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Abstract

Remote sensing and geographic information science o↵er many pos-
sibilities in terms of availability of diverse data. Some products like
land cover layers or digital elevation models can be extracted from
imagery and enable the realization of 3D city models. Starting from
these morphological and geographical sources, an approach is proposed
to extract information about urban structure types (UST), i.e. types
of urban habitat at the neighborhoodscale. We propose an e↵ective
processing chain to describe UST : from the di↵erent data sources,
we extract spectral and spatial indices and use them as features in a
machine learning process to classify these urban structural types us-
ing support vector machine classification (SVM). Moreover, Markov
Random Fields (MRF) are used to take into account the spatial dis-
tribution of the classe and increase the spatial consistency.

This study focuses on the city of Munich and uses as di↵erent data
sources the land cover data, the 3D city model, spectral images from
LandSat TM 8 and OpenStreetMap (OSM) vector data to character-
ize UST.

The main hypothesis is that we can discriminate among urban struc-
tural types by using land cover information, spectral properties and
3D structure: in other words, that an industrial area won’t have the
same structure nor the same properties as a residential or an agricul-
tural area.

The proposed processing chain enables to predict with a precision
of 70% the 11 UST. This opens possibilities to describe the urban
footprint of the city, to detect the key areas for urban planification
and to better understand the city dynamics.

Keywords : support vector machine (SVM), classification, urban structural
types (UST), Markov random fields (MRF)
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Abstract

Les domaines de la télédétection et de l’information géographique
o↵rent aujourd’hui beaucoup de possibilités en termes de sources et
diversité de données. Des produits comme des couches d’occupation
du sol ou des modèles numériques de hauteurs peuvent être issus de
l’imagerie et permettent de réaliser des modèles 3D de villes. En
partant de ces sources de données morphologiques et géographiques,
une approche est proposée dans le but d’extraire les types structurels
urbains,c’est-à-dire les types d’habitat urbains à l’échelle du voisi-
nage. Une méthode e�cace est proposée pour décrire ces di↵érents
types structurels urbains: des di↵érentes sources de données, une
série d’indices spectraux et spatiaux sont extraits et utilisés dans
un processus d’apprentissage automatique pour ensuite classifier les
di↵érents types structurels urbains présents au niveau du voisinage à
l’aide de séparateurs à vaste marge (SVM). De plus l’usage des champs
aléatoires de Markov (MRF) permet de tenir compte de la distribution
spatiale des classes à priori et de promouvoir des solutions spatiale-
ment cohérentes.

Cette étude se focalise sur la ville de Munich et exploite di↵érentes
sources de données telles que la couverture du sol et le modèle 3D de
la ville, de même que les images Multispectrales LandSat TM 8 et les
données vectorielles OpenStreet Map (OSM).

L’hypothèse prinicpale est donc que l’on peut déduire les types struc-
turels urbains sur la base d’informations propres à la géométrie, la
radiométrie et la couverture du sol observées, à savoir qu’une zone in-
dustrielle n’aura pas la même structure ni les même propriétés qu’une
zone résidentielle ou qu’une zone agricole.

L’approche développée permet de prédire avec une précision de 70%
les 11 classes de types structurels urbains définies. Ceci ouvre des
possibilités pour décrire l’empreinte de la ville sur son environnement
et pour mieux comprendre la dynamique de la ville.

Mots Clefs : séparateurs à vaste marge (SVM), classification, types de
structures urbaines (UST), champs aléatoires de markov (MRF)
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1 Introduction

Here are presented the motivation, the state of the art, goals of the study
and the relevant previous work.

1.1 Motivation

Land use is the characterisation by arrangements, activities and inputs peo-
ple undertake in a certain land cover type to produce, change or maintain it
(FAO/UNEP, 1999). It is therefore a relevant information for urban planning.
It includes vital socio-economic and environmental information (Banzhaf &
Hofer, 2008). Though the analysis of land use it is possible to derive fac-
tors such as energy demand, water supply, waste and tra�c generation from
it. Land use is a precious information for city planners to understand the
city structure and the city dynamics and also on a temporal scale to get
the evolution aspects of a city. It is also an economical interest since eco-
nomical resources are not equally distributed. With the recent drastical size
increase of some cities around the world (Taubenböck et al., 2012), land use
changes are now in the center of attention. Urban planning and all the do-
mains it considers (as energy resources management, environmental issues
and protection of ecosystems, for example) requires that kind of geographic
information.(Pauleit & Duhme, 2000)

On a city scale, land use information need to be aggregated. That’s why
we use urban structural types (UST) to describe the urban footprint of a
city. We defined UST as specific spatial patterns of the urban structure at
the neighborhood scale. UST are di↵erent from land cover (LC) since we
do not map a tree or a building but a spatial arrangement of objects in a
neighborhood of fixed size: in our case dense residential areas, ...

Most UST such as large commercial activities and industry include very
similar types of urban structures and are therefore di�cult to distinguish
with classic image analysis. Moreover, there is no standardized definition
of the urban structure types in the academic literature. (Banzhaf & Hofer,
2008)

Remote sensing and geographic information science o↵er many possibilities
in terms of availability of diverse data. From high resolution satellite im-
agery and segmentation, it is now possible to obtain high resolution land
cover data. (Taubenböck et al., 2006) By fusing building classes with digital
elevation models, it is now possible to extract the building heights and vol-
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umes, which means that 3D city models are easier to create.(Sirmacek et al.,
2012) From these morphological and geographic information sources come
possibilities to describe the UST of cities.

1.2 State of the art

Multiple studies have attempted using di↵erent data and di↵erent method-
ologies at multiple sites to determine the information of land use or the UST.
We have chosen three of theses studies to show di↵erent appraches.

In their study, Walde et al. (2014) classify urban structural types. They
define 5 classes (city center, residential block buildings, allotment, residen-
tial single family homes, industrial areas). They use an object based image
analysis approach to extract land cover data. From these data, they extract
some graph based measures : centrality indices, ajacency events, connectiv-
ity measures and building related measures. Using a random forest classifier,
that they trained with training samples, they predict the urban structural
class on the city of Rostock (North of Germany) with an overall accuracy of
87%. They found out that the most important feature in their classification
algorithm was the building height with the highest node degree.

Another study from Puissant (2012) maps the Morphological Urban Ar-
eas and the urban fabrics from the urban areas of Strasbourg and Toulouse
(France). The MUA is a delimitation of the city and is composed of Ho-
mogenous Urban Patches defined by Herold et al. (2003). Urban Fabrics are
defined in a similar way as our UST. Their algorithm is based on a three
level classification, first the urban blocks, then the urban materials and last
the urban fabrics are classified. With this comes the disadvantage that if
a classification error occures on the first level, the error propagates to the
next levels. The overall accuracy is between 76 and 93 % depending on the
method used.

The third study of Taubenböck et al. (2013) at delineating central business
districts (CBDs) from their physical and morphological parameters. Their
approch is based on three di↵erent steps. Firstly they formulate their hy-
pothesis about how should be CBDs and test it with a statistical delineation,
then they classify the entire Megacities and finally they make a cross-city spa-
tial comparison of the CBDs using spatial metrics. They obtain an overall
accuracy of 83 to 86% on the selection of city centers.

These studies are di↵erent but they all agree on the point that UST and mor-
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phological and physical parameters are linked, which means that it should be
possible to predict UST using the types of features considered in these pa-
pers. The data used in these studies are mainly imagery products produced
from medium to very high resolution, LiDAR data, 3D city models, street
networks data or urban cadastral data.

1.3 Goals of the study

The present study proposes a processing chain to predict urban structural
classes from multiple data sources using support vector machine classification
(SVM).

The main idea behind this method is that UST show geographical and mor-
phological di↵erences from type to type and that these di↵erences can be
expressed through multispectral image bands, spatial indices, morphological
features extracted from the city model and thematic network indices. These
indices can be quite numerous and that’s why SVM are pretty well adapted
for this purpose.

The second goal of this study is to compute Markov Random Fields (MRF)
using the class Platt’s probabilities extracted from the SVM to improve the
classification using spatial priors. Using MRF help us in the classification ac-
curacy, involving more spatial knowledge and encoding urban rules to achieve
a better spatial consistency. It should enable to correct some classification
mistakes which are not coherent with the prior knowledge.

1.4 Previous Work

During the previous semester, UST determination and a ground truth over
the city of Munich (Germany) have been carried out. Since there is no
standardized definition of the urban structural types in the academic lit-
erature(Banzhaf & Hofer, 2008), we used a mix of the values present in
some studies. Eleven (plus one undefined classes) were retained, namely city
center, residential high-medium-low density, industrial, commercial, leisure,
agricultural, central business districts(CDBs), forest and water areas. (Pon-
cetMontanges, 2014)

The defined UST are more detailed in the section 2.3.2.
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2 Methodology

In section 2.1, we introduce the classification model used, SVM and the
spatial post processing method used, MRF in section 2.2.

2.1 Support Vector Machine (SVM)

SVM is “one of the most successful modern machine learning algorithms”.(Tuia,
2009)Thanks to the contributions of Boser et al. (1992), it is now considered
as the “most studied” and the “most e↵ective method for classification” and
it is also easier to use than Neural Networks, which is another famous ma-
chine technique also use in many classification problems. (Chang & Lin,
2011)

2.1.1 What does a large margin classifier?

Support Vector Machine is a supervised classification algorithm whose goal
is to find a linear decision function f(x) =< w,x > +b where w is a weight
vector and x is a feature vector in Rd, d is the number of bands and b

is the bias. It is called large margin classifier because it maximizes the
margins between the separated classes. This is equivalent to find the optimal
hyperplane separating two classes.

2.1.2 SVM Formulation

Consider a training set composed of n samples {x
i

, y

i

}n
i=1, the margin maxi-

mization is equivalent to minimize the squared norm of the weight parameters
w. This can be formulated as

min
w

||w||2 (1)

s.t.y

i

(< w,x
i

> +b) � 1, 8i

which can be solved using Lagrange Mutlipliers and leads to the cost
function:

L

D

(↵) =
P

n

i=1 ↵i

� 1/2
nP

i,j=1
↵

i

↵

j

y

i

y

j

< x
i

,x
j

> (2)

s.t.

hP
i=1

↵

i

y

i

↵

i

� 0
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And the class prediction:

y⇤ = sign(
nX

i=1

↵

i

y

i

< x
i

, z > +b) (3)

This is a cost function which can be solved by quadratic programming
that provides a complex problem with a single minimum (i.e. SVM always
converges to the same result). However, since data can be noisy, we might
want to allow some flexibility to errors, if they allow a wider and more robust
hyperplane: in this case we allow margin violations, that’s why we need
to include slack variables ⇠

i

, and the regularization term C to control the
complexity of the model:

min
w,⇠

||w||2 + C

nP
i=1

⇠

i

(4)

s.t.y

i

(< w,x
i

> +b) � 1� ⇠

i

, 8i
⇠

i

� 0

The term ||w||2 wants to find the perfect separation to the training data
while the right term allows some classification errors, with a penalisaton
weighted by C. This is called the soft margin SVM formulation since we
have a loss function and a regularizer term, and it is issued from the statis-
tical learning theory.(Vapnik, 1998)

2.1.3 Kernel expansion

The extraordinary succes of SVM is due to the kernel expansion, also called
kernel trick. Without it, SVM remains a robust linear classifier but cannot
solve non linear problems. In reality we have rarely linear processes, that’s
where the kernel extension of the SVM comes into interest. The kernel trick
enables to perform non linear classification through mapping the data into a
higher dimensional feature space and to perform linear classification therein.

The more similar two data points are, the higher their dot product will be,
it is then possible to build a kernel function that replaces the dot product
and maps the points to a higher dimensional space where linear operations
can be computed.

K : �⇥ � ! R, < x, z >! K(x, z) (5)
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Where
K(x, z) =< �(x),�(z) > (6)

is the kernel matrix.

As shown in Eq.(6), the results of a kernel evaluation is the dot product
between the samples in the space spanned by �(). The beauty of it is that a
kernel is computed using samples of the original spaces, i.e. without defining
or computing explicitely the coordinates �(x).

Here are a few examples of the most common kernels:

Linear kernel : K(x, z) =< x, z > (7)

Polynomial kernel : K(x, z) = (< x, z > +1)p (8)

Gaussian kernel : K(x, z) = exp(� ||x2�z

2||
2�2 ) (9)

As a requirement for the feature space where dot products are computed,
all kernel functions must be symetric and positive definite.

We can then reformulate the SVM with kernel functions by substituing the
kernel matrix to the dot product:

L

D

(↵) =
P

n

i=1 ↵i

� 1/2
nP

i,j=1
↵

i

↵

j

y

i

y

j

K(x
i

,x
i

) (10)

s.t.

nP
i=1

↵

i

y

i

0  ↵

i

 C

And the class prediction:

y⇤ = sign(
nX

i=1

↵

i

y

i

K(x
i

, z) + b) (11)

2.1.4 Multi-class Classifier

SVM is a binary classifier, meaning that it separates only 2 classes. To have
a solution for multiple classes, two types of SVM have been proposed. (Tuia,
2009) The first one is called one against all (o-a-a) which computes all the
decision functions between one class and all the others. The second is called
one against one (o-a-o) which computes (k� 1)k/2 binary decision functions
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for k classes. In the first case, the winning class is the one which is maximiz-
ing Eq.(11) on all the possible classes, in the second every binary classifier is
evaluated and gives a vote to the winning class, the final decision is obtained
by the class which gets the maximum number of votes. In this work, we use
the one against one solution.

To fill this purposis, we used LibSVM which is the most common implemen-
tation of Support Vector Machine Classification and available on mutliple
languages (C++, JAVA, Python, Matlab, Octave,...).1

2.1.5 Platt’s probability estimates

Besides determining a class using SVM, it would also be interesting to know
which classes could have been also possible, for example by assessing pos-
terior probabilities p(y

i

= c|x
i

). Platt proposed a method to extract such
probabilities from SVM. This method is mainly based on a Sigmoid fitting
function.

2.2 Markov Random Fields (MRF)

Markov Random Fields modelling is widely used in many domains such as
image processing because of its ability to describe and take into account the
spatial information associated with an image, e.g. edge detection, classifica-
tion, segmentation, etc.(Moser et al., 2013)It is especially interesting in the
land cover classification domain where it can take into account the spatial
distribution of classes and the patterns are not random, since a pixel belong-
ing to a given class wil tend to be surrounded by others of the same class.

The Markov Random Fields modelling helps us to take into account the
prior knowledge of urban patterns and land cover class distributions, which
is not available in the SVM, since SVM is a non-contextual classifiera and
considers regions as independant between each other. There is usually a
strong spatial correlation between the classified regions (class distributions
are not random), that’s why it is interesting to use MRF modelling to favor
a logical, i.e. smooth or driven by urban knowledge, class distribution pat-
tern.(Moser & Serpico, 2010)

The main idea is to use the joint probability estimates of a sample (Platt’s

1The LibSVM documentation and code are available freely at
http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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probability estimates from SVM) with its prior knowledge from the class dis-
tribution and the spatial patterns to influence the labelling using the maxi-
mum a posteriori (MAP) estimation.(mar, 2009) The method considered is
Iterated conditional Modes.

2.2.1 Iterated Conditional Modes (ICM)

To maximize the joint probability of a Markov Random Fields, we need to
iterate for each class y

i

and over each pixel x
i

U(Y |X) = �
X

i

ln(
P (y

i

|x
i

)

p(y
i

)
) + �

X

i

X

j

1� �(y
i

, y

j

) (12)

• With U(Y |X) which is the total MRF energy.

• The first term �
P
i

ln(P (yi|xi)
p(yi)

) is the class distribution related term

where :

– P (x
i

|y
i

) is the Platt probability estimate for pixel x
i

estimated
from the SVM to be classified a posteriori as y,

– and P (y
i

) is the prior class occurence probability.

If a class has more chances to occur than the others, p(y
i

) will be greater
for this class. If there is not, the probability is usually equal for each
class which means p(y

i

) = 1/k with k classes.

• The second term �

P
i

P
j

�(y
i

, y

j

) includes the neighborhood informa-

tion for each pixel, i.e. the spatial context. It penalizes the non homo-
geneity of pixel classes.

– � is a positive parameter

– The �(y
i

, y

j

) function is a dirac function called the Kronecker func-
tion, outputting 1 if the neighboring class y

j

is the same class as
the one considered y

i

, and can be customized to influence more or
less surrounding pixels and can also favors directional shapes.
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3 Proposed Processing Chain

This section contains the proposed processing chain for building a classifier
on multiple data sources and predict urban structural types.

3.1 General

Here is a plan of the main steps contained in the proposed processing chain :

Figure 1: Flow chart of the processing chain

3.2 Scale selection

The scale is a very important factor in the detection of urban structures,
which is why it was necessary to choose a suitable mesh size, consistent with
the size of buildings and blocks, without being too high to avoid being too
general. In the case of the city of Munich, a mesh of 200x200m was chosen
after a series of tests including the examples in Fig. 2.
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Figure 2: Grid scale selection

3.3 Urban structural classes definition

To establish the classes, I based myself on Walde et al. (2014), Taubenböck
et al. (2013) and Banzhaf & Hofer (2008) and also taking into account a
good illustration of Wickop (1998) who proposes to characterize the types
of urban structures with their imperviousness, the degree of homogeneity or
mixture in their structure, the building height. Some ratios were estimated,
especially when they were not based on existing literature or not detailed
enough.

Figures 3 and 4 summarize selected urban structural types, along with an
example issued from the city of Munich. A more complete definition can be
seen in Appendix A.
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Figure 3: Example of UST classes
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Figure 4: Example of UST classes (continued)

3.4 Ground truth determination

To map the UST on the city of Munich, we chose a large grid (70 by 50 regions
of 200x200m each). On this large grid, we chose three squared patches of
400 regions each where we determined visually the UST and which serve as
ground truth (which makes 1200 sampled regions) as shown in fig 5.

22



Figure 5: General grid and sample patches

The UST defined above have been determined visually using the previ-
ously defined grids and superimposed on a satellite/aerial image of the city
(see figure 6).
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Figure 6: Ground truth determination

To ease identification, we massively used tools such as Google Earth and
Google Street View that allowed to disentangle areas where a vertical view
only would have been analogous. (see figure 7)
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Figure 7: Google earth disentangle

This determination remains subjective and is based on the recognition of
similarities with the previously defined classes.

Since we are attributing labels on a regular grid, it is possible to come across
areas where more than one urban structures are present. We must therefore
choose the main UST by majority (> 50 % coverage ) or, assign to class 0 if
the distinction is not possible or too ambiguous.

The results of this ground truth determination are shown on Fig. 8
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Figure 8: Ground truth grid samples

Since the class distribution was not regular in the sampled grids, we
decided to mix these grids to create distinct training sets. We separate the
samples to have 60% of each UST classe to the training set and 40% of each
UST to the validation test set. We trained then ten classifiers using each time
70% of each UST class from the training set (from a performance analysis
shown on Fig. 9), taking each time two training sets to predict the third one.
We used an RBF kernel and a 5-fold cross validation to calibrate our model.
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Figure 9: Performance analysis

3.5 Computing land cover, spectral and spatial indices

Classifying Urban structural types requires physical and thematical informa-
tion from the ground data. These data will be stored as indices and will be
used as features for the SVM classifier training and for predictions. These
indices are separated into two categories :

3.5.1 Spatial indices:

Spatial indices are calculated from the land cover data, from the 3D city
model and from the thematic and spatial informations included in the Open
Street Map vectorial layers. They are calculated on grids with a 1x1m pixel
resolution. Since the three regions classified by SVM are 200x200m grids,
they are then aggregated at a size of 200x200m grid pixels through averaging
or other methods.

The spatial indices considered are:
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The fractal index, which is an index based on the complexity of a shape.
It is based on a perimeter/area ratio, which increases when the shape is com-
plicated.

F =
2 ln(0.25P )

ln(A)
(13)

• Where P is the Perimeter

• and A is the Area

• and 1  F  2 which means that the more complex the shape is, the
greater F will be.

The Gravelius Index is an index similar to the fractal index. It is an
index based on the complexity of a shape. It is based on a perimeter/area
ratio but tends to be minimal if the shape is a disc.

G =
P

2
p
⇡A

(14)

• Where 1  G  inf

Both Gravelius and Fractal indices are used to describe the shape com-
plexity of buildings and urban blocks which is related on the considered UST.

The Kernel Density Estimation (KDE) in geostatistics is a tool for
estimating the probability density function of a random variable over space.
It can be Gaussian:
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or Quartic:
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3
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2
(1� d2

i

⌧

2
)2 (16)

or exponential, ... and it’s main feature is its bandwidth which determines
the search distance to other points. KDE provides information about the
spatial neighborhood of the indices within each block. The bandwidth must
be chosen accordingly to the radius of influence that we want to consider as
shown in Fig. 10.
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Figure 10: Kernel density estimation

7 class of land cover data at 1 meter resolution and a 3D city model
provided by the Deutschen Zentrums für Luft- und Raumfahrt (DLR) were
used to extract the following indices listed in Table 1 and 2.

Indice Name Definition

building coverage % of buildings
grassland coverage % of grassland
streets coverage % of streets
trees coverage % of trees
water coverage % of water
impervious surface coverage % impervious surfaces
opensoil coverage % opensoil

Table 1: Spatial Indices issued from the land cover data.
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Figure 11: Land cover classes

Indice Name Definition

building area mean area of buildings
building area max max area of buildings
building area std standard deviation of the area of buildings
building fractal mean fractal indice calculated over the

building shapes
building gravelius mean gravelius indice calculated over

the building shapes
building height mean building height
building height max max building height
building height std standard deviation of the building

height
building number number of buildings
blocks gravelius mean gravelius indice computed over the

blocks separated from streets
blocks fractal mean fractal indice computed over the

blocks separated from the streets

Table 2: Spatial Indices issued from the 3D city model.
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Figure 12: Building heights

On the Fig. 12, the building heights is shown. For the last ones, roads
networks from the road land cover class were used to cut the map into urban
blocks as shown in Fig. 13.

Figure 13: Urban blocks

Theses blocks could have also been a way to discretize the land use data
(as in Walde et al. (2014) but their particular shapes and sizes were also
interesting and could have contained mutliple land use classes, so we used
the blocks shape and size as features instead.

A last set of spatial indices is extracted from the OpenStreetMap (OSM)
Data
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Indice Name Definition

From the OpenStreetMap Data mean values from kernel density estimation
with 200m bandwith and gaussian kernel

points KDE gauss mean all classes, all points, gaussian KDE
points KDE quart mean all classes, all point, quartic KDE
points amenity KDE mean class ”amenity”
points highway KDE mean class ”highway”
points landuse KDE mean class ”landuse”
points place KDE mean class ”place”
points railway KDE mean class ”railway”
points tourism KDE mean class ”tourism”
points waterway KDE mean class ”waterway”

City center relation City center proximity index computed with a
kernel density estimation on one point and
with 5km bandwith

city center KDE gauss mean one point, gaussian
city center KDE quart mean one point, quartic

Table 3: Spatial Indices Table 03.

3.5.2 Spectral indices:

Spectral indices were extracted from the Landsat 8 TM bands of two images,
one acquired during summer and the other during winter. Since a pixel of
Landsat 8 has a resolution of 30m to 60m and the grid chosen a resolution
of 200m, multiple aggregation ways were used as indices : Mimimum, Maxi-
mum, Mean and Standard Deviation.

The two thermal bands (10 and 11 with a ground resolution of 100m)from
Landsat 8 were used as well since they are relevant indicators of the urban
footprint and used also in the heat islands detection (see Kardinal Jusuf et al.
(2007)). Fig.14 and 15 are 2 rgb pan-sharpened compositions of landsat im-
ages from summer and winter. These 2 compositions were not used as indices
but for illustration purposes.
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Figure 14: Landsat8 pan-sharpened RGB composition Summer

Figure 15: Landsat8 pan-sharpened RGB composition Winter

3.6 Priors included in the MRF

Here, the priors included in the MRF are presented.

3.6.1 MRF1 : the smoothness prior

As we said before, the UST are not ditributed randomly in space. There is
a spatial correlation of The UST and therefore a region with a UST has a
higher probability to have neighbors with the same UST.

We design a 3x3 moving window algorithm which computes the Energy for
each region. This energy is lower when neighboring classes are the same and
higher whenever they are di↵erent. Each time, the UST minimizing the en-
ergy was chosen and we iterate several times on the whole grid as shown in
Fig. 16.
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Figure 16: 3x3 moving window

3.6.2 MRF2 : the continuity prior

The second pattern that we observed was the flow continuity of water. To
ensure that, we design an algorithm that was promoting the continuity but
only for the water class.

We reuse the moving window but this time promoting only the water class
and the presence of two neighbors to enforce continuity (one for input flow,
one for output flow).

3.6.3 MRF3 : the centrality prior

The last rule that we implemented was linked to the spatial centrality of
certain UST, e.g. the city center, and the non spatial centrality of others,
e.g. the low density residential.

Using the previously calculated KDE city center index, with a bandwidth
of 5km and a central point on the Marienplatz (historical city center of Mu-
nich), we promote the city center UST for regions with a high index value
and penalize them for a low index value. We do the contrary for low density
residential areas.
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4 Results

This section present the main results. The discriminative nature of the fea-
tures are presented in Section 4.1 The accuracies obtained in section 4.2, the
classification maps in section 4.3 and a sensibility Analysis of the MRF in
section 4.4

4.1 Discriminative nature of features

A di↵erent response is observed depending on the chosen class and according
to the index considered. All indices were normalized to be compared. City
center (Fig. 17) and industrial areas (Fig. 18) are very similar from the
point of view of indices impervious surfaces and vegetation ratio as might be
expected.

Figure 17: City center response to selected indices
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Figure 18: Industrial area response to selected indices

They also show a di↵erent response to other indices, which is a good
thing because this means that they are not dependent. In fact, the more the
classes di↵er in their responses to the indices, the easier it will be then to
di↵erentiate those thereafter.

4.2 Accuracies

Method OA Kappa
mean std mean std

SVM 0.69 0.01 0.59 0.01
MRF 1 0.68 0.01 0.58 0.02
MRF 2 - - - -
MRF 3 0.66 0.01 0.55 0.01

Table 4: Accuracy measurements, overall accuracy in % and Kappa coe�-
cient

As shown in Table 4, the overall accuracy of the classification is about 70%
which is not really high for using a SVM. SVM accuracies are usually higher
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than 80%. This is due to the fact that the classification problem is pretty
complex. Involving twelve classes on spatially di↵erent regions. The samples
for certain UST are not numerous enough to assess a high accuracy classifica-
tion of these UST. Meanwhile, this accuracy is already su�cient to recognize
most of the UST distribution on the city. The Kappa coe�cient is about 0.6
which means that the model slightly agree with the reference values.

Markov Random Fields overall accuracies are just lower than 70%. The-
ses accuracies are just a bit lower than the predicted ones from the SVM but
their spatial coherency is higher and o↵ers a better visual representation (see
the classification maps in Section 4.3. The Kappa coe�cient is a bit lower
than 0.6 which means that the model slightky agree with the reference values.

The accuracy of the continuity prior (MRF2) could not be calculated since
the water class was not available enough on the classified map. The classified
map is in appendix B

4.3 Classification Maps

On the following pages, you will find the UST classified maps from Munich.
The Fig. 19 is one of the SVM outputs. The Fig. 20 is the output of the
MRF model with the smoothness prior and the Fig. 21 is the output of the
MRF model with the centrality prior.

A transparent version of this classification result overlayed on a landsat 8
rgb composition has been added in appendix C.

37



Figure 19: SVM classified map using the first classifier
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Figure 20: MRF using the smoothness prior
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Figure 21: MRF using the smoothing and centrality prior
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4.4 Sensibility Analysis

Figure 22: Sensibility analysis

Increasing beta increases the spatial smoothing of the MRF and makes the
overall accuracy lightly decrease (as shown in Fig. 22. It is visible that it has
just a small influence on the Kappa which lightly decreases with increasing
beta. When beta is equal to zero, there is no spatial smoothing and if the
class occurence probability is the same for each class, it means that nothing
changes. Too much increase beta does not bring much since the spatial
smoothing is rapidly maximum which means that increasing the beta beyond
this value will not bring anything to the classification.
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5 Conclusion

The goal of this work is to map Urban Structural Types on the city of Mu-
nich (Germany). To achieve this goal, we firstly define eleven UST using
litterature sources. To classify the whole map, we decide to use Support
Vector Machine (SVM) Classification. On the city of Munich, we map a grid
of 3500 (70x50) squared regions of 200m side. On this grid, we choose 3
patches of 400 regions each, to be determined as a ground truth by visual
interpretation using available satellite and aerial imagery. From this ground
truth, we used 60% of it as training set and 40% as validation set for the SVM.

To describe UST, we use several indices, computed from the land cover data,
from the 3D city model and from OSM data (e.g. land cover class coverage,
building heights, areas or numbers, urban blocks shape indices or even kernel
density estimation of points of interest from OSM. Theses indices are then
aggregated to the mesh size of 200x200m to be used as SVM features for the
UST classification.

After applying SVM, we used MRF modelling to increase the spatial consis-
tency of our results and apply some urban knowledge rules as spatial priors.
We define a spatial smoothness prior, a continuity prior and a centrality prior
on our data using iterated conditional modes, which is a MRF model that
iterates over the whole grid to minimize the energy.

Finally we obtain a classified map of UST on 200m squared regions which
is predicted with an overall accuracy of 70%. The model slightly agree with
the reference values provided from the validation test with a Kappa of 0.6.
The di↵erent MRF models are not improving the overall accuracy but the
spatial coherency has been improved. The overall accuracy is not as high as
expected from SVM but the result seems to be su�cient to detect the spatial
distribution of UST which is what we want to achieve.

This opens possibilities to describe the urban footprint of the city, to de-
tect the key areas for urban planification and to better understand the city
dynamics. An adjacency analysis could be carried out to detect potential
conflicts between UST, e.g. industrial zones near to residential or leisure ar-
eas. This proposed processing chain could be carried out on mutltiple cities
for comparison and automatised to extract in an easier way these UST.
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A The UST classes

1 - City Center

This area is defined by multi-floors buildings (at least 3 floors) contiguous
wholesale separate blocks (with the possibility of an inner courtyard), adja-
cent to roads and located in a highly impermeable zone (70-90% degree of
imperviousness).

2 - Residential High Density

This area contains multi-floors buildings (at least 3 floors) to rectangular
shapes, with regular alignment and common areas (gardens / playgrounds),
near roads and located in a moderately impermeable zone (25-70% of degree
of imperviousness) (25-60% degree of green spaces).

3 - Residential Medium Density

This area includes 2 floors houses on average, spaced from each other by
gardens and vegetation. There is a presence of small buildings (garages).
This area is slightly impermeable (10-40% degree of imperviousness) and
moderately vegetated (40-70% degree of green spaces).

4 - Residential Low Density

This area consists of simple two-floors villas and less, spaced by gardens
and vegetation zones. It is a very low impervious area (0-20% impervious-
ness) and highly vegetated (50-90% degree of green spaces).

5 - Central Business District

Very tall buildings (more than ten floors) close main roads and highways,
composed often with original forms contrasting from the urban texture. They
are located in very impermeable zones (70-90% degree of imperviousness).

6 - Industry

Large multi-floors buildings (at least 2 floors) with a rectangular shape elon-
gated and very near from highways or railway lines with substantial parking.
Presence of structures such as tanks, drop zones, equipment etc. These areas
are located in highly impermeable zones (70-90% degree of imperviousness).
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7 - Commercial Area

Large multi-floors buildings (at least 2 floors), with rectangular shapes, ad-
jacent to large areas of parking and close to transport links, situated in a
highly impermeable zone (70-90% degree of impermeability).

8 - Leisure Area

Parks and public gardens, schools, stadiums, etc. . Include only few buildings
(sports complexes, for example). Located in low permeability zones (10-40%
degree of imperviousness) except for car parks and sports complexes, gener-
ally well vegetated (40-80% degree of green spaces).

9 - Agricultural Land

Very low presence of buildings (only farms and isolated dwellings); there
is a presence of specific agricultural structures (fields). Areas weakly imper-
vious or permeable (0-20% imperviousness).

10 - Forest

Little or no buildings, high forest cover, weakly impervious or permeable
(0-20% imperviousness ), highly vegetated (70-100% degree of green spaces).

11 - Water

Little or no buildings, strong presence of water (water bodies, small lakes,
rivers, ... )

0 - Not Attributed

It was not possible to determine the urban structural type for that cell.
Happens when no UST is predominant on a region.

The degree of imperviousness is defined as the ratio between total sur-
face and impermeable surface as well as the degree of green areas is the ratio
between the vegetation covered surface and the total surface.

I =
S

imp

S

tot

(17)
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B MRF 2 Continuity Prior

Figure 23: MRF using the continuity prior
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C MRF 3 Transparent

Figure 24: MRF using the centrality prior with transparent Landsat 8 image
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D Green tea
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