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Asymmetric cell division is essential for normal human brain development. Mutations in several genes
encoding centrosomal proteins that participate in accurate cell division have been reported to cause autosomal
recessive primary microcephaly (MCPH). By homozygosity mapping including three affected individuals from a
consanguineous MCPH family from Pakistan, we delineated a critical region of 18.53 Mb on Chromosome
1p21.3-1p13.1. This region contains the gene encoding HsSAS-6, a centrosomal protein primordial for seeding
the formation of new centrioles during the cell cycle. Both next-generation and Sanger sequencing revealed a
homozygous c.185T>C missense mutation in the HsSAS-6 gene, resulting in a p.Ile62Thr substitution within a
highly conserved region of the PISA domain of HsSAS-6. This variant is neither present in any single-nucleotide
polymorphism or exome sequencing databases nor in a Pakistani control cohort. Experiments in tissue culture
cells revealed that the Ile62Thr mutant of HsSAS-6 is substantially less efficient than the wild-type protein in sus-
taining centriole formation. Together, our findings demonstrate a dramatic impact of the mutation p.Ile62Thr on
HsSAS-6 function and add this component to the list of genes mutated in primary microcephaly.

INTRODUCTION

Primary autosomal recessive microcephaly (MCPH; MIM
251200) is a rare heterogeneous developmental congenital

brain disorder characterized by a reduced size of the cerebral
cortex, which results in a smaller occipitofrontal circumference
of the head that lies at least 3 standard deviations (SD) below
the age, sex and ethnically matched mean (1–3). Primary
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microcephaly is present at birth but can already be diagnosed by
30 weeks of gestation and is nearly always accompanied by non-
progressive intellectual disability (4–6). In some MCPH cases,
reduced height and epilepsy have been reported, but besides the
observation of simplified gyri, primary microcephaly is usually
not accompanied by any other severe brain defects (4,5).
Although rare in the non-consanguineous population (�1 in
1 Million), microcephaly has a higher incidence (1 in 100 000)
in countries where endogamy is still an integral part of the trad-
ition, such as Pakistan or Middle Eastern countries (6–9). In the
past 10 years, twelve primary MCPH loci and genes have been
reported, namely MCPH1, WDR62, CDK5RAP2, CPAP/
CENPJ, CASC5, ASPM, STIL, CEP63, CEP135, CEP152,
PHC1, CDK6 and ZNF335 (10–22). The vast majority of
these genes encode centrosomal proteins, including five
(CPAP, STIL, CEP63, CEP135, CEP152) that are required for
efficient centriole formation. Mutations in these genes have an
adverse effect on neuronal development, possibly by preventing
proper asymmetric division of neuronal progenitor cells in the
ventricular zone of the developing neocortex (23–25).

In progeny from consanguineous marriages suffering from
an autosomal recessive trait, it is assumed that causative homo-
zygous mutations are located in genomic regions that are
homozygous-by-descent (HBD)—so called autozygous regions
(26). HBD mapping using SNP arrays is an efficient genome-
wide approach for identifying such autozygous regions (27–29).
Subsequent massive parallel sequencing has made it cheaper
and easier to screen these HBD regions for mutations (28).

In this study, we screened a large consanguineous Pakistani
family with four patients diagnosed with autosomal recessive
MCPH. After excluding all loci containing known microcephaly
genes, we eventually identified in the affected family members a
homozygous mutation in HsSAS-6 (spindle assembly 6 homolog
of Caenorhabditis elegans), a gene encoding the centrosomal
protein HsSAS-6, which is critical for centriole formation and
thus for proper cell division (30,31).

RESULTS

The family in this study was recruited from the urban area of
Dera Ismail Khan within the Khyber Pakhtunkhwa province of
Pakistan. The pedigree includes five generations with two
affected girls of age 6 and 3.5 years (V-1 and V-3) (Fig. 1A)
and two men of age 50 and 42 years (IV-7 and IV-8) (Fig. 1A),
who are all progeny from consanguineous marriages (Fig. 2).
All four affected individuals had a head circumference of up to
19.5 SD below the mean, which was combined with severe
mental retardation and an IQ ranging between 20 and 40 (32).
Accordingly, for all four patients, limited speech and pronunci-
ation problems were reported. Otolaryngologic and ophthalmic
examinations were normal in all, except for Patient V-1, who had
a strabismus affecting the right eye. Strabismus has not been pre-
viously associated with microcephaly but is not uncommon in
the otherwise healthy population (29). In contrast to the other
affected family members, Patient V-1 was unable to walk by
the age of 6 despite normal bone development. Epileptic seizures
were reported for the two adult patients, Brothers IV-7 and IV-8,
but not for the younger ones (see Table 1).

Computed tomography was performed on Patient V-3. This
demonstrated microcephaly with poorly confined basal ganglia
and missing delineation of the internal capsule. Moreover,
abnormal formation of the lateral ventricles and a dysmorphic
infratentorial region with hypoplasia of the vermis cerebella
were also noted (Fig. 1B).

DNAs of Patients IV-7, V-1 and V-3 were sampled for genomic
analysis,whereas that ofPatient IV-8couldnot be collected owing
to aggressive behavior during sampling. Initially, we excluded all
known MCPH loci in this family using short tandem repeat (STR)
markers to demonstrate heterozygosity in the relevant genomic
regions. We then performed a genome-wide linkage analysis as-
suming individuals II:5 and II:6 to be first cousins (see Fig. 2B).
Genotype data were generated for three affected individuals
(IV-7,V-1andV-3)using theNspI 250KSNParray fromAffyme-
trix.Weobserved a single significantpeak witha maximum multi-
point LOD score of 3.9 on Chromosome 1 (Supplementary
Material, Fig. S1). The underlying homozygous region, shared
between all affected individuals included in the analysis, com-
prised �20 cM on the short arm of Chromosome 1 at cytoband
1p21.3-1p13.1 (Fig. 2A). The critical interval of the new MCPH
locus is defined by the two SNP markers rs555557 at position
98,912,075 bp and rs2251406 at position 117,445,365 bp, span-
ning a region of 18.53 Mb according to UCSC human genome as-
sembly hg19. The segregation of the interval was confirmed by
genotyping all available family members with six highly poly-
morphic STR microsatellite markers located between 96.8 and
111.2 Mb on Chromosome 1p (Fig. 2B). A maximum two-point
LOD score of 2.8 for marker D1S495 (102.56 Mb; hg19) and mul-
tipoint LOD score of 3.53 were calculated for the area between
markerD1S2671(101.27 Mb)andD1S495(102.56 Mb)(Supple-
mentary Material, Table S1).

As several known MCPH genes contribute to proper cell div-
ision, we screened by Sanger sequencing four candidate genes
that were known to potentially contribute to this process and
that are located within the homozygous region on Chromosome
1: WDR47, PSRC1, NGF and HsSAS-6 (9,14,18,19,33–36).
Only the sequence of HsSAS-6 revealed a homozygous NM_
194292.1: c.185T.C (Chr1:100588787A.G) transition in a
highly conserved region in exon 3 in all patients under investi-
gation (Fig. 3A and B). As a consequence, the hydrophobic
non-polar isoleucine at position 62 in the HsSAS-6 protein is
exchanged by a hydrophilic polar threonine (p.Ile62Thr). Consist-
ent with the linkage analysis, all healthy family members
that were carriers of the disease allele were heterozygous for the
mutation, whereas individual V-2 was homozygous for the
HsSAS-6 wild-type allele (Fig. 3A). The mutation was not found
in 116 unrelated, unaffected Pakistani individuals by Sanger se-
quencing. We further sequenced HsSAS-6 in patients of 19 add-
itional MCPH families from Pakistan, which were previously
excluded for mutations in all known MCPH genes, but did not
identify further mutations in HsSAS-6.

In order to exclude with certainty any other mutations in
known microcephaly genes and in genes located in the HBD
region in this family, we conducted whole-exome sequencing.
We found another homozygous missense mutation, c.656C.T
(p.Ser219Leu), close to the splice site of exon 8 of CAPZA1
(F-actin-capping protein subunit alpha-1). This gene encodes a
protein required for the regulation of actin polymerization
(38). Neither the mutation in HsSAS-6 nor the one in CAPZA1
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was listed in the NHLBI Exome Variant Server (http://
eversusgs.washington.edu/EVS/), but only the mutation in
HsSAS-6 was predicted to have a potential pathogenic effect
by the mutation prediction servers PolyPhen2 (HsSAS-6
p.Ile62Thr: score ¼ 1.0; CAPZA1: p.Ser219Leu: score ¼
0.014) and ConDel (HsSAS-6 p.Ile62Thr: score ¼ 0.847;
CAPZA1: p.Ser219Leu: score ¼ 0.001) (39,40). We further
investigated whether the mutation in CAPZA1 had any adverse
effect on splicing by amplifying a 242-bp product from the
cDNA that covered the junction between exons 8 and 9. This
showed that splicing of CAPZA1 is not affected by the mutation
(Supplementary Material, Fig. S2). Moreover, previous knock-
out experiments with this gene in the mouse failed to give evi-
dence of a cell division phenotype (41). Overall, these results
indicate that the mutation in CAPZA1 is not causative of
MCPH in the affected individuals.

Because of this, and because microcephaly is thought to result
from defects in asymmetric cell division of neuronal progenitor
cells, we concentrated on the HsSAS-6 gene and its protein
product, HsSAS-6, which is critical for the onset of centriole for-
mation and thus for proper cell division (8,25,42–45). Human
SAS-6 consists of 17 exons and encodes a 657-amino acid
protein of 74 kDa (46,47). The onset of centriole formation
relies on the oligomerization of nine SAS-6 homodimers
via their N-terminal head domains into a 9-fold symmetrical
ring-like structure (30,48,49). Although the crystal structure of

HsSAS-6 is not available, the high-resolution crystal structure
of the N-terminal head domain of SAS-6 from Danio rerio,
DrSAS-6, showed that Ile62 is part of the hydrophobic core
of the protein (Fig. 4A). The side chain of this residue packs
against those of Leu44, Leu60, Leu70, Phe80, Phe83 and
Leu139, which are strictly conserved from mammals to algae
(Supplementary Material, Fig. S3). This suggested that an ex-
change of the hydrophobic amino acid residue at position 62
with a polar threonine might compromise proper folding and/
or function of the N-terminal domain of HsSAS-6.

In order to investigate the impact of the Ile62Thr mutation
on HsSAS-6 function, we generated U2OS cells expressing
doxycycline-inducible EGFP-tagged (hereafter referred to as
GFP) HsSAS-6, either wild type (30) or bearing the Ile62Thr
mutation. The cells were induced with doxycycline for 48 h,
and the subcellular localization of the fusion proteins analyzed
by immunofluorescence using antibodies against GFP and the
centriolar marker Centrin-2. As shown in Figure 4B and C, we
found that HsSAS-6 centriolar recruitment is not altered by the
Ile62Thr mutation. These results demonstrate that the Ile62Thr
mutation does not impair HsSAS-6 centriolar localization and
that the protein is not misfolded.

Next, we analyzed whether the Ile62Thr mutation impairs
the function of HsSAS-6 in centriole formation. Wild-type
HsSAS-6 fused to GFP drives the formation of centrioles in
excess (43), and we found that a variant bearing the Ile62Thr

Figure 1. (A) Patients IV-7, V-1 and V-3. (B) Selected axial slices of cranial computed tomography obtained in a 3.5-year-old child (V-3) with autosomal recessive
primary microcephaly. Notwithstanding compromised image quality, some distinct features can be noted: diminished cranial circumference with symmetrically
poorly developed frontal lobes (arrows, also note deformed shape of the skull), poorly confined basal ganglia (oval) with missing delineation of the internal
capsule, dysmorphic lateral ventricles (curved arrows, slit-like frontal horns) and infratentorial abnormality with hypoplasia of the vermis cerebelli (images not
shown).
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Figure 2. Homozygosity mapping. (A) 250 K NSP SNP array reveals a homozygous 18.53-Mb stretch (blue) with identical haplotype on Chromosome 1p21.3-p13.1
restricted by SNP rs555557 and rs2251406 in all three patients. (B) The green allele between STS marker D1S2671 and D1S2726 segregates in the family in an
autosomal recessive manner.

Table 1. Clinical data of the affected

Patient pedigree ID VI-7 VI-8 V-3 V-1

Age (years) 50 42 3.5 6
Gender Male Male Female Female
Occipitofrontal circumference 47 cm (SD ¼ 26.63) 41.5 cm (SD ¼ 210.26) 35 cm (SD ¼ 219.6) 38.5 cm (SD ¼ 215)
Height (cm) 155 157 82 95
Behavior Aggressive Aggressive Aggressive Aggressive
General physique Weak NORMAL Weak Normal
Epileptic shock Yes yes No No
Facial expression Active Active Dull Active
Attention No Low Low Low
Muscle tone Normal Normal Normal Normal
Adaptive behavior

Self-feeding Yes Yes Yes Yes
Toilet training No Weak No No
Dressing/undressing training No No No No
Reading/writing No No No No
Self-care No No Weak No
Level of conveying their message Very weak Very weak Very weak Very weak
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mutation does not (Fig. 4D and E). Furthermore, we found that
�7% of cells (N ¼ 186) expressing the Ile62Thr variant
exhibit less than three centrioles during mitosis, compared
with �1% for cells (N ¼ 229) expressing wild-type
HsSAS-6-GFP, indicative of a slight dominant-negative effect
on centriole formation. Next, we set out to test whether the
mutant variant can sustain centriole formation in cells depleted
of endogenous HsSAS-6. To this end, we depleted endogenous

HsSAS-6 using siRNAs directed against the 3′ UTR (30),
which is absent from the GFP fusion constructs (Fig. 4D). We
again analyzed cells by immunofluorescence with antibodies
against GFP and centrin, but this time focusing on cells in
mitosis to assay the number of centrioles at the end of the centri-
ole duplication cycle. In control conditions, most cells had four
centrioles, but �12% of them harbored ,4 centrin foci (Fig. 4F
and H). In contrast, depletion of endogenous HsSAS-6 resulted

Figure 3. (A) Sanger sequencing of the affected patients revealed a homozygous c.185T.C transition. Non-affected family members were either heterozygous for the
mutation (e.g. IV-5) or homozygous for the wild-type sequence. (B) The PISA domain of SAS-6 in 9 organisms was aligned in Jalview2.8 using the MAfftWS align-
ment and colored according to the hydrophobicity table of Kyte and Doolittle (37). Red indicates conserved hydrophobic and blue conserved hydrophilic residues. The
shading intensity indicates the conservation grade of the hydrophobicity (dark ¼ very conserved; white ¼ not conserved). The conservation table shows that the prop-
erties of the mutated amino acid Ile62Thr in HsSAS-6 are highly conserved among different species (0 ¼ no conservation; ∗ or 11 ¼ highest conservation, + or
10 ¼ mutation but properties are conserved).
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Figure 4. Impact of I62T mutation in tissue culture cells. (A) Cartoon representation of the N-terminal head domain of DrSAS-6 (PDB ID 2Y3V), illustrating the
location and environment of Ile62. Selected amino acid residues are shown in sphere representation and are labeled. Ile62 is highlighted in blue. The figure was pre-
pared using PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.5. Schrödinger, LLC). (B–C) iU2OS interphase cells expressing either HsSAS-6 (wild
type) fused to GFP (B) or the corresponding I62 T mutant (C) stained for GFP (green), Centrin-2 (red) and DNA (blue). (D) Western blot analysis of protein extracts
from iU2OS cells expressing the indicated constructs and treated with control siRNAs (NC) or siRNAs targeting the 3′ UTR of HsSAS-6 (3′ UTR), using antibodies
against GFP (top), HsSAS-6 (middle) ora-tubulin (bottom). Note that treatment with siRNAs against the HsSAS-6 3′ UTR leads to efficient depletion of endogenous
HsSAS-6 but not of the GFP-variants that lack the 3′ UTR. (E) Histogram of the average frequency of mitotic cells with more than four centrioles in control U2OS cells
and in cells overexpressing HsSAS-6-GFP or HsSAS-6-GFP[I62T] for 48 h following induction with doxycycline. Data from ≥3 experiments, with .50 cells scored
in each experiment. (F–G) Histogram of the average frequencies of mitotic cells with less than four centrioles (F) or with monopolar spindles (G) in control U2OS,
iU2OSHsSAS-6-GFPor iU2OSHsSAS-6-GFP[I62T]cells treated with siRNAControl (NC) or siRNAtargeting the HsSAS-6 3′ UTR (3′ UTR).Data from≥3 experi-
ments, with .50 cells scored in each experiment. (G–M) U2OS (H–J), iU2OS HsSAS-6-GFP (K) or iU2OS HsSAS-6-GFP[I62T] (L–M) cells in mitosis, stained for
GFP (green), Centrin-2 (red) and DNA (blue). In (L–M), doxycycline induction for 48 h was concomitant with siHsSAS-6 3′ UTR (3′ UTR) treatment. Note mono-
polar spindles in J and M. Scale bars: 5 mm.
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in �95% of cells having ,4 centrin foci (Fig. 4F and I), with
the majority of cell exhibiting monopolar spindle assembly
(Fig. 4G and J). This centriole duplication phenotype was
rescued to �20% of cells having ,4 centrin foci by the expres-
sion of wild-type HsSAS-6-GFP (Fig. 4 F and K). In contrast,
�68% of cells still exhibited ,4 centrin foci upon the expres-
sion of HsSAS-6[Ile62Thr]-GFP (Fig. 4F and L). As anticipated
also, monopolar spindle assembly was observed in a substantial
fraction of cells expressing HsSAS-6[Ile62Thr]-GFP (Fig. 4G
and M). We conclude that the Ile62Thr mutation severely,
although not completely, impairs HsSAS-6 function. These
data demonstrate that the c.185T.C mutation in the human
HsSAS-6 gene has a drastic impact on centriole formation and
thus on normal cell division.

DISCUSSION

Microcephaly is thought to result from impaired asymmetric cell
division of neuronal progenitors during the peak phase of neuro-
genesis in the embryo and is caused primarily by mutations in
genes encoding centrosomal proteins (23), including some that
are required for centriole formation (14,19,20,36,50). During
the normal cell cycle, centriole formation is initiated around
the G1/S transition, when a small set of centriolar proteins are
recruited to the proximal end of the two parental centrioles,
thus initiating assembly of one procentriole next to each parental
centriole (49). Elongation continues throughout S phase and into
G2, as well as into the next cell cycle, when the newly formed
centrioles complete their maturation with the acquisition of
appendages on their distal end (51–53).

As shown in this and in previous studies, knock-down of
HsSAS-6 impairs procentriole formation, thus increasing the
fraction of cells with fewer than four centrioles as well as cells
with monopolar spindles (43,44,54). We have also shown that
such impairment of procentriole formation can be rescued by
overexpression of WT HsSAS-6-GFP but only to a limited extent
by that of HsSAS-6-Ile62Thr-GFP, offering a strong cellular cor-
relate to the phenotype manifested in the MCPH patients.

Our results are in line with a previous study on the Glu1235Val
mutation in CPAP, which was one of the first mutations in this
gene reported to cause microcephaly (14,24). CPAP is related
to C. elegans SAS-4 and is also essential for procentriole forma-
tion in proliferating human cells in culture (55). CPAP localizes
to the proximal part of the procentriole and centriole and has
been proposed to be connected with HsSAS-6 through the bridg-
ing protein CEP135 (35). Mirroring our findings with the
Ile62Thr HsSAS-6 mutant, the Glu1235Val CPAP mutant can
rescue centriole formation only to a limited extent (24). These
observations taken together offer a striking parallel and reinforce
the notion that partial impairment of centriole formation results
in MCPH.

Furthermore, studies in Drosophila larvae showed that com-
pared with wild-type flies, DmSas-6 knockout flies exhibit a sig-
nificantly reduced number of centrosomes in the brain and
�18% of centrosomes were even smaller in size (56).

In conclusion, we have demonstrated here that the homozy-
gous c.185T.C mutation in the HsSAS-6 gene has a drastic
impact on centriole formation and thus on proper cell division,
a process that is essential during neurogenesis. Furthermore,

we propose that the remaining activity of the mutated HsSAS-
6[I62T] protein enables residual asymmetric cell division and
thus results in reduced brain development, causing primary auto-
somal recessive microcephaly.

MATERIAL AND METHODS

Sample collection

After obtaining the informed consent, blood was drawn from
three affected and seven healthy family members from the Paki-
stani family investigated in this study and genomic DNA was
isolated according to standard protocols. For cDNA analysis,
blood from V-3 and VI-7 as well as from two healthy controls
was collected in PAXgene RNA blood tubes (PreAnalytiX).
RNA was further isolated using PAXgene RNA Kit. Moreover,
blood was drawn from 116 non-affected Pakistani individuals
for control analysis. The study was approved by Institutional
ethical review boards of Gomal University, Dera Ismail Khan,
and Quaid-i-Azam University, Islamabad, Pakistan.

Autozygosity mapping, haplotype and linkage analysis

All three affected individuals, IV-7, V-1 and V-3, were geno-
typed on Affymetrix GeneChip Human Mapping 250K NspI
Arrays at the ‘Center for Medical Research’ at the Medical
University of Graz.

Genome-wide linkage analysis of the family was performed
with 20 044 selected SNP markers. LOD scores were calculated
with ALLEGRO (57). Data handling, evaluation and statistical
analysis were performed as described previously (19).

For haplotype and local linkage analysis, a total of six highly
polymorphic STR markers covering the autozygous region of
interest were selected for fine mapping and segregation analysis,
including D1S206 (101.6 Mb) and D1S2726 (111.18 Mb) from
the ABI Prism Linkage Mapping Set v2.5, as well as D1S2719
(96.81 Mb), D1S2739 (98.93 Mb), D1S2671 (101.67 Mb) and
D1S495 (102.56 Mb) selected from the UCSC browser
mapping track (build 37/ hg19) (47). PCRs were performed
with ABI Prism True Allele PCR Premix (Applied Biosystems),
and amplicons were denaturated using HiDiFormamide with
Gene Ruler 500-Liz Size Standard (both from Applied Biosys-
tems). Genome scan data were generated on the ABI3130xl
and analyzed with Peak Scanner Software v1.0 (Applied Biosys-
tems). For linkage analysis, an autosomal recessive trait with full
penetrance and a disease allele frequency of 0.001 were
assumed. The two-point LOD score was calculated using the
online version of Superlink (http://bioinfo.cs.technion.ac.il/sup
erlink-online), and for multipoint LOD score calculation,
Merlin was used (58). Sex-averaged recombination rates
between markers were obtained from Rutgers map (build 37,
patch 4) (59).

Whole-exome sequencing

We fragmented 1 mg of DNA using sonification technology
(Covaris, Woburn, MA, USA). The fragments were end-repaired
and adaptor-ligated including incorporation of sample index bar-
codes. After size selection, the library was subjected to the en-
richment process. For that we chose the SeqCap EZ Human
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Exome Library v2.0 kit from NimbleGen (Roche NimbleGen,
Madison, WI, USA). The enriched library was subsequently
sequenced on an Illumina HiSeq 2000 sequencing instrument
using a paired-end 2 × 100-bp protocol.

This resulted in 8.4 Gb of mapped sequences, a mean cover-
age of 89-fold, a 30× coverage of 87% and a 10× coverage of
97% of target sequences. For data analysis, the Varbank pipeline
v.2.3 and filter interface was used (unpublished, https://varbank.
ccg.uni-koeln.de/). Primary data were filtered according to
signal purity by the Illumina Realtime Analysis (RTA) software
v1.8. Subsequently, the reads were mapped to the human
genome reference build hg19 using the BWA (60) alignment al-
gorithm. GATK v1.6 (61) was used to mark duplicated reads, to
do a local realignment around short insertion and deletions, to re-
calibrate the base quality scores and to call SNPs and short
indels.

Scriptsdeveloped in-house at the CologneCenter for Genomics
were applied to detect protein changes, affected donor and accept-
or splice sites and overlaps with known variants. Acceptor and
donor splice site mutations were analyzed with a Maximum
Entropy model (62) and filtered for effect changes. In particular,
we filtered for high-quality (coverage .15; quality .25) rare
(MAF , 0.005) homozygous variants (dbSNP build 135, the
1000 Genomes database build 20110521, and the public Exome
Variant Server, NHLBI Exome Sequencing Project, Seattle,
build ESP6500). We also filtered against an in-house database
containing variants from 511 exomes from epilepsy patients to
exclude pipeline-related artifacts (MAF , 0.004).

Sanger sequencing

Primers covering the coding exons and splice sites of HsSAS-6,
NGF, PSCR1 and WDR47 were designed with Primer3 (http://
www-genome.wi.mit.edu/genome_software/other/primer3.html)
(63). A list of all oligonucleotides can be found in Supplementary
Material, Table S2. CAPZA1_cDNA_forw 5′ GGAAGTTCAC
CATCACACCA and CAPZA1_cDNA_rev 5′ GGCCTTGAAT
GTGGTATCTGA primers were used to investigate the effect of
the splice site mutation in exon 8 of CAPZA1 on mRNA level.
PCR was performed using HotStarTaq Master Mix Kit (Qiagen)
with the following cycling conditions: 948C for 15 min, fol-
lowed by 35 cycles of 958C for 25 s, 578C for 30 s and 728C
for 1 min with no final elongation step. The Sanger sequencing
reaction was set up with the Big Dye v3.1 cycling sequencing
kit (Applied Biosystems) according to the manufacturers’ proto-
col. Dye remnants were removed with Centri-SepTM columns
(Applied Biosystems). Bidirectional DNA sequencing was con-
ducted on the ABI3130xl (Applied Biosystems), and the data
were analyzed with ChromasLite software (Technelysium Pty
Ltd.) and the UCSC browser (47,64).

HsSAS-6 homology analysis

HsSAS-6 I62T homology among nine different species [from
NCBI, Homo sapiens (AAI01027), D. rerio (AAI65167),
Pan troglodytes (JAA36473), Aligator mississippienis (XP_
006277337), Apis melifera (XP_395972), Mus musculus (NP_
082625), C. elegans (CAA16384), Drosophila melanogaster
(AAF56983) and Chlamydomonas reinhardtii (BAF94334)]
was investigated with the desktop version of Jalview2.8 (65).

Sequences were aligned with MafftWS alignment using the
default settings (66). Regions that were highly conserved in
terms of their hydrophobicity are highlighted in red and blue.

Plasmids for human cell experiments

The pEBTet-GFP plasmids (67) were obtained from Dirk Grün-
demann. The following oligos were annealed GW-F (5′ CG
CGGGTACCGCCGGCAGCTAGCGGCGCGCCCGGCCGA
TAT), GW-R (5′ ATATCGGCCGGGCGCGCCGCTAGCTGC
CGGCGGTACCCGCG), digested with KpnI and EagI and
ligated into KpnI, NotI cut pEBTet-GFP producing the
pEBTet-MCS vector. This plasmid was then used to insert fluor-
escence proteins and Gateway cassette (Invitrogen), generating
the destination vector pEBTet-GW-EGFP. The multiple cloning
site of pENTR 1A (Invitrogen) was modified by introducing
single restriction sites between the attR1 and attR2 sites (3′

AgeI and XbaI 5′), generating the entry vector pENTR-SD-
Age-AGT. Full-length HsSAS-6 (NM_194292.1) was amplified
using the primers Age-Ko-HsSAS6-F (5′ CGCGACCGGTAC
CATGAGCCAAGTGCTGTTCCAC) and Xba-noST-S6-R
(5′ CGCGTCTAG ATAACTGTTTGGTAACTGCCCA) and
cloned into pENTR-SD-Age vector by restriction digest with
AgeI and XbaI.

Mutations of the I62 residue in HsSAS-6 were generated
by site-directed mutagenesis on pENTR-SD-Age-HsSAS-6
using the following primers: S6-I62T-fwd, ACATCTGAGGAA
GATTTTCAAAGT and S6-I62T-rev, AACAAGGTTATA
TAAAAAAAATGG (mutated codon is italicized).

Gateway reaction was then performed according to the
manufacturer’s protocol to generate the expression plasmid
pEBTet-HsSAS-6-GFP and pEBTet-HsSAS-6-I62T, which were
sequence verified.

Cell culture and transfections

U2OS cells were obtained from the ECACC and maintained in
McCoy’s 5A GlutaMAX medium (Invitrogen) supplemented
with 10% fetal bovine serum (FBS) for U2OS cells or
tetracycline-negative FBS (Brunschwig) for the inducible epi-
somal cell lines (iU2OS). iU2OS cell lines were generated
by transfecting U2OS cells with pEBTet-HsSAS-6-GFP or
pEBTet-HsSAS-6[I62T]-GFP using Lipofectamine2000 (Invi-
trogen). Transfected cells were selected with 1 mg/ml of puro-
mycin 1 day after transfection and amplified. For the expression
of the GFP-fused constructs, early passage cells were induced
with 1 mg/ml of doxycycline for 48 h.

Endogenous HsSAS-6 was depleted using a Stealth RNAiTM

siRNA (Invitrogen) targeting the 3′ UTR of HsSAS-6 (5′ GAG
CUGUUAAAGACUGGAUACUUUA 3′) (30). Stealth RNAiTM

siRNA-negative control LO GC (Invitrogen) was used as a
control.

siRNA transfection was performed using LipofectamineR-
NAiMax (Invitrogen) according to the manufacturer’s protocol,
and cells were analyzed 48–72 h after siRNA treatment.

Cell-extract preparation and biochemical assays

Cells were collected, washed in PBS and lysed on ice for 1 h in
lysis buffer [50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 0.5 mM
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EDTA 0.5% NP-40, Complete Mini Protease Inhibitor Cocktail
(Roche Diagnostics)]. Lysates were cleared by centrifugation for
10 min at 12 000×g and 48C before the supernatant was col-
lected. SDS–PAGE was performed using 10% polyacrylamide
gels (BioRad), followed by transfer on nitrocellulose membrane
(Amersham). The membrane was probed with mouse HsSAS-6
antibody (Santa Cruz, 1:1000) or mouse a-tubulin antibody
(Sigma, 1:10000), followed by incubation with HRP-conjugated
secondary (Promega) and the signal detected with Chemilumin-
escence (Roche).

Immunofluorescence and microscopy for human cells

U2OS cells grown on glass coverslips were fixed for 7–10 min
in –208C methanol, washed in PBS and blocked for 15–
30 min in 1% bovine serum albumin and 0.05% Tween-20 in
PBS. Cells were incubated 2 h at room temperature with
primary antibodies, washed three times for 10 min in PBST
(0.05% Tween-20 in PBS) incubated for 45 min at room tem-
perature with secondary antibodies, stained with �1 mg/ml of
Hoechst 33258, washed three times in PBST and mounted.
Primary antibodies were 1 : 4000 mouse centrin (20H5; gift
from Jeffrey L. Salisbury) and 1 : 500 rabbit GFP (gift from
Viesturs Simanis). Secondary antibodies were 1 : 1000 goat
anti-rabbit coupled to Alexa 488 and 1 : 1000 goat anti-mouse
coupled to Alexa 568. For quantification of centrioles, mitotic
cells (prophase to metaphase) with similar cytoplasmic GFP ex-
pression were used; highly expressing cells that often harbored
GFP aggregates were not retained for analysis. Imaging was
done on a Zeiss LSM710 confocal microscope. Optical sections
were acquired every 0.12 mm, and planes containing centrioles
were projected together. Images were processed using ImageJ
and Adobe Photoshop, preserving relative image intensities
within a series.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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basis of the 9-fold symmetry of centrioles. Cell, 144, 364–375.

31. van Breugel, M., Hirono, M., Andreeva, A., Yanagisawa, H.A., Yamaguchi,
S., Nakazawa, Y., Morgner, N., Petrovich, M., Ebong, I.O., Robinson, C.V.
et al. (2011) Structures of SAS-6 suggest its organization in centrioles.
Science, 331, 1196–1199.

32. American Psychiatric Association. (2013) Diagnostic and Statistical Manual
of Mental Disorders. American Psychiatric Publishing, Arlington, VA.

33. Guernsey, D.L., Jiang, H., Hussin, J., Arnold, M., Bouyakdan, K., Perry, S.,
Babineau-Sturk, T., Beis, J., Dumas, N., Evans, S.C. et al. (2010) Mutations
in centrosomal protein CEP152 in primary microcephaly families linked to
MCPH4. Am. J. Hum. Genet., 87, 40–51.

34. Tang, C.J., Lin, S.Y., Hsu, W.B., Lin, Y.N., Wu, C.T., Lin, Y.C., Chang,
C.W., Wu, K.S. and Tang, T.K. (2011) The human microcephaly protein
STIL interacts with CPAP and is required for procentriole formation. EMBO
J., 30, 4790–4804.

35. Lin, Y.C., Chang, C.W., Hsu, W.B., Tang, C.J., Lin, Y.N., Chou, E.J., Wu,
C.T. and Tang, T.K. (2013) Human microcephaly protein CEP135 binds to
hSAS-6 and CPAP, and is required for centriole assembly. EMBO J., 32,
1141–1154.

36. Brown, N.J., Marjanovic, M., Luders, J., Stracker, T.H. and Costanzo, V.
(2013) Cep63 and cep152 cooperate to ensure centriole duplication. PLoS
One, 8, e69986.

37. Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the
hydropathic character of a protein. J. Mol. Biol., 157, 105–132.

38. Maun, N.A., Speicher, D.W., DiNubile, M.J. and Southwick, F.S. (1996)
Purification and properties of a ca(2+)-independent barbed-end actin
filament capping protein, CapZ, from human polymorphonuclear
leukocytes. Biochemistry, 35, 3518–3524.

39. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A.,
Bork, P., Kondrashov, A.S. and Sunyaev, S.R. (2010) A method and server
for predicting damaging missense mutations. Nat. Methods, 7, 248–249.

40. Gonzalez-Perez, A. and Lopez-Bigas, N. (2011) Improving the assessment
of the outcome of nonsynonymous SNVs with a consensus deleteriousness
score, Condel. Am. J. Hum. Genet., 88, 440–449.

41. Neumann, B., Walter, T., Heriche, J.K., Bulkescher, J., Erfle, H., Conrad, C.,
Rogers, P., Poser, I., Held, M., Liebel, U. et al. (2010) Phenotypic profilingof
the human genome by time-lapse microscopy reveals cell division genes.
Nature, 464, 721–727.

42. Woods, C.G. and Parker, A. (2013) Investigating microcephaly. Arch. Dis.
Child., 98, 707–713.

43. Strnad, P., Leidel, S., Vinogradova, T., Euteneuer, U., Khodjakov, A. and
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