduction and obtained from a sensitivity analysis per-

formed on the steady-state base flow are relevant only when the controlled flow is stable.

To better control the flow in the supercritical regime, the sensitivity of the mean flow recir-

culation length should be considered. Not only would a method allowing the control of the

mean lc be interesting in itself, but targeting this important parameter of the mean state

(Zielinska et al., 1997; Thiria & Wesfreid, 2007) could also help stabilise the flow. This work is

in progress, but the difficulty of such an approach lies in that the mean flow and the fluctua-

tions are non-linearly coupled, which prevents the derivation of a simple expression for the

sensitivity of the mean recirculation length. It would help, though, to determine whether the

mean flow recirculation length in separated flows should be reduced or increased in order

to mitigate the instability. This extension of the sensitivity analysis to the mean recircula-

tion length could also include the effect of periodic excitation, a control strategy often used

in turbulent flows (Greenblatt & Wygnanski, 2000; Glezer & Amitay, 2002) and which can be

interpreted as a mean-flow correction (Sipp, 2012).

This study confirms the high versatility of Lagrangian-based variational techniques, which al-

low us to compute the sensitivity of a great variety of quantities of interest in fluid flows. The

recirculation length appears as a simple and relevant macroscopic parameter in separated

flows, and can be targeted to design original control strategies. In the case of the cylinder

flow, the fact that lc is a good proxy for flow stabilisation only up to a certain Reynolds num-

ber might be specific to the absolute nature of the instability in bluff body wakes (Monkewitz,

1988). These flows are typical examples of “oscillators”, and are appropriately described by

global linear stability analysis (Chomaz, 2005). On the other hand, convectively unstable

flows (or “noise amplifiers”), such as separated boundary layers, usually exhibit large opti-

mal transient growth (maximal energy amplification of an initial perturbation) and large op-

timal gain (maximal energy amplification from harmonic forcing to asymptotic response for

a globally stable flow) as a result of the non-normality of the linearized Navier-Stokes opera-

tor (Chomaz, 2005). One may wonder whether the recirculation length is more directly and

strongly related to instability in such convectively unstable flows, and whether sensitivity
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analysis applied to lc would be efficient over a broader range of Reynolds numbers. The next

step of this work is the application of a similar control strategy in wall-bounded separated

boundary layer flows.
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Chapter 5

Drag and lift

5.1 Introduction

The experimental study of Strykowski & Sreenivasan (1990) provides evidence that a small cir-

cular cylinder positioned in the wake of a main cylinder can alter vortex shedding at Reynolds

numbers Re ≃ 50 − 100, above the first instability threshold. For specific locations of this

control cylinder, the wake was stabilized, the shedding frequency was modified, and vortex

shedding could even be completely suppressed. The effect on aerodynamic forces has been

studied experimentally and numerically by Dalton et al. (2001) and others, who report reduc-

tion of the mean drag and of the fluctuating lift, as well as enhancement of the mean lift, at

larger but still moderate Reynolds numbers ranging from 100 to 3000. Experimentally, the

control cylinder technique has proven successful up to turbulent Reynolds numbers of order

104−105 (Sakamoto et al., 1991; Igarashi, 1997; Parezanović & Cadot, 2009, 2012). Drag reduc-

tion of 20-30% is achieved (depending on the geometry and the Reynolds number). Cadot

et al. (2009) also assessed the ability of a second control cylinder to further increase the base

pressure of a D-shaped cylinder and to reduce its drag.

Strykowski & Sreenivasan (1990) present their results in terms of sensitivity maps showing

regions where shedding is most affected by the control cylinder. Similarly, Sakamoto et al.

(1991) and Parezanović & Cadot (2012) report maps of global quantities (Strouhal number,

mean or root mean square values of drag and lift). Although very valuable, these maps are

highly time-consuming to produce since systematic experimental measurements (or numer-

ical simulations) must be performed over a large parameter space, changing e.g. the position

and diameter of the control cylinder. The experiment of Strykowski & Sreenivasan (1990)

has been revisited by Hill (1992) and subsequently by Marquet et al. (2008), who used a lin-

ear analysis to assess the effect of an infinitely small control cylinder on the stability of the

main cylinder flow, and obtained theoretical maps matching the experimental ones. Similar

to previous chapters, the approach consists of: (i) computing the quantity of interest for the

uncontrolled flow (here, a global stability analysis yields the growth rate and frequency of the
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eigenmode responsible for the onset of vortex shedding), (ii) solving adjoint equations to ob-

tain a sensitivity field, whose inner product with a localized force modelling the presence of

the control cylinder yields the linear eigenvalue variation, and (iii) identifying regions where

the control cylinder would stabilize the shedding eigenmode or modify its frequency. This

approach is an attractive alternative to trial-and-error design since it allows us to evaluate

quickly all possible positions of the control cylinder without calculating any controlled state.

The present chapter aims at predicting similarly the optimal placement of the control cylin-

der in an attempt to modify aerodynamic forces. The focus is on the drag of a square cylinder.

Calculations are performed at Re = 40, in the stable regime.

5.2 Problem formulation

The two-dimensional steady-state flow past a square cylinder at zero angle of attack is con-

sidered. In the domain Ω, the velocity and pressure fields (U,P)T = (U ,V ,P)T are solutions

of the stationary incompressible Navier–Stokes equations, which read in non-dimensional

form

∇·U = 0, U ·∇U+∇P −Re−1∇2U = 0 in Ω, (5.1)

U = 0 on Γw (5.2)

where Γw is the cylinder wall, and the Reynolds number Re = U∞s/ν is based on the mag-

nitude of the free-stream velocity (U∞,0)T , the length s of the cylinder sides, and the fluid

kinematic viscosity ν. The aerodynamic force acting on the cylinder is the integral of pres-

sure and viscous stresses on the surface:

F =
∮

Γw

−σndΓ=
∮

Γw

Pn−Re−1(∇U+∇UT )ndΓ, (5.3)

where σ=−PI+Re−1(∇U+∇UT ) is the stress tensor and n the unit normal pointing outward

the domain. This force is classically decomposed into drag and lift forces, respectively in the

streamwise and cross-stream directions (i.e. parallel and normal to the free-stream velocity):

D = F ·ex , L =F ·ey . Accordingly, drag and lift coefficients are:

CD =−2ex ·
∮

Γw

σndΓ, CL =−2ey ·
∮

Γw

σndΓ. (5.4)

5.2.1 Drag sensitivity

Similar to previous chapters, a variational method is used to derive equations which allows

to compute the sensitivity of drag and lift coefficients to a steady, small-amplitude control.

Consider for instance a control force (source of momentum) C in the domain, and blowing

or suction Uc in some region of the cylinder wall Γc ⊆ Γw . The flow field is now a solution of
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the forced Navier–Stokes equations

∇·U = 0, U ·∇U+∇P −Re−1∇2U =C in Ω, (5.5)

U =UC on Γc , (5.6)

U = 0 on Γw \Γc . (5.7)

The effect of control on the drag coefficient is at first order:

δCD = (∇CCD | δC)+
〈
∇Uc

CD

∣∣ δUc

〉
, (5.8)

where ∇CCD = ∂CD /∂C and ∇Uc
CD = ∂CD /∂Uc are the sensitivities of CD with respect to vol-

ume and wall control, respectively. The same expression holds for the lift coefficient. Here-

after the usual one- and two-dimensional L2 inner products are used: 〈a | b〉 =
∮
Γw

a ·b dΓw ,

( a | b)=
Î

Ω
a ·b dΩ.

In order to derive the sensitivities of drag and lift while satisfying the constraint (5.5)-(5.7),

the following Lagrangian is introduced:

LD (Q,C,Uc,Q†,U†
c) =CD (Q)−

(
Q†

∣∣∣ N(Q)− (C,0)T
)
−

〈
U†

c

∣∣∣ U−Uc

〉
. (5.9)

As mentioned in chapter 1, if partial derivatives of LD with respect to Q, Q† and U†
c are zero,

then (i) the total derivative of LD with respect to control is

dLD

d(C,Uc)
=

∂LD

∂(C,Uc)
, (5.10)

and (ii) LD =CD since the constraints in (5.9) are identically satisfied. Finally, the sensitivities

to control are:

∇CCD =
∂LD

∂C
= U†, ∇Uc

CD =
∂LD

∂Uc
= U†

c, (5.11)

where the first Lagrange multiplier U† is a solution of the adjoint equation (∂N/∂Q)† Q† = 0,

obtained by setting ∂LD /∂Q = 0 and using integration by parts:

∇·U† = 0, −U ·∇U† +U† ·∇UT −∇P † −Re−1∇2U† = 0 in Ω, (5.12)

U† = 2ex on Γw , (5.13)

while the second Lagrange multiplier U†
c is the adjoint stress

U†
c =−P †n−Re−1(∇U† +∇U†T

)n. (5.14)

Equations (5.12)-(5.13) are homogeneous in the domain but have non-homogeneous bound-

ary conditions on the cylinder wall. This is unlike chapters 2, 3 and 4, where the adjoint
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equations derived for sensitivities to control had homogeneous boundary conditions, like

the base flow, and non-homogeneous equations of motion, with a forcing term equal to the

sensitivity to flow modification. This comes from the very nature of drag, defined on the

cylinder wall and contributing to ∂LD /∂Q with boundary terms

2
∮

Γw

ex ·
(
δPI−Re−1(∇δU+∇δUT )

)
ndΓ, (5.15)

which must balance boundary terms arising from the integration by parts of
(

Q†
∣∣ (∂N/∂Q)δQ

)
:

−
∮

Γw

U† ·
(
δPI−Re−1(∇δU+∇δUT )

)
ndΓ. (5.16)

Note also that the viscous component of the adjoint stress in (5.14) is a total viscous stress

containing both the velocity gradient and its transpose. In previous chapters, it contained

only the velocity gradient, coming from the integration by parts of the viscous term ∇2U =
∇ ·∇U in the Navier–Stokes equations. However, for consistency with the definition of aero-

dynamic forces (5.3) in terms of total stress, it is convenient to write ∇2U = ∇ · (∇U+∇UT ),

where the second term ∇ ·∇UT = ∇(∇ ·U) is identically zero by incompressibility. This does

not modify the end result.

5.2.2 Lift sensitivity

The same analysis as for drag holds, with the Lagrangian replaced by

LL(Q,C,Uc,Q†,U†
c)=CL(Q)−

(
Q†

∣∣∣ N(Q)− (C,0)T
)
−

〈
U†

c

∣∣∣ U−Uc

〉
. (5.17)

It results in the sensitivities

∇CCL =
∂LL

∂C
= U†, ∇Uc

CL =
∂LL

∂Uc
= U†

c, (5.18)

where the adjoint velocity U† is solution of the same equations (5.12)-(5.13) but with bound-

ary condition U† = 2ey on Γw .

5.2.3 Sensitivity of combined functions

The same method can actually be applied to any function of lift and drag. For instance, con-

sider the lift-to-drag ratio J =CL/CD . Introducing the associated Lagrangian and differenti-
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5.2. Problem formulation

ating with respect to Q, one finds the following contribution to boundary terms:

∂J

∂Q
δQ =

(
1

CD

∂CL

∂Q
−

CL

C 2
D

∂CD

∂Q

)
δQ (5.19)

= 2
∮

Γw

(
1

CD
ey −

CL

C 2
D

ex

)
·
(
δPI−Re−1(∇δU+∇δUT )

)
ndΓ, (5.20)

which still has to be balanced by the term (5.16). Therefore the adjoint variable is solution of

equations (5.12)-(5.13) but with boundary condition U† = (−2CL/C 2
D , 2/CD )T on Γw , and the

sensitivities of the lift-to-drag ratio to volume and wall control are the adjoint velocity and

adjoint stress, respectively.

More generally, the contribution of an arbitrary function J (CD ,CL) is

∂J

∂Q
δQ =

(
∂J

∂CD

∂CD

∂Q
+

∂J

∂CL

∂CL

∂Q

)
δQ (5.21)

= 2
∮

Γw

(
∂J

∂CD
ex +

∂J

∂CL
ey

)
·
(
δPI−Re−1(∇δU+∇δUT )

)
ndΓ, (5.22)

so the adjoint velocity is solution of equations (5.12)-(5.13) but with boundary condition U† =
(2∂J /∂CD , 2∂J /∂CL)T on Γw . Interestingly, since adjoint equations are linear, one does not

need to actually solve a new problem if sensitivities of CD and CL are already available: the

sensitivity of any function J is readily obtained as

∇∗J =
∂J

∂CD
∇∗CD +

∂J

∂CL
∇∗CL , (5.23)

where ∗ stands for volume or wall control.

5.2.4 Sensitivity of pressure and viscous drag

It might be of interest to compute the individual sensitivities of pressure drag and viscous

drag

CD,p = 2ex ·
∮

Γw

PndΓ, CD,v =−2ex ·
∮

Γw

Re−1(∇U+∇UT )ndΓ, (5.24)

either to analyse the effect of control on each component separately, or to compare sensitivity

maps with experimental results where only one of these components was available to mea-

surement (e.g. Parezanović & Cadot (2012)). For separated flows, drag is almost entirely due

to pressure at large Reynolds number but contributions from pressure and viscosity are of

the same order at smaller Reynolds number, as shown in figure 5.1. However, trying to repeat

the analysis with J = CD,p , for instance, the boundary term arising from the differentiation
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Figure 5.1 – Pressure and viscous drag coefficient. (a) Circular cylinder (filled symbols: steady
base flow, unstable above Rec ≃ 47; open symbols: mean values for the unsteady flow), from
Henderson (1995). (b) Square cylinder (steady base flow, unstable above Rec ≃ 50).

with respect to Q is

2
∮

Γw

ex ·δPndΓ, (5.25)

which seems impossible to balance with (5.16). This difficulty is not solved by integrating by

parts the pressure stress only (instead of the total stress), since this would make the boundary

term possible to cancel but, this time, volume terms would not allow us to identify the adjoint

equation properly.

In the very particular case of the square cylinder at zero angle of attack, and when no wall con-

trol is applied, one can take advantage of the geometry: explicit calculation with n = (±1,0)T

and n = (0,±1)T shows that the front and rear faces only contribute to pressure drag (and vis-

cous lift), while the top and bottom faces only contribute to viscous drag (and pressure lift).

To compute the sensitivity of pressure drag, one can therefore solve equations (5.12)-(5.13)

with boundary conditions U† = 2ex on the front and rear faces and U† = 0 on the top and

bottom faces.

Fortunately, the analysis is actually possible for arbitrary geometries. The point is to notice

that viscous stresses at the wall are only tangential (Castro, Lozano, Palacios & Zuazua, 2007):

n · (∇U+∇UT )n = 0. This can be used to recast the pressure drag coefficient (5.24) as

CD,p = 2ex ·
∮

Γw

PndΓ=−2
∮

Γw

(n ·σn)(n ·ex )dΓ. (5.26)

Now the integration by part yields the boundary term

2
∮

Γw

[
n ·

(
δPI−Re−1(∇δU+∇δUT )

)
n
]

(n ·ex )dΓ, (5.27)
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Figure 5.2 – Separatrix and streamwise velocity of the steady flow at Re = 40.

which can be balanced by (5.16) if the following condition is chosen: U† = 2n(n ·ex ). Solving

(5.12)-(5.13) with this boundary condition on Γw yields the adjoint velocity, and thus the sen-

sitivities of the pressure drag coefficient. The sensitivities of the viscous drag coefficient can

be simply recovered as ∇∗CD,v =∇∗CD −∇∗CD,p , where ∗ stands for volume or wall control.

5.3 Numerical method

All calculations are performed with a finite element method, similar in all aspects to that

presented in section 2.1 and chapters 3-4. The mesh is highly refined close to the cylinder

wall (336048 triangular elements) in order to obtain good accuracy for drag and lift results.

Recall that the base flow equations (5.1)-(5.2) are solved with an iterative Newton method,

and the linear adjoint equations (5.12)-(5.13) with a direct inversion. Figure 5.2 shows the

streamwise velocity of the steady flow at Re = 40. The length of the recirculation region is

about 2.8, and the drag coefficient CD = 1.67.

5.4 Results

All results are obtained at Re = 40. In this regime the steady flow is stable, since vortex shed-

ding appears via a Hopf bifurcation at the critical Reynolds number Rec ≃ 50, similar to the

circular cylinder.

5.4.1 Sensitivity to volume control

Figure 5.3 shows the sensitivity of drag and lift coefficients to volume control in the x and

y directions. Red (resp. blue) regions indicate where a force along ex or ey would increase

(resp. decrease) CD/L . With respect to the y = 0 axis, drag has a symmetric sensitivity to

streamwise control and an antisymmetric sensitivity to cross-stream control; conversely, lift

has an antisymmetric sensitivity to streamwise control and a symmetric sensitivity to cross-

stream control. This agrees with intuition. Drag is most sensitive to streamwise control in a

large region upstream of the cylinder along the y = 0 axis, and to cross-stream control near

the separation points. Lift is most sensitive to streamwise control near the cylinder corners,
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Figure 5.3 – Sensitivity to volume control: sensitivity of (a)-(b) drag coefficient and (c)-(d ) lift
coefficient, with respect to (a)-(c) a force in the streamwise direction ex , (b)-(d ) a force in the
cross-stream direction ey .

and to cross-stream control near the separations points and in the upstream part of the recir-

culation region.

5.4.2 Sensitivity to a control cylinder

The method already presented in previous chapters is used to predict the effect of a small

circular control cylinder of diameter d inserted in the flow at xc = (xc , yc ): assuming the con-

trol cylinder feels the same drag force as in a uniform flow of velocity U(xc ), the force δC

exerted by the control cylinder on the fluid is modelled as a steady force of same direction

and amplitude, but opposite orientation:

δC(x, y)=−
1

2
d Cd (x, y) ||U(x, y)||U(x, y)δ(x −xc , y − yc) (5.28)

where Cd is the drag coefficient of the control cylinder and depends on the local Reynolds

number Red (x, y) = ||U(x, y)||d/ν. The drag coefficient of the main (square) cylinder there-

fore varies due to the presence of the control cylinder according to:

δCD (xc ) = (∇CCD |δC)=−
1

2
d Cd (xc ) ||U(xc )||∇CCD (xc ) ·U(xc ). (5.29)

Figure 5.4(a) shows the expected variation δCD as a function of xc for a control cylinder of

diameter d = 0.1. Two regions allow us to reduce the square drag: a large region in front of

the cylinder, extending far upstream on the symmetry axis, and a second region on both sides

of the recirculation region. In the first one, a maximum reduction of about 20% (δCD ≃−0.3)
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Figure 5.4 – Effect of a control circular cylinder of diameter d = 0.1 on (a) drag coefficient of
the main square cylinder, (b) total two-cylinder drag coefficient, (c)-(d ) pressure and viscous
components of (a). Circles show control cylinder locations used for validation (figure 5.5).

can be achieved by inserting the control cylinder on the symmetry axis at xc ≃ −1 or −2,

while the effect is much smaller downstream. Conversely, drag is increased by inserting the

control cylinder on the upper or lower side of the main cylinder. The recirculation region has

a smaller sensitivity because low velocities in this area result in weak control forces (5.28).

If the control objective is drag reduction, it is important to assess the net effect by taking into

account the contribution of the control cylinder itself to the drag force, −δC ·ex . The total

drag coefficient variation reads in this case:

δCD,t ot = (∇CCD |δC) =−
1

2
d Cd (xc ) ||U(xc )|| (∇CCD (xc )−2ex ) ·U(xc ). (5.30)

Figure 5.4(b) shows this total “two-cylinder” variation for the same control cylinder diam-

eter d = 0.1. Upstream, the region where the main drag reduction is larger than the drag

induced by the control cylinder is now limited to a thin and short strip of the symmetry axis,

for xc &−2. Downstream, it appears that reduction of the total drag is not achieved outside

the recirculation region, as the control cylinder drag spoils the main cylinder reduction. On

the other hand, a small region of total drag reduction is observed inside the recirculation re-

gion: interestingly, the main drag is not much affected there, but the backward flow turns the

control cylinder into a source of thrust. Nevertheless, this effect is weak (note the different

scales in (a) and (b)).

Next, individual contributions from pressure and viscous effects to the main cylinder drag are

analysed as described in section 5.2.4. Solving the adjoint problem with modified boundary

conditions, and evaluating the effect of a small control cylinder yields maps 5.4(c)-(d ) for
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Figure 5.5 – Drag variation due to a small control cylinder of diameter d located at (a) xc =
(−1.3,0) and (b) xc = (1.9,0). Lines show predictions from sensitivity analysis, symbols are
results from non-linear simulations including the control cylinder as a volume force (5.28).
Main (square) cylinder drag: open symbols and solid lines, two-cylinder total drag: filled
symbols and solid lines, pressure and viscous contributions to the main cylinder drag: dots
and respectively dashed and dash-dotted lines.

the variation of pressure drag coefficient δCD,p , and the variation of viscous drag coefficient

δCD,v , respectively. The similarity of figures 5.4(a) and (c) indicates that in most regions

the effect of the control cylinder is due to pressure effects. On the sides of the recirculation

region, both pressure and viscous effects contribute to drag reduction. Conversely, on the

symmetry axis upstream of the cylinder, and on the top and bottom sides close to the walls,

these effects are competing: upstream, pressure effects dominate and yield an overall drag

reduction (because the flow is slowed down downstream of the control cylinder, pressure on

the square front wall is decreased and the pressure difference with the rear wall is reduced);

close to the sides, viscous effects dominate and yield an overall drag reduction (because the

control cylinder deflects the flow outwards, decreasing wall shear stress). Still on the top

and bottom sides but farther away from the walls, viscous effects are dominant (the flow is

accelerated between the two cylinders, thus wall shear stress and drag increase).

Figure 5.5 illustrates and validates the method for two positions of the control cylinder: xc =
(−1.3,0) and xc = (1.9,0). Lines are predictions from sensitivity analysis while symbols corre-

spond to actual non-linear simulations with the control cylinder modelled as (5.28), where

the two-dimensional Dirac delta is approximated by a Gaussian function of appropriate size

with respect to the mesh size (standard deviation 0.006). The main cylinder drag is shown

with solid lines and open symbols, pressure drag with dashed lines and dots, viscous drag

with dash-dotted lines and dots. The agreement between sensitivity and nonlinear results is

good, despite slight nonlinear effects noticeable when d & 0.1. Sensitivity predictions are not

straight lines because the drag first-order variation (5.29) is linear with respect to the force

δC, not the diameter d . As expected from figure 5.4(a), the first position (upstream) is associ-

ated with a large drag reduction, while the second one (downstream) yields a slight increase.

The total two-cylinder drag is also shown (solid lines and filled symbols). In agreement with
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figure 5.4(b), the control cylinder produces drag on its own when located upstream, and drag

reduction drops from ≃−17% for the main cylinder alone to ≃−3% when both cylinders are

taken into account. Conversely, the control cylinder is a source of thrust in the recirculation

region and, although the effect is small, turns the slight drag increase of the main cylinder

into a slight total drag decrease.

5.4.3 Sensitivity to wall control

Figures 5.6(a)-(b) show sensitivity maps of drag and lift coefficients with respect to wall actu-

ation. As in previous chapters, arrows pointing from the cylinder towards the fluid domain in-

dicate that wall blowing (resp. suction) in the same direction increases (resp. decreases) CD/L .

The sensitivity of CD is symmetric in Uc and antisymmetric in Vc with respect to the y = 0 axis

(like the uncontrolled flow field (U ,V )T and the sensitivity to volume control ∇CCD ); con-

versely, the sensitivity of CL is antisymmetric in Uc and symmetric in Vc . Regarding drag, the

largest variation is obtained with actuation normal to the wall on front and rear faces, and

with actuation tilted by about 45◦ on top and bottom faces. Regarding lift, the largest varia-

tion is obtained with actuation normal to the wall except near downstream corners, i.e. close

to separation points.

Scale bars show that, globally, lift is more sensitive than drag to wall control. More interest-

ingly, drag and lift can be modified independently, choosing actuation locations and direc-

tions carefully so as to take advantage of symmetry properties or relative sensitivity magni-

tudes. For instance: (i) a combination of wall-normal suction on both top and bottom sides

reduces drag without affecting lift; (ii) a combination of suction on the top side and blowing

on the lower side increases lift without affecting drag; (iii) actuation at the front or rear wall

modifies drag while lift shows little or no variation. As these examples suggest, configurations

can be tailored to control objectives.

Figures 5.6(c)-( f ) show individual contributions from pressure and viscous effects. Lift sen-

sitivity is almost completely dominated by pressure effects. Drag variations come from pres-

sure only on the rear face, but from a combination of both pressure and viscous effects on

other faces: they add up on the front face and compete on top and bottom faces.

Two examples of localized wall-normal blowing/suction are shown in figure 5.7: actuation

(i) on the front face at yc = 0, and (ii) on the top face at xc = 0.2. Actuation is applied as

a velocity boundary condition, with the following properties: total flow rate W (W > 0 for

blowing, W < 0 for suction), Gaussian profile centred around xc or yc , and width (standard

deviation) 0.05. As predicted by figures 5.6(a)-(b), blowing reduces CD in case (i) (fig.5.7(a))

and reduces CL in case (ii) (fig.5.7(b)). The agreement between sensitivity predictions (solid

lines) and actual nonlinear results (open symbols) is good, but nonlinear effects are observed,

which are particularly strong in case (i). Theses nonlinear effects are more pronounced for

the pressure component (dashed lines) than for its viscous counterpart (dash-dotted lines).
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Figure 5.6 – Sensitivity to wall control. (a): drag coefficient, (b): lift coefficient, (c)-(d ): pres-
sure contribution, (e)-( f ): viscous contribution. Arrows point in the direction of positive
sensitivity.
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Figure 5.7 – Variation of aerodynamic coefficients when localized wall-normal control is ap-
plied with flow rate W (W > 0 for blowing, W < 0 for suction): (a) drag coefficient for control
on the front face at xc =−0.5, yc = 0, (b) lift coefficient for control on the top face at xc = 0.2,
yc = 0.5. As in figure 5.5, solid lines show CD/L , dashed lines pressure contribution, dash-
dotted lines viscous contribution.
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5.5. Conclusion

(a) (b)

Figure 5.8 – Effect of a control circular cylinder of diameter d = 0.1 on the mean drag coef-
ficient at Re = 100. Sensitivity analysis conducted (a) from adjoint-looping or (b) from the
mean flow without coupling of the Reynolds stresses. From Meliga et al. (2014).

5.5 Conclusion

Recently, the sensitivity of the mean drag (as well as drag and lift fluctuations) was computed

in the supercritical regime Re >Rec (Meliga, Boujo, Pujals & Gallaire, 2014). The method con-

sisted in using “adjoint looping”, i.e. integrating the Navier–Stokes equations forward in time

and the adjoint equations backward (see chapter 1 for applications to optimal growth and op-

timal control). An example is given in figure 5.8(a) at Re = 100. The sensitivity thus obtained

is useful as it allows us to predict the effect of any control without computing the controlled

flow. Still, this approach comes with large memory requirements to store the direct solution

needed for the adjoint problem. In order to reduce the computational burden, an alternative

simplified method was proposed where the sensitivity of the “frozen” mean flow is calculated

neglecting the modification of the unsteady vortex shedding by the control and therefore its

nonlinear contribution to the mean drag. As shown in figure 5.8(b), these assumptions re-

sult in some error but allow a successful identification of the main regions of large sensitivity,

which suggests that the method can be extended to turbulent flows if enough care is taken

(Meliga et al., 2012).
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Summary

In an effort to develop new flow control methodologies, sensitivity analysis was applied to

several quantities of interest in steady laminar separated flows. Maps of sensitivity to small-

amplitude steady control were computed by solving appropriate adjoint equations. Both con-

trol in the fluid (volume force or control cylinder) and control at a wall (blowing and suction)

were considered. Taking advantage of the power of adjoint methods, these sensitivity maps

were obtained at low computational cost, i.e. without ever solving actual controlled flows.

The predictive character of these maps allowed the identification of regions where control

would be the most effective in altering flow characteristics. Quantities of interest considered

in this work include the amplification of external harmonic and stochastic forcing in con-

vectively unstable flows, geometric properties (such as the position of stagnation points, the

separatrix angles, the area of backflow/recirculation regions), and aerodynamic forces. For

most of these quantities, adjoint equations were newly derived.

Chapter 2: The amplification of external perturbations (harmonic optimal gain) in the stable

flow past a wall-mounted bump was found to reach very large values. A subcritical bifurca-

tion induced by small-amplitude perturbations was indeed observed, illustrating the strong

amplifier nature of this flow. Sensitivity analysis revealed that harmonic gain could be drasti-

cally reduced at all frequencies, using wall suction in the most sensitive region, i.e. the bump

summit (figure 1). Direct numerical simulations confirmed the effectiveness of this control

configuration in reducing amplification in the stable regime and in delaying transition. Sen-

sitivity analysis applied to leading eigenvalues in the unstable regime led to the same conclu-

sion, namely that wall suction at the bump summit has a stabilising effect. Experiments in

a water channel supported the above results: at large enough flow rates, wall control at the

bump summit reduced the amplitude of temporal fluctuations in the recirculation region

and in the shear layer. At smaller flow rates, however, a strong Kelvin-Helmholtz shear layer

instability was triggered by the control; the clarification of this phenomenon requires further

investigation.

Chapter 3: With the aim of simplifying control design, complex in the case of harmonic

perturbations because several frequencies have to be taken into account simultaneously, the
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Figure 1 – Sensitivity and control of optimal harmonic gain in the flow past a wall-mounted
bump at Re= 580. (a) Sensitivity of optimal gain at frequenciesω= 0.05,0.15, . . . 0.55 to steady
wall control (rescaled for each frequency by the largest point-wise L2 norm; this maximal
value is shown in the inset). From figure 2.11. (b) Reduction of the optimal gain when apply-
ing vertical wall suction at the bump summit. From figure 2.13.
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Figure 2 – Sensitivity and control of noise amplification in the flow past a backward-facing
step at Re = 500 (expansion ratio Γ = 0.5): effect of a small control cylinder of diameter d =
0.05 on the stochastic gain. From figure 3.11.

amplification of stochastic perturbations was considered as a convenient alternative. Com-

puting the sensitivity of this single quantity involves a weighted sum of the sensitivities of

optimal and sub-optimal harmonic gains. In the flow past a backward-facing step, it was

found that the sensitivity of the stochastic gain was well captured by that of the optimal har-

monic gain at the optimal frequency, both for volume control and for wall control (figure 2).

This result might be general in strongly non-normal flows if amplification is large in a particu-

lar range of frequencies and if the optimal harmonic gain is well separated from sub-optimal

gains in this frequency range. When these conditions are satisfied, sensitivity computation

becomes much cheaper.

Chapter 4: Original methods made possible the derivation of sensitivity of geometric quanti-

ties in separated flows (figure 3). The link with stability properties was also investigated. The

position of the reattachment point in the bump flow was found to be very sensitive to con-

trol, and its sensitivity map was largely similar to that of backflow area and recirculation area.

The sensitivity maps of these three quantities closely reproduce that of the optimal harmonic

gain, indicating that this flow becomes a weaker amplifier when the extent of its recirculation

region is reduced. In contrast, the separatrix angles and the position of the separation point

appeared fairly insensitive and robust to control. In the flow past a circular cylinder, the sen-
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Figure 3 – Geometric quantities of interest in separated flows: location of separation and
reattachment points xs , xr , angles of the separatrix at the wall αs , αr , recirculation area Arec

and backflow area Aback . From figure 4.1.
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Figure 4 – Link between geometric quantities and stability properties in the flow past a cir-
cular cylinder at Re = 40: effect of a small control cylinder (d = 0.10D) on the recircula-
tion length (upper half) and on the most unstable mode’s growth rate (lower half). From
figure 4.29

sitivity of the recirculation length was strongly correlated to that of the leading eigenmode’s

growth rate close to the linear instability threshold (figure 4). Therefore, shortening the recir-

culation region in this flow makes it more stable and can suppress vortex shedding. Farther

away from the onset of instability, no link appears between linear stability and base flow recir-

culation length. Considering instead the mean flow recirculation length could yield valuable

results.

In order to predict separation while reducing computational time, the Interactive Boundary

Layer method was successfully applied to the bump flow and showed very good agreement

with Navier–Stokes simulations (figure 5). This is a first step towards a one-dimensional

streamwise description of separated flows, through its lumped version where the strong cou-

pling between the boundary layer and the free-stream region are integrated out in the cross-

stream direction. In view of the relative effectiveness of geometric indicators to serve as sur-

rogate for stability properties, these strongly coupled integral methods hold the promise for

even more efficient control schemes.

Chapter 5: As an interesting complementary approach to aerodynamic shape optimization,

the sensitivity of aerodynamic forces to control was presented for the flow past a square cylin-

der (figure 6). A careful analysis showed that lift and drag could be modified independently

using appropriate wall control configurations, allowing for example drag reduction at con-
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Figure 5 – Interactive Boundary Layer theory for the efficient calculation of separation prop-
erties: incipient separation (zero wall shear stress) in the flow past a wall-mounted bump, for
different Reynolds numbers and bump height ratios. Red: IBL; blue: Navier–Stokes. From
figure 4.17.

stant lift or lift enhancement at constant drag. The sensitivity of drag and lift combinations

(like the lift-to-drag ratio) can be obtained at no additional cost. The sensitivity of pressure

and viscous forces could be analysed separately from a modified adjoint problem, providing

insight into physical mechanisms and facilitating comparison with pressure-only or shear

stress-only experimental measurements.

Perspectives

The present thesis suggests that a wide variety of flow properties, if not all, can be analysed

in terms of sensitivity to steady actuation, opening interesting perspectives for the control of

separated flows. In this work, focus was on steady two-dimensional configurations. There-

fore it seems natural in the future to investigate unsteady and/or three-dimensional aspects.

Possible directions to pursue this line of research further include the following.

(i) Unsteady laminar flows, e.g. with adjoint looping, where the full unsteady equations

are solved forward and the associated unsteady adjoint equations are then solved back-

ward to obtain the sensitivity of interest. This approach is rigorously exact but compu-

tationally expensive (long CPU time, large memory requirement). In some cases, an at-

tractive alternative is to use a suitable modelling of relevant physical phenomena: time-

averaging, amplitude equations, or self-consistent models describing non-linear limit

cycles with a reduced number of flow structures. For instance Meliga et al. (2014) com-

puted drag sensitivity for a square cylinder at Re = 100 from the frozen mean flow and

obtained a good agreement with exact results from adjoint looping (figure 7); questions

then arise as to whether this method is still satisfactorily predictive in other flows, and

whether regions of poorer agreement can be identified beforehand (possibly as regions
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Figure 6 – Aerodynamic sensitivity of a square cylinder at Re = 40. (a) Effect on drag of a
control circular cylinder of diameter d = 0.1. (b) Sensitivity of drag and lift to wall control.
From figures 5.4-5.6.

(a) (b)

Figure 7 – Effect of a control circular cylinder of diameter d = 0.1 on the mean drag coefficient
at Re = 100. Sensitivity analysis conducted (a) from unsteady adjoint-looping or (b) from the
mean flow without coupling of the Reynolds stresses. From Meliga et al. (2014). Reproduced
from figure 5.8.
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Sensitivity analysis

Experimental measurements

x

y

Figure 8 – Effect of a small control cylinder (diameter d = 0.04) on vortex shedding fre-
quency (eigenfrequency) in the flow past a D-shaped cylinder at Re = 13000. Upper half:
turbulent adjoint-based sensitivity analysis (Meliga et al., 2012); lower half: measurements
(Parezanović & Cadot, 2012). Reproduced from figure 1.12.

of large Reynolds stresses, which are neglected in the frozen mean flow assumption)

without calculating the exact sensitivity for comparison purposes.

Recently, Mantić Lugo, Arratia & Gallaire (2014) proposed a self-consistent model yield-

ing with good accuracy the saturation dynamics of the non-linear limit cycle in the wake

of a circular cylinder; this model too could serve as the basis for a simplified and com-

putationally inexpensive sensitivity analysis.

(ii) Turbulent flows, similar to (i) in spirit but requiring in addition the derivation of adjoint

equations for turbulent variables. Meliga et al. (2012) followed this approach and ob-

tained the sensitivity of vortex-shedding frequency in the wake of a D-shaped cylinder at

Re = 13000, in very good agreement with experimental measurements from Parezanović

& Cadot (2012) (figure 8). Mettot, Sipp & Bézard (2014) recently obtained similar results

without taking turbulence into account, but further investigation is required to deter-

mine whether this simplification applies to other flows. In any case, it would be inter-

esting to investigate the relationship between recirculation length and drag coefficient

in turbulent separated flows, like the one reported by Parezanović & Cadot (2012) for a

bluff body (figure 9).

(iii) Unsteady control, in particular periodic wall actuation. It is known indeed that, from an

experimental perspective, alternative blowing and suction is both easier to implement

and more effective than unidirectional blowing or suction. Parametric studies often re-

veal the existence of an optimal range of frequencies, where control is the most effective.

For instance, Garnier et al. (2012) observed an optimal frequency for the control of the

recirculation area in the lee of a two-dimensional rounded backward-facing step using

periodic blowing and suction close to the separation point in LES and unsteady RANS

simulations (figure 10). Sensitivity analysis might be well-suited to predict in a simple
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Figure 9 – Increasing the recirculation length reduces the drag coefficient (base pressure coef-
ficient) of a D-shaped cylinder in a turbulent flow at Re = 13000. Here a small control cylinder
(d = 0.12D) is inserted 0.4D downstream the cylinder base, at different heights inside (filled
circles) and outside (open circles) the recirculation region (Parezanović & Cadot, 2012).

way this optimal control frequency range. One could think of an appropriate combina-

tion of Reynolds stresses originating from the response to periodic wall control, and the

already available sensitivity of recirculation area (or any other quantity of interest).

(iv) Spanwise-periodic control of nominally two-dimensional flows, such as streamwise

streaks in two-dimensional wakes or boundary layers. Fransson, Talamelli, Brandt &

Cossu (2006) showed experimentally that transition to turbulence could be delayed in a

boundary layer by imposing a steady spanwise-periodic flow modification using rough-

ness elements designed to enforce optimal perturbations (streamwise vortices ampli-

fied into streamwise streaks). Figure 11 shows how Tollmien–Schlichting waves lead to

transition in the uncontrolled boundary layer while the streaky boundary layer remains

laminar. Hwang & Cossu (2010) computed in a parallel Couette flow the optimal re-

sponse to initial conditions, harmonic forcing and stochastic forcing (in this case, the

small number of degrees of freedom allowed for the direct resolution of a Lyapunov

equation to obtain the stochastic response, without resorting to integration over fre-

quencies as in chapter 3); the sensitivity of these optimal responses could easily be com-

puted with the addition of a transverse wavenumber.

Another interesting feature of the spanwise-periodic control of two-dimensional flows

is the fact that the first-order sensitivity of eigenvalues is zero in such configurations

(Hwang, Kim & Choi, 2013; Del Guercio, Cossu & Pujals, 2014): small-amplitude flow

modification and control that are periodic in the transverse direction are predicted to

have no effect on linear stability properties; at larger amplitude, however, they are ob-

served to be more efficient than two-dimensional flow modifications in stabilizing par-
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(a)

(b)

Figure 10 – Unsteady control of the recirculation area in the separated flow past a rounded
backward-facing step at Re = 30000. (a) Variation in recirculation area vs. frequency of peri-
odic wall blowing/suction; (b) separating streamline in the uncontrolled flow (solid line) and
several controlled flows (dashed lines). From Garnier et al. (2012).

Figure 11 – Three-dimensional control of a two-dimensional boundary layer. Left: roughness
elements create streamwise vortices which are amplified downstream and form streamwise
streaks (upper half), whereas the uncontrolled boundary layer is two-dimensional (lower
half). Right: when perturbing the whole flow with Tollmien–Schlichting waves, the uncon-
trolled boundary layer undergoes transition while the controlled one remains laminar (Frans-
son et al., 2006).
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Figure 12 – Three-dimensional sensitivity analysis (Fani et al., 2013). (a) T-junction flow (two
inlets on the left, outlet on the right) computed by DNS above the instability threshold: vor-
tices (iso-surface of λ2 criterion) and cross-sections of passive tracer illustrating mixing. (b)
Sensitivity to modification of the inlet velocity profile: an incompletely developed profile
with larger velocity at the center of the inlet has a stabilizing effect.

allel wakes (Del Guercio et al., 2014), therefore an appropriate sensitivity analysis taking

second-order effects into account is required to reconcile theoretical predictions with

observed non-zero variations.

(v) Three-dimensional flows, either spanwise-periodic flows, where transverse variations

are conveniently described with a limited number of Fourier modes, or on a more com-

putationally intensive level, fully three-dimensional flows, such as non-axisymmetric

bodies of finite width (e.g. Ahmed body, wall roughness elements), flows confined in

channels of finite extent, or even more complex arbitrary geometries. For instance, Fani,

Camarri & Salvetti (2013) computed in a three-dimensional T-junction flow the sensitiv-

ity of the leading eigenmode to flow modification (in the volume or at the inlet) and to

wall control (figure 12).

In addition to the above-mentioned extensions to unsteady and three-dimensional cases,

looking for original descriptions of quantities of interest will broaden the range of control

opportunities. For instance, Monokrousos et al. (2011) considered viscous dissipation as a

measure of turbulence. They used adjoint methods to find the initial condition of minimum

energy leading to transition to turbulence in a plane Couette flow; similar methods could

guide the design of efficient control strategies to delay or promote transition. Foures et al.

(2014) recently optimized the mixing of a passive scalar in a plane Poiseuille flow, using as ob-

jective functions (i) the variance of the scalar field or (ii) a “mix-norm” targeting large-scale

structures, and found these mixing measures more efficient than energy amplification (fig-

ure 13). Mixing can also be improved by controlling separation. Wang et al. (2003) developed

such an approach to create unsteady separation points at prescribed locations using tangen-

tial blowing and suction on the wall of a bluff body, in order to create attracting material

lines which “collect fluid particles from the [...] wall regions and inject the particles into the
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t = 7.3 t = 18.2 t = 29.1

Figure 13 – Optimal mixing in a plane Poiseuille flow using actuation at the walls (y = ±1):
perturbation vorticity field (top) and passive scalar field to be mixed (bottom), at three suc-
cessive times (left to right). Mixing is more effective when optimizing the variance of the
scalar or its "mix-norm" rather than energy amplification. From Foures et al. (2014).

Figure 14 – Prescribing the location of separation points to improve mixing (Wang et al., 2003):
snapshots of the uncontrolled (left) and controlled (right) flow. Hot colors correspond to
large values of the Direct Lyapunov Exponent field and show Lagrangian coherent structures
(attracting material lines).

wake” (figure 14). A related method allowed Alam et al. (2006) to enforce reattachment at a

prescribed location and reduce the recirculation length in the flow past a backward-facing

step. Reducing the extent of flow separation is desirable not only in mixing applications aim-

ing at a good level of homogeneity, but also when long residence times must be avoided, for

example in arterial flow where red blood cells are to deliver oxygen quickly (in fact, residence

time itself could be chosen as objective function for sensitivity analysis or optimization). The

manipulation of other geometric quantities, as illustrated in chapter 4, might prove very in-

teresting for accurate flow control not only at macro scales but also at smaller scales (Chen &

Brenner, 2004), including a number of microfluidic applications (see e.g. Schneider, Mandre

& Brenner, 2011).
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