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Riassunto

Sicurezza ed efficienza delle comunicazioni sono due delle principali preoccupazioni nelle reti

di oggi e lo saranno in quelle del futuro. La comprensione di come inviare dati efficacemente

tramite diversi canali e reti è stata significativamente approfondita nell’ultima decade (vedi per

esempio [1–3]). La comprensione di come inviare informazioni in maniera sicura, invece, non

ha ancora raggiunto lo stesso livello. Questa tesi contribuisce ad approfondire la comprensione

di alcuni aspetti della teoria delle comunicazioni sicure derivando risultati riguardo la capacità

di trasmissione segreta per reti con cancellazioni e sviluppando codifiche che garantiscono

sicurezza incondizionata (basata sulla teoria dell’informazione) per questo tipo di reti.

La capacità di trasmissione segreta raggiungibile in presenza di un avversario che intercetta

la comunicazione viene derivata in vari scenari. In questi scenari la comunicazione avviene

tramite canali con cancellazioni e con informazioni di ritorno sullo stato. I risultati presentati

forniscono una caratterizzazione per il canale punto-punto, per il canale broadcast con più

riceventi, per la rete con canali paralleli, per la rete a V e per la rete triangolare.

Si presenta inoltre uno schema di codifica a due fasi che consiste in una fase di generazione di

chiavi e una fase in cui i messaggi criptati vengono inviati. Questo schema sfrutta numerose

risorse per garantire la sicurezza: le cancellazioni del canale, l’informazione casuale condivisa

e la topologia della rete. Vengono presentati schemi di codifica per gli scenari menzionati nel

precedente paragrafo e per reti con cancellazioni con topologia arbitraria. Per tutti i casi per i

quali è presentata una caratterizzazione esatta uno schema a due fasi raggiunge la capacità di

trasmissione segreta. Tutti gli schemi di codifica proposti usano operazioni lineari e perciò

possono servire da base per realizzare dei codici usabili in pratica.

Per le reti viene sviluppata una base di analisi che può essere usata per descrivere schemi di

codifica sicuri e per derivare nuove maggioranti esterne. Gli schemi presentati sono descritti,

e la loro ottimalità viene provata, usando programmi lineari.

Sono presentate inoltre nuove maggioranti esterne basate sulla teoria dell’informazione. Le

dimostrazioni presentate, intuitivamente, trovano una relazione tra velocità di trasmissione

dei messaggi e velocità di generazione di della chiave segreta che viene usata per rendere

sicuro il messaggio.

I risultati presentati rivelano caratteristiche non triviali della comunicazione sicura in reti con

cancellazioni. Si trova che – in contrasto con la comunicazione non sicura – la capacità di
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trasmissione sicura di un taglio non può essere ridotta per semplificazione alla somma delle

capacità dei canali che formano il taglio. Inoltre la capacità di trasmissione segreta di una rete

non può essere ridotta per semplificazione alla capacità di trasmissione segrete minima dei

suoi tagli.

Parole chiave: reti con cancellazioni, confidenzialità, segretezza, sicurezza basata sulla teoria

dell’informazione, capacità di trasmissione segreta, generazione di chiave segreta

iv



Abstract

The security and efficiency of communication are two of the main concerns for networks of

today and the future. Our understanding of how to efficiently send information over various

channels and networks has significantly increased in the past decade (see e.g., [1–3]), whereas

our understanding of how to securely send information has not yet reached the same level.

In this thesis, we advance the theory of secure communication by deriving capacity results

and by developing coding schemes that provide information-theoretic security for erasure

networks.

We characterize the highest achievable secret-message rate in the presence of an eavesdrop-

ping adversary in various settings, where communication takes place over erasure channels

with state-feedback. Our results provide such a characterization for a point-to-point erasure

channel, for a broadcast erasure channel with multiple receivers, for a network with multiple

parallel channels, a V-network and for a triangle network.

We introduce several two-phase secure coding schemes that consist of a key generation phase

and an encrypted message sending phase. Our schemes leverage several resources for security:

channel erasures, feedback, common randomness and the topology of the network. We

present coding schemes for all the above mentioned settings as well as for erasure networks

with arbitrary topology. In all the cases where we provide exact characterization, a two-phase

scheme achieves the secret-message capacity. All our proposed coding schemes use only

linear operations and thus can serve as a basis for practical code designs.

For networks, we develop a linear programming framework for describing secure coding

schemes and for deriving new outer bounds. We use linear programs to describe our schemes

and to prove their optimality.

We derive new information theoretic outer bounds. In our intuitive interpretation, our proofs

find the connection between the rate of the message and the rate of a secret key that is required

to secure the message.

Our results reveal nontrivial characteristics of secure communication in erasure networks. We

find that – in contrast to non-secure communication – the secret message capacity of a cut

does not simplify to the sum of the capacities of the channels that form the cut, moreover,

the secret message capacity of a network does not simplify to the minimum secret message

capacity of its cuts.
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Introduction

The security and efficiency of communication are two of the main concerns for networks of

today and the future. Our understanding of how to efficiently send information over various

channels and networks has significantly increased in the past decade (see e.g., [1–3]), whereas

our understanding of how to securely send information has not yet reached the same level.

In this thesis, we advance the theory of secure communication by deriving capacity results

and by developing coding schemes that provide information-theoretic security for erasure

networks.

Information-theoretic security can augment the current technology that relies on computa-

tional security. The common model of an adversary that protocol designers consider assumes

that the adversary has full access to all communications, but that its computational capability

is bounded. In many scenarios, however, the adversary has only a limited access to the com-

munication between honest parties. Every communication medium – especially a wireless

channel – is noisy, which interferes with the adversary’s observation; moreover, in a large

network, the adversary is very unlikely to be able to control all the communication channels.

Information theory offers a framework for exploring how and to what extent we can benefit

from the limited communication presence of the adversary.

In this thesis, we exploit the limited network presence of the adversary to design schemes

that can lead to practical protocols. Early results on information-theoretic secrecy were far

from practical. For perfect secrecy, not only a secret key has to be pre-shared, but the size

of the key also has to be at least the size of the message to be encrypted (Shannon [4]1).

Although Shannon’s operation of encryption was extremely simple, no solution for key sharing

was available. In erasure networks, however, we can design efficient algorithms that exploit

erasures to create a key [5]. We also show that a key size that equals the number of message

packets that Eve observes (as opposed to the size of the whole message) is sufficient for security.

These contributions enable us to make steps to circumvent both of the main practical issues:

we develop algorithms for setting up a shared key and we design encryption that efficiently

uses the secret key.

We make use of several network resources simultaneously to design our secure coding schemes.

The topology of the network, the erasures that the adversary experiences, the feedback from

1For more details on one-time pad encryption, we refer the reader to Appendix A.1 and to [4].
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honest parties and the common randomness that network nodes share are all valuable re-

sources that can support secure communication. We investigate the role of these resources

and design coding schemes that optimally use them simultaneously.

We highlight that, unlike previous works, we assume only state-feedback. It is well known that

feedback does not increase the achievable rate over a single-receiver discrete memoryless

channel [6], however it does increase the achievable secret-key and secret-message rate2,

even if the feedback is public (as it was first shown by Maurer [7]). In particular, having

feedback enables us to achieve a positive secret-message rate even if an eavesdropper has

an observation less noisy than that of the intended receiver. We consider the case when the

feedback is limited to the channel state in contrast with e.g., [5,7–9], where an unlimited public

discussion channel is assumed. This enables us to make a clear distinction between the secret-

key generation and the secret-message sending problem (for more, see Section 1.3), while it

makes our model more realistic. Indeed, acknowledgments are part of many communication

standards, hence such state-feedback is a resource already available.

We believe that the erasure channel (with state-feedback) is a good starting point for investi-

gating security in networks. This model – although simpler than a general communication

model – is suitable for capturing the intricacies and possibilities of operating in a wireless

network environment. The applicability of the erasure model is justified through experiments

that artificially create erasure channels by injecting interference [10, 11] and through results

showing the relevance of an erasure model for a state-dependent Gaussian channel [12]. Thus,

results on secure communication in the erasure model are, in themselves, relevant in practice,

and they also serve as a first step towards solving the problem with a more general channel

model.

Secure communication over an erasure network significantly differs in nature, both from

non-secure communication and from secure communication over an error-free network. Our

contributions include the development of new capacity characterizations (coding schemes

and outer bounds) that reveal nontrivial properties, of which we find at least three surprising:

(1) In all the cases where we derive capacity, a two-phase scheme – which consists of a key

generation phase and an encrypted message sending phase – is shown to be optimal. (2) In a

network, finding the secret-message capacity of a cut does not simplify to summing up the

individual capacities of the channels that form the cut as might be expected. (3) Similarly,

finding the secret-message capacity of a network does not simplify to finding the minimum

value cut of the network.

Contributions

The main contributions that we present in this thesis are as follows:

• We provide a complete characterization of the secret-message capacity of various com-

munication settings (see Figure 1) in the presence of an eavesdropping adversary: the

2At this point we have not yet defined secret-message rate/capacity formally, one can think of it as the highest
achievable rate under the constraint of maintaining secrecy. For formal definitions we refer to Chapter 1.
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S D

(a) Point-to-point channel

S

D1 D2 DM. . .

(b) Broadcast channel

S D
...

(c) Parallel channels
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D

(d) V-network

S D

(e) Triangle network

Figure 1: Communication settings with a complete characterization of secret-message capacity.
Causal channel state feedback are sent over a separate noiseless public channel (not shown).

point-to-point channel, the broadcast channel3, the network with multiple parallel

channels, the V-network and the triangle network.

• We design new coding schemes for the above mentioned communication settings as

well as for erasure networks with arbitrary topologies. Our coding schemes provide

information-theoretic security and use only linear operations. In all the cases where we

derive capacity, a two-phase scheme achieves the secret-message capacity.

• We derive new information theoretic outer bounds. Our proofs reflect the two-phase

nature of our scheme: in an intuitive interpretation, a lower bound is given for the length

of a key generation phase that is required to secure a message. Our outer bounds for

networks confirm the properties mentioned above: Finding the secret-message capacity

of a cut does not simplify to summing up the individual capacities of the channels that

form the cut; furthermore, finding the secret-message capacity of a network does not

simplify to finding the minimum value cut of the network.

• We introduce a linear programming approach for describing secure coding schemes

for networks. We also use a novel linear programming proof technique for proving

optimality.

Significance

Although our results are not dependent on communication technology, we believe that they

are the most relevant for wireless communication. Providing security while maintaining

large throughput is especially challenging in a wireless network. The wireless spectrum is

a scarce resource and the demand of using this resource increases daily. In the last decade,

data communication over the wireless medium has become omnipresent. Either through a

local WiFi network or a mobile data network, people often use a wireless connection to access

3For M > 3 a complete characterization is available in some special cases. We refer to Chapter 3 for details.
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media content and their data in the cloud. The Cisco Visual Networking Index [13] predicts

further rapid growth in the next four years with 10 times the volume of today’s mobile data

traffic by 2018. As opposed to a wired counterpart, where throughput can be easily extended

by deploying new communication cables, the capacity of a wireless channel is limited by

nature. As the possibilities of physically protecting the medium are limited, it is easy to launch

an eavesdropping attack. Moreover, such an attack is hard to prevent or detect: Therefore,

advanced wireless technology and – as part of it – coding techniques are required for an

efficient and secure use of the medium.

Our results could serve as the theoretical foundation of practical protocols. Some experimental

practical protocols already use wireless channel variations as a source of randomness for secret-

key generation [14–17], but our approach is different: We do not extract randomness from

channel variability, instead, we take advantage of the adversary’s limited presence and the

errors that affect the adversary. Our approach promises higher achievable rates; furthermore,

we provide a solution not only for key generation, but also for message encryption.

Outline

The thesis consists of 6 chapters. Each chapter – in Chapter 4 each section – has a Main result

section, which summarizes the results presented in the given part. We delegate some details

and lengthy derivations to the appendices.

Chapter 1 describes our communication model and provides formal definitions. We discuss

different security notions and also summarize the most relevant known results that we use

through the subsequent chapters.

Chapter 2 presents our results on the point-to-point erasure channel. We both provide a

scheme design and derive an outer bound which establishes secret-message capacity of the

setting.

Chapter 3 considers a multiterminal broadcast erasure channel. A secure coding scheme is

presented that is optimal in all cases where the corresponding non-secure capacity is known.

In this chapter we investigate different security definitions and generalize equivalence results

for a multiterminal setting.

Chapter 4 is devoted to the secret-message capacity of networks. Using a linear programming

approach we derive secret-message capacity of a network that consists of independent parallel

channels, the V-network and the triangle network.

Chapter 5 investigates networks with arbitrary topology. Chapters 4 and 5 pursue different

goals. In Chapter 4, we aim to design optimal coding schemes and provide complete char-

acterization of the secret-message capacity. In Chapter 5 we design schemes for arbitrary

topologies giving up optimality for simpler code design. We propose a two-phase achievability

scheme for secure communication.

Chapter 6 concludes the thesis and discusses open questions for future research.
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1 Model and background

In this chapter we set up the mathematical framework in which we derive our results. Using

information-theoretic tools we give a formal definition of a communication setting, an ad-

versary and the notion of security that we use throughout the thesis. In this setting, a coding

scheme describes how a message is encoded and decoded by the communicating parties.

Two key properties of a coding scheme are reliability and security. Reliability means that

the intended receiver can decode the message without errors with high probability. Security

means that secrecy of the message is ensured against the adversary. A secure coding scheme –

as we define in this section – provides both reliability and security. It is meaningful to define

secret-message capacity, which is the highest rate of communication that any secure coding

scheme could possibly achieve in a given communication setting.

We also overview relevant previous results that serve as background and starting point of our

investigation. While doing so, for consistency, we reformulate results using the notions and

notation that we will next introduce.

1.1 Communication model

In our communication scenarios we have one sender, one or more receivers and an adversary.

To communicate with each other a probabilistic channel is at their disposal. We often refer to

the sender as Alice, to the receiver(s) as Bob (and Calvin) and to the adversary as Eve. In all our

settings we consider one particular channel model: a discrete memoryless erasure channel

with public state-feedback. For technical reasons1 we assume that erasure probabilities are

not 0 or 1. (We can obtain results for these corner cases by taking the limits.).

1.1.1 Erasure channel with state-feedback

The input alphabet of the channel consists of all possible length L vectors over a finite field

Fq . Let X denote the input alphabet of the channel, then X = FL
q . We often call one such

finite field vector a packet. Beside all input symbols, the channel output alphabet Y contains

1Such that for an erasure probability δ terms like 1
δ

or 1
1−δ are meaningful.
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also an erasure symbol ⊥: Y =X ∪ {⊥}. We denote Xi ∈X the input of the channel in the i th

time slot. We use the notation X n = (X1, . . . , Xn). We apply the same shorthand also for other

vectors.

Point-to-point setting

We refer to the setting with one sender, one receiver and an adversary as the point-to-point

scenario. In this case, the channel outputs two symbols (Yi , Zi ) in the i th time slot. Yi ∈ Y

denotes the output symbol that the receiver (Bob) gets, while Zi ∈Y denotes the output that

Eve observes. Each output symbol is either the input symbol or the erasure symbol. Erasures

occur independently for Bob and Eve and also independently, with the same probability in all

time slots. We use δ and δE to denote the erasure probability toward Bob and Eve respectively.

Formally,

Pr{Yi , Zi |X i Y i−1Z i−1} = Pr{Yi |Xi }Pr{Zi |Xi }, (1.1)

Pr{Yi |Xi } =
1−δ, Yi = Xi

δ, Yi =⊥,
(1.2)

Pr{Zi |Xi } =
1−δE , Zi = Xi

δE , Zi =⊥ .
(1.3)

With more than one receivers

In a broadcast setting there are M ≥ 2 receivers. In this case we do not distinguish an external

adversary, instead we will assume that the adversary is a subset of the receivers. When there are

M receivers, the channel output is the tuple
(
Y1,i , . . . ,YM ,i

) ∈Y M , where Y j ,i is the observation

of receiver j . We use Yi as a shorthand for
(
Y1,i , . . . ,YM ,i

) ∈Y M . Similarly as in the point-to-

point case we assume that all erasure events are i.i.d., with erasure probabilities δ1, . . . ,δM :

Pr{Yi |X i Y i−1} =
M∏

j=1
Pr

{
Y j ,i |Xi

}
(1.4)

Pr{Y j ,i |Xi } =
1−δ j , Y j ,i = Xi

δ j , Y j ,i =⊥
, ∀ j ∈ {1, . . . , M }. (1.5)

With more than one channels

In a network setting there are more than one (`) channels and maybe some intermediate

nodes addition to the sender and the receivers. Every channel operates as defined in the point-

to-point setting, independently of each other. In this case we use the indices of the erasure

probabilities and the first indices of variables to denote the index of the channel, e.g., Z3,i

denotes the output symbol for Eve on the 3rd channel in the i th time slot, which is an erasure

with probability δ3. We again use Yi as a shorthand for
(
Y1,i , . . . ,Y`,i

)
and Zi as a shorthand for

6
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(
Z1,i , . . . , Z`,i

)
. We do not consider broadcast and network settings simultaneously, hence in

all cases it will be clear whether Y j ,i denotes the output of receiver j or that of channel j .

Public feedback

We assume that the receivers send a public acknowledgment after each transmission, i.e., the

state of the channel toward the receivers is available strictly causally to all parties. Fi denotes

the random variable that describes whether or not an erasure occurred in time slot i toward

each receiver. Let 1{·} denote the indicator function, then Fi = 1{Yi=⊥} for the point-to-point

scenario and Fi =
(
1{Y1,i=⊥}, . . . ,1{YM ,i=⊥}

)
for a broadcast or for a network setting. By public we

mean that Fi is available to Alice, all the receivers and intermediate nodes in a network and for

Eve also before time slot i +1. Without giving up rigor, when it is convenient we use indices

or letters to denote correct receptions instead of complete channel state. E.g., Fi = B means

“only Bob received” the i th transmission.

Note that Fi does not contain information about Zi or Z j ,i , but Fi is also available for the

adversary. It is reasonable to assume cooperation from the receivers, but not from Eve. Indeed,

an acknowledging mechanism is part of common wireless standards, e.g., 802.11 (WiFi), 802.15

(Bluetooth), 802.16 (WiMax). In practice, feedback takes place over the same medium, however,

the size of the feedback is only 1 bit per packet, which is assumed to be negligible compared

to the packet size. With appropriate batching and source coding, the size of feedback can be

further reduced to h2 (δ) bits 2 in average on a channel with erasure probability δ. For this

reason we assume that feedback traffic is negligible, and in our model feedback takes place on

a separate, error-free public channel, which is not taken into account in rate calculations.

Further assumptions

Alice, all receivers, and Eve are able to generate private randomness at a practically unlimited

rate. We denote the private randomnesses byΘA ,ΘB , . . . ,ΘE , or by receiver indices: e.g.,Θ2 is

the randomness of receiver 2. These random sources are independent of each other and of

any other randomness.

1.2 Secret-message sending

Below we formally define the reliability and security criteria of the secret-message sending

problem. In all scenarios the goal of the communication is to reliably and securely send a

private message W j to each receiver j . Definitions are given for M receivers and any number

of channels. For the special cases of M = 1 or a single channel we omit the indices. We

provide general definitions here and adapt it for various settings in the subsequent chapters.

An (n,ε, N1, N2, . . . , NM ) coding scheme sends message W j which consist of N j packets to

receiver j using n transmissions from Alice. Beside reliable message transmission, a secure

coding scheme ensures secrecy of the messages.

2h2
(
p

)
denotes the binary entropy function: h2

(
p

)=−p log2
(
p

)− (
1−p

)
log2

(
1−p

)
7
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Definition 1.1. An (n,ε, N1, N2, . . . , NM ) coding scheme consists of the following components:

(a) message alphabets W j = FLN j
q , j = 1,2, . . . , M, (b) encoding maps fk,i (·), i = 1,2, . . . ,n for each

channel k, and (c) decoding maps φ j (·), j = 1,2, . . . , M for each receiver, such that the inputs to

the channel are

Xk,i = fk,i
(

Ak,i−1
)

, i = 1,2, . . . ,n, (1.6)

where Ak,i−1 denotes all random variables that the sender of channel k has access to before the

i th transmission. A coding scheme provides reliability for each receiver j :

Pr
{
φ j

(
B j ,n

) 6=W j
}< ε, ∀ j ∈ {1, . . . , M }, (1.7)

where messages W j ∈W j are arbitrary messages in their respective alphabets and B j ,n denotes

all random variables that receiver j has access to after the nth transmission.

For all different communication settings we specify Ak,i−1 and B j ,n .

Definition 1.2. In a communication setting a rate tuple (R1, . . . ,RM ) ∈RM+ is achievable if for

every ε> 0 there exists an (n,ε, N1, N2, . . . , NM ) coding scheme for which

R j −ε< 1

n
N j , ∀ j ∈ {1, . . . , M }. (1.8)

Definition 1.3. In a communication setting the capacity region RM ⊂RM+ is the set of achiev-

able rate tuples (R1, . . . ,RM ).

Of course, for a single receiver, the capacity region is one dimensional and hence it is mean-

ingful to call its maximum simply the capacity. This definition adheres to the usual definition

of channel capacity.

The notion of a coding scheme requires reliability, but does not consider yet security. Capacity

is the highest message rate that is achievable reliably. When we want to stress that no security

criterion is considered we refer to the capacity as non-secure capacity. The following definition

extends Definition 1.1 with a security requirement.

Definition 1.4. A (n,ε, N1, N2, . . . , NM ) coding scheme as defined by Definition 1.1 is a secure

coding scheme, if in addition to (1.6)-(1.7) it also satisfies

I
(
W j ;En

)< ε, (1.9)

for every receiver j , where En denotes all random variables that Eve has access to after the nth

transmission.

For all different communication settings we specify En .

8



1.3. Secret-key generation

Definition 1.5. In a communication setting a secret-message rate tuple (R1, . . . ,RM ) ∈RM+ is

achievable, if for every ε> 0 there exists an (n,ε, N1, N2, . . . , NM ) secure coding scheme for which

R j −ε< 1

n
N j , ∀ j ∈ {1, . . . , M }. (1.10)

Definition 1.6. In a communication setting the secret-message capacity region RM
S ⊂RM+ is

the set of achievable secret-message rate tuples (R1, . . . ,RM ) (as defined by Definition 1.5).

Similarly as in the case of capacity, secret-message capacity refers to the maximum of a one

dimensional secret-message capacity region.

We note that the definitions above define rate in terms of packets, i.e., rate 1 means conveying

one FL
q vector per time slot. We use this convention also for entropy and mutual information

throughout the thesis which enables us to omit the constant factor L log
(
q
)

from rate and

other information expressions.

1.3 Secret-key generation

In Section 1.2 the necessary definitions for the secret-message sending problem were given,

which is the main focus of this thesis. The secret-key generation problem is a different, but

closely related problem. The goal of a secret-key generation protocol is to set up a secret

common randomness – a key – between parties. As opposed to the secret-message sending

problem, the sender does not necessarily select the secret randomness a priori, the actual key is

also the outcome of the protocol. Clearly, for the secret-key problem, we are not constrained by

what common randomness the parties securely agree upon, hence a securely communicated

random message can serve as key. It is immediate that the secret-key capacity of a channel is

an upper bound for the secret-message capacity.

In the sequel we will see that secret-key generation is a very natural building block for designing

a secret-message sending scheme. For this reason, below we give formal definitions regarding

secret-key generation. In Section 1.5 we summarize relevant results on secret-key generation

for the erasure channel from [5].

For clarification we note that the terms secrecy capacity and secrecy rate are commonly used

for both secret-key generation and secret-message sending. This is because in many com-

munication settings there is no need for distinction, the two problems are often equivalent.

E.g. if the communication is one-way only (no feedback) or when unlimited public discussion

is possible, solving the secret-key generation problem solves the secret-message sending

problem also. We follow the convention that terms secrecy capacity or secrecy rate are used

only in a context, where the two problems are equivalent.

In this section we consider a single receiver (Bob) in the same communication model as

defined in Section 1.1.

Definition 1.7. An
(
n,ε′

)
key generation scheme over n transmissions has the following com-
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ponents: (a) encoding maps fk,i (·), i = 1,2, . . . ,n for each channel k, and (b) key computation

functions KA (·) ,KB (·) for Alice and Bob respectively, such that the inputs to the channel are

Xk,i = fk,i
(

Ak,i−1
)

, i = 1,2, . . . ,n, (1.11)

where Ak,i−1 denotes all random variables that the sender of channel k has access to before the

i th transmission. Further, a secret key K AB is computed using the key computation functions

such that

Pr{KA (An) 6= K AB } < ε′, (1.12)

Pr{KB (Bn) 6= K AB } < ε′, (1.13)

I (K AB ;En) < ε′, (1.14)

are satisfied. An , Bn and En denote all random variables that Alice Bob and Eve have access to

after the nth transmission.

For all different communication settings we specify Ak,i−1.

Definition 1.8. In a communication setting a key rate RK ∈R+ is achievable, if for every ε′ > 0

there exists an
(
n,ε′

)
key generation scheme over n transmissions for which the secret key K AB

satisfies:

RK −ε< 1

n
H (K AB ) . (1.15)

Definition 1.9. In a communication setting the secret-key capacity CK ∈R is the maximum of

the set of achievable key rates.

1.4 Adversary model and security notions

From the many different aspects of security, in this thesis we focus on confidentiality, which

means secrecy of a message from a passive adversary.

1.4.1 Adversary

We consider an eavesdropping adversary, Eve, who aims to learn the message that Alice sends

to another receiver. In most settings we assume that Eve is passive, she does not transmit any

signal. This assumption is valid in a wireless environment, where eavesdropping the channel

is easy, and an eavesdropping node does not want to reveal her presence with communication.

We do not make any assumptions on the computational power of Eve. Instead, we only assume

that the channel through which she observes the communication is not perfect; erasures occur

on her channel also.

In a broadcast setting we will assume that the adversary controls some of the receivers. This

gives the chance to Eve to influence how the protocol runs through the feedback the adver-

10
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sarial receiver sends. An adversarial receiver might lie about its channel state in order to

learn information about an other receiver’s private message. In Chapter 3 we introduce the

appropriate security definitions against such an adversary.

In a network setting, the adversary can select a subset of channels to eavesdrop on. We assume

that the maximum number of eavesdropped channels is known, but the actual subset of

eavesdropped channels (which we sometimes call the location of Eve) is not.

1.4.2 Information theoretic security notions

Information theoretic secrecy is defined in terms of mutual information between the message

and the observations of the adversary. It is common to distinguish perfect, strong and weak

secrecy [18]. Let W denote a message to be secured and En all observations that Eve has access

to after n transmissions of the protocol. Perfect secrecy means that

I (W,En) = 0. (1.16)

This definition implies exact statistical independence between the message and Eve’s observa-

tions.

In most communication settings perfect secrecy is too stringent and not possible to satisfy.

Strong secrecy replaces exact statistical independence with asymptotic independence:

lim
n→∞ I (W,En) = 0. (1.17)

Clearly, strong secrecy is equivalent to our definition of secrecy according to Definition 1.4.

The difference between perfect and strong secrecy has a similar flavor as the difference

between zero-error communication [6] and the usual definition of reliable communication

(e.g., Definition 7.14. in [2]), which asks arbitrarily small, but not exactly zero error probability

of decoding.

Strong secrecy can be interpreted as requiring that the information leak toward Eve is negligible.

Instead, weak secrecy requires only a negligible rate information leak:

lim
n→∞

1

n
I (W,En) = 0. (1.18)

A sub-linear growth of leaked information still satisfies the weak secrecy criterion. This

could even mean that Eve observes an asymptotically unbounded number of message bits in

cleartext.

Although weak and strong secrecy are not equivalent, in many cases (e.g., [8, 9, 19, 20]) the

securely achievable rates are the same under both criteria. Our secret-message capacity results

are of this kind also. We provide secure coding schemes that satisfy strong secrecy and we prove

outer bounds for weak secrecy. By this we also show that relaxing the security requirement

from strong to weak secrecy does not increase the derived secret-message capacity region.
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Chapter 1. Model and background

For completeness, we mention that the term weak security is sometimes used in another

meaning in the network coding literature (e.g., [21–23]). In that context, the security criterion

applies for any part of the message, but not for the message as a whole. If W k denotes any k

length part of a message of size N , then the weak security criterion is

I
(
W k ;En

)
= 0. (1.19)

1.4.3 Equivalence of security notions

We formulate security in information-theoretic terms. In the realm of computational cryptog-

raphy it is more common to prove security of an encryption scheme by showing distinguishing

security or semantic security. To facilitate the interpretation of our results and to make a

fair comparison with other schemes possible, we cite a recent result from [24], which shows

equivalence between the two approaches.

The results hold for a single receiver Bob and hence for a single message W , that has a

distribution PW . It is common to define the advantage of the adversary to express the gain that

the adversary obtains by observing a protocol. Considering information-theoretic security, the

adversarial advantage expressed in terms of mutual information (mis = mutual information

security) is defined as:

Advmis = max
PW

I (W ;En) . (1.20)

The notion of semantic security captures the intuition that the probability that an adversary

can compute a function g of the message should not increase significantly after observing

the protocol compared to the a priori probability of a correct guess. The semantic security

advantage is defined as

Advss = max
g ,PW

{
max

A
Pr

{
A (En) = g (W )

} −max
S

Pr
{
S

(
PW , g

)= g (W )
}}

, (1.21)

where g is any function of W , A is any function the adversary may compute after observing

the protocol and S is a simulator trying to compute g without accessing the protocol output.

The term simulator to denote guessing functions comes from the intuition that ideally there

exists an algorithm (simulator) that simulates the run of a protocol without having access

to the message and whose output is indistinguishable from the output of a real protocol.

Theorems 1, 5 and 8 from [24] prove the following inequalities:

Advss ≤
√

2 ·Advmis (1.22)

Advmis ≤ 4 ·Advss log

(
2n

Advss

)
. (1.23)

This result shows that for a single receiver, the requirement (1.9) implies semantic security,

because a small ε in (1.9) causes that Advss is also small. In many cases, Advss log
(

2n

Advss

)
decays

12



1.5. Key generation in a point-to-point setting

to 0 when n →∞ and the converse also holds. Although security definitions might look quite

different at first sight, there is no fundamental difference between these notions of security.

The above definitions are not directly applicable for more than one receivers, hence in Chap-

ter 3 we extend the notion of semantic security so that it handles joint message distributions.

We show a similar equivalence result with distribution independent security, which we intro-

duce in Chapter 3.

We can conclude that the key difference between information-theoretic and computational

security is not the level of security they provide, but the model of adversary they consider.

Computational cryptography considers an adversary who is computationally bounded, but

has a complete observation of a protocol run, while in the information-theoretic model the

adversary is unbounded computationally, but cannot completely observe the communication

between honest parties. Real adversaries are not unlimited either in their computational

power or in their communication capabilities, hence a combination of the two approaches is

possible.

1.5 Key generation in a point-to-point setting

We summarize and reformulate the results from [5] where the secret-key generation problem

is considered. In [5] the group key generation problem is investigated in a broadcast setting,

which means that all receivers in a group are required to compute the same secret key. Further-

more, an unlimited capacity public channel is at their disposal for public discussion. Despite

of these differences, the results are directly applicable for our point-to-point setting, because:

(a) with one receiver the group key becomes a pairwise key, which matches our definition of

key generation; (b) we observe that for a single receiver the key generation scheme in [5] uses

the public channel for state-feedback only, which is available in our setting also.

In the point-to-point setting Ai−1 =
(
ΘA ,F i−1

)
, i.e., the randomness that Alice generates as

well as the state of Bob’s channel in the first i − 1 transmissions. Further, An = (ΘA ,F n),

En = (Z n ,ΘE ,F n), Bn = (Y n ,ΘB ,F n). We note that Y n determines F n . Theorems 1 and 3

from [5] state the following (using our notation):

Theorem 1.1. The secret-key capacity in the point-to-point setting over the erasure channel

with state-feedback is

CK = δE (1−δ) , (1.24)

furthermore, secret-key capacity is achieved by a linear scheme such that the resulting secret key

K AB is uniformly distributed over its alphabet.

Recall that δE is the erasure probability on Eve’s channel, while δ is the erasure probability for

Bob.

We give the proof of the direct part of Theorem 1.1 by describing the key generation scheme

13



Chapter 1. Model and background

that achieves secret-key capacity. The outer bound directly comes as a special case of a more

general result [9].

Key generation scheme

Intuition and an example Before a formal description, we provide intuition and overview

the principles behind the key generation scheme. Consider the following example. Alice

sends out 5 random packets X1, . . . , X5 over the channel. Due to erasures neither Bob nor

Eve receives all of these. Assume Bob receives X1 and X4, while Eve receives X2, X4 and X5.

Figure 1.1 illustrates the situation. If an oracle could tell Alice and Bob which packets Eve has

Bob Eve

X1 X4

X2

X5

Figure 1.1: Example: packets received by Bob and Eve

received, they could simply use the packet X1 as their shared key. Recall that by assumption

Alice knows the indices of packets received by Bob. Such oracle does not exist, still if Alice

and Bob knows that there is one packet that Bob has received but Eve has not, they can both

compute K AB = X1⊕X4. This way, either X1 or X4 is the unknown packet for Eve, K AB remains

secret.

In general, Alice and Bob can securely form as many linear combinations as the number of

packets only Bob receives. With an overwhelming probability, the number of such packets

is close to its expected value, nδE (1−δ) after n transmissions. This gives rise to an intuitive

interpretation of the secret-key capacity: the achieved key rate corresponds to the probability

that a packet gets received by only Bob, but not Eve.

For constructing the linear combinations we need the following property. Assume Bob has

received nB packets and Eve has received nE of them. A coefficient matrix of size nB ×(nB −nE )

is used to produce the linear combinations. Since Eve has nE packets and we cannot know

which ones, we have to assume that she can produce any linear combination of packets

with no more than nE nonzero coefficients. Thus, Eve can compute and subtract any linear

combinations of no more than nE packets from the linear combinations that we produce.

For the key to be secret we need that the remaining part is still a linearly independent set of

packets. In other words, any nB −nE rows of our coefficient matrix has to be a full-rank matrix.

By Theorem A.4 in Appendix A.3 such a matrix is the parity check matrix of an MDS code.

Below we present a version of the scheme in [5] adapted for the point-to-point setting. We

also reformulate the analysis of the scheme.

14



1.5. Key generation in a point-to-point setting

Scheme description From n we compute s, s′ such that:

n = s

1−δ + s
3
4

1−δ (1.25)

s = s′

δE
+ s′

3
4

δE
. (1.26)

1. Alice sends n packets selected i.i.d. uniformly at random from FL
q .

2. Let XB denote the row vector of the first s packets that Bob receives. If Bob does not

receive at least s packets after n transmissions, an error is declared. Alice and Bob both

compute

K AB = XB HK AB , (1.27)

where HK AB is a s × s′ matrix and is a parity check matrix of an MDS code. HK AB can be

publicly known and used arbitrarily many times.

Analysis From the description it is clear that the scheme satisfies Definition 1.7. The uniform

distribution of K AB follows from the uniform distribution of XB and the MDS property of HK AB .

Hence, H (K AB ) = s′ and from (1.25)-(1.26)

lim
n→∞

H (K AB )

n
= lim

n→∞
s′

n
= δE (1−δ) , (1.28)

which shows the rate assertion of Theorem 1.1.

We next show that the protocol succeeds with arbitrarily small error probability. If no error is

declared, then both Alice and Bob computes the same key. Let κ denote the number of packets

that Bob receives. Then,

E {κ} = n (1−δ) . (1.29)

An error occurs, if Bob receives less than s packets, i.e., κ< s.

Pr{κ< s} = Pr
{
κ< n (1−δ)− s

3
4

}
= Pr

{
E {κ}−κ> s

3
4

}
≤ Pr

{
|E {κ}−κ| > s

3
4

}
(1.30)

≤ 2exp

{
−2s

3
2

n

}
= 2exp

− 2s
3
2

s
1−δ + s

3
4

1−δ

< 2exp

{
−2s

3
2

2s
1−δ

}
= 2e−(1−δ)

p
s , (1.31)

where we used the Chernoff-Hoeffding bound (see in Appendix A.2). With n →∞, s also grows

to infinity, thus the error probability decays to 0.

We use a similar technique to prove the security of the key. The observation of the eavesdropper

is En = (Z n ,F n ,ΘE ). We carry out the analysis assuming no error occurred. The private

randomness of the eavesdropper is independent from (Z n ,F n ,K AB ) and K AB is uniformly
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Chapter 1. Model and background

distributed, hence

I
(
K AB ; Z nF nΘE

)= I
(
K AB ; Z nF n)= H (K AB )−H

(
K AB

∣∣Z nF n )= s′−H
(
K AB

∣∣Z nF n )
. (1.32)

Let XBE denote the set of packets that both Bob and Eve received, while XB; the set of packets

that only Bob has. Further, H BE
K AB

and H B;
K AB

denote the rows of HK AB corresponding to XBE and

XB;. Then,

H
(
K AB

∣∣Z nF n )= H
(
XB HK AB

∣∣Z nF n )= H

([
XBE XB;

][
H BE

K AB

H B;
K AB

]∣∣XBE F n

)
(1.33)

= H
(

XB;H B;
K AB

∣∣XBE F n
)

(a)= H
(

XB;H B;
K AB

∣∣F n
)

(1.34)

=
s∑

i=0
H

(
XB;H B;

K AB

∣∣∣∣XB;
∣∣= i ,F n

)
Pr

{∣∣XB;
∣∣= i

}
(1.35)

(b)=
s∑

i=0
min

{
i , s′

}
Pr

{∣∣XB;
∣∣= i

}≥ s′
s∑

i=s′
Pr

{∣∣XB;
∣∣= i

}
(1.36)

= s′ Pr
{∣∣XB;

∣∣≥ s′
}= s′ Pr

{∣∣XB;
∣∣≥ E{∣∣XB;

∣∣}− s′
3
4

}
(1.37)

= s′
(
1−Pr

{
E
{∣∣XB;

∣∣}− ∣∣XB;
∣∣> s′

3
4

})
(1.38)

≥ s′
(
1−Pr

{∣∣E{∣∣XB;
∣∣}− ∣∣XB;

∣∣∣∣> s′
3
4

})
(1.39)

≥ s′
(

1−2exp

{
−2s′

3
2

s

})
> s′

(
1−2e−δE

p
s′
)

. (1.40)

In step (a) we used the independence property of the packets, while in step (b) we used the

MDS property of HK AB (see Corollary A.1 in Appendix A.3). In the last step we used again the

Chernoff-Hoeffding bound. Substituting back to (1.32) we have:

I
(
K AB ; Z nF nΘE

)≤ s′2e−δE

p
s′ . (1.41)

Since s′ grows to infinity when n →∞, the above mutual information term also decays to 0,

hence security of the key is satisfied for any ε′ > 0 if n is sufficiently large. With this, we have

shown that for a large enough n the above scheme satisfies Definition 1.8, thus the key rate

δE (1−δ) is achievable.
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2 Secret-message capacity of a point-to-
point channel

In this chapter we consider a communication setting with three parties: Alice, the sender, Bob

the receiver and Eve, the eavesdropping adversary. Alice aims to send a message to Bob over

an eavesdropped erasure channel – as introduced formally in the previous chapter. We refer

to this setting as the point-to-point setting or the point-to-point channel, since there are two

legitimate communicating parties.

We provide a complete characterization of the secret-message capacity for this setting. We

design a secure coding scheme and derive a matching outer bound on the secret-message

capacity. Our capacity achieving coding scheme uses linear operations only, both coding and

decoding are feasible in polynomial time complexity.

The tools and principles that we introduce in this chapter are used – and further developed – in

the subsequent chapters. Most importantly, we introduce a two-phase principle in our coding

scheme design. In the first phase Alice and Bob agree on a secret key, while in the second

phase they use the key judiciously for encryption in the second phase, when the message is

transferred in an encrypted form. Both phases constructively use channel erasures. We often

call the phases key generation phase and (encrypted) message sending phase respectively. In

our context, in a message sending phase the message is always encrypted, but for simplicity

we sometimes omit the term encrypted.

Both phases are optimal by themselves, and our converse proof shows that they are optimal

also together. The key generation phase is an optimal scheme for secret-key generation, and

the message sending phase conveys the encrypted message reliably using a capacity achieving

scheme. The fact that combining the two phases results an optimal secure scheme shows that

our message sending phase is using the least possible amount of key for securing and sending

the message reliably. We use the principle of encryption that we introduce here also in other

scenarios.

The new outer bound that we derive in this chapter provides some further insight to the

problem. Although the proof holds for any scheme, it reflects the two phases of our coding

scheme. Also, we identify information terms that can be interpreted naturally as generating

and consuming a secret key, while an inequality is drawing a balance between the two.
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Chapter 2. Secret-message capacity of a point-to-point channel

2.1 Related work

The first information-theoretic results on the problem of secure communication over an

insecure (eavesdropped) channel date back to Shannon [4]. It was shown that securing a

message over an error-free eavesdropped channel requires a pre-shared secret randomness

(a key). Furthermore, the entropy of the key has to be at least as large as the entropy of the

message. Given such a key, one-time pad encryption implements a perfectly secure encryption.

We briefly summarize one-time pad in Appendix A.1.

Wyner’s seminal paper [25] considered a noisy channel, where the wiretapper observes a noisy

version of the legitimate receiver’s observation, or in other words, Eve’s channel is a degraded

version of Bob’s. The secrecy capacity of this wiretap channel is derived. A more general setting

was investigated in [26]. Both private and common messages are considered and Eve’s channel

is arbitrary, not necessarily degraded. A single letter characterization of this setup is provided.

The results were generalized also for a Gaussian channel [27] and for a fading channel [28].

However, none of these work consider feedback from the receiver. Applied to erasure channels,

these results state that the secrecy capacity is non-zero only if the honest party has a better

channel than the eavesdropper, i.e., the erasure probability toward Eve is higher than toward

Bob.

Use of feedback and public discussion can improve the secrecy capacity, as was first shown

by Maurer [7], followed by more general results for multiple terminals in [8, 9, 29–31]. All

these results focus on secret-key generation, however, a cost-free public channel with infinite

capacity is also available by assumption. As a result, the secret-message capacity is trivially the

same, because the message can be encrypted with the generated secret key using a one-time

pad and sent securely on the public channel. In contrast, our setup assumes that only state-

feedback is available publicly, and there is no other high-capacity public channel. A similar

setup, but with non-causal state-information available only to the transmitter was studied

in [32, 33] for the Gaussian problem, where some achievability schemes based on dirty-paper

coding were examined.

Feedback can be especially helpful if the feedback channel is not public. In [34] the feedback

signal is implicitly used as a random encryption key without the source explicitly knowing

the signal. In [35, 36] the wiretap channel with secure feedback is investigated. In [35] the

feedback is perfect output feedback, while in [36] a secure rate limited feedback is used as a

shared random source. In contrast, in our model feedback is always public and limited to the

channel state.

As discussed in Section 1.5, for the broadcast erasure channel with public discussion, a capacity

achieving scheme for key generation was proposed in [5] for the group secret-key exchange

problem, where the public channel is also considered free and unlimited. In the case of two

parties the scheme specializes to requiring only the channel state to be communicated over

the public channel. As part of our secure coding scheme we use the key generation algorithm

from [5].
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2.2. Model

2.2 Model

We adapt our definitions to the given scenario. Before the i th transmission Alice knows the

message W , her private randomnessΘA and all previous channel states, hence in Definition 1.1

Ai−1 =
(
W,ΘA ,F i−1

)
and the channel inputs are (eq. (1.6) becomes):

Xi = fi

(
W,ΘA ,F i−1

)
, i = 1,2, . . . ,n. (2.1)

Bob receives Y nF n and knows ΘB , thus decodability condition of Definition 1.1 (eq. (1.7))

becomes

Pr
{
φ j

(
Y n ,F n ,ΘB

) 6=W
}< ε, (2.2)

while Eve learns Z n ,F n and knowsΘE , hence the security criterion in Definition 1.4 (eq. (1.9))

is

I
(
W ; Z nF nΘE

)< ε. (2.3)

2.3 Main result

The following theorem is the main result of this chapter.

Theorem 2.1. The secret-message capacity of the point-to-point erasure channel with state-

feedback is

CSM = (1−δ)δE
1−δδE

1−δδ2
E

. (2.4)

We prove Theorem 2.1 in two steps: we first propose a coding scheme for secret-message

sending in Section 2.4, and then give the converse proof in Section 2.5.

2.3.1 Discussion

Comparing (1.24) and (2.4) clearly shows that the secret-key and the secret-message capacities

differ, the latter is no larger than the former, which in line with our previous discussion about

the relation between the two problems (see Section 1.5).

The role of state-feedback also becomes clear from our result. First, without feedback, there is

no difference between the secret-key and the secret-message capacity. Alice does not learn

anything during a protocol run, thus if she can compute a key after the protocol run, she could

have equally computed it before running the protocol. In contrast, with using feedback, this

equivalence does not hold anymore. Second, the achievable rate is increased with the help of

feedback and – contrary to the case without feedback – the secret-message capacity is nonzero

in all cases.

Given the scheme for secret-key generation, one natural strategy is to generate a secret key,
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Figure 2.1: Point-to-point channel example: secret-message capacity and secret-key capacity
with and without feedback, δ= 0.4

use it as a one-time pad to encrypt the message, and send the encrypted message reliably

using a forward error correcting (FEC) code. An improvement over this is possible when

Eve has a higher erasure probability than Bob by leveraging secrecy from both the secret key

generated and the channel advantage of Bob over Eve using the scheme of Yamamoto [37].

However, our two-phase capacity-achieving scheme demonstrates that one can do even better

by exploiting feedback (see Figures 2.1-2.2). The benefits of our scheme come from using ARQ

in the message sending phase (as opposed to FEC or a wiretap code) to deliver encrypted

message packets to Bob. ARQ focuses on reliable transmission to Bob and hence could repeat

(identical) transmissions, with the result that Eve receives fewer distinct encrypted message

packets. Even when Eve has a lower erasure probability than Bob, the ARQ scheme ensures

that Bob has a relative advantage over Eve. Therefore feedback has been used for the purpose

of reducing the required key size by tilting the channel advantage towards Bob.

For comparison we plot the secret-message and the secret-key capacity together with the

secrecy capacity when no feedback is available for some special parameter values. We plot

secret-message rates achieved using FEC and Yamamoto’s scheme as well. Figures 2.1-2.2

show the gap between the secret-message and the secret-key capacities as well as the benefit

that state-feedback provides. (In Figure 2.2 the secret-message capacity without feedback is 0.)
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Figure 2.2: Point-to-point channel example: secret-message capacity and secret-key capacity

2.4 Coding scheme

2.4.1 Principles, example

We design a two-phase scheme as follows:

1. Key generation: A common secret key is set up between Alice and Bob. For this purpose

the optimal key generation scheme is used as described in Section 1.5. We define the

exact parameters later.

2. Encrypted message sending: From the secret key, linear combinations are produced

to obtain an encryption key. The encryption key is larger than the secret key and has

the same size as the message. To encrypt the message the encryption key is used as

one-time pad. The encrypted packets are then sent to Bob using ARQ, i.e., each packet

is repeated until Bob receives it.

In the second phase Eve receives only a subset of the encrypted packets. As a result, although

the encryption key has dependent components and thus it is not uniformly distributed, Eve

receives a set of packets that are encrypted with a uniformly random key. In one possible

interpretation, the message is partially secured by the secret key, and partially by the channel

properties. This way a key that is smaller than the size of the message is sufficient for security.

Example In the following example we will assume that Alice and Bob know also Eve’s channel

state. This assumption is helpful in building intuition, but we stress that the actual scheme

does not require state information from the eavesdropper.
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Chapter 2. Secret-message capacity of a point-to-point channel

An example run of our protocol is shown in Table 2.1. In our example, 8 transmissions are used

to convey a message W that consists of three packets: W1, W2, W3. Transmissions 1-3 belong

to the key generation phase, while transmissions 4-8 constitute the message sending phase. In

the key generation phase, a random packet becomes a key if only Bob receives it. In the second

phase, if Bob does not receive a transmission, Alice simply repeats it regardless of whether or

not Eve has received (transmissions 5 and 8). In transmission 6, the same key is used again as

in transmissions 4-5. Since the previous two transmissions were not received by Eve, this does

not risk security. Eve receives transmission 6, thus key K1 is considered used and another key

is used for the following transmission.

Alice sends
Bob’s Eve’s Key Message

channel channel available decoded

1. X1 random X × K1 = X1

2. X2 random × X K1

3. X3 random X × K1, K2 = X3

4. K1 ⊕W1 × × K1,K2

5. K1 ⊕W1 X × K1,K2 W1

6. K1 ⊕W2 X X K2 W1, W2

7. K2 ⊕W3 × X W1, W2

8. K2 ⊕W3 X X W1, W2, W3

Table 2.1: Example scheme with Eve’s channel state known. Erasure is indicated by ×, while X
denotes correct reception.

The example reveals that for security Alice and Bob needs only as many key packets as the

number of distinct packets Eve receives from the ARQ transmissions. Knowing Eve’s channel

state it is easy to see which key packets can be securely reused. If Alice and Bob do not know

exactly which packets Eve receives, but they know how many, then they can use coding to

make sure Eve receives packets encrypted with independent keys. In our example, if they

know that Eve receives two out of the three encrypted packets, they can use encryption keys

K1, K2, K1 ⊕K2 to encrypt W1, W2, W3 respectively. No matter which two packets Eve receives,

the message remains secure.

To construct the encryption keys we need the following property. Assume Eve receives nE

packets out of the N encrypted packets. Then, we have a secret key of size nE and a nE ×N

size coefficient matrix is used to produce the encryption keys. For security, we need that any

nE size subset of the encryption keys form an independent set of packets. In other words, any

nE columns of the coefficient matrix has to be a full-rank matrix. By Theorems A.4-A.5 (see

Appendix A.3) such a matrix is the generator of an MDS code.

From the channel parameters Alice and Bob can estimate well how many packets Eve receives.

If the number of message packets is large, the number of received packets concentrates around
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2.4. Coding scheme

its expected value. The probability that Eve receives an encrypted packet sent using ARQ is:

(1−δE )+δδE (1−δE )+ (δδE )2(1−δE )+·· · = 1−δE

1−δδE
. (2.5)

This suggests that to secure a rate R message, a secret key of rate R 1−δE
1−δδE

is sufficient. This

intuition is confirmed by formal analysis in Section 2.4.3.

2.4.2 Detailed description

The (n,ε, N ) scheme uses n transmissions to convey a message of N packets. W = (W1, . . . ,WN )

denotes the row vector of the N message packets. We first calculate the following parameters:

n = n1 +n2 (2.6)

s = N
1−δE

1−δδE
+N

3
4

1−δE

1−δδE
(2.7)

n2 = N

1−δ + N
3
4

1−δ , (2.8)

where n1 is the number of transmissions needed to create a key of size s with error parameter

ε′ < ε (for the parameters of the key generation phase we refer the reader to (1.25)-(1.26)).

1. Key generation phase: Alice and Bob perform the key generation scheme described

in Section 1.5 using n1 transmissions. By the scheme X1, . . . , Xn1 are random packets

selected uniformly at random. If the key generation fails, declare an error, otherwise let

K AB denote the shared secret key. K AB is a row vector of s packets.

2. Encrypted message sending phase: Alice computes the encryption key K ′
AB as follows:

K ′
AB = SGK ′

AB
, (2.9)

where GK ′
AB

is a s × N MDS generator matrix over Fq . The encrypted message W ′ is

computed as a one-time pad with encryption key K ′
AB :

W ′ =W ⊕K ′
AB . (2.10)

Alice transmits the encrypted packets W ′ = (W ′
1, . . . ,W ′

N ) using ARQ. Let Xn1+1 = W ′
1,

then

∀i ∈ {2, . . . ,n2} : Xn1+i =


Xn1+i−1 =W ′

j if Fn1+i−1 =×
W ′

j+1 if Fn1+i−1 =X and j < N ,

None otherwise,

(2.11)

where j denotes the index of the last encrypted packet sent, × and X denote erasure and

correct reception as Bob’s channel state. “None” means that Bob has already received all

encrypted packets, but there are still some transmissions left and the channel remains

idle. If Bob does not receive all encrypted packets, then an error is declared.
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Chapter 2. Secret-message capacity of a point-to-point channel

2.4.3 Analysis

In this subsection we prove the direct part of Theorem 2.1. We prove that for a large enough n

our (n,ε, N ) coding scheme satisfies Definition 1.5 showing the achievability of secret-message

rate CSM .

From the scheme description it is obvious that (2.1) is satisfied, we need to show security (2.3)

and decodability (2.2).

Security

We assume that the key generation phase declared no error, otherwise the scheme is trivially

secure. We observe that ΘE is independent of any other variable and thus I (W ; Z nF nΘE ) =
I (W ; Z nF n). Hence, we can omit ΘE from the analysis. We have already seen in Section 1.5

that the key generation phase is secure, i.e., for any ε′ > 0 and a large enough n1

I
(
S; Z n1 F n1

)< ε′, (2.12)

and K AB is uniformly distributed. Let IE denote the index set of the subset of encrypted

packets that Eve receives, and W ′IE the vector of encrypted packets restricted to columns

defined by index set IE . We use the same notation for W , GK ′
AB

also.

I
(
W ; Z nF n)= I

(
W ; Z n1W ′IE F n)= I

(
W ; Z n1 F n)+ I

(
W ;W ′IE |Z n1 F n)

(2.13)

(a)= I
(
W ;W ′IE |Z n1 F n)= N∑

i=0
I
(
W ;W ′IE |Z n1 F n , |IE | = i

)
Pr{|IE | = i } , (2.14)

where the step (a) follows from the fact that the channel state and the transmissions in the

first phase are independent of W . We have that

H
(
W ′IE |Z n1 F n , |IE | = i

)≤ i (2.15)

and

H
(
W ′IE |W Z n1 F n , |IE | = i

)= H
(
W IE ⊕SG IE

K ′
AB
|W Z n1 F n , |IE | = i

)
(2.16)

= H
(
SG IE

K ′
AB
|W Z n1 F n , |IE | = i

)
(a)= H

(
SG IE

K ′
AB
|Z n1 , |IE | = i

)
(2.17)

= H
(
SG IE

K ′
AB
||IE | = i

)
− I

(
SG IE

K ′
AB

; Z n1 ||IE | = i
)

(2.18)

≥ H
(
SG IE

K ′
AB
||IE | = i

)
− I

(
S; Z n1 ||IE | = i

)
(2.19)

(b)= H
(
SG IE

K ′
AB
||IE | = i

)
− I

(
S; Z n1

)
(2.20)

(c)≥ H
(
SG IE

K ′
AB
||IE | = i

)
−ε′ (2.21)

(d)= min{s, i }−ε′, (2.22)
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2.4. Coding scheme

where in steps (a) and (b) we used again that transmissions in the first phase are independent

of the message and the channel states in the second phase, step (c) is from (2.12), (d) follows

from the MDS property of GK ′
AB

(see Corollary A.2 in Appendix A.3). Substituting (2.15) and

(2.22) back to (2.14) we get:

I
(
W ; Z nF n)≤ ε′+ N∑

i=0
(i −min{s, i })Pr{|IE | = i } = ε′+

N∑
i=0

max{0, i − s}Pr{|IE | = i } (2.23)

= ε′+
N∑

i=s+1
i Pr{|IE | = i } ≤ ε′+N Pr{|IE | > s} . (2.24)

Eve receives an encrypted packet with probability 1−δE
1−δδE

. The receptions of different encrypted

packets are independent events, hence |IE | can be seen as a sum of N independent Bernoulli

variables. Hence,

Pr{|IE | > s} = Pr

{
|IE | > N

1−δE

1−δδE
+N

3
4

1−δE

1−δδE

}
= Pr

{
|IE |−E {|IE |} > N

3
4

1−δE

1−δδE

}
(2.25)

≤ Pr

{
||IE |−E {|IE |}| > N

3
4

1−δE

1−δδE

}
≤ 2e−a2.26

p
N , (2.26)

where a2.26 = 2
(

1−δE
1−δδE

)2
is constant from the Chernoff-Hoeffding bound (see Appendix A.2).

Substituting back to (2.24):

I
(
W ; Z nF n)≤ ε′+2N e−a2.26

p
N . (2.27)

From the properties of the key generation phase it follows that ε′ can be arbitrary small if n1 is

large enough. Also, N →∞ when n →∞, hence a large enough n ensures that the above term

is smaller than any ε> 0 if n is large enough. By this we have shown that the scheme provides

security.

Reliability

Clearly, if no error is declared Bob is able to decode W . We have already seen in Section 1.5

that the key generation phase succeeds with arbitrarily small error probability. The second

phase fails if Bob does not receive N packets in n2 transmissions. This error event is similar in

nature to the error of the key generation phase and we use the same technique to upper bound

its probability. Let |IB | denote the number of transmissions for which no erasure happens for

in the second phase. Error occurs of |IB | < N . Similarly to |IE |, |IB | is the sum of n2 Bernoulli

variables. Thus,

Pr{N > |IB |} = Pr
{
E {|IB |}−|IB | > N

3
4

}
≤ Pr

{
|E {|IB |}−|IB || > N

3
4

}
≤ 2exp

{
−2N

3
2

n2

}
(2.28)

≤ 2e−2(1−δ)
p

N . (2.29)
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Chapter 2. Secret-message capacity of a point-to-point channel

The probability of error can be made arbitrarily small by selecting n (and thus N ) to be large

enough.

Rate calculation

The rate of the above scheme is N
n , thus it proves the achievability of secret-message rate

R = limn→∞ N
n . From the parameter definitions and from the properties of the key generation

phase we get for the required key rate:

lim
n→∞

s

n
= R

1−δE

1−δδE
. (2.30)

Further,

lim
n→∞

s

n1
= δE (1−δ) (2.31)

lim
n→∞

n1

n
= R(1−δE )

(1−δδE )δE (1−δ)
(2.32)

lim
n→∞

n2

n
= R

1−δ (2.33)

1 = lim
n→∞

n1 +n2

n
= R(1−δE )

(1−δδE )δE (1−δ)
+ R

1−δ . (2.34)

By rearranging terms in (2.34) we get the claimed expression for the achievable rate by the

scheme.

We also note that the computational complexity of our scheme is polynomial in n. Computa-

tionally the most costly operation is the matrix multiplication that is feasible in O(n3).

2.5 Outer bound

In this section we prove the converse part of Theorem 2.1 by deriving a new outer bound

on the achievable secret-message rate. Throughout the proof we assume that the feedback

Fi contains Eve’s channel state also. Clearly, this information can only help Alice and Bob

to achieve a higher rate, hence the derived outer bound is valid for our setting. We use the

notation Fi ∈ {B ,E ,BE ,;} to indicate that the i th transmission was received by “only Bob”,

“only Eve”, “both of them” and “none of them” respectively. Since the bound should hold for

any message distribution, we might assume that W is uniformly distributed.

Proof. We have the following inequality:

n ≥
n∑

i=1
H (Xi ) ≥ H

(
Xi |Y i−1F i−1

)
=

n∑
i=1

H
(

Xi |Y i−1F i−1W
)
+ I

(
Xi ;W |Y i−1F i−1

)
(2.35)

≥
n∑

i=1
H

(
Xi |Y i−1Z i−1F i−1W

)
+ I

(
Xi ;W |Y i−1F i−1

)
. (2.36)
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2.5. Outer bound

The following two lemmas give bounds on the last two terms.

Lemma 2.1. In the defined point-to-point communication model, for any achievable secret-

message rate R

n∑
i=1

H
(

Xi |Y i−1Z i−1F i−1W
)
≥ nR(1−δE )

(1−δδE )δE (1−δ)
−nE2.1, (2.37)

where E2.1 = ε
δE (1−δ) + (h2(ε)+Rε) 1−δE

δE (1−δ)(1−δδE ) .

Lemma 2.2. In the defined point-to-point communication model, for any achievable secret-

message rate R

n∑
i=1

I
(

Xi ;W |Y i−1F i−1
)
≥ nR

1−δ −nE2.2, (2.38)

where E2.2 = h2(ε)+Rε
1−δ .

We provide proofs in the next subsection. By substituting back the results of the above two

lemmas to (2.36) and dividing by n the proof is complete. We leave the final steps as an exercise

for the reader. Note that E2.1, E2.2 are vanishing error terms, since ε is arbitrarily small.

Although the outer bound holds for any secure coding scheme, (2.36) reflects the structure of

(2.34) and the phases of the achievability scheme. Indeed, nR
1−δ is the (expected) number of

transmissions required to complete the message sending phase, while as we have seen, a rate

R 1−δE
1−δδE

key is used by the scheme which requires (in expectation) nR(1−δE )
(1−δδE )δE (1−δ) transmissions.

In this interpretation, Lemma 2.1 lower bounds the amount of required secret key, i.e., the

minimum length of the key generation phase. This is done through drawing a balance between

the generated and the used keys, which is a possible interpretation of inequality (2.45) (see in

the proof). Once again, this interpretation of information terms is attached to our scheme,

but the converse proof is general for any scheme.

2.5.1 Proofs of Lemmas 2.1-2.2

We start with proving Lemma 2.2.

Proof of Lemma 2.2

We observe that the private randomness of the receiver does not help in decoding, because

the protocol run does not depend on it. One can formally argue this by observing that

I (W ;Y n ,F n ,ΘB ) = I (W ;Y n ,F n). (2.39)
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Chapter 2. Secret-message capacity of a point-to-point channel

In other words, Bob must be able to decode also without usingΘB . If R is the rate of a coding

scheme, then

nR = H (W ) = H (W )−H
(
W |Y nF n)+H

(
W |Y nF n) (a)≤ I

(
Y nF n ;W

)+h2(ε)+nRε (2.40)

=
n∑

i=1
I
(
Yi Fi ;W |Y i−1F i−1

)
+h2(ε)+nRε

(b)=
n∑

i=1
I
(
Yi ;W |Y i−1F i−1Fi

)
+h2(ε)+nRε (2.41)

(c)=
n∑

i=1
I
(
Yi ;W |Y i−1F i−1,Fi ∈ {B ,BE }

)
Pr{Fi ∈ {B ,BE }}+h2(ε)+nRε (2.42)

= (1−δ)
n∑

i=1
I
(

Xi ;W |Y i−1Z i−1F i−1
)
+h2(ε)+nRε (2.43)

≤ (1−δ)
n∑

i=1
I
(

Xi ;W |Y i−1Z i−1F i−1
)
+n(1−δ)E2.2. (2.44)

Step (a) follows from the decodability condition 2.2 using Fano’s inequality (see e.g., Theo-

rem 2.47 in [2]) and (2.39). We have (b) from the fact that the channel state Fi is independent of(
W,Y i−1,F i−1

)
. Step (c) holds, because the mutual information term gives zero, if Yi =⊥.

Proof of Lemma 2.1

To complete the proof, we show the following two inequalities:

n∑
i=1

δE (1−δ)H
(

Xi |Y i−1Z i−1F i−1W
)
≥

n∑
i=1

(1−δE )I
(

Xi ;Y i−1|Z i−1F i−1W
)

(2.45)

n∑
i=1

I
(

Xi ;Y i−1|Z i−1F i−1W
)
≥ nR

1−δδE
− δE (1−δ)

1−δE
nE2.1. (2.46)

For (2.45):

0 ≤ H
(
Y n |Z nF nW

)= H
(
Y n−1|Z nF nW

)+H
(
Yn |Y n−1Z nF nW

)
(2.47)

= H
(
Y n−1|Z n−1F n−1W

)− I
(
ZnFn ;Y n−1|Z n−1F n−1W

)+H
(
Yn |Y n−1Z nF nW

)
(2.48)

(a)= H
(
Y n−1|Z n−1F n−1W

)− I
(
Zn ;Y n−1|Z n−1F nW

)+H
(
Yn |Y n−1Z nF nW

)
(2.49)

(b)= H
(
Y n−1|Z n−1F n−1W

)− I
(
Zn ;Y n−1|Z n−1F n−1W,Fn ∈ {E ,EB}

)
Pr{Fn ∈ {E ,EB}}

+H
(
Yn |Y n−1Z nF n−1W,Fn = B

)
Pr{Fn = B}+H

(
Yn |Y n−1Z nF n−1W,Fn = EB

)
Pr{Fn = EB}

(2.50)

= H
(
Y n−1|Z n−1F n−1W

)− (1−δE )I
(
Xn ;Y n−1|Z n−1F n−1W

)
+ (1−δ)δE H

(
Xn |Y n−1Z n−1F n−1W

)+ (1−δ)(1−δE )H
(
Xn |Y n−1Z n−1XnF n−1W

)
(2.51)

= H
(
Y n−1|Z n−1F n−1W

)− (1−δE )I
(
Xn ;Y n−1|Z n−1F n−1W

)
+ (1−δ)δE H

(
Xn |Y n−1Z n−1F n−1W

)
. (2.52)

In (a) the independence property of the channel states is used, while (b) holds because in case

of erasure the terms in question are zero. Doing the same steps recursively gives (2.45).
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2.6. Linear programming formulation

To get (2.46), we first consider the security condition. In the outer bound proof, we use the

weak form of security (see Section 1.4.2 for discussion about different security notions):

nε> I
(
Z nF n ;W

)= n∑
i=1

I
(

Zi Fi ;W |Z i−1F i−1
)
=

n∑
i=1

I
(

Zi ;W |Z i−1F i−1Fi

)
(2.53)

=
n∑

i=1
I
(

Zi ;W |Z i−1F i−1Fi ∈ {E ,EB}
)

Pr{Fi ∈ {E ,EB}} =
n∑

i=1
(1−δE )I

(
Xi ;W |Z i−1F i−1

)
.

(2.54)

From Fano’s inequality we have that

nR ≤ I
(
Y n Z nF n ;W

)+h2(ε)+nRε (2.55)

(a)= h2(ε)+nRε+
n∑

i=1
(1−δδE )I

(
Xi ;W |Y i−1Z i−1F i−1

)
(2.56)

≤ h2(ε)+nRε+
n∑

i=1
(1−δδE )I

(
Xi ;W |Z i−1F i−1

)
+ (1−δδE )I

(
Xi ;Y i−1|Z i−1F i−1W

)
(2.57)

(b)< h2(ε)+nRε+ 1−δδE

1−δE
nε+

n∑
i=1

(1−δδE )I
(

Xi ;Y i−1|Z i−1F i−1W
)

(2.58)

≤ (1−δδE )δE (1−δ)

1−δE
nE2.1 +

n∑
i=1

(1−δδE )I
(

Xi ;Y i−1|Z i−1F i−1W
)

. (2.59)

In (a) we used a derivation similar to Lemma 2.2. To avoid repetition we omitted the details.

In step (b) we used (2.54).

2.6 Linear programming formulation

We provide an alternative formulation of Theorem 2.1 that gives the secret-message capacity

as a solution of a linear program. First, we state a theorem for the message sending phase. The

theorem is a direct consequence of our achievability proof in Section 2.4.3, noticing that the

second phase of our scheme uses the secret key as input, and it does not depend on how the

key is generated.

Theorem 2.2. Consider an erasure channel with state-feedback as defined in our communica-

tion model. Assume the sender and the receiver have access to a uniform random key K AB of

rate RK such that for an arbitrarily small ε′

I (K AB ;E |W ) < ε′, (2.60)

where W denotes the message to be sent and E denotes all the random variables the eavesdropper

observes before starting transmissions. Then, a secret-message rate min
{

1−δ,RK
1−δδE
1−δE

}
is

achievable. Further, the claimed rate is achievable by the message sending phase of the scheme

described in Section 2.4.

The linear programming formulation of our result is the following:
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Chapter 2. Secret-message capacity of a point-to-point channel

Theorem 2.3. The secret-message capacity of the point-to-point erasure channel with state

feedback is the solution of the following linear program (LP), where parameters m,k ≥ 0.

maxR, such that:

R ≤ (1−δ)m (2.61)

m(1−δ)
1−δE

1−δδE
≤ kδE (1−δ) (2.62)

1 ≥ m +k. (2.63)

We identify constraint (2.61) as a rate constraint, constraint (2.62) as a security constraint and

constraint (2.63) as a time-sharing constraint. In the sequel (in Chapter 4) we will see LPs that

have a similar structure.

The above LP has a direct closed form solution, which is the same as the secret-message

capacity claimed by Theorem 2.1, so no proof is needed beyond what is already shown. Still,

we make a reverse argument to show that the solution of the LP gives directly the parameters

of a scheme.

Assume the above LP is feasible with some parameter values m,k. Then, nk is the length of a

key generation phase, while nm is the length of a message sending phase. Constraint (2.63)

ensures that n transmissions suffice. The key generation phase enables to set up a key of rate

kδE (1−δ), while in the message sending phase we have the possibility to transmit a message of

rate at most (1−δ)m (see (2.61)). By Theorem 2.2, constraint (2.62) ensures that the available

secret-key rate is sufficient to secure a message of this rate. Thus, a feasible LP gives rise to the

parameters of a secure coding scheme that provides achievability of a secret-message rate R.

At this point the LP formulation might seem to be a complicated way of describing for-

mula (2.4), but at the same time it explicitly reflects the components that our scheme is

built of. This property will enable us to use key generation and Theorem 2.2 as building blocks

to design schemes described through linear programs for more general settings. In Chapter 4

we use this approach extensively.

2.7 Next steps

We investigated the point-to-point erasure channel with state-feedback and provided a com-

plete characterization of its secret-message capacity. We introduced a two-phase coding

scheme that achieves capacity in this setting. Our result clearly shows the role of feedback

as well as the difference between the secret-key generation and the secret-message sending

problem.

In the following chapters we generalize this result in various directions. We investigate the

secret-message sending problem for a broadcast channel (Chapter 3) and also for multihop

networks (Chapter 4-5).
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3 Secret-message capacity of a broad-
cast channel

This chapter is devoted to the 1-to-M broadcast channel. The broadcast channel models

a situation that is common in a wireless environment, namely when the sender, Alice can

simultaneously transmit to M receivers. As an example, one can think of an access point with

multiple terminals connected to it. In this setting – unless the communication is synchronized

– nodes cannot know in advance if they are the intended recipient of a packet. For example,

according to the WiFi standard (IEEE 802.11), nodes check the destination MAC address after

reception and drop packets not destined to them. This mode of operation makes clear that –

apart from some storage space – storing packets not intended for the given node requires no

overhead from the devices. Results on network coding have shown that storing such packets

is not useless, they can be used as side information to decode a subsequent encoded packet

(e.g., [38–41]). In this chapter we make use of side information to maximize efficiency, but at

the same time we also ensure message security.

In this chapter message secrecy is considered against the receivers instead of an outsider

eavesdropper. Alice aims to send a private message to all receivers, such that they do not

learn each other’s message. We define two adversary models. An honest-but-curious adversary

follows the protocol, which in our setting means that she sends honest acknowledgments

about her channel state. In contrast, a dishonest adversary might lie about her receptions

in order to gain information about the message of an other receiver. The crucial difference

between the two models is that a dishonest adversary can influence – to some extent – the run

of the protocol.

We propose a secure coding scheme for the broadcast channel that is optimal in the honest-

but-curious adversary model in all the cases where a non-secure capacity achieving scheme is

available. In order to show optimality, we derive a new outer bound for the secret-message

capacity region. As a side result, our proof offers a new proof for the known outer bound of the

non-secure capacity region derived in [39, 42].

We consider the dishonest adversary model in the special case of two receivers. We show that

securing private messages against a dishonest adversary does not come at a compromise

in rate, the secret-message capacity region does not change when the stronger adversary is
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Chapter 3. Secret-message capacity of a broadcast channel

considered. Thus, the optimality of our scheme is immediate from the optimality result for

the honest-but-curious case.

The security notions are adapted to the multiuser setting and also to the dishonest adversary

model. We make the observation that in the dishonest adversary model security relies on

the independence and on the uniform distribution of the private messages. In some com-

munication scenarios this assumption might be restrictive, hence we introduce the notion of

distribution independent security that requires secrecy without any assumption on the joint

distribution of the messages. We also provide a scheme that satisfies this stronger security

requirement.

3.1 Related work

Besides the results on secure communication summarized in the previous chapter, the most

relevant results are on non-secure communication over a broadcast channel, and more specifi-

cally over a broadcast erasure channel with state-feedback. The characterization of a broadcast

channel is significantly harder than dealing with the point-to-point counterpart. The capacity

region of a discrete memoryless broadcast channel (DMBC) is still an open problem (for partial

results see e.g., [43–45]). In the case of a point-to-point discrete memoryless channel feedback

does not increase capacity [6], however, in some cases feedback increases the capacity of a

broadcast channel [46–48]. The broadcast erasure channel with state-feedback is a special

case of a DMBC, where capacity results are available [39, 40, 42, 49]. Our focus is on this type of

broadcast channel.

Network coding has been used in several capacity achieveing coding schemes [39, 40, 42, 49].

An optimal scheme that uses linear network coding is available for the ≤ 3 receiver broadcast

erasure channel with state-feedback under arbitrary channel parameters. Network coding has

proven to be a powerful technique to achieve capacity in various network settings (e.g., [50–52]).

As investigated in [53, 54], feedback offers benefits in certain scenarios where network coding

is used, it is the case in our communication setting also.

In our secure coding scheme we are going to use the non-secure capacity achieving coding

scheme proposed in [42]. We briefly summarize the scheme in Section 3.3.

3.2 Model

3.2.1 Honest-but-curious adversary

For the honest-but-curious adversary model we can naturally adapt our definitions in Sec-

tion 1.2. Before each transmission, Alice has access to her private randomness, the mes-

sages W1, . . . ,WM for each receiver and the previous channel states. We use the shorthand

W = (W1, . . . ,WM ), thus in Definition 1.1 Ai−1 =
(
W,ΘA ,F i−1

)
and hence (1.6) becomes:

Xi = fi

(
W,ΘA ,F i−1

)
, i = 1,2, . . . ,n. (3.1)
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3.2. Model

We have a decodability condition for each receiver ((1.7) in Definition 1.1):

∀ 1 ≤ j ≤ M : Pr
{
φ j

(
Y n

j F nΘ j

)
6=W j

}
< ε, (3.2)

We require secrecy of any private message even if the adversary has access to the observations

of all other receivers. Hence, our security criterion in Definition 1.4 becomes:

∀ j ∈ {1 . . . M } : I
(
W j ;Y n

− j F nΘ− j

)
< ε, (3.3)

where Y n
− j stands for Y n

1 , . . . ,Y n
j−1,Y n

j+1, . . . ,Y n
M and similarly Θ− j is Θ1, . . . ,Θ j−1,Θ j+1, . . . ,ΘM

denoting the private randomnesses of the receivers other than j .

To make a clear distinction, we denote the secret-message capacity region in the honest-but-

curious adversary model as RM
H .

Following [42], we distinguish two special cases.

Definition 3.1. We call the channel symmetric if the erasure probabilities are all the same:

δi = δ j ,∀ 1 ≤ i , j ≤ M.

Definition 3.2. We call a rate vector one-sidedly fair if δi ≥ δ j implies Riδi ≥ R jδ j . The set of

one-sidedly fair rate tuples for a given channel is denoted byΛM
osf ⊂RM+ .

3.2.2 Dishonest adversary

For a dishonest adversary, we need a slight modification in Definitions 1.1, 1.4-1.6. This is

because we do not aim to provide any guarantee – either reliability or security – for a dishonest

party. However, an honest receiver should suffer no harm. Also, as we will see, the distribution

of the messages plays an important role in security. First, we assume that the message of the

dishonest receiver is uniformly distributed and independent of the other receiver’s message.

To relax this constraint, we introduce the notion of distribution independent security, which

requires security independently of the joint message distribution.

We provide definitions for two receivers, Bob and Calvin. This time Alice has no access to

the true channel states, only the potentially dishonest acknowledgments. We denote F∗
i the

acknowledgments in time slot i . A dishonest receiver can do the following: he can (a) select

the marginal distribution of the other user’s message arbitrarily; his own message is assumed

to be independent of the other user’s message and uniformly distributed over its alphabet

and the dishonest user does not have a priori access to his own message, and (b) produce

dishonest acknowledgments as a (potentially randomized) function of all the information he

has access to when producing each acknowledgment (this includes all the packets and the

pattern of erasures he received up to and including the current packet he is acknowledging

and the acknowledgments sent by the other user over the public channel up to the previous

packet). In the sequel σ denotes the acknowledging strategy of the adversary. The definitions

below are specific to this chapter.

Thus, Ai−1 =
(
W,ΘA ,F∗i−1

)
and:
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Chapter 3. Secret-message capacity of a broadcast channel

Definition 3.3. An (n,ε, N1, N2) coding scheme against a dishonest adversary consists of the

following components: (a) message alphabets W j = F
LN j
q , j = 1,2, (b) encoding maps fi (·),

i = 1,2, . . . ,n, and (c) decoding maps φ j (·), j = 1,2 for each receiver, such that the inputs to the

channel are

Xi = fk,i

(
W,ΘA ,F∗i−1

)
, i = 1,2, . . . ,n. (3.4)

It provides reliability for each honestly acknowledging receiver. That is, in case Bob acknowl-

edges honestly

Pr
{
φ1

(
Y n

1 F∗nΘB
) 6=W1

}< ε (3.5)

is satisfied and if Calvin acknowledges honestly then

Pr
{
φ j

(
Y n

2 F∗nΘC
) 6=W2

}< ε (3.6)

is satisfied.

Definition 3.4. A (n,ε, N1, N2) coding scheme as defined by Definition 3.3 is secure against

a dishonest adversary, if in addition to reliability it also provides secrecy for each honestly

acknowledging receiver. That is, in case Bob acknowledges honestly

max
PW1 ,σ

I
(
W1;Y n

2 F nΘC
)< ε (3.7)

is satisfied and if Calvin acknowledges honestly then

max
PW2 ,σ

I
(
W2;Y n

1 F nΘB
)< ε (3.8)

is satisfied under the assumption that the message of a dishonest receiver is uniformly distributed

and is independent of the other message. The maxima are taken over all possible adversarial

acknowledging strategies.

Definition 3.5. A secret-message rate tuple (R1, . . . ,RM ) ∈RM+ is achievable against a dishonest

adversary, if for every ε> 0 there exists an (n,ε, N1, N2) coding scheme that is secure against a

dishonest adversary for which

R j −ε< 1

n
N j , ∀ j ∈ {1,2}. (3.9)

Definition 3.6. The secret-message capacity region in the dishonest adversary model R2
D H ⊂R2+

is the set of secret-message rate tuples (R1,R2) that are achievable against a dishonest adversary.

When defining security against a dishonest receiver, we assumed that the dishonest receiver

cannot control his own message distribution. Relaxing this assumption leads to a stronger

notion of security.
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3.2. Model

Definition 3.7. A (n,ε, N1, N2) coding scheme as defined by Definition 3.3 is secure against a dis-

honest adversary independently of the message distribution, if in addition to reliability it also

provides secrecy for each honestly acknowledging receiver irrespective of the joint distribution

of the messages W1,W2. That is, in case Bob acknowledges honestly

max
PW1,W2 ,σ

I
(
W1;Y n

2 F nΘC |W2
)< ε (3.10)

is satisfied and if Calvin acknowledges honestly then

max
PW1,W2 ,σ

I
(
W2;Y n

1 F nΘB |W1
)< ε (3.11)

is satisfied. The maxima are taken over all possible joint message distributions and all possible

adversarial acknowledging strategies.

We refer to security definitions (3.10)-(3.11) as distribution independent security.

Definition 3.8. A secret-message rate tuple (R1, . . . ,RM ) ∈RM+ is achievable against a dishonest

adversary independently of the message distribution, if for every ε> 0 there exists an (n,ε, N1, N2)

coding scheme that satisfies Definition 3.7 and for which

R j −ε< 1

n
N j , ∀ j ∈ {1,2}. (3.12)

Definition 3.9. The distribution independent secret-message capacity region R2
D I S ⊂R2+ is the

set of achievable secret-message rate tuples against a dishonest adversary independently of the

message distribution.

We also adapt the definition of semantic security. The current definition of semantic security

(1.21) considers only the distribution of one message. Applying the definition directly to

the multiuser setting thus implicitly assumes that a dishonest adversary has no control over

its own message distribution. This definition of security matches Definition 3.4, however

the implicit assumption might be too restrictive. We thus extend the definition of semantic

security for two receivers. We give definitions assuming Calvin is the dishonest receiver,

symmetric versions hold for security against Bob. We define the adversarial advantage in this

case as:

Advss
dis = max

g ,PW1,W2 ,σ

{
max

A
Pr

{
A (Y n

2 ,F n ,σ,W2) = g (W1,W2)
}

− max
S

Pr
{
S (PW1,W2 , g ,W2) = g (W1,W2)

}}
. (3.13)

Note that here we let the simulator to have access to the message W2 which an honestly

acknowledging Calvin will learn. The corresponding definition of adversarial advantage for
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Chapter 3. Secret-message capacity of a broadcast channel

distribution independent security in information-theoretic terms matches Definition 3.7:

Advmis
dis = max

PW1,W2 ,σ
I
(
W1;Y n

2 F nΘ2|W2
)

. (3.14)

3.3 Non-secure 1-to-M broadcast

Before summarizing our results we review the non-secure message sending problem and

the coding schemes proposed in [39, 42]. First, we restate the result that characterizes the

non-secure capacity region. Let π denote a permutation of {1,2, . . . , M } and πi the i th element

of the permutation.

Theorem 3.1. For M ≤ 3 or for a symmetric channel with M > 3, the capacity region RM of

the 1-to-M broadcast erasure channel with state-feedback is characterized by the following

inequality:

max
π

M∑
i=1

Rπi

1−∏i
k=1δπk

≤ 1, (3.15)

where the maximization is taken over all permutations π of {1, . . . , M }. Furthermore, if a rate

tuple (R1, . . . ,RM ) ∈ΛM
osf, then (R1, . . . ,RM ) ∈RM if and only if (3.15) is satisfied.

Further, it is known [42, 49] that (3.15) is an outer-bound for RM in all cases.

Theorem 3.2. Any rate tuple (R1, . . . ,RM ) ∈RM satisfies (3.15).

We illustrate the proposed scheme for two receivers, Bob and Calvin. Alice sends messages

of rate R1 and R2 to Bob and Calvin respectively. We refer to the corresponding messages W1

and W2 as messages intended for Bob/Calvin or simply Bob’s/Calvin’s message. According to

Theorem 3.2 R1 and R2 are such that

R1

1−δ1
+ R2

1−δ1δ2
≤ 1, (3.16)

R1

1−δ1δ2
+ R2

1−δ2
≤ 1. (3.17)

The scheme has two steps:

Step a) Alice repeats every message packet intended for Bob until either Bob or Calvin cor-

rectly receives it. She then repeats every message packet intended for Calvin until

either Bob or Calvin correctly receives.

Step b) Alice sends the XOR of one of Bob’s message packet that only Calvin received and one

of Calvin’s message packets that only Bob received. The XOR-ed packet simultaneously

carries a message packet for both Bob and Calvin. Upon reception, either is able to

receive a new message packet. Alice keeps sending such XOR-ed packets until one

of the receivers receives all his message. After that, she simply repeats the not yet

received message packets until the other receiver is also satisfied.
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The use of network coding in Step b) enables us to make use of the side information collected

in Step a). The coded transmissions are equally useful for both receivers and make the

scheme more efficient than simple time-sharing. The first step takes (in expectation) n(R1+R2)
1−δ1δ2

transmissions, while finishing the second step takes max
{

nR1
1−δ1

− nR1
1−δ1δ2

, nR2
1−δ2

− nR2
1−δ1δ2

}
. The

achieved rate region thus matches (3.16)-(3.17).

The scheme can be generalized for more than two receivers [42]. The proposed schemes have

the following structure:

Step a) Alice repeats each message packet until at least one of the three receivers correctly

receives it.

Step b) Alice sends linear combinations of the packets that are not received by their intended

receiver in Step a).

A key contribution of [42] is in specifying how to construct the linear combinations in Step b).

We refer the reader to [42] for the exact constructions, and highlight here the two important

properties that we rely on:

• A message packet successfully delivered to its intended receiver in Step a) is never used

in Step b).

• For M = 3, or for a symmetric channel, or for a one-sidedly fair rate tuple the proposed

scheme achieves any rate point within the region in (3.15).

3.4 Main results

3.4.1 Honest-but-curious adversary

Our main result for honest-but-curious receivers is the characterization of the secret-message

capacity region for sending private messages to M receivers over a broadcast erasure channel,

for all the cases where the non-secure capacity region has been characterized, namely, the

2-receiver, 3-receiver, symmetric M-receiver and one-sidedly fair M-receiver cases. For all the

mentioned cases, when the capacity region RM is known, we prove the following theorem

which describes the corresponding secret-message capacity region RM
H .

Theorem 3.3. For M ≤ 3 or for a symmetric channel with M > 3, the secret-message capacity

region RM
H is characterized by the following inequality:

max
j∈{1,...,M }

R j

(
1−

∏M
k=1δk

δ j

)
(1−δ j )

∏M
k=1δk

δ j

(
1−∏M

k=1δk
) +max

π

M∑
i=1

Rπi

1−∏i
k=1δπk

≤ 1, (3.18)

where the second maximization is taken over all permutations π of {1, . . . , M }. Furthermore, if a

rate tuple (R1, . . . ,RM ) ∈ΛM
osf, then (R1, . . . ,RM ) ∈RM

H if and only if (3.18) is satisfied.

We prove the achievability part of Theorem 3.3 constructively by describing a coding scheme

that achieves any rate tuple in RM
H in the mentioned cases. The scheme together with the

proof of its properties are given in Section 3.5.1.
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Figure 3.1: Non-secure message sending and secret-message sending capacity regions for
M = 2, δ1 = 0.7, δ2 = 0.5.

We also develop a new converse proof to show that the scheme is optimal. We provide the

converse proof in Section 3.6, which completes the proof of Theorem 3.3. Our converse proof

inherently provides a new proof of Theorem 3.2. This new proof might be of interest on its

own, hence we provide it separately in Section 3.6.1.

Comparing regions RM and RM
H , the first term in (3.18) can be interpreted as the overhead for

security. Indeed, in the scheme we present, there is a key generation phase whose duration is

proportional to this term. In Figure 3.1 we visualize this overhead for some parameter values.

3.4.2 Dishonest adversary

For the case of a dishonest receiver, we characterize the rate region R2
D H . In particular, we

show that R2
D H =R2

H , i.e., the same rates are achievable against dishonest receivers as against

honest-but-curious receivers. We provide a formal description and proof for M = 2. The same

ideas can be easily extended for the cases where Theorem 3.3 holds.

Theorem 3.4. The rate region R2
D H as defined in Definition 3.6 is the set of all rate pairs

(R1,R2) ∈R2+ which satisfy the following two inequalities:

R1(1−δ2)

δ2(1−δ1)(1−δ1δ2)
+ R1

1−δ1
+ R2

1−δ1δ2
≤ 1, (3.19)

R2(1−δ1)

δ1(1−δ2)(1−δ1δ2)
+ R1

1−δ1δ2
+ R2

1−δ2
≤ 1. (3.20)
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Figure 3.2: Achieved rate region under distribution independent security criterion compared
to secret-message capacity region M = 2, δ1 = 0.7, δ2 = 0.5.

It is clear that R2
D H ⊆ R2

H , since the converse developed for the honest-but-curious case

provides a valid outer bound. To prove that the region given by (3.19)-(3.20) is achievable, we

construct a linear scheme that is secure against dishonest receivers and achieves any pair in

the region. The scheme is described in Section 3.5.2.

Theorem 3.4 gives a complete characterization of the problem considering security against a

dishonest receiver. Regarding distribution independent security we do not have such a char-

acterization. We construct a scheme that satisfies this stronger security definition, however its

optimality is not clear. The next theorem gives the rate region achieved by our scheme.

Theorem 3.5. If a rate pair (R1,R2) satisfies

R1(1−δ2)

δ2(1−δ1)(1−δ1δ2)
+ R2(1−δ1)

δ1(1−δ2)(1−δ1δ2)
+ R1

1−δ1
+ R2

1−δ1δ2
≤ 1, (3.21)

R1(1−δ2)

δ2(1−δ1)(1−δ1δ2)
+ R2(1−δ1)

δ1(1−δ2)(1−δ1δ2)
+ R1

1−δ1δ2
+ R2

1−δ2
≤ 1, (3.22)

then (R1,R2) ∈R2
D I S .

From the definitions it is clear that R2
D I S ⊆R2

D H . We conjecture that there is a fundamental

gap between R2
D I S and R2

D H , but we leave the proof an open question. We illustrate the gap

between the rate regions of Theorems 3.4-3.5 in Figure 3.2. The scheme that constructively

proves Theorem 3.5 is given in Section 3.5.3.
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Corollary: security against an eavesdropper

Consider the special case when R2 = 0. There is only one receiver with nonzero rate and we

aim to secure his message against the other, dishonest party. In this setting the other receiver

is equivalent to a passive eavesdropper who overhears the communication. Note that the

sender does not trust the feedback from the second receiver, so this feedback is simply ignored,

or in other words, in this particular setting there is no difference between giving potentially

dishonest feedback and not giving any feedback at all. In the end, we have a broadcast channel

with one receiver and an eavesdropper against whom we aim to secure a message. Indeed,

Theorems 3.4-3.5 give the result of Chapter 2 as a special case when R2 = 0.

Equivalence between security notions

We show the following lemma which implies that the security requirement (3.10) is equiva-

lent to the extended notion of semantic security that we introduced in Section 3.2.2. This

result confirms the intuition of Section 1.4.3 that semantic security and information-theoretic

security are equivalent [24].

Lemma 3.1.

Advss
dis ≤

√
2 ·Advmis

dis (3.23)

Advmis
dis ≤ 4 ·Advss

dis log

(
2n

Advss
dis

)
. (3.24)

We provide the proof of the above lemma in Appendix B.5.

3.5 Coding scheme

We constructively prove the direct parts of Theorems 3.3-3.5 in this section.

3.5.1 Honest-but-curious receivers

Following the two-phase concept introduced in Chapter 2, our scheme for the broadcast

channel has two main steps:

1. Key generation. We create M pairwise keys, each key is shared between Alice and one of

the receivers, and it is perfectly secure from all the other receivers even if they collude.

2. Encrypted broadcast. Using the keys set up in the first phase, we employ an encrypted

version of the non-secure 1-to-M broadcast scheme as described above.

Our scheme uses the property of the encryption we have seen in Chapter 2 that fewer key

packets than message packets suffice. In addition, we make use of two key observations. First,

there is no need to run the key generation protocol one by one with each receiver, the key

generation phase can be done simultaneously with all receivers. Second, in the second step of

the non-secure coding scheme, when linear combinations of packets are sent, the receivers
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3.5. Coding scheme

cannot learn any new packet from the other receiver’s message, thus if packets in the first step

are properly encrypted no further encryption is needed in the second step. It follows that the

use of network coding does not compromise security.

Before giving a detailed description we illustrate these properties through an example.

Example

In our example Alice wants to securely send N1 = 1 message packet W1 = [W1,1] to Bob and

N2 = 2 message packets W2 = [W2,1,W2,2] to Calvin. The example protocol run is found in

Table 3.1 below.

Alice sends
Bob’s Calvin’s

Bob’s key Calvin’s key
Bob Calvin

ACK ACK decoded decoded

X1 random X × KB ,1 = X1

X2 random X X KB ,1

X3 random × X KB ,1 KC ,1 = X3

X4 =W1,1 ⊕KB ,1 × X KC ,1

X5 =W2,1 ⊕KC ,1 × X KC ,1 W2,1

X6 =W2,2 ⊕KC ,1 × × KC ,1 W2,1

X7 = X6 X × W2,1

X8 = X4 ⊕X7 X X W1,1 W2,1,W2,2

Table 3.1: An example of the protocol run.

Key generation:

a) Alice transmits random (independent and uniformly distributed) packets X1, X2, X3. At the

end of this phase, Alice and Bob share a secret key packet KB ,1 = X1 that Bob received and

Calvin did not. Similarly, Alice and Calvin share the secret key packet KC ,1 = X3. The packet

X2 which was received by both Bob and Calvin is discarded.

Encrypted message transmissions:

b) Alice secures Bob’s first message packets with a one-time-pad (using the secret key gen-

erated above) and repeatedly transmits an encrypted packet until either Bob or Calvin

receive. In our example this happens immediately (X4). The packet received only by Calvin

is a side information which enables us to efficiently use the channel at a later point.

c) In the next few transmissions (X5-X7) we do the same with Calvin’s packets. As we see, if

only Calvin receives (X5), a part of the message is successfully delivered, however the key

used for encryption can be used again securely to encrypt the next message packet (X6). If

neither Bob nor Calvin receive (X6), the packet is simply repeated (X7).

d) Once Bob also has a side information (X7), we send the sum of the two side information

packets thereby sending information that is useful simultaneously for both receivers. This

happens at transmission X8, where both Bob and Calvin can decode a novel message

packet. Note that at this step we do not need any new keys to secure the transmission.
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Chapter 3. Secret-message capacity of a broadcast channel

Detailed description

We need to define a few parameters. We note that in the case of honest-but-curious receivers

a variable-length coding scheme that adapts to the actual erasures could be used, because in

this case we do not need to rely on the statistical behavior of the channel to ensure the security

of the keys. Using such a scheme, in this setting, we could achieve secret-message capacity

even without knowing the erasure probabilities of the channel. For consistency with the rest

of thesis, we define a fixed-length coding scheme also here.

The length of the secret keys we aim to set up for receiver j (expressed in terms of packets) is

s j , and the length of the key generation phase in terms of transmissions is n1. We define

s j = N j

1−
∏M

k=1δk

δ j

1−∏M
k=1δk

+

N j

1−
∏M

k=1δk

δ j

1−∏M
k=1δk


3/4

, and n1 = max
j

s j + s3/4
j

(1−δ j )
∏M

k=1δk

δ j

. (3.25)

1. Key generation: K j denotes the key between Alice and receiver j . Alice transmits n1

random packets X1, . . . , Xn1 generated uniformly at random over FL
q . K j is the vector of

the first s j packets Xi for which Fi = j . If there are less than s j such packets, we stop

and declare an error for receiver j .

That is, Alice transmits random packets, and we treat a packet received by only one

receiver as a shared secret between Alice and that receiver.

2. Encrypted broadcast: We now follow the two transmission steps in the non-secure

protocol, with the following modifications: in Step a), we encrypt the message packets

using key packets as we specify in the following; in Step b), we simply reuse the already

encrypted packets from Step a) to create the required linear combinations – we do not

use additional key packets.

Step 2.a) Before transmitting each message packet to receiver i , Alice encrypts it by

XOR-ing it with a key packet that has either not been used for encryption

in the past, or if used, none of the other users received the corresponding

transmitted packet. In other words, a key is reused until an encrypted packet

is received by any of the other receivers.

Consider the transmissions to receiver j . Initially, Alice encrypts the first

packet for j as W j ,1 ⊕K j ,1 and transmits it until it is received by at least one of

the receivers. If only receiver j receives this encrypted packet, she reuses the

same key packet K j ,1 to encrypt the next message packet. Subsequently, if for

some i and `< N j , k < s j : Xi =W ′
j ,` =W j ,`⊕K j ,k , then

Xi+1 =


Xi , if Fi =;
W ′

1,`+1 =W j ,`+1 ⊕K j ,k , if Fi = j

W ′
1,`+1 =W j ,`+1 ⊕K j ,k+1, otherwise.

(3.26)
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An error is declared if the s j key packets are not sufficient to encrypt all the N j

message packets of W j . Alice performs similar transmissions for all receivers.

Step 2.b) At the end of Step 2.a), the receivers have received as side information en-

crypted packets that are not intended for them; we use the same encoding as

in Step b) of the non-secure protocol to deliver these packets to their intended

receivers.

Analysis of the secure protocol

Condition (3.1) is clearly satisfied by our scheme. We show the other required properties for

receiver j , the same arguments apply to any j .

We first argue that our scheme satisfies (3.3). From construction, we create at the end of the

first phase a key K j with

I
(
K j ;Y n1

1 , . . . ,Y n1
j−1,Y n1

j+1, . . . ,Y n1
M F n1

)
= 0. (3.27)

In Step 2.a), every packet W ′
j ,` that any of the other receivers receive has been encrypted using

a different key packet K j ,i . These key packets, from (3.27), are secret from all other receivers.

Thus the packets received by the M −1 other receivers together are one-time pad encrypted

and hence perfectly secret from them, even if they collude. In Step 2.b), Alice transmits linear

combinations of packets W ′
j ,` that have not been received by receiver j , but have already been

received by at least one of the other M −1 receivers – thus, assuming these receivers collude,

they do not receive any innovative W ′
j ,`. This concludes our argument and shows that

I
(
W j ;Y n

1 , . . . ,Y n
j−1,Y n

j+1, . . . ,Y n
M F n

)
= 0. (3.28)

We next prove (3.2) showing that receivers can decode. Trivially, if no error is declared, re-

ceiver j can retrieve W j from W ′
j using his key K j . We show that the probability of declaring

an error can be made arbitrarily small. It is enough to consider the following two error events

since the other error events are similar: (i) we do not obtain s j key packets for receiver j during

the first phase, and (ii) s j key packets are not sufficient in Step 2.a).

(i) Denote by κ the number of packets in the first phase that are received only by receiver j .

Then, κ is the sum of n1 i.i.d. Bernoulli variables with parameter p = (1−δ j )
∏M

k=1δk

δ j
. Thus,

E {κ} = n1p = n1(1−δ j )

∏M
k=1δk

δ j
≥ s j + s3/4

j .

The probability of error event (i) equals

Pr
{
κ< s j

}≤ Pr
{
E {κ}−κ> s3/4

j

}
≤ Pr

{
|E {κ}−κ| > s3/4

j

}
≤ e−a3.29

p
s j , (3.29)

for some constant a3.29 > 0. The last inequality follows from the Chernoff-Hoeffding

bound. Selecting n sufficiently large, this error probability can be made arbitrarily small.
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(ii) This error event is similar, it occurs if the number of packets that only Bob receives

is significantly less than its expected value, and the same technique applies. We omit

details to avoid repetitive arguments.

With this we have shown that the scheme is secure against an honest-but-curious adversary. A

straightforward calculation with the given parameters together with the capacity achieving

property of non-secure 1-to-M protocol shows that our proposed schemes achieves any

rate tuple within the region given by (3.18), which concludes the proof of achievability of

Theorem 3.3. For completeness we provide the rate calculation in Appendix B.3.

3.5.2 Dishonest adversary

We describe a coding scheme for M = 2 that provides security for an honestly acknowledging

receiver even if the other receiver is dishonest. To achieve this goal our starting points are

the results of Chapter 2 for providing secrecy against an eavesdropper and the results of

Section 3.5.1 for serving multiple receivers at the same time. Compared to the previous coding

schemes our scheme against a dishonest adversary has the following distinguishing features:

• In the key generation phase the set of packets we use to compute the keys for Bob and

for Calvin are not disjoint. Despite of this, we show that the produced keys are secure.

• Although the adversary can influence the run of the protocol, we ensure that inde-

pendently of his acknowledging strategy, he cannot control how many times a given

encrypted packet from the other receiver’s message appears on the channel. From this

property it follows that we can estimate accurately the number of packets the adversary

overhears which makes it possible to use the encryption scheme as seen in Chapter 2.

• In the second phase we need coding to make transmissions maximally useful for both

users as seen in the previous section. Alice can send an XOR-ed packet only if both

receivers have a side information packet. However, a dishonest user might deny having

a side information packet and hinder these coded transmissions. In our scheme, we

limit the number of transmissions that each step might take, ensuring that the honest

receiver does not experience a loss in rate even if no encoded transmissions take place.

The design principle of the scheme is not different from the previous schemes: we have a key

generation phase and an encrypted message transmission phase. We apply coding similarly

as in Chapter 2 to make security for one receiver independent from the feedback of the other

receiver.

The operation of the protocol utilizes a set of parameters which we can directly calculate

before the protocol starts, and whose use will be described in the following. Recall that Bob’s

message W1 consists of N1 packets, while Calvin’s message W2 consists of N2 packets. Similarly

as before Fi ,F∗
i ∈ {B ,C ,BC ,;} denotes that “Bob received”, “Calvin received”, “both received”,

“none received”.

s′B = N1
1−δ2

1−δ1δ2
+

(
N1

1−δ2

1−δ1δ2

) 3
4

(3.30)

44



3.5. Coding scheme

s′C = N2
1−δ1

1−δ1δ2
+

(
N2

1−δ1

1−δ1δ2

) 3
4

(3.31)

sB = s′B
δ2

+ s′3/4
B

δ2
(3.32)

sC = s′C
δ1

+ s′3/4
C

δ1
(3.33)

n1 = max

{
sB

1−δ1
+

(
sB

1−δ1

) 3
4

,
sC

1−δ2
+

(
sC

1−δ2

) 3
4
}

(3.34)

n2,1 = N1

1−δ1δ2
+

(
N1

1−δ1δ2

)3/4

(3.35)

n2,2 = N2

1−δ1δ2
+

(
N2

1−δ1δ2

)3/4

(3.36)

n′
2,3 =

N1

1−δ1
+

(
N1

1−δ1

)3/4

−n2,1 (3.37)

n′′
2,3 =

N2

1−δ2
+

(
N2

1−δ2

)3/4

−n2,2 (3.38)

n = n1 +n2,1 +n2,2 +max
{
n′

2,3,n′′
2,3

}
. (3.39)

Key Generation

1. Alice transmits n1 packets X1, . . . , Xn1 . She generates these packets uniformly at random

from FL
q using her private randomness, and independently of W1, W2.

2. Bob and Calvin acknowledge which packets they have received. If Bob receives less than

sB packets we declare a protocol error for him. Similarly for Calvin if he receives less

than sC packets. When an error is declared for both users, the protocol terminates. If

not, we continue with the user not in error, as if the user in error did not exist.

3. Let X B
1 be the row vector of the first sB packets that Bob acknowledged. Alice and Bob

create s′B secret key packets as KB = X B
1 HKB , where HKB is a sB × s′B matrix and is a

parity check matrix of a [sB , sB − s′B ] MDS code. Similarly, using the first sC packets that

Calvin acknowledges, Alice and Calvin create s′C secret key packets using a matrix HKC .

Matrices HKB , HKC are publicly known and fixed in advance.

Encrypted message broadcast

Encryption

4. Alice and Bob produce N1 linear combinations of their s′B secret key packets as K ′
B =

KBGK ′
B

, where GK ′
B

is a s′B ×N1 matrix and is a generator matrix of an [N1, s′B ] MDS code

which is also publicly known. Similarly, Alice and Calvin create N2 linear combinations

of their s′C key packets.

5. Alice creates N1 encrypted messages to send to Bob

UB ,i =W1,i ⊕K ′
B ,i , i = 1. . . N1. (3.40)
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Chapter 3. Secret-message capacity of a broadcast channel

Let UB denote the set
{
UB ,i : i = 1, . . . , N1

}
. She similarly produces a set UC of N2 en-

crypted messages to send to Calvin.

Encrypted transmissions

6. Alice sequentially takes the first encrypted packet from UB ,i , i = 1. . . N1, that is not yet

acknowledged by either Bob or Calvin and repeatedly transmits it, until it is acknowl-

edged by either receiver. That is, if at time i Alice transmits Xi =UB , j for some j < N1,

then

Xi+1 =
Xi , if F∗

i =;
UB , j+1, otherwise.

(3.41)

Alice continues these transmissions until all packets from UB are acknowledged or n2,1

transmissions are already made in this step. In the former case, she continues with the

next step. In the latter case, if Bob does not acknowledge N1(1−δ1)
1−δ1δ2

packets, then he is

considered to be dishonest and Alice continues with sending only Calvin’s packets using

ARQ. Similarly, if Calvin does not acknowledge N1(1−δ2)
1−δ1δ2

packets, then he is considered

to be dishonest and Alice continues with sending only Bob’s packets. In case neither

receiver is considered to be dishonest, still UB is not completely delivered, Alice stops

and an error is declared for both receivers.

7. Similarly, Alice sends not-yet-acknowledged encrypted packets from UC ,i , i = 1. . . N2,

until either Bob or Calvin acknowledges. If at time i Alice transmits Xi =UC , j for some

j < N2, then

Xi+1 =
Xi , if F∗

i =;
UC , j+1, otherwise.

(3.42)

Alice continues these transmissions until all packets from UC are acknowledged or n2,2

transmissions are already made in this step. In the former case, she continues with the

next step. In the latter case, if Bob does not acknowledge N2(1−δ1)
1−δ1δ2

packets, then he is

considered to be dishonest and Alice continues with sending only Calvin’s packets using

ARQ. Similarly, if Calvin does not acknowledge N2(1−δ2)
1−δ1δ2

packets, then he is considered

to be dishonest and Alice continues with sending only Bob’s packets. In case neither

receiver is considered to be dishonest, still UC is not completely delivered, Alice stops

and an error is declared for both receivers.

8. Let QB denote the set of packets that only Calvin acknowledged in Step 6. Similarly, QC

denotes those packets that only Bob acknowledged in Step 7. Alice sequentially takes

packets from QB and QC . For each transmission, she takes the first packet from QB that

Bob has not acknowledged together with the first packet from QC that Calvin has not yet

acknowledged and she transmits the XOR of the two packets. If at time i Alice transmits
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3.5. Coding scheme

Xi =QB , j ⊕QC ,` for some j < |QB |,`< |QC |, then

Xi+1 =



Xi , if F∗
i =;,

QB , j+1 ⊕QC ,`, if F∗
i = B ,

QB , j ⊕QC ,`+1, if F∗
i =C ,

QB , j+1 ⊕QC ,`+1, if F∗
i = BC .

(3.43)

Alice continues with the XOR transmissions as long as either receiver acknowledges

all his packets. If Bob has already acknowledged all packets from QB , Alice repeats

packets that are not yet acknowledged by Calvin from QC . Similarly, if Calvin has already

acknowledged all packets from QC , then Alice continues with repeating the remaining

packets for Bob from QB .

If at any point, the overall number of transmissions would exceed n as defined in (3.39) we

stop and declare an error for the party (or parties) who has not acknowledged all his encrypted

message packets.

Protocol analysis

We prove that the presented scheme is secure against a dishonest adversary as defined in

Definition 3.4 and runs without error with high probability. We use lemmas whose proofs

are provided in Appendix B. A simple calculation with the given parameters (delegated to

Appendix B.3) shows that it achieves any rate pair in the the region defined by (3.19)-(3.20).

Security In our argument we focus on the secrecy of W1 against a dishonest Calvin, but the

same reasoning works for W2 against a dishonest Bob as well.

To analyze the secrecy of W1, we may, without loss of generality, assume that no error was

declared for Bob during the key generation phase. Recall that an error is declared for Bob

only if Bob fails to acknowledge at least sB packets. If an error was in fact declared for Bob, no

information about Bob’s message W1 is ever transmitted by Alice. However, note that we do

account for this error event when we analyze the probability of error for Bob.

We observe that the generation of keys KB and KC is no different than the key generation

against a passive eavesdropper. Also, KB depends only on Bob’s feedback and Calvin has no

control over the protocol run in the key generation phase. Hence, we can rely on the proof of

Theorem 1.1 to show that the key generation phase is secure. We have the following lemma.

Lemma 3.2. When Bob is honest and no error is declared for Bob in the key generation phase,

I
(
KB ;Y n1

2 F n1ΘC
)≤ s′B e−a3.44

p
s′B , (3.44)

where a3.44 > 0 is a constant. Further, KB is uniformly distributed over its alphabet.

The proof of this lemma is the same as the proof of Theorem 1.1 with appropriate substitution
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Chapter 3. Secret-message capacity of a broadcast channel

of the parameters. For this reason we omit the detailed proof.

We still need to show that the secrecy condition is satisfied by the scheme even if Calvin

chooses any message distribution PW1 and applies any acknowledging strategy, i.e., (3.7)

holds. In the proof we omit taking the maximum, but the argument holds for any message

distribution and any adversarial strategy, so the statement follows. We have

I
(
W1;Y n

2 F nΘC
)≤ I

(
W1;Y n

2 |Y n1
2 F nΘCUC

)
, (3.45)

where the inequality used the fact that ΘA ,ΘC ,W2,F n are independent of W1 and we may

express Y n1
2 ,UC as deterministic functions ofΘA ,ΘC ,W2,F n . Let MC

B be the random variable

which denotes the number of distinct packets of UB that Calvin observes either in its pure

form or in a form where the UB ,i packet is added with some UC , j packet. We have the following

two lemmas:

Lemma 3.3. H
(
Y n

2 |Y n1
2 F nΘCUC H

)≤ E{
MC

B

}
.

Lemma 3.4. H
(
Y n

2 |W1Y n1
2 F nΘCUC

)≥ E{
min

(
s′B , MC

B

)}− I
(
KB ;Y n1

2 F n1ΘC
)

.

The proofs of these lemmas are found in Appendix B.1-B.2. Using these in (3.45), we have

I
(
W1;Y n

2 F nΘC
)≤ E{

max
(
0, MC

B − s′B
)}+ I

(
KB ;Y n1

2 F n1ΘC
)

. (3.46)

Lemma 3.2 gives a bound for the second term. Notice that the probability that Calvin overhears

a packet UB ,i (where we count overhearing in both pure form or as part of a linear combina-

tion), is 1−δ2
1−δ1δ2

independently of Calvin’s acknowledging strategy, because Calvin has no control

over how many times a given packet is transmitted (it is repeated until Bob acknowledges).

Thus, MC
B is a sum of N1 independent random variables, and hence E

{
MC

B

}= N1
1−δ2

1−δ1δ2
. Since

s′B = N1
1−δ2

1−δ1δ2
+

(
N1

1−δ2
1−δ1δ2

) 3
4

, by applying Chernoff-Hoeffding bound we have

E
{
max

(
0, MC

B − s′B
)}≤ N1 Pr

{
MC

B > s′B
}≤ N1e−a3.47

p
N1 , (3.47)

for a constant a3.47 > 0. Substituting this together with Lemma 3.2 in (3.46) we get

I
(
W1;Y n

2 F nΘC
)≤ N1e−a3.47

p
N1 + s′B e−a3.44

p
s′B , (3.48)

for constants a3.44, a3.47 > 0. By choosing a large enough value of N1 (which implies a large

enough n), we satisfy (3.7).

Error probability An error happens if (a) Bob receives less than sB packets in the first phase,

or (b) he does not receive N1 encrypted message packets in steps 6 and 8 before the protocol

terminates. Both these error events have the same nature. An error happens if Bob collects

significantly fewer packets than he is expected to receive in a particular step. We apply the

Chernoff-Hoeffding bound as we did earlier proving that the probability of these events can

be made arbitrarily small. We omit details to avoid repetition.
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3.5. Coding scheme

3.5.3 Distribution independent scheme

In the following, we describe a scheme which satisfies the stronger security notion as defined

in Definition 3.7. The protocol of Section 3.5.2 cannot satisfy distribution independent security,

because if Calvin knows his message a priori, then UC carries information about the packets

used in the key generation phase, hence potentially giving him extra information about Bob’s

key. We can overcome this issue if we modify the key generation phase and make sure that

no packet used in generating Calvin’s key contributes to Bob’s key, thus UC is conditionally

independent of Bob’s key given W2 and Calvin’s observation of the protocol. This results in

two separate key generation phases, one for Bob and one for Calvin.

Instead of sending n1 key generation packets as defined in (3.34), we have a key generation of

length n∗
1 +n∗

2 , where

n∗
1 = sB

1−δ1
+

(
sB

1−δ1

) 3
4

(3.49)

n∗
2 = sC

1−δ2
+

(
sC

1−δ2

) 3
4

. (3.50)

Bob’s key is then computed from the first n∗
1 packets, while Calvin’s key is computed from

the next n∗
2 packets. All other parameters remain the same as in Section 3.5.2 and the second

phase remains unchanged too.

This scheme provides distribution independent security, which property is proved in Ap-

pendix B.4. A straightforward rate calculation completes the proof of Theorem 3.5.
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Chapter 3. Secret-message capacity of a broadcast channel

3.6 Outer Bound

We show the converse part of Theorem 3.3, by which we conclude the proof of Theorems 3.3

and 3.4. This result proves optimality of the schemes presented in Section 3.5.1 and in Sec-

tion 3.5.2. Our derivation assumes honest feedback. This provides a valid outer bound for

a dishonest adversary also, since honest acknowledging is a valid adversarial strategy. We

provide an intuitive interpretation of our proof in Section 3.6.2.

Proof. We present our proof for M = 3, the generalization of the same argument for any M is

straightforward. We are going to show that for any j and any π

R j

(
1− δ1δ2δ3

δ j

)
(1−δ j )δ1δ2δ3

δ j
(1−δ1δ2δ3)

+ Rπ1

1−δπ1

+ Rπ2

1−δπ1δπ2

+ Rπ3

1−δπ1δπ2δπ3

≤ 1 (3.51)

holds, which implies the statement of the theorem. Also, to avoid cumbersome notation we

show (3.51) for j = 1 and π = (1,2,3). With simple relabeling, the same argument holds for

any j and π.

n ≥
n∑

i=1
H (Xi ) ≥

n∑
i=1

H
(

Xi |Y i−1
1 F i−1

)
=

n∑
i=1

H
(

Xi |Y i−1
1 Y i−1

2 F i−1
)
+ I

(
Xi ;Y i−1

2 |Y i−1
1 F i−1

)
(3.52)

=
n∑

i=1
H

(
Xi |Y i−1

1 Y i−1
2 Y i−1

3 F i−1
)
+ I

(
Xi ;Y i−1

2 |Y i−1
1 F i−1

)
+ I

(
Xi ;Y i−1

3 |Y i−1
1 Y i−1

2 F i−1
)

(3.53)

=
n∑

i=1
H

(
Xi |W1W2W3Y i−1

1 Y i−1
2 Y i−1

3 F i−1
)

(3.54)

+ I
(

Xi ;Y i−1
2 |Y i−1

1 F i−1
)

(3.55)

+ I
(

Xi ;Y i−1
3 |Y i−1

1 Y i−1
2 F i−1

)
(3.56)

+ I
(

Xi ;W1W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
. (3.57)

In the following Lemmas 3.5-3.8 we give bounds on each of the terms (3.54)-(3.57). Combining

these results together and taking the asymptotic of both sides gives (3.51) and in turn the

statement of the theorem. The proofs of Lemmas 3.6-3.8 are delegated to Section 3.6.3.

Lemma 3.5. From conditions (3.1)-(3.3) it follows that

n∑
i=1

H
(

Xi |Y i−1
1 Y i−1

2 Y i−1
3 W1W2W3F i−1

)
≥ nR1(1−δ2δ3)

(1−δ1)δ2δ3(1−δ1δ2δ3)
−nE3.5, (3.58)

where E3.5 = E3.10
1−δ2δ3

(1−δ1)δ2δ3
, and E3.10 is a vanishing error constant specified in the proof.
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Lemma 3.6. From conditions (3.1)-(3.3) it follows that

n∑
i=1

I
(

Xi ;Y i−1
2 |Y i−1

1 F i−1
)
≥ nR1

1−δ1
− nR1

1−δ1δ2
−nE3.6, (3.59)

where E3.6 = h2(ε)+εR1
1−δ1

.

Lemma 3.7. From conditions (3.1)-(3.2) it follows

n∑
i=1

I
(

Xi ;Y i−1
3 |Y i−1

1 Y i−1
2 F i−1

)
≥ n(R1 +R2)

1−δ1δ2
− n(R1 +R2)

1−δ1δ2δ3
−nE3.7, (3.60)

where E3.7 = h2(2ε)+2ε(R1+R2)
1−δ1δ2

.

Lemma 3.8. From conditions (3.1)-(3.2) it follows that

n(R1 +R2 +R3)

1−δ1δ2δ3
−nE3.8 ≤

n∑
i=1

I
(

Xi ;W1W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
≤ n(R1 +R2 +R3)

1−δ1δ2δ3
, (3.61)

where E3.8 = h2(3ε)+3ε(R1+R2+R3)
1−δ1δ2δ3

.

3.6.1 Proof of Theorem 3.2

Proof. It is sufficient to prove the inequality for π= (1,2,3). By relabeling, the same argument

holds for any π. We repeat the first steps of the previous proof and bound term (3.54) by 0:

n ≥
n∑

i=1
I
(

Xi ;Y i−1
2 |Y i−1

1 F i−1
)

(3.62)

+ I
(

Xi ;Y i−1
3 |Y i−1

1 Y i−1
2 F i−1

)
(3.63)

+ I
(

Xi ;W1W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
. (3.64)

Lemmas 3.6-3.8 give bounds on terms (3.62)-(3.64) respectively. Combining these gives the

stated inequality.

3.6.2 Interpretation of the converse proof

To facilitate understanding, beside our formal proof through Lemmas 3.5-3.8 here we provide

some intuitive interpretation of terms (3.54)-(3.57) and of the inequalities we derive. Similarly

as in the point-to-point setting, we can match terms to steps of our scheme, but we stress that

the proof holds for any possible scheme.

In Lemma 3.5 we see the following (here we omit small terms for simplicity):

(1−δ1)δ2δ3

n∑
i=1

H
(

Xi |Y i−1
1 Y i−1

2 Y i−1
3 W1W2W3F i−1

)
≥ nR1(1−δ2δ3)

1−δ1δ2δ3
. (3.65)
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The entropy term on the LHS of this inequality accounts for fresh randomness sent by the

source. In our scheme we call this the key generation phase. The constant factor (1−δ1)δ2δ3

suggests that a random packet becomes a key for receiver 1 if if he is the only one that

receives the transmission. The RHS of the inequality corresponds to the expected number of

(encrypted) W1 packets that not only receiver 1 gets, but some other receivers also overhear.

These are the packets that need to be secured, thus to be able to secure them, receiver 1 needs

at least the same amount of secret key packets. This lower bound on term (3.54) suggests

that any scheme has to introduce some source randomness. We find it natural to call it key

generation.

Terms (3.55)-(3.57) correspond to the second phase of our protocol. Term (3.57) corresponds

to the first step of the message transmission phase (see Step (a)), when the sender ensures

that the receivers together could decode all the messages. Terms (3.55)-(3.56) account for

the encoded transmissions. E.g. (3.55) intuitively corresponds to “a packet that is of interest

for receiver 1 known to receiver 2”. Indeed, Lemma 3.6 lower bounds this term with the

expected number of transmissions that are needed to convey to receiver 1 the side information

overheard by receiver 2.

3.6.3 Proofs of Lemmas 3.5-3.8

For technical reasons the order of the proofs does not follow the order of appearance of the

Lemmas. We use that the private randomness of the receivers does not help them decoding,

as we have seen in the proof of Lemma 2.2.

Proof of Lemma 3.8

n(R1 +R2 +R3)−nE3.8(1−δ1δ2δ3) ≤ I
(
Y n

1 Y n
2 Y n

3 F n ;W1W2W3
)

(3.66)

=
n∑

i=1
I
(
Y1,i Y2,i Y3,i Fi ;W1W2W3|Y i−1

1 Y i−1
2 Y i−1

3 F i−1
)

(3.67)

=
n∑

i=1
I
(
Y1,i Y2,i Y3,i ;W1W2W3|Y i−1

1 Y i−1
2 Y i−1

3 F i−1Fi

)
(3.68)

=
n∑

i=1
Pr{Fi 6= ;} I

(
Y1,i Y2,i Y3,i ;W1W2W3|Y i−1

1 Y i−1
2 Y i−1

3 F i−1,Fi 6= ;
)

(3.69)

=
n∑

i=1
I
(

Xi ;W1W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
(1−δ1δ2δ3). (3.70)

Here, the first inequality is Fano’s inequality, and we exploited the independence property of

Fi . This completes the proof of the first inequality of the lemma. Further, we also see that

I
(
Y n

1 Y n
2 Y n

3 F n ;W1W2W3
)≤ n(R1 +R2 +R3). (3.71)
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From (3.66)-(3.70)

I
(
Y n

1 Y n
2 Y n

3 F n ;W1W2W3
)= n∑

i=1
I
(

Xi ;W1W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
(1−δ1δ2δ3), (3.72)

which gives the second inequality of the lemma.

Proof of Lemma 3.6

From the same type of derivation as we apply in Lemma 3.8, we have that

n∑
i=1

I
(

Xi ;W1|Y i−1
1 F i−1

)
≥ nR1

1−δ1
−nE3.6, (3.73)

n∑
i=1

I
(

Xi ;W1|Y i−1
1 Y i−1

2 F i−1
)
≤ nR1

1−δ1δ2
. (3.74)

Thus,

nR1

1−δ1
−nE3.6 ≤

n∑
i=1

I
(

Xi ;W1|Y i−1
1 F i−1

)
(3.75)

=
n∑

i=1
I
(

Xi ;W1|Y i−1
1 Y i−1

2 F i−1
)
+ I

(
Xi ;Y i−1

2 |Y i−1
1 F i−1

)
− I

(
Xi ;Y i−1

2 |Y i−1
1 F i−1W1

)
≤

n∑
i=1

I
(

Xi ;W1|Y i−1
1 Y i−1

2 F i−1
)
+ I

(
Xi ;Y i−1

2 |Y i−1
1 F i−1

)
(3.76)

≤ nR1

1−δ1δ2
+

n∑
i=1

I
(

Xi ;Y i−1
2 |Y i−1

1 F i−1
)

(3.77)

Proof of Lemma 3.7

The proof follows the same steps as the proof of Lemma 3.6. We omit details.

Proof of Lemma 3.5

To show the statement, we prove the next two helper lemmas. Combining the results of

Lemma 3.9 and Lemma 3.10 completes the proof of Lemma 3.5.

Lemma 3.9. From the definition of the channel it follows that

n∑
i=1

H
(

Xi |Y i−1
1 Y i−1

2 Y i−1
3 W1W2W3F i−1

)
≥ 1−δ2δ3

(1−δ1)δ2δ3

n∑
i=1

I
(

Xi ;Y i−1
1 |Y i−1

2 Y i−1
3 W1W2W3F i−1

)
.

(3.78)

Proof. The proof follows the same steps as we have seen when deriving inequality (2.45). Here
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we omit some intermediate steps. Recall that W is a shorthand for (W1,W2,W3).

0 ≤ H
(
Y n

1 |Y n
2 Y n

3 F nW
)= H

(
Y n−1

1 |Y n
2 Y n

3 F nW
)+H

(
Y1,n |Y n−1

1 Y n
2 Y n

3 F nW
)

(3.79)

= H
(
Y n−1

1 |Y n−1
2 Y n−1

3 F n−1W
)− I

(
Y n−1

1 ;Y2,nY3,nFn |Y n−1
2 Y n−1

3 F n−1W
)

+H
(
Y1,n |Y n−1

1 Y n
2 Y n

3 F nW
)

(3.80)

= H
(
Y n−1

1 |Y n−1
2 Y n−1

3 F n−1W
)− I

(
Y n−1

1 ; Xn |Y n−1
2 Y n−1

3 F n−1W
)

(1−δ2δ3)

+H
(
Xn |Y n−1

1 Y n−1
2 Y n−1

3 F n−1W
)

(1−δ1)δ2δ3. (3.81)

We do the same steps recursively to obtain the statement of the lemma.

Lemma 3.10. From conditions (3.1)-(3.3) it follows that

n∑
i=1

I
(

Xi ;Y i−1
1 |Y i−1

2 Y i−1
3 F i−1W1W2W3

)
≥ nR1

1−δ1δ2δ3
−nE3.10, (3.82)

where E3.10 = 2E3.10a +E3.10b +E3.10c +E3.10d . E3.10a ,E3.10b ,E3.10c ,E3.10d are vanishing error

terms, defined throughout the proof.

Proof.

n∑
i=1

I
(

Xi ;Y i−1
1 |Y i−1

2 Y i−1
3 F i−1W1W2W3

)
=

n∑
i=1

I
(

Xi ;Y i−1
1 |Y i−1

2 Y i−1
3 F i−1W1

)
(3.83)

− I
(

Xi ;W2W3|Y i−1
2 Y i−1

3 F i−1W1

)
+ I

(
Xi ;W2W3|Y i−1

1 Y i−1
2 Y i−1

3 F i−1W1

)
. (3.84)

We bound the terms in (3.83)-(3.84) one by one. First, consider the two terms in (3.84). From

the decodability condition and Fano’s inequality we have

I
(
Y n

2 Y n
3 F n ;W2W3|W1

)≤ I
(
Y n

2 Y n
3 F n ;W2W3

)+n(h2(ε)+ε(R2 +R3)). (3.85)

Following the same kind of derivation as in the proof of Lemma (3.8), we can write

n∑
i=1

I
(

Xi ;W2W3|Y i−1
2 Y i−1

3 F i−1W1

)
≤

n∑
i=1

I
(

Xi ;W2W3|Y i−1
2 Y i−1

3 F i−1
)
+nE3.10a , (3.86)

where E3.10a = h2(ε)+ε(R2+R3)
1−δ2δ3

.

For the other term, we use the independence property of the messages:

I
(
Y n

1 Y n
2 Y n

3 F n ;W2W3|W1
)= I

(
Y n

1 Y n
2 Y n

3 F n ;W2W3
)− I (W1;W2W3)+ I

(
W1;W2W3|Y n

1 Y n
2 Y n

3 F n)
≥ I

(
Y n

1 Y n
2 Y n

3 F n ;W2W3
)

, (3.87)

and thus

n∑
i=1

I
(

Xi ;W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1W1

)
≥

n∑
i=1

I
(

Xi ;W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
. (3.88)
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Now both terms have the form which is similar to those seen in Lemma 3.8. This enables us to

bound these terms using the same ideas. Doing so gives

−
n∑

i=1
I
(

Xi ;W2W3|Y i−1
2 Y i−1

3 F i−1W1

)
≥−n(R2 +R3)

1−δ2δ3
−nE3.10a (3.89)

n∑
i=1

I
(

Xi ;W2W3|Y i−1
1 Y i−1

2 Y i−1
3 F i−1W1

)
≥ n(R2 +R3)

1−δ1δ2δ3
−nE3.10a . (3.90)

It remains to give a bound on the term in (3.83). From the security condition1 and after a few

basic steps (as seen in the derivation of (2.54)) we can arrive to

nE3.10b >
n∑

i=1
I
(

Xi ;W1|Y i−1
2 Y i−1

3 F i−1
)
=

n∑
i=1

−I
(

Xi ;Y i−1
1 |Y i−1

2 Y i−1
3 F i−1W1

)
,

+ I
(

Xi ;W1|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
+ I

(
X1;Y i−1

1 |Y i−1
2 Y i−1

3 F i−1
)

, (3.91)

where E3.10b = ε
1−δ2δ3

. From a similar result as we have seen in Lemma 3.8:

I
(

Xi ;W1|Y i−1
1 Y i−1

2 Y i−1
3 F i−1

)
≥ nR1

1−δ1δ2δ3
−nE3.10c , (3.92)

where E3.10c = h2(ε)+εR1
1−δ1δ2δ3

. Further, a symmetric result to Lemma 3.7 shows:

I
(

X1;Y i−1
1 |Y i−1

2 Y i−1
3 F i−1

)
≥ n(R2 +R3)

1−δ2δ3
− n(R2 +R3)

1−δ1δ2δ3
−nE3.10d , (3.93)

where E3.10d = h2(2ε)+2ε(R2+R3)
1−δ2δ3

. Applying these bounds in (3.91) results

n∑
i=1

−I
(

Xi ;Y i−1
1 |Y i−1

2 Y i−1
3 F i−1W1

)
≥ n(R2 +R3)

1−δ2δ3
− n(R1 +R2 +R3)

1−δ1δ2δ3
−n(E3.10b +E3.10c +E3.10d ).

(3.94)

Substituting back (3.89)-(3.90) and (3.94) to (3.83) results the claim of the lemma.

3.7 Next steps

In this chapter we have seen that the techniques developed for a point-to-point channel are

applicable (with appropriate modifications) for a broadcast channel. Our two-phase protocol

design achieves capacity in this setting also. Indeed, we have seen that the point-to-point

channel can be seen as a special case of the broadcast channel.

In the following chapters we turn our attention toward networks, where communication takes

place over multiple channels.

1Recall that in outer bound proofs we use the weak form of security.
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4 Secret-message capacity in networks

The current chapter and the next chapter investigate the secret-message sending problem in

networks. We restrict our attention to networks where all channels operate independently. In

particular, we do not consider broadcasting, instead, our networks are built from the same

kind of point-to-point channels that Chapter 2 considers, i.e., all channels are potentially

eavesdropped point-to-point erasure channels with state-feedback. This model is well suited

for wired networks and also matches today’s common wireless practice which aims to operate

all wireless link independently using different frequency bands for each connection.

In this chapter we provide exact characterization for a number of simple network topologies.

First we look at a network that consists of multiple parallel channels between the source and

the destination node. We then consider the V-network, which is an intermediate step toward

multihop settings. The V-network has two sources that have a common destination and that

have access to a limited rate common randomness. The last topology we consider is the

triangle network, where the source is connected to the destination via two paths: one goes

through an intermediate node whereas the other is a direct channel. These topologies are

depicted in Figure 4.1.

S D
...

(a) Parallel channels

S1

S2

D

(b) V-network

S D

(c) Triangle network

Figure 4.1: Our networks. Causal channel state-feedback are sent over a separate noiseless
public channel (not shown).

In all cases we derive the secret-message capacity against an eavesdropper who wiretaps

any one channel of her choice. We present optimal coding schemes for each setting. We

build on ideas from the previous chapters, but beyond that, each setting requires several new

ideas. In particular, to achieve security we can exploit not only the channel erasures, but also
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Chapter 4. Secret-message capacity in networks

the structure of the network. Intermediate network nodes have the possibility to inject new

randomness to the network, while common randomness between nodes becomes a precious

resource. These new features make the behavior of even these simple networks nontrivial.

We extensively use the linear programming approach that we have introduced in Section 2.6

for the point-to-point channel. We give both our coding schemes and our outer bounds in

form of linear programs, which is a new approach to address network secrecy problems.

4.1 Related Work

Secure network coding considers secure communication over a network that consists of unit

capacity, error-free channels [55, 56]. A strong connection between the min-cut, the number

of eavesdropped edges and the secrecy capacity of the network was shown. In particular,

if the min-cut is h and Eve eavesdrops on z channels, the secrecy capacity is h − z. In that

setting, the secret-message capacity is the same whether or not the set of wiretapped edges

is known. In our networks this is not the case. Note that in the case of error-free channels,

state-feedback is superfluous. Hence, the setting of [55, 56] can be seen as a special case of our

network when all erasure probabilities are zero. Indeed, our proposed schemes specialize to

the secure network coding scheme when the erasure probabilities get close to 0.

Wyner’s wiretap channel [25] was generalized for networks [57, 58] and more specifically for

wireless erasure networks [59], however none of these works consider feedback.

4.2 Parallel channels

4.2.1 Model

As shown in Figure 4.1a, a source, Alice is connected to the destination, Bob through indepen-

dent parallel channels. The number of channels is `≥ 1. The operation of the channels are as

we described in Chapter 1. According to Definition 1.1 in this setting (1.6) becomes

Xk,i = fk,i

(
W,ΘA ,F i−1

)
, i = 1,2, . . . ,n; k = 1, . . . ,`. (4.1)

Bob simultaneously receives through all channels, hence (1.7) in Definition 1.1 has the form

Pr
{
φ

(
Y n

1 , . . . ,Y n
` ,F n ,ΘB

) 6=W
}< ε. (4.2)

The eavesdropper, Eve, might select any one channel to wiretap without Alice or Bob being

aware of her choice. This is equivalent to having an eavesdropper on every channel, but these

eavesdroppers do not collude. The security criterion (1.9) in Definition 1.4 is thus

I
(
W ; Z n

j F nΘE

)
< ε, ∀ j ∈ {1, . . . ,`}. (4.3)
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4.2.2 Main result

The following theorem gives the secret-message capacity for the communication setting

with ` parallel channels.

Theorem 4.1. The secret-message capacity of the network with ` parallel channels is the optimal

value of the following linear program, where all parameters mi ,ci ≥ 0:

maxR, such that:

R ≤ ∑̀
i=1

(1−δi )mi (4.4)

∀i ∈ {1, . . . ,`} :

mi (1−δi )
1−δi E

1−δiδi E
≤ ciδi E (1−δi )+

∑̀
j=1, j 6=i

c j
(
1−δ j

)
(4.5)

1 ≥ mi + ci . (4.6)

We show that through its parameter values, the above linear program describes a coding

scheme that achieves secret-message rate R in all cases when the linear program is feasible.

Discussion

The linear program in Theorem 4.1 follows the structure of the LP (2.61)-(2.63). Constraint (4.4)

is a rate constraint, constraints (4.5) are security constraints for each channel and con-

straints (4.6) are time-sharing constraints.

For the special case of ` = 1, we get the same LP as we have seen in Section 2.6 for the

point-to-point channel. Consider `= 2. Then, the linear program is the following.

maxR, such that:

R ≤ (1−δ1)m1 + (1−δ2)m2 (4.7)

m1 (1−δ1)
1−δ1E

1−δ1δ1E
≤ c1δ1E (1−δ1)+ c2 (1−δ2) (4.8)

m2 (1−δ2)
1−δ2E

1−δ2δ2E
≤ c2δ2E (1−δ2)+ c1 (1−δ1) (4.9)

1 ≥ m1 + c1 (4.10)

1 ≥ m2 + c2. (4.11)

It should be noted that – as opposed to the LP seen in Section 2.6 – the solution of this

linear program is not trivial any more. Given Theorem 2.1, it is clear that if we knew that the

eavesdropper eavesdrops on the first channel, the secret-message capacity would be

(1−δ2)+δ1E (1−δ1)
1−δ1δ1E

1−δ1δ
2
1E

, (4.12)
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Secret−message capacity without feedback

Figure 4.2: Parallel channels: example secret-message capacity with/without knowing Eve’s
location, with/without feedback

whereas if we knew that she selects the second channel, it would be

(1−δ1)+δ2E (1−δ2)
1−δ2δ2E

1−δ2δ
2
2E

. (4.13)

One might expect that if her selection is not known we can possibly achieve

min

{
(1−δ2)+δ1E (1−δ1)

1−δ1δ1E

1−δ1δ
2
1E

, (1−δ1)+δ2E (1−δ2)
1−δ2δ2E

1−δ2δ
2
2E

}
. (4.14)

The above formula gives a trivial upper bound, however – as we show here – it is not achievable

in general. In some cases the secret-message capacity is strictly smaller than (4.14). To

illustrate the gap, we plot one such case in Figure 4.2. In the same figure one can also observe

the role of state-feedback. In our example case, if feedback is not available, one cannot do

better than using secure network coding after applying an error correction code on each

channel.

4.2.3 Coding scheme

Principle

In our scheme we use the ideas that we developed in Chapter 2 for the point-to-point channel.

In particular, we have two phases on each channel, a key generation phase and a message
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4.2. Parallel channels

sending phase. This time, the sender sets up two different secret keys, one against each

eavesdropper (or in other words, one for each). Then, the message is split into ` parts, one

part to be sent on each channel. In the second phase channels operate independently. The

sender encrypts the message part assigned to each channel using the secret key of the given

channel and transmits the encrypted packets using ARQ in the same way as we have seen for

the point-to-point channel.

Compared to the point-to-point channel, the novelty of the scheme lies in the key generation

phase. We exploit the fact that a key generation packet sent over channel j and correctly

received by the destination can serve as a secret key against every eavesdropper, except the

one who wiretaps channel j . Clearly, such a packet is a shared randomness between the

sender and the destination, and the eavesdroppers on the other channels cannot have any

information about it. On the RHS of (4.5) new terms c j
(
1−δ j

)
appear, which corresponds to

this observation.

Detailed description

We assume that a feasible set of parameters for the linear program in Theorem 4.1 is given. For

a given n, we define the following parameters:

∀i ∈ {1, . . . ,`} :

nci = si

1−δi
+ s

3
4
i

1−δi
(4.15)

si =
s′i
δi E

+ s
′ 3

4
i

δi E
. (4.16)

Let Ni be the number of message packets that can be reliably and securely transmitted on

channel i using nmi transmissions and a key of size s′i +
∑`

j=1, j 6=i s j . By Theorem 2.2 and from

(4.5) such Ni exists such that limn→∞ Ni
n = mi (1−δi ). For a detailed calculation of Ni see

Appendix C.1. Then N =∑`
i=1 Ni , and an (n,ε, N ) coding scheme is as follows:

Key generation: On channel j Alice sends nc j packets selected independently and uniformly

at random. If the destination does not receive si packets on some channel i an error is

declared. For channel j the secret key S j consists of two parts. The first part is the s′j secure

key packets generated from the first s j packets received through channel j using the key

generation scheme in Section 1.5. The second part is the first
∑`

i=1,i 6= j si random packets that

the destination receives on channels other than j .

Encrypted message sending: For each channel j , N j message packets are assigned and Alice

performs the second phase of the scheme for a point-to-point channel (as described in

Section 2.4), i.e., she encrypts the N j message packets using the secret key S j and forwards

them with ARQ. If the destination does not receive all encrypted message packets, an error is

declared.
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Analysis

The security of the above scheme directly follows form Theorem 2.2 and (4.5). The rate of

the secret key S j that we set up for each channel equals ciδi E (1−δi )+∑`
j=1, j 6=i c j

(
1−δ j

)
,

which by Theorem 2.2 and (4.5) is sufficient to secure a message of rate mi (1−δi ). The nmi

transmissions in the second phase support rate mi (1−δi ), thus overall we can send a message

of rate
∑`

i=1 mi (1−δi ) such that (4.2) and (4.3) are satisfied for a large enough n.

On each channel two phases run and we have already shown that each of these succeeds with

high probability. The error probability of the scheme is upper bounded by the sum of the error

probabilities on each channel. The analysis in Section 2.4.3 has already shown that for every

channel the probability decays to 0, thus by the same argument the overall error probability is

also arbitrarily small for a large enough n. This proves the direct part of Theorem 4.1.

4.2.4 Outer bound

We provide the outer bound also in the form of a linear program. We derive several general

information inequalities and transform them into linear constraints by treating entropy and

mutual information terms as arbitrary non-negative parameters. As we are going to see, there

exists a one-to-one mapping between the parameters we define this way and the parameters

of the coding scheme linear program. That is, the outer bound linear program has the same

form as the linear program that describes the scheme, which shows immediately that the outer

bound matches the achieved rate.

As a first step, we show that assuming independence of simultaneous transmissions on dif-

ferent channels does not reduce the achievable secret-message rate. The theorem below

formalizes the following: if a scheme does not satisfy independence of simultaneous trans-

missions, we can construct another scheme that achieves the same rate and satisfies the

assumption as follows. We take ` independent copies of the scheme (using independent mes-

sages and new independent randomness). In every ` time slots we proceed one transmission

of each copy such that on all the ` edges a different copy of the scheme runs in each time slot.

Clearly, the rate does not change and also packets sent in the same time slot are independent.

Let G be the class of functions that give back a subset of their inputs, such that the selection of

the subset does not depend on the input, i.e.

G = {
g |g (X ) = X Ig , for some Ig ∈ 2{1,...,|X |}} , (4.17)

where X Ig denotes the vector X restricted to indices Ig .

Theorem 4.2. If there exists a scheme P that achieves secret-message rate R in our setting, there

also exists a scheme that achieves the same rate and for which

I
(

Xk,i ; X j ,i |g
(
Y i−1

1 Z i−1F i−1W
))

= 0 (4.18)

for every i , for any k, j ,k 6= j and for any function g ∈G .
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Corollary 4.1. If for every i , for any k, j ,k 6= j and for any function g ∈G (4.18) holds, then

I
(
Yk,i ;Y j ,i |g

(
Y i−1Z i−1F i−1W

))
= 0 (4.19)

also holds.

Proof. To help readability, we show the theorem for `= 2, the generalization for any ` is trivial.

We construct a new scheme that achieves the same rate as follows. Let X P and Y P denote the

channel inputs and outputs of the given scheme P . We take two independent copies of the

scheme P . Let P ′ and P ′′ denote the two copies. The channel inputs defined by P ′ and P ′′

are

X P
′

k,i = fk,i

(
Θ′

A ,Y P
′ i−1

,W ′
)

, (4.20)

X P
′′

k,i = fk,i

(
Θ′′

A ,Y P
′′ i−1

,W ′′
)

(4.21)

for some function fk,i defined by the scheme P . Here
(
Θ′

A ,W ′) and
(
Θ′′

A ,W ′′) are independent

random variables. For the new scheme

ΘA = (
Θ′

A ,Θ′′
A

)
, (4.22)

W = (
W ′,W ′′) . (4.23)

The new scheme uses 2n transmissions defined as follows:

X1,i =


X P ′

1, i+1
2

, if i is odd

X P ′′

1, i
2

, if i is even
(4.24)

X2,i =


X P ′′

2, i+1
2

, if i is odd

X P ′

2, i
2

, if i is even
. (4.25)

The new scheme achieves the same rate as P , since it runs two copies of it in 2n time slots.

Let F ′n and F ′′n denote the channel states relevant for each copies. Also, for i odd and some

g ′, g ′′ ∈G :

I
(

X1i ; X2i |g
(
Y i−1Z i−1F nW

))
= H

(
X1i |g ′

(
Y P

′ i−1
Z P

′ i−1
F ′nW ′

)
, g ′′

(
Y P

′′ i−1
Z P

′′ i−1
F ′′nW ′′

))
(4.26)

−H

(
X1i |X2i , g ′

(
Y P

′ i−1
Z P

′ i−1
F ′nW ′

)
, g ′′

(
Y P

′′ i−1
Z P

′′ i−1
F ′′nW ′′

))
(4.27)

= H

(
X1i |g ′

(
Y P

′ i−1
Z P

′ i−1
F ′nW ′

))
−H

(
X1i |g ′

(
Y P

′ i−1
Z P

′ i−1
F ′nW ′

))
= 0, (4.28)

where the last step follows, from the independence of variables used by P ′ and P ′′. By
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symmetry, we get the same result for i even. Corollary 4.1 is a direct consequence of (4.18) and

the fact that channel erasures are independent.

In the rest of the proof we will assume (4.18)-(4.19). Similarly to our previous outer bound

proofs we assume that Fi contains also Eve’s channel state information and use the fact that

ΘB does not help decoding. We can now start deriving the inequalities that will serve as

constraints in our linear program.

Rate constraint

Lemma 4.1. For any achievable message rate R:

nR −nE4.1 ≤
∑̀
j=1

(
1−δ j

) n∑
i=1

I
(

X j ,i ;W |Y i−1F i−1
)

, (4.29)

where E4.1 = h2 (ε)+Rε.

Proof. We use Fano’s inequality and the independence of channel erasures:

nR −nE4.1 ≤ I
(
Y nF n ;W

)= n∑
i=1

I
(
Yi ;W |Y i−1F i−1

)
=

n∑
i=1

∑̀
j=1

I
(
Y j ,i ;W |Y i−1Y1,i . . .Y j−1,i F i−1

)
(a)=

n∑
i=1

∑̀
j=1

I
(
Y j ,i ;W |Y i−1F i−1

)
= ∑̀

j=1

n∑
i=1

(
1−δ j

)
I
(

X j ,i ;W |Y i−1F i−1
)

. (4.30)

In step (a) we used Corollary 4.1.

Security constraint

Lemma 4.2. For any k ∈ {1, . . . ,`}:

(1−δk ) (1−δkE )

1−δkδkE

n∑
i=1

I
(

Xk,i ;W |Y i−1F i−1
)
−nε≤

n∑
i=1

δkE (1−δk ) H
(

Xk,i |Y i−1F i−1W
)
+ ∑̀

j=1, j 6=k

(
1−δ j

)
H

(
X j ,i |Y i−1F i−1W

)
. (4.31)

Proof. We are going to show that for any k

n∑
i=1

(1−δkδkE ) I
(

Xk,i ;W |Y i−1Z i−1
k F i−1

)
+ ∑̀

j=1, j 6=k

(
1−δ j

)
I
(

X j ,i ;W |Y i−1Z i−1
k F i−1

)
≥

n∑
i=1

∑̀
j=1

(
1−δ j

)
I
(

X j ,i ;W |Y i−1F i−1
)

, (4.32)
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and

n∑
i=1

δkE (1−δk ) H
(

Xk,i |Y i−1F i−1W
)
+ ∑̀

j=1, j 6=k

(
1−δ j

)
H

(
X j ,i |Y i−1Z i−1

k F i−1W
)

≥
n∑

i=1
(1−δkE ) I

(
Xk,i ;W |Y i−1Z i−1

k F i−1
)
−nε. (4.33)

We eliminate the common term
∑n

i=1 I
(
Xk,i ;W |Y i−1Z i−1

k F i−1
)

by combining the above two

inequalities:

(1−δk ) (1−δkE )

1−δkδkE

n∑
i=1

I
(

Xk,i ;W |Y i−1F i−1
)
−nε≤

n∑
i=1

δkE (1−δk ) H
(

Xk,i |Y i−1F i−1W
)

+ ∑̀
j=1, j 6=k

(
1−δ j

)(
H

(
X j ,i |Y i−1Z i−1

k F i−1W
)

+ (1−δk ) (1−δkE )

1−δkδkE

(
I
(

X j ,i ;W |Y i−1Z i−1
k F i−1

)
− I

(
X j ,i ;W |Y i−1F i−1

)))
(4.34)

(a)≤
n∑

i=1
δkE (1−δk ) H

(
Xk,i |Y i−1F i−1W

)
+ ∑̀

j=1, j 6=k

(
1−δ j

)(
H

(
X j ,i |Y i−1Z i−1

k F i−1W
)
+ (1−δk ) (1−δkE )

1−δkδkE
I
(

X j ,i ; Z i−1
k |Y i−1F i−1W

))
(4.35)

≤
n∑

i=1
δkE (1−δk ) H

(
Xk,i |Y i−1F i−1W

)
+ ∑̀

j=1, j 6=k

(
1−δ j

)(
H

(
X j ,i |Y i−1F i−1W

)
− I

(
X j ,i ; Z i−1

k |Y i−1F i−1W
)

+ (1−δk ) (1−δkE )

1−δkδkE
I
(

X j ,i ; Z i−1
k |Y i−1F i−1W

))
(4.36)

(b)≤
n∑

i=1
δkE (1−δk ) H

(
Xk,i |Y i−1F i−1W

)
+ ∑̀

j=1, j 6=k

(
1−δ j

)
H

(
X j ,i |Y i−1F i−1W

)
, (4.37)

where in (a) we have used that

I
(

X j ,i ;W |Y i−1Z i−1
k F i−1

)
− I

(
X j ,i ;W |Y i−1F i−1

)
(4.38)

= I
(

X j ,i ; Z i−1
k |Y i−1F i−1W

)
− I

(
X j ,i ; Z i−1

k |Y i−1F i−1
)
≤ I

(
X j ,i ; Z i−1

k |Y i−1F i−1W
)

, (4.39)

and in (b) we have used that (1−δk )(1−δkE )
1−δkδkE

≤ 1.

It remains to show (4.32) and (4.33). First we show (4.32).
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From (4.30),

∑̀
j=1

(
1−δ j

) n∑
i=1

I
(

X j ,i ;W |Y i−1F i−1
)
= I

(
Y nF n ;W

)≤ I
(
Y n Z n

k F n ;W
)

(4.40)

(a)=
n∑

i=1
(1−δkδkE ) I

(
Xk,i ;W |Y i−1Z i−1

k F i−1
)
+ ∑̀

j=1, j 6=k

(
1−δ j

)
I
(

X j ,i ;W |Y i−1Z i−1
k F i−1

)
.

(4.41)

The derivation of (a) follows the same steps as (4.30).

As for (4.33), we use the independence property of the channels and Theorem 4.2 to get (we

omit some intermediate steps):

0 ≤ H
(
Y n |Z nF nW

)
=

n∑
i=1

− (1−δkE ) I
(

Xk,i ;Y i−1|Z i−1
k F i−1W

)
+δkE (1−δk ) H

(
Xk,i |Y i−1Z i−1

k F i−1W
)

+ ∑̀
j=1, j 6=k

(
1−δ j

)
H

(
X j ,i |Y i−1Z i−1

k F i−1W
)

(4.42)

≤
n∑

i=1
− (1−δkE ) I

(
Xk,i ;Y i−1|Z i−1

k F i−1W
)
+δkE (1−δk ) H

(
Xk,i |Y i−1F i−1W

)
+ ∑̀

j=1, j 6=k

(
1−δ j

)
H

(
X j ,i |Y i−1Z i−1

k F i−1W
)

. (4.43)

Also, from the security criterion, we have that

nε> I
(
Z n

k F n ;W
)= n∑

i=1
(1−δkE ) I

(
Xk,i ;W |Z i−1

k F i−1
)

, (4.44)

thus,

(1−δkE )
n∑

i=1
I
(

Xk,i ;Y i−1|Z i−1
k F i−1W

)
≥

n∑
i=1

−I (1−δkE )
(

Xk,i ;W |Z i−1
k F i−1

)
+ (1−δkE ) I

(
Xk,i ;W |Y i−1Z i−1

k F i−1
)

(4.45)

≥−nε+
n∑

i=1
(1−δkE ) I

(
Xk,i ;W |Y i−1Z i−1

k F i−1
)

. (4.46)

Combining (4.43) and (4.46) results (4.33).

Time-sharing constraint

Lemma 4.3. For any j ∈ {1, . . . ,`}:

n ≥
n∑

i=1
H

(
X j ,i |Y i−1F i−1W

)
+ I

(
X j ,i ;W |Y i−1F i−1

)
. (4.47)
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Proof.

n ≥
n∑

i=1
H

(
X j ,i

)≥ n∑
i=1

H
(

X j ,i |Y i−1F i−1
)
=

n∑
i=1

H
(

X j ,i |Y i−1F i−1W
)
+ I

(
X j ,i ;W |Y i−1F i−1

)
.

(4.48)

Outer bound linear program

We use Lemmas 4.1-4.3. We divide the inequalities in the lemmas by n and take the limit

with n →∞, ε→ 0 (by this we eliminate the small error terms). We introduce the following

relabeling by which we define the variables of our outer bound LP:

m̂i ∼
n∑

i=1

1

n
I
(

X j ,i ;W |Y i−1F i−1
)

(4.49)

ĉi ∼
n∑

i=1

1

n
H

(
X j ,i |Y i−1F i−1W

)
. (4.50)

We rewrite the inequalities in Lemmas 4.1-4.3 and get:

R ≤ ∑̀
i=1

(1−δi )m̂i

∀i ∈ {1, . . . ,`} :

m̂i (1−δi )
1−δi E

1−δiδi E
≤ ĉiδi E (1−δi )+

∑̀
j=1, j 6=i

ĉ j
(
1−δ j

)
1 ≥ m̂i + ĉi .

We treat variables m̂i , ĉi as arbitrary non-negative variables and take the maximum value in

R, which results an outer bound. By this we arrive to the same linear program as the scheme

linear program, proving optimality of our scheme.

4.3 V-network

In this section we investigate the V-network depicted in Figure 4.1b, where two sources S1 and

S2 are connected to a common destination through independent erasure channels. The two

sources share a rate limited common random source and they both have access to the same

message W to be cooperatively sent to D .

This model is motivated by the observation that in a network, nodes cannot share arbitrary

amount of randomness. The rate of available common randomness limits the amount of

keys that can be generated on one of the channels and used for encryption on the other

channel. In one extreme, without any common randomness we get the sum capacity of the

two point-to-point channels. In the other extreme, with infinite rate common randomness,
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we get the secret-message capacity of two parallel channels. In this section we explore the

intermediate cases.

4.3.1 Model

We denote the common randomnessΨ. For simplicity we assume that the common random-

ness is available in the form of i.i.d. uniform random packets. The rate of common randomness

is Cr , that is H (Ψ) = nCr . We assume that S1 and S2 share nCr uniformly random packets.

The sources can generate private randomnessΘ1 andΘ2 at infinite rate. The channel inputs

are defined by

X1,i = f1,i

(
W,Ψ,Θ1,F i−1

)
, (4.51)

X2,i = f2,i

(
W,Ψ,Θ2,F i−1

)
. (4.52)

As before, we assume that Eve observes any one of the two channels. We think of such

an eavesdropper as two noncolluding eavesdroppers E1 and E2 wiretapping channel 1 and

channel 2 respectively. The decodability and security conditions are the same as for the

parallel channels’ case, (4.2)-(4.3) applies with `= 2.

4.3.2 Main result

We characterize the secret-message capacity of the V-network.

Theorem 4.3. The secret-message capacity of the V-network is the optimal value of the following

linear program, where all parameters mi ,ci ,c,ki ,ri ≥ 0:

maxR, such that:

R ≤ (1−δ1)m1 + (1−δ2)m2 (4.53)

m1 (1−δ1)
1−δ1E

1−δ1δ1E
≤ (c1 +k1)δ1E (1−δ1)+ r1

δ1E (1−δ1)

1−δ1δ1E
+ r2 + c2 (1−δ2) (4.54)

m2 (1−δ2)
1−δ2E

1−δ2δ2E
≤ (c2 +k2)δ2E (1−δ2)+ r2

δ2E (1−δ2)

1−δ2δ2E
+ r1 + c1 (1−δ1) (4.55)

1 ≥ m1 +k1 + c1 + r1

1−δ1
(4.56)

1 ≥ m2 +k2 + c2 + r2

1−δ2
(4.57)

Cr ≥ c + r1 + r2 (4.58)

c ≥ (1−δ1δ1E )c1 + (1−δ2)c2 (4.59)

c ≥ (1−δ2δ2E )c2 + (1−δ1)c1. (4.60)

The interpretation of the new variables will be clear from the description of our scheme.
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Figure 4.3: Secret-message capacity of the V-network as the function of the rate of common
randomness

Discussion

In addition to a rate constraint (4.53), security constraints (4.54)-(4.55) and times sharing

constraints (4.56)-(4.57) a new set of constraints (4.58)-(4.60) appears. These new constraints

describe the use of the common randomness, hence we refer to them as common randomness

constraints.

In Figure 4.3 we plot the secret-message capacity of the V-network for some example parameter

values with several common randomness rates.

As one can observe, the solution of the LP in Theorem 4.3 does not coincide with the rate that

a simple time-sharing between the two extreme cases (rate 0 and rate 1 common randomness)

would give. Note that beyond a threshold value, the increase of common randomness rate

cannot increase the secret-message capacity. For comparison, we plot the secret-message

capacity against the time-sharing rate for some example parameter values on Figure 4.4.

4.3.3 Coding scheme

We prove the direct part of Theorem 4.3. Given any feasible point of the LP in Theorem 4.3 our

scheme achieves the value of the LP.
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Figure 4.4: Secret-message capacity of the V-network compared to the rate achieved with
time-sharing

Principle

We build on our scheme for the parallel channels. The novelty of our scheme for the V-network

is the efficient use of common randomness for key generation. We need to distinguish key

generation from the private randomness of each source and key generation from the common

random source.

In order to use common randomness the most efficiently we introduce two new techniques.

We have seen in the previous section that a key generation packet that D receives contributes

to the key that is used on the other channel. In the V-network this holds only for packets

generated from the common randomness.

Our first observation is that transmissions from the common randomness need not to be

independent. Consider the example on Table 4.1. For simplicity we assume that Eve’s channel

Packet D E1 E2 Key for S1 Key for S2

S1 sends X1 × X × ×
S2 sends X2 × X × ×
S2 sends X1 ⊕X2 X × X X

Table 4.1: Coding across packets from the common randomness

state is known. Packets X1 and X2 are common random packets sent by S1 and S2 respectively.
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4.3. V-network

The first two transmissions are not successful for D, but X1 gets received by E1 and X2 gets

received by E2. Although both X1 and X2 are known by one of the eavesdroppers, they can

still contribute to both keys. In our example, as a third transmission, S2 sends X1 ⊕ X2. E2

does not receive the transmission, hence X1 ⊕X2 becomes a key against both eavesdroppers.

Observe that the important property of a key generation packet is that it is innovative for D

and E1 (taken together) and also for D and E2 (taken together). In our scheme we use coding

to generalize this idea for the case when Eve’s channel state is not known. This key generation

strategy achieves the same key rates as if a new random packet was sent in each transmission,

but it uses the available randomness more efficiently.

Our second observation is that ARQ can be used also as a key generation technique. On

one hand, retransmission of a random packet increases the chance of the eavesdropper to

overhear it, which results a lower key rate on the given channel. On the other hand, ARQ uses

less common randomness than sending always an innovative random packet and a packet

always provides a key for the other channel. Thus, in some cases ARQ is a reasonable strategy

for key generation, unlike when the common randomness is unlimited.

We split the common random packets and apply a time-sharing between the above described

new key generation methods.

Detailed description

In our description we focus on the key generation step. Given a secret key for both channels,

the encryption and the message sending phase is the same as we have seen in previous section.

Building on Theorem 2.2 and the results of the previous section it becomes clear that the

availability of a key of sufficient rate (as required by (4.54)-(4.55)) ensures that the claimed

secret-message rate (4.53) is achievable. To ease readability we omit detailed parameter

definitions for the second phase.

Below we describe the transmissions each source does. Every step results a key of a certain

rate, the keys of S1 and S2 are the concatenation of these keys. Keys are generated as linear

combinations of packets received by D , similarly as we have seen in Section 1.5. Here we only

claim the key rate achieved by each step, we delegate parameter definitions and proofs to the

analysis of the scheme.

Initialization:

The common randomness Ψ (or potentially a part of it) is split into three disjoint sets of

random packets:

H (Ψ) ≥ n (c + r1 + r2) . (4.61)

We assign nr1 packets to S1 and nr2 packets to S2. The third part, nc packets will be used

commonly.
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Key generation:

Step 1) S1 and S2 send nk1 and nk2 uniform random packets generated from their private

randomness. Key rates k1δ1E (1−δ1) and k1δ2E (1−δ2) are achieved for S1 and S2.

Step 2) S1 and S2 send the nr1 and nr2 packets from the common randomness using ARQ.

Key rates r2 + r1δ1E (1−δ1)
1−δ1δ1E

and r1 + r2δ2E (1−δ2)
1−δ2δ2E

are achieved.

Step 3) The nc packets from the common randomness are arranged into vector C . Out of

these packets nc1 +nc2 linear combination packets are produced to be sent by S1 and

S2 respectively. The linear combinations are produced as follows:

CG =
[
C1 C2

]
, (4.62)

where G is a nc ×n (c1 + c2) matrix and is a generator of an MDS code. C1,C2 are

vectors of nc1 and nc2 packets. These packets are sent (once each) by S1 and S2

respectively. This step creates a rate δ1E (1−δ1)c1 + c2 (1−δ2) key for S1 and a rate

δ2E (1−δ2)c2 + c1 (1−δ1) for S2.

Message sending:

Using their keys from the key generation phase, S1 and S2 transmit a rate m1 (1−δ1) and a rate

m2 (1−δ2) part of the message. Channels operate independently, they both apply the second

phase of the coding scheme for a point-to-point channel. We omit details to avoid repetition.

Analysis

The previously proved properties of the message sending phase together with constraints

(4.54)-(4.57) shows that secret-message rate R is achievable, if the claimed key rates are

achieved. In the following lemmas we show the key rate of each step. We highlight the ideas

here and delegate details to Appendix C.2.

Lemma 4.4. Step 1 of the key generation phase achieves secret-key rates k1δ1E (1−δ1) and

k2δ2E (1−δ2) for S1 and S2.

Proof. This step of the key generation is the same as the key generation scheme in Section 1.5.

The lemma is a rephrasing of Theorem 1.1.

Lemma 4.5. Step 2 of the key generation phase achieves secret-key rates r2 + r1δ1E (1−δ1)
1−δ1δ1E

and

r1 + r2δ2E (1−δ2)
1−δ2δ2E

for S1 and S2.

Proof. For the keys of S1, the security of packets sent on channel 2 is obvious, this part of

the key has rate r2. To create keys from the packets sent using ARQ, we use the same key

generation method as we have seen in Section 1.5, with the only difference that instead of

1−δ1E , this time the probability that Eve receives a packet is increased to 1−δ1E
1−δ1δ1E

. Security

and small error probability follows from the properties shown in Theorem 1.1. For details we

refer the reader to Appendix C.2.1.
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Lemma 4.6. Step 3 of the key generation phase achieves secret-key rates c2 (1−δ2)+c1δ1E (1−δ1)

and c1 (1−δ1)+ c2δ2E (1−δ2) for S1 and S2.

Proof. Our proof shows that the linear combination packets C1 and C2 can be used as if they

were packets generated independently. Constraints (4.59)-(4.60) ensure the property that the

packets we send are innovative for the eavesdropper and D taken together. Similarly as before,

the proof builds on the MDS property of the generator matrix and on concentration results.

For the detailed proof see Appendix C.2.2.

4.3.4 Outer bound

To derive our outer bound we use the technique that we have seen in Section 4.2.4. However, in

this case the linear program that we get after transforming the various information inequalities

into linear constraints does not have the same form as the LP in Theorem 4.3. Hence, we

apply a series of transformation in order to show that the outer bound linear program has

the same optimal value as the linear program that describes our scheme. Throughout the

transformation we make sure that the optimal value of the outer bound program does not

decrease, however the feasibility region might shrink (the outer bound program has more

variables initially). Our possible reduction steps are:

1. Renaming of variables. By any renaming we apply, we make sure that the introduced

new variables are non-negative.

2. Eliminating variables. We apply the well known Fourier-Motzkin elimination [60] to

reduce the number of variables.

3. Introducing constraints. We introduce constraints that do not follow from the inequal-

ities in the linear program. By this we reduce the feasibility region but do not reduce

the optimal value of the program. Our arguments show that if in an optimal point

the given constraint is not satisfied, we can apply a transformation on the variables

without violating any existing constraints to arrive to another optimal point, where the

constraint is satisfied. We conclude that introducing the constraint in question does not

lower the value of the program.

4. Dropping constraints. Obviously, by dropping some constraints we cannot decrease the

value of the program.

5. Deriving constraints. We add constraints that follow from existing constraints.

Since the transformation is a lengthy process we delegate it to Appendix C.3. Here we only

derive the set of constraints from which we form the outer bound linear program. In our

derivations we use that parallel transmissions on different channels can be assumed to be

independent (see Theorem 4.2, which trivially generalizes for the V-network).
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Rate constraints

We use that H (W ) ≤ nR and the same kind of derivation as in the proof of Lemma 4.1 to get

the following inequalities. We omit details.

nR −E4.1 ≤ I
(
W ;Y nF n)= n∑

i=1
(1−δ1) I

(
W ; X1i |Y i−1F n−1

)
+ (1−δ2) I

(
W ; X2i |Y i−1F n−1

)
≤ nR

(4.63)

nR −E4.1 ≤ I
(
W ;Y n Z n

1 F n)
=

n∑
i=1

(1−δ1δ1E ) I
(
W ; X1i |Y i−1Z i−1

1 F n−1
)
+ (1−δ2) I

(
W ; X2i |Y i−1Z i−1

1 F n−1
)
≤ nR

(4.64)

nR −E4.1 ≤ I
(
W ;Y n Z n

2 F n)
=

n∑
i=1

(1−δ1) I
(
W ; X1i |Y i−1Z i−1

2 F n−1
)
+ (1−δ2δ2E ) I

(
W ; X2i |Y i−1Z i−1

2 F n−1
)
≤ nR

(4.65)

nR −E4.1 ≤ I
(
W ;Y n Z nF n)

=
n∑

i=1
(1−δ1δ1E ) I

(
W ; X1i |Y i−1Z i−1F n−1

)
+ (1−δ2δ2E ) I

(
W ; X2i |Y i−1Z i−1F n−1

)
≤ nR (4.66)

Common randomness constraints

nCr = H (Ψ) ≥ I
(
Ψ;Y n Z nF nW

)
=

n∑
i=1

(1−δ1δ1E ) I
(

X1i ;Ψ|Y i−1Z i−1F i−1W
)
+ (1−δ2δ2E ) I

(
X2i ;Ψ|Y i−1Z i−1F i−1W

)
(4.67)

0 ≤ I
(
Ψ; Z n

1 |Y n Z n
2 F i−1W

)
=

=
n∑

i=1
− (1−δ2δ2E ) I

(
X2i ; Z i−1

1 |Y i−1Z i−1
2 F i−1W

)
− (1−δ1) I

(
X1i ; Z i−1

1 |Y i−1Z i−1
2 F i−1W

)
+δ1 (1−δ1E ) I

(
X1i ;Ψ|Y i−1Z i−1F i−1W

)
+ (1−δ1) I

(
X1i ; Z i−1

1 |Y i−1Z i−1
2 WΨ

)
(4.68)

0 ≤ I
(
Ψ; Z n

2 |Y n Z n
1 F i−1W

)
=

=
n∑

i=1
− (1−δ1δ1E ) I

(
X1i ; Z i−1

2 |Y i−1Z i−1
1 F i−1W

)
− (1−δ2) I

(
X2i ; Z i−1

2 |Y i−1Z i−1
1 F i−1W

)
+δ2 (1−δ2E ) I

(
X2i ;Ψ|Y i−1Z i−1F i−1W

)
+ (1−δ2) I

(
X2i ; Z i−1

2 |Y i−1Z i−1
1 WΨ

)
(4.69)
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0 ≤ I
(
Y n

2 ;Ψ|Y n
1 Z n

1 F i−1W
)

=
n∑

i=1
− (1−δ1δ1E ) I

(
X1i ;Y i−1

2 |Y i−1
1 Z i−1

1 F i−1W
)
+ (1−δ2) I

(
X2i ;Ψ|Y i−1Z i−1F i−1W

)
+ (1−δ2) I

(
X2i ; Z i−1

2 |Y i−1Z i−1
1 F i−1W

)
− (1−δ2) I

(
X2i ; Z i−1

2 |Y i−1Z i−1
1 WΨ

)
(4.70)

0 ≤ I
(
Y n

1 ;Ψ|Y n
2 Z n

2 F i−1W
)

=
n∑

i=1
− (1−δ2δ2E ) I

(
X2i ;Y i−1

1 |Y i−1
2 Z i−1

2 F i−1W
)
+ (1−δ1) I

(
X1i ;Ψ|Y i−1Z i−1F i−1W

)
+ (1−δ1) I

(
X1i ; Z i−1

1 |Y i−1Z i−1
2 F i−1W

)
− (1−δ1) I

(
X1i ; Z i−1

1 |Y i−1Z i−1
2 WΨ

)
(4.71)

Distinguishing keys

We interpret the following constraints as distinguishing keys generated by S1 and S2. The

derivation is similar to that of (2.45).

0 ≤ H
(
Y n

1 |Z n
1 F nW

)= n∑
i=1

− (1−δ1E ) I
(

X1i ;Y i−1
1 |Z i−1

1 F i−1W
)

+δ1E (1−δ1) H
(

X1i |Y i−1Z i−1
1 F i−1W

)
+δ1E (1−δ1) I

(
X1i ;Y i−1

2 |Y i−1
1 Z i−1

1 F i−1W
)

(4.72)

(a)=
n∑

i=1
− (1−δ1E ) I

(
X1i ;Y i−1|Z i−1

1 F i−1W
)

+δ1E (1−δ1) H
(

X1i |Y i−1Z i−1
1 F i−1W

)
+ (1−δ1δ1E ) I

(
X1i ;Y i−1

2 |Y i−1
1 Z i−1

1 F i−1W
)

(4.73)

(b)= −nε+
n∑

i=1
− (1−δ1E ) I

(
X1i ;W |Z i−1

1 F i−1W
)

+δ1E (1−δ1) H
(

X1i |Y i−1Z i−1
1 F i−1W

)
+ (1−δ1δ1E ) I

(
X1i ;Y i−1

2 |Y i−1
1 Z i−1

1 F i−1W
)

(4.74)

In (a) we used that

n∑
i=1

I
(

X1i ;Y i−1|Z i−1
1 F i−1W

)
=

n∑
i=1

I
(

X1i ;Y i−1
1 |Z i−1

1 F i−1W
)
+ I

(
X1i ;Y i−1

2 |Y i−1
1 Z i−1

1 F i−1W
)

,

(4.75)

while in (b) we used (4.46). From symmetry,

0 ≤−nε+
n∑

i=1
− (1−δ2E ) I

(
X2i ;W |Z i−1

2 F i−1W
)

+δ2E (1−δ2) H
(

X2i |Y i−1Z i−1
2 F i−1W

)
+ (1−δ2δ2E ) I

(
X2i ;Y i−1

1 |Y i−1
2 Z i−1

2 F i−1W
)

.

(4.76)
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Time-sharing constraints

The following constraints make sure that no more than n transmissions take place on each

channel.

n ≥
n∑

i=1
H (X1i ) ≥

n∑
i=1

H
(

X1i |Y i−1F i−1
)
=

n∑
i=1

H
(

X1i |Y i−1Z i−1
2 F i−1

)
+ I

(
X1i ; Z i−1

2 |Y i−1F i−1
)

=
n∑

i=1
H

(
X1i |Y i−1Z i−1

2 F i−1W
)
+ I

(
W ; X1i |Y i−1Z i−1

2 F i−1
)
+ I

(
X1i ; Z i−1

2 |Y i−1F i−1
)

≥
n∑

i=1
H

(
X1i |Y i−1Z i−1

2 F i−1W
)
+ I

(
W ; X1i |Y i−1Z i−1

2 F i−1
)

(4.77)

From symmetry:

n ≥
n∑

i=1
H

(
X2i |Y i−1Z i−1

1 W
)
+ I

(
W ; X2i |Y i−1Z i−1

1 F i−1
)

(4.78)

Also,

n ≥
n∑

i=1
H (X1i ) ≥

n∑
i=1

H
(

X1i |Y i−1F i−1
)
=

n∑
i=1

H
(

X1i |Y i−1F i−1W
)
+ I

(
X1i ;W |Y i−1F i−1

)
≥

n∑
i=1

H
(

X1i |Y i−1Z i−1
1 F i−1W

)
+ I

(
W ; X1i |Y i−1F i−1

)
(4.79)

holds, and again from symmetry:

n ≥
n∑

i=1
H

(
X1i |Y i−1Z i−1

2 F i−1W
)
+ I

(
W ; X1i |Y i−1F i−1

)
(4.80)

n ≥
n∑

i=1
H

(
X2i |Y i−1Z i−1

1 F i−1W
)
+ I

(
W ; X2i |Y i−1F i−1

)
(4.81)

n ≥
n∑

i=1
H

(
X2i |Y i−1Z i−1

2 F i−1W
)
+ I

(
W ; X2i |Y i−1F i−1

)
. (4.82)

Further constraints

We need the following trivial constraints to complete our program.

n∑
i=1

H
(

X1i |Y i−1Z i−1F i−1W
)
=

n∑
i=1

H
(

X1i |Y i−1Z i−1
1 F i−1W

)
− I

(
X1i ; Z i−1

2 |Y i−1Z i−1
1 F i−1W

)
(4.83)

n∑
i=1

H
(

X1i |Y i−1Z i−1F i−1W
)
=

n∑
i=1

H
(

X1i |Y i−1Z i−1
2 F i−1W

)
− I

(
X1i ; Z i−1

1 |Y i−1Z i−1
2 F i−1W

)
(4.84)
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n∑
i=1

H
(

X2i |Y i−1Z i−1F i−1W
)
=

n∑
i=1

H
(

X2i |Y i−1Z i−1
1 F i−1W

)
− I

(
X2i ; Z i−1

2 |Y i−1Z i−1
1 F i−1W

)
(4.85)

n∑
i=1

H
(

X2i |Y i−1Z i−1F i−1W
)
=

n∑
i=1

H
(

X2i |Y i−1Z i−1
2 F i−1W

)
− I

(
X2i ; Z i−1

1 |Y i−1Z i−1
2 F i−1W

)
(4.86)

n∑
i=1

H
(

X1i |Y i−1Z i−1F i−1W
)
≥

n∑
i=1

I
(

X1i ;Ψ|Y i−1Z i−1F i−1W
)

(4.87)

n∑
i=1

H
(

X2i |Y i−1Z i−1F i−1W
)
≥

n∑
i=1

I
(

X2i ;Ψ|Y i−1Z i−1F i−1W
)

(4.88)

n∑
i=1

I
(

X1i ;W |Y i−1Z i−1F i−1
)
≤

n∑
i=1

I
(

X1i ;W |Y i−1Z i−1
1

)
+ I

(
X1i ; Z i−1

2 |Y i−1Z i−1
1 F i−1W

)
(4.89)

n∑
i=1

I
(

X2i ;W |Y i−1Z i−1F i−1
)
≤

n∑
i=1

I
(

X2i ;W |Y i−1Z i−1
2

)
+ I

(
X2i ; Z i−1

1 |Y i−1Z i−1
2 F i−1W

)
(4.90)

The transformation shown in Appendix C.3 completes the proof of Theorem 4.3.

4.4 Triangle network

This section considers the triangle network, which consists of three nodes and three channels

as it is shown in Figure 4.5. This is the first multi-hop network we investigate and we provide a

complete characterization.

4.4.1 Model

We label the channels as Figure 4.5 indicates: channel 1 is the S −D channel, channel 2 is

the S −U channel, while channel 3 is the U −D channel. Channels operate as described in

S D

U

δ1,δ1E

δ 2
,δ 2E

δ
3 ,δ

3E

Figure 4.5: Triangle network

Chapter 1. The channel inputs are defined by:

Xk,i = fk,i

(
W,ΘS ,F i−1

)
, k ∈ {1,2} (4.91)

X3,i = f3,i

(
Y i−1

2 ,F i−1,ΘU

)
. (4.92)
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D has to be able to decode from its receptions on channels 1 and 3:

Pr
{
φ

(
Y n

1 ,Y n
3 ,F n ,ΘD

) 6=W
}< ε. (4.93)

In our model we assume that node U can generate private randomnessΘU at unlimited rate.

In the next section we give an example on how this affects the achievable secret-message rate.

The eavesdropping adversary might select any one channel to wiretap, but network nodes

are not aware of her choice. As previously in this chapter, we can think of three noncollud-

ing eavesdroppers. Message W remains secret from each eavesdropper, thus the security

condition becomes:

I
(
W ; Z n

k ΘE F n)< ε, k ∈ {1,2,3}. (4.94)

4.4.2 Main result

We characterize the secret-message capacity of the triangle network.

Theorem 4.4. The secret-message capacity of the triangle is the optimal value of the following

linear program, where all parameters mi ,ci ,c,ki ,ri ≥ 0:

maxR, such that:

R ≤ (1−δ1)m1 + (1−δ3)m3 (4.95)

m1 (1−δ1)
1−δ1E

1−δ1δ1E
≤ (k1 + c1)δ1E (1−δ1)+ r3 + c3 (1−δ3) (4.96)

m2 (1−δ2)
1−δ2E

1−δ2δ2E
≤ k2δ2E (1−δ2)+k1 (1−δ1) (4.97)

m3 (1−δ3)
1−δ3E

1−δ3δ3E
≤ (k3 + c3)δ3E (1−δ3)+ (k1 + c1) (1−δ1)+ r3δ3E

1−δ3

1−δ3δ3E
(4.98)

1 ≥ m1 +k1 + c1 (4.99)

1 ≥ m2 +k2 (4.100)

1 ≥ m3 +k3 + c3 + r3

1−δ3
(4.101)

k2 (1−δ2) ≥ c + r3 (4.102)

c ≥ (1−δ1δ1E )c1 + (1−δ3)c3 (4.103)

c ≥ (1−δ3δ3E )c3 + (1−δ1)c1 (4.104)

(1−δ3)m3 = (1−δ2)m2 + c1 (1−δ1) . (4.105)

As usual, we prove Theorem 4.4 in two steps. In the next section we design a coding scheme

that achieves the secret-message rate claimed by the theorem. The roles of constraints (4.95)-

(4.105) become clear from the description of the scheme. The matching outer bound is

provided in Appendix C.4.
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Figure 4.6: Comparison of secret-message rates with/without exploiting erasures and with-
/without feedback. In all cases δi E = δi +0.2.

Discussion

In the linear program we can observe the same structure that the previous LPs have. There

is a rate constraint (4.95), three security constraints (4.96)-(4.98), three time-sharing con-

straints (4.99)-(4.101) and three common randomness constraints (4.102)-(4.104) with k2(1−
δ2) playing the role of the common randomness. The last constraint (4.105) describes the

operation of the intermediate node as we will see shortly.

The triangle network has two cuts, the S −U D and the SU −D cut. The minimum value of

these cuts is an obvious outer bound on the secret-message capacity. Note that the cuts consist

of two parallel channels, thus we can find their values using the LP of Theorem 4.1. It might be

expected that the solution of the LP in Theorem 4.4 reduces to the min-cut value – as in the

case of non-secure message sending. In contrast, in the case of secure message sending, the

min-cut value is not achievable in general.

Solving the LP in Theorem 4.4 enables us to evaluate (1) the benefit of exploiting erasures

(2) the benefit of exploiting feedback (3) how much private randomness at the relay U can

help. Figure 4.6 compares three schemes: secret-message capacity refers to our scheme

in Theorem 4.4; we plot secret-message capacity without feedback to show the benefits of

exploiting erasures for secrecy yet without using feedback [25, 58]; and finally FEC+SNC refers

to applying a link-by-link error correction coding (FEC) and then using the secure network

coding scheme [55, 56]. On the same plot, we show the value of the min-cut as well.
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Figure 4.7: Comparison of secret-message capacities with/without private randomness at U .
δ1 = δ2E = 0.8, δ1E = 0.5, δ3 = δ3E = 0.3.

Our other example (Figure 4.7) shows a case when the presence of private randomness at U

increases secret-message capacity by more than 40% compared to the case where U does not

use private randomness1. We note that in many cases the difference is less significant.

4.4.3 Coding scheme

This section proves the direct part of Theorem 4.4. We build our coding scheme for the triangle

network using the tools that we have developed through the previous sections. Note that the

relay U and the source S will share limited rate common randomness, from random packets

that S sends to U through the S −U channel, which is very similar to the V-network setup. Yet

there is also a significant difference from the V-network: the relay U does not have the message,

it can only receive it by consuming resources of the S −U channel. Beside the encryption and

key generation methods we use in the V-network we apply two new ideas explained below.

Principles

Our first observation is that keys generated on the S −D channel can be used for encryption

on both the S −U and the U −D channel, even though U does not have access to such keys.

The encrypted message packets that travel on the S −U −D path can potentially be encrypted

with three types of key: key that only S −U share (say KSU ); key that only U −D share (say

1We do not prove the capacity result without private randomness at U here, but it can be easily verified using
our proof that we obtain capacity by forcing k3 = 0 in the LP.
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KU D ), and key that S and D share (say KSD ). The source can send to U messages encrypted

with KSU and KSD . U needs to remove KSU from these encrypted messages (since D does not

have it), yet it does not need to remove KSD . That is, U does not need to completely decrypt

the message, but instead it can recombine packets and secure part of the message sending

phase on the U −D channel with the KSD key. Conceptually, U can use KSD as if it had access

to it.

The second new idea we use reduces the number of message packets U needs to receive.

Assume that S creates a random packet P from the common randomness that is shares with U

(as we did in the V-network). Instead of sending P , S now combines P with a message packet

Wk and sends P ′ = P ⊕Wk to D. Note that D cannot yet decode Wk . Packet P is available for

U (since it is from the shared randomness), and it is transmitted on the U −D channel using

ARQ. This transmission is utilized in two ways. First, note that Wk = P ′⊕P , thus it allows D to

decode a message packet. As far as U and D are concerned, transmission of P from U can be

considered as part of the message sending phase, but there is no need to further encrypt such

transmissions, because P is independent of the message. Second, as far as Eve on the U −D

channel is concerned, these are random key generation packets forwarded using ARQ, so they

also contribute to the key KU D on the U −D channel.

The latter observation is counter intuitive for our usual flow based interpretation of network

traffic. For D it is not always possible to tell through which path a certain message packet has

arrived, because it depends on the interpretation of the packet. This gives us some flexibility

and it overrules the intuition that it should not be possible to send more message packets on

the U −D channel than what was received by U in the message sending phase on the S −U

channel.

Detailed description

We use the parameters defined by the LP in Theorem 4.4. We rely on the properties of the key

generation techniques that we have proved in the previous section and also on Theorem 2.2 to

argue that the available key rate is sufficient to secure the corresponding message sending

phase. This enables us to focus on the novelties of the scheme and use key generation and

encryption techniques as building blocks while omitting the formal specification of details,

which can be deduced from previously shown results. We believe that a detailed formal

description would be repetitive and would compromise readability. Our phrasing is thus

not completely formal. We often use “number of packets” instead of time fractions or rates.

E.g., we say “S sends k random packets”, which in the actual scheme means sending k ′ packets

for some k ′ such that limn→∞ 1
n k ′ = k, where n is the overall number of transmissions. Given

our previous formal arguments, this does not compromise the mathematical rigor of our

proof.

Key generation

1. S −U channel: S sends k2 i.i.d. uniform random packets. The packets that U receives

form a k2 (1−δ2) rate common randomness shared between S and U .
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2. S −D channel: S sends k1 i.i.d. uniform random packets from its private randomness.

It then utilizes the k2 (1−δ2) packets it has in common with U with a scheme akin to

the V-network, but with a modification: it divides the packets to two disjoint sets of

c and r3 packets. From the c packets, it creates two streams of rates c1 and c3; c1 to

be sent by S, c3 by U . These packets are created by expanding the c packets through

multiplication with the generator matrix of an MDS code (as seen in (4.62)). S sends

the c1 packets using the idea described above, i.e., XOR-ed with message packets. All

c1 such transmissions use a different packet created from the common randomness,

while the same message packet is repeatedly used to form the XOR-ed packets until D

acknowledges its reception. Thus all (encrypted) message packets are received, and all

received transmissions are independent.

3. U −D channel: U sends k3 i.i.d. uniform random packets from its private randomness.

Then, U sends the c3 packets (each once), and finally sends the r3 packets using ARQ.

Key rate on each channel

1. S −U channel: The k2 packets enable a key rate k2δ2E (1−δ2). Moreover, the k1 packets

sent through the S −D channel also contribute to the encryption, resulting in an overall

key rate

k2δ2E (1−δ2)+k1 (1−δ1) . (4.106)

2. S−D channel: From the S−D channel’s perspective there is no difference between the k1

packets from the private randomness and the c1 packets that are XOR-ed with message

packets. Indeed, all these packets are i.i.d. random packets and they are independent of

the message packets that are to be sent in the message sending phase of this channel.

Additionally, there are r3 + c3 (1−δ3) packets that D receives from U and S can also

generate, which adds to a rate

(k1 + c1)δ1E (1−δ1)+ r3 + c3 (1−δ3) . (4.107)

3. U −D channel: The k3 private random packets, the c3 common randomness packets, as

well as the r3 packets sent using ARQ, together result in a secret-key rate (k3 + c3)δ3E (1−δ3)+
r3

δ3E (1−δ3)
1−δ3δ3E

. Moreover, U will send c1 (1−δ1) packets from the S −U common random-

ness using ARQ. For an eavesdropper on the U −D channel these are random packets

independent of the message, thus U can additionally use c1 (1−δ1) δ3E (1−δ3)
1−δ3δ3E

key packets

(the rate follows from the key rate achieved by ARQ). Overall we have a key of rate

(k3 + c3)δ3E (1−δ3)+ r3
δ3E (1−δ3)

1−δ3δ3E
+ c1 (1−δ1)

δ3E (1−δ3)

1−δ3δ3E
. (4.108)

Encryption and message sending phase

The message packets are split into: c1 (1−δ) packets delivered with the c1 packets; m1 (1−δ)

packets W1 to be sent through the S−D channel; and m2 (1−δ2) packets W2 to be sent through

the S −U −D path.
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1. S −U channel: Let K (1)
2 and K (2)

2 denote the matrices formed of the k1 (1−δ1) and the

k2δ2E (1−δ2) key packets, respectively. The encrypted packets W ′
2 are

W ′
2 =W2 ⊕

[
K (1)

2 K (2)
2

][
G (1)

2

G (2)
2

]
︸ ︷︷ ︸

G2

(4.109)

where G2 is a (k1 (1−δ1)+k2δ2E (1−δ2))×m2 (1−δ2) generator of an MDS code. Packets

W ′
2 are sent using ARQ.

2. S −D channel: Similarly, let K1 denote the key created for the S −D channel.

W ′
1 =W1 ⊕K1G1, (4.110)

where G1 is a (k1δ1E (1−δ1)+ c3 (1−δ3)+ r 3)×m1 (1−δ1) MDS code generator. Packets

W ′
1 are sent using ARQ.

3. U −D channel: The message sending phase on the U −D channel takes three steps. U

first sends the c1 (1−δ1) packets from the S −U common randomness using ARQ; these

enable D to decode the c1 (1−δ1) message packets. U then calculates

W ′′
2 =W ′

2 ⊕K (2)
2 G (2)

2 =W2 ⊕K (1)
1 G (1)

2 , (4.111)

to remove the K (2)
2 G (2)

2 that D does not know. U computes[
W ′

3a W ′
3b

]
=W ′′

2 G3 =W ′′
2

[
G3a G3b

]
, (4.112)

where G3 is an m2 (1−δ2)×m2 (1−δ2) invertible matrix such that G3a is of size m2 (1−δ2)×
min

{
k1 (1−δ1) 1−δ3δ3E

1−δ3E
,m2 (1−δ2)

}
and G (1)

2 G3a is the generator of an MDS code. W ′
3a

are sent using ARQ.

Finally, let K3 denote the key that U creates with the different key generation methods,

as explained above. It uses K3 to encrypt the remaining part of the message W ′
3b :

W ′′
3b =W ′

3b ⊕K3G ′
3, (4.113)

where G ′
3 is a |K3|×

(
m2 (1−δ2)−k1 (1−δ1) 1−δ3δ3E

1−δ3E

)+
generator of an MDS code. Packets

of W ′′
3b are sent using ARQ.

4.4.4 Analysis

Rate D receives a rate m1 (1−δ1) message from the message sending phase on the S −D

channel. In addition, the message sending phase on the U −D channel delivers a message

of rate (1−δ3)m3 as long as it is not larger than c1 (1−δ1)+m2 (1−δ2), which is the rate

of message packets (or packets interpreted as message packets) that U has access to. The

condition (1−δ3)m3 ≤ c1 (1−δ1)+m2 (1−δ2) is ensured by (4.105), hence rate (1−δ1)m1 +
(1−δ3)m3 is achieved.
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Constraints (4.99)-(4.101) ensure that the scheme described above is feasible, i.e., no more

than n transmissions are used on each channel.

Security We need to see if a sufficient key rate is available against all eavesdroppers whenever

we send encrypted packets. The security of the scheme then follows from Theorem 2.2.

1. S −U channel: It is clear from (4.97) that the key rate (4.106) available on this channel is

sufficient to secure a message of rate m2 (1−δ2).

2. S −D channel: In the same way (4.96) ensures that the key rate (4.107) is sufficient to

secure a message of length m1 (1−δ1).

3. U −D channel: The first set of packets (c1 packets from the common randomness) are

random packets that are independent of the message, thus no encryption is required

and they cannot reveal any information to Eve about the message.

Packets W ′
3a are of the form

W ′
3a =W2G3a ⊕K (1)

1 G (1)
2 G3a . (4.114)

We see the same form of encryption as in Theorem 2.2, applied on the linear combination

W2G3a as message packets and matrix G (1)
2 G3a for combining the keys K (1)

1 . The key rate

of K (1)
1 is k1 (1−δ1), while the rate of W ′

3a is

k1 (1−δ1)
1−δ3δ3E

1−δ3E
, (4.115)

hence the rate of K (1)
1 is sufficient to secure this message rate by Theorem 2.2.

Consider the message packets W ′
3b . The rate of W ′

3b is
(
m2 (1−δ2)−k1 (1−δ1) 1−δ3δ3E

1−δ3E

)+
,

while the key has rate (k3 + c3)δ3E (1−δ3)+ (r3 + c1 (1−δ1)) δ3E (1−δ3)
1−δ3δ3E

by (4.108). Hence,

for security we need that

m2 (1−δ2)−k1 (1−δ1)
1−δ3δ3E

1−δ3E
≤

(k3 + c3)δ3E (1−δ3)
1−δ3δ3E

1−δ3E
+ (r3 + c1 (1−δ1))

δ3E (1−δ3)

1−δ3E
. (4.116)

Using (4.105) we get:

m3 (1−δ3)− c1 (1−δ1)−k1 (1−δ1)
1−δ3δ3E

1−δ3E
≤

(k3 + c3)δ3E (1−δ3)
1−δ3δ3E

1−δ3E
+ (r3 + c1 (1−δ1))

δ3E (1−δ3)

1−δ3E
. (4.117)

After rearranging terms this condition becomes constraint (4.98), hence the security of

message packets W ′
3b is ensured by the feasibility of the LP.
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4.5. Next steps

This concludes the proof of the direct part of Theorem 4.4. We have seen that the scheme is

feasible, it achieves the claimed rate and it ensures security against each eavesdropper.

4.4.5 Outer bound

We complete the proof of Theorem 4.4 by providing a matching outer bound. We apply the

same proof technique as we have used for the V-network. Showing equivalence of the outer

bound linear program and the LP in Theorem 4.4 is a lengthy derivation. We delegate the

whole proof to Appendix C.4.

4.5 Next steps

In this chapter we further developed our two-phase approach to the secret-message sending

problem and derived secret-message capacity of small network settings. We used a linear

programming framework to describe our schemes as well as to derive new outer bounds.

Even these small networks show nontrivial behavior. The tools that we used to find an optimal

scheme – and especially to prove optimality – do not scale well for a network of arbitrary

size. With the size of the network the complexity of the problem increases exponentially. The

number of paths, the number of subsets of intermediate nodes that can generate and share

randomness grow exponentially. In fact, finding the secret-message capacity is an NP-hard

problem even if intermediate nodes do not generate randomness [61]. In the next chapter we

consider arbitrary networks and target a trade-off between complexity and achieved secret-

message rate.
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5 Secret-message sending in arbitrary
networks

In the preceding chapter we took the first steps towards understanding the secret-message

sending problem in a multihop erasure network. We have seen that an optimal coding scheme

needs to combine various key generation techniques and exploit some nontrivial coding

solutions even in a small setting with no more than three network nodes. It is also known that

finding the secret-message capacity of a general network is as hard as determining the capacity

region of mulitple unicast network coding, which is a long-standing open problem [62, 63]. All

these indicate that the complexity of pursuing optimality in a network increases with the size

of the network.

In this chapter we target a trade-off: our goal is to design a simple scheme that is applicable

for a network of arbitrary size and achieves a secret-message rate that is close to the optimum.

In our design we follow our two-phase approach. In the previous chapter we have seen

that the optimal scheme might require that the length of the phases are different on each

channel. In this chapter we use a global two-phase scheme, by which we mean that the

length of each phase is the same on each channel of the network. Here we also assume that

intermediate nodes do not generate private randomness. This assumption fits well with the

current networking philosophy of having the intelligence at the edge of the network and

keeping intermediate node operations simple. Moreover, it allows a fair comparison with

secure network coding [56], where the same assumption was imposed.

Our scheme simultaneously exploit erasures and the topology of the network for secrecy. First,

we establish a connection between the two-phase approach and secure network coding. We

show that these two are not fundamentally different, a secure network coding scheme can be

converted to a two-phase scheme. This observation enables us to design a general scheme that

reduces to the optimal two-phase scheme for a network with a single channel (point-to-point

setting, see Chapter 2) and at the same time reduces to the optimal secure network coding

scheme for an error-free network.

We also derive new outer bounds for the network setting and using these, we evaluate the

achieved secret-message rate of our scheme. We believe that our proposed scheme represents

a reasonable trade-off between complexity and achieved rate.
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Chapter 5. Secret-message sending in arbitrary networks

5.1 Related work

The most relevant related work for the current chapter is secure network coding by Cai and

Yeung [56], where secret-message capacity of an error-free network was derived. In Section 5.3

we provide a short summary of the secure network coding scheme. This work was followed

by a number of alternative constructions and extensions [64–66]. In [57] a generalization for

erasure networks was presented, however feedback was not considered. The problem remains

open in many nontrivial settings, e.g., for unequal link capacities, for nonuniform wiretap sets

or with private randomness at intermediate nodes only partial results are available [61, 67–69].

5.2 Model

We introduce notation specific to this chapter and adapt the definitions in Section 1.2.

Communication takes place over a network which is represented by a directed acyclic multi-

graph G (V ,E), where V is the set of network nodes and E is the (multi-)set of edges.

Every edge e = (u, v) ∈ E is an erasure channel with parameters δ,δE . The channels operate as

described in Section 1.1.

In this chapter we consider not only unicast, but also multicast traffic. A source node s ∈V

aims to send securely message to a set of destination nodes D ⊂V . The source S can generate

arbitrary amount of private randomness, however other network nodes do not use private

randomness.

The multicast capacity of G with source S and destination nodes D is h (1−δ), where h denotes

the number of edges in the smallest value min-cut between S and any d ∈ D. We introduce

parameters h = t +`, where t is the number of multihop paths between S and D while ` is the

number of direct S-D links in the smallest value min-cut. In case the smallest value min-cut is

not unique, we choose the one that gives the smallest value for `.

The eavesdropper Eve can select arbitrarily up to z edges of the network to wiretap. A ⊆ E

denotes the subset of wiretapped edges, where |A| ≤ z. We assume that z is known as a design

parameter, but A is known only by the eavesdropper. We assume that z ≤ h, but we discuss

the possibility of relaxing this restriction in Section 5.8.

The set of incoming and outgoing edges of v ∈V are denoted by Iv and Ov . If E ⊆ E then Yi ,E

denotes the set of received packets by the network nodes in the i th time slot on the set of

edges E . Similarly for V ⊆V the notation Yi ,V denotes the set of packets that the set of nodes

V receives in the i th time slot. In case there are parallel edges the notation (u, v) means the

set of edges starting from U and ending at v .

According to Definition 1.1, the channel inputs are defined as

Xi ,(s,v) = fi ,(s,v)

(
W,Θs ,F i−1

)
(5.1)
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5.3. Secure network coding over error-free networks

Xi ,(u,v) = fi ,(u,v)

(
Y i−1

Iu
,F i−1

)
, ∀u 6= s. (5.2)

For each receiver d ∈ D the decodability condition (Definition 1.1, (1.7)) becomes:

Pr
{
φd

(
Y n

Id

)
6=W

}
< ε, ∀d ∈ D. (5.3)

The security requirement against the eavesdropper (Definition 1.4, (1.9)) is

I
(
W ; Z n

A ,F n)< ε, ∀A ⊆ E , |A| ≤ z. (5.4)

5.3 Secure network coding over error-free networks

In this section we shortly summarize the work of Cai and Yeung [56]. In the special case of

error-free channels δ= δE = 0 our model becomes the same as seen in [56]. A linear coding

scheme known as the secure network coding scheme is proposed that has secret-message

rate (h − z)+. The scheme uses source randomness of size z and ensures that all destination

nodes receive both the message and the additional randomness. It is shown that the secure

network coding scheme is optimal in terms of the achieved secret-message rate and it uses

the minimum amount of additional randomness any optimal scheme might use.

Let us assume that Eve simply discards any packet that she receives more than once. We denote

z ′ ≤ z the number of innovative packets Eve observes. Then, we can write Eve’s observation in

the following form:

ZA = [Θ W ]

[
QΘᵀ

A

QW ᵀ
A

]
. (5.5)

Here QΘᵀ
A is a z×z ′ matrix and QW ᵀ

A is a (h − z)×z ′ matrix. The secure network coding scheme

has the property that the matrix QΘᵀ
A has rank z ′. Thus, ΘQΘᵀ

A is a set of z ′ ≤ z independent

uniform random packets, while W QW ᵀ
A is a set of z ′ linear combinations of the message

packets, hence from Eve’s perspective what she observes is some data W QW ᵀ
A encrypted using

one-time pad with keyΘQΘᵀ
A .

One possible intuitive interpretation of these results is the following: to give perfect security

against Eve who has access to at most z innovative packets, we need to send z packets of

additional randomness and hence the secret-message capacity of the network is reduced by

z compared to its multicast capacity. We use this intuition when we design our scheme for

erasure networks.

5.4 Main result

The main result of this chapter is the design of secure coding schemes for arbitrary network

topologies.
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Chapter 5. Secret-message sending in arbitrary networks

Theorem 5.1. In a network, a secret-message rate

R = h

z 1−δE
κ(1−δδE ) + 1

1−δ
, (5.6)

is achievable, where κ corresponds to the key rate that our key generation phase achieves and it

equals

κ= h (1−δ)− (z − t )+ (1−δ) (1−δE )−min{z, t } (1−δ)
1−δE

1−δδE
, (5.7)

for a unicast problem, whereas it is

κ= h (1−δ)− z (1−δ)
1−δE

1−δδE
. (5.8)

for a multicast problem.

Our coding scheme described in Section 5.6 provides a constructive proof of Theorem 5.1

(together with details delegated to Appendix D.2).

Clearly, if δ = δE → 0 then κ→ h − z and R → h − z, hence in this special case the scheme

achieves the same rate as the secure network coding scheme. Also, for h = z = `= 1 we have

κ= δE (1−δ) and get back R = δE (1−δ) 1−δδE

1−δδ2
E

, the optimal rate of a single channel network.

We derive two outer bounds which give a basis for comparison and provides proof of optimality

in a few further cases. The first bound is valid for any network and depends on h and z, while

the other is valid for networks where Os = Id = h and beside h and z, parameter t also plays a

role. The ratio between our achieved rate and the outer bound is not larger than 1
1−δ . In most

cases the gap is even smaller.

Theorem 5.2. Assuming z ≤ h, for the achievable secret-message rate over G it holds that

R ≤ (1−δ) (h − z)+ zδE (1−δ)
1−δδE

1−δδ2
E

. (5.9)

We note here that when z > h we can substitute z = h to get a valid upper bound for all cases,

since the secret-message capacity cannot decrease by decreasing z.

Theorem 5.3. Assuming Os = Id = h, for the achievable secret-message rate over G it holds that

R ≤ (1−δ)h −min{t , z}
(1−δE ) (1−δ)

1−δδE
. (5.10)

We provide the proofs of Theorems 5.2-5.3 in Appendices D.3-D.4. As a corollary of Theo-

rems 5.2-5.3 we have the following optimality result.
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5.4. Main result

Corollary 5.1. Our scheme achieves secret-message capacity in the following cases:

1. h = `= z,

2. Os = Id = h and t ≥ z,

3. δE = 0 or δE = 1.

5.4.1 Discussion, numerical examples

Applying a link-by-link error correction first and then using a secure network code directly

results a secret-message rate (h − z) (1−δ). In the case where δ ≥ δE , taking into account

Eve’s erasures, but not using feedback does not allow any better rates [58]. The advantage of

exploiting feedback is twofold. First, it allows a higher key generation rate κ≥ (h − z) (1−δ).

Second, it allows to reduce the size of the key we need in the second phase from n2z (1−δ) to

n2z (1−δ) 1−δE
1−δδE

. In this section we illustrate qualitatively how large this advantage is.

One can immediately see that the larger δE and z are the larger the advantage of exploiting

erasures and feedback is. In particular, if z = h our scheme still achieves a nonzero rate, which

is not possible without feedback (assuming δE ≤ δ).

In our example we consider the case when δ= δE . In this case, the highest achievable secret-

message rate without feedback is (h − z) (1−δ). We consider a network with parameters

h = t = 10 and δ= 0.3. We plot in Figure 5.1 the advantage of our scheme as the ratio between

R and (h − z) (1−δ). We see that in this case our scheme achieves a rate up to 3 times higher

than the scheme without feedback. With the increase of the network size or δ = δE the

advantage becomes even larger. Note that we have selected the parameter values for the

example such that there is no difference between the unicast and the multicast rate of our

scheme.

We have optimality result only in some special cases. In order to see how the gap between

our outer bound and achieved rate behaves we give a few numerical examples for the cases

when there is a gap. Theorem 5.2 holds for any network, while Theorem 5.3 offers a potentially

better bound when Os = Id = h. For cases when our achieved rate for unicast and for multicast

differ we evaluate for the unicast rate.

First we consider the bound given by Theorem 5.2. We express the gap between the outer

bound and the achieved rate as the ratio between the two (i.e., 1 means no gap). We evaluate

for values z ≤ h. We can observe that the gap takes its largest value if h = t , i.e., all paths

between S and D are multihop paths. Further, we get the largest gap for z = h and δE close to

0. In this case with δE → 0 the gap tends to 1
1−δ , which is the largest possible gap we might get.

For other cases the gap is more moderate, see Figure 5.2 for a few examples.

For cases when Os = Id = h holds, we can take the minimum of our two outer bounds. Note

that in this case, when z ≤ t we do not have any gap, our scheme is optimal. Beside giving this

optimality result, Theorem 5.3 offers an improvement over Theorem 5.2 for some cases also

when t > z. As an example, on Figure 5.3 we compare the gap that the bound of Theorem 5.2
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Figure 5.1: Advantage of using feedback as a function of the number of eavesdropped edges z,
when h = t = 10,δ= δE = 0.3. In this case multicast and unicast rates are the same.

gives and the gap we get when taking the minimum of the two bounds. We plot the gap for a

few specific values and for z ≥ t (for z < t there is no gap in the second case).

Both our scheme and our upper bounds are general in the sense that beside the min-cut value

and the number of direct S-D channels they do not depend on the topology of the network. A

more sophisticated network specific analysis could result both in higher achieved rates and

in improved upper bounds. However, we see that for most parameter values the rate of the

general scheme is already reasonably close to the upper bound.

5.5 Two-phase secure network coding scheme

As a first step, in this section we examine only error-free networks. We show that the secure

network coding scheme [56] – with an appropriate modification – can be cast as a two-phase

scheme. We show that the modification does not affect the achieved rate, hence the two

phase secure network coding scheme is also optimal. That is, we provide a new, alternative

achievability scheme achieving the secret-message capacity of a error-free network. Separating

the two phases makes it possible to consider key generation and message sending separately.

This leads to our unified achievability scheme in Section 5.6 that accepts as special cases

the (optimal) achievability scheme we provide next for error-free networks and the (optimal)

achievability scheme for the point-to-point erasure channel that we described in Chapter 2.
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Figure 5.2: Upper bound/achieved rate (based on Theorem 5.2) for various parameter values
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Figure 5.3: Upper bound/achieved rate (based on Theorems 5.2-5.3) for various parameter
values
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Figure 5.4: Secure network coding example
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Figure 5.5: Coding with shared key
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Figure 5.6: Two-phase secure network coding scheme example

5.5.1 Example

For simplicity in this example we assume unicast traffic. Consider the following simple network

(Figure 5.4). Source S and destination D are connected through two parallel unit capacity

error-free links out of which any one is being wiretapped by Eve (h = 2, z = 1). The secrecy

capacity of the network is 1, hence S can send securely a unit size message W . For the secure

network coding scheme, source S generates a unit size randomness P . As shown in the figure,

on one of the links S sends P while on the other link it sends P +W . The eavesdropper either

sees P or P +W , in either case no information about W is leaked.

Assume now, that S and D already share a unit size random key K , which is not known by Eve.

Then, as shown in Figure 5.5, S can securely send two unit size messages W1 and W2 using K

for encryption on both links. Hence, in this case, a unit size shared key enables us to exploit

the min-cut capacity of the network. One might ask, how S and D can set up a shared key.

The secure network coding scheme offers a way to send any message W securely to D, this

message can equally well be a key K . Consider the example in Figure 5.6, where in two time

slots two messages are sent securely to D . In the first slot a key is set up, while in the second

slot this key is used for encryption. Note that the achieved rate is 1, the same as what the

secure network coding scheme achieves. Also the amount of additional randomness remains

the same.

5.5.2 Scheme description

The properties that we have seen through our example can be generalized as follows. We call

the scheme described below the two-phase secure network coding scheme. As opposed to the

secure network coding scheme our scheme uses every link n = n1 +n2 times, where n1 and n2

are the number of time slots used for the two phases respectively. We use a secure network

code as a building block, we select one such code at the outset and then in each of the n time

slots we use the same code on different inputs. Hence, we have that Qi ,e =Q j ,e =Qe ,∀i , j .

In our scheme the size of our message is N = n2h. To securely send a message of this size, we

need a shared key K of size n2z between S and the destination nodes.
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5.5. Two-phase secure network coding scheme

Key generation:

The sender generates a uniformly random K of size n2z. It also generates additional random-

nessΘ of size n2
z2

h−z . The key generation phase consists of n1 = n2
z

h−z time slots, in each slot

S securely sends h − z packets from K . On edge e in the i th slot we thus send[
Θ (i ) K (i )

]
Qe , (5.11)

where K (i ) is the i th h − z length fraction of K : K (i ) = K(i−1)(h−z)+1...i (h−z). Similarly, Θ (i ) is

the i th z length fraction ofΘ: Θ (i ) =Θ(i−1)z+1...i z .

Encrypted message sending:

In the second phase we use K for encryption and in each slot h message packets are sent

securely. We use again the same secure network code n2 times. We denote W (i ) the first h − z

elements of the i th h length fraction of W and W ′ (i ) the last z elements of the same fraction.

K ′ (i ) is the i th z length fraction of K . On edge e in the i th slot of the second phase we then

send [
W ′ (i )+K ′ (i ) W (i )

]
Qe . (5.12)

It directly follows from the properties of the secure network code that we use that all destination

nodes know K and hence can decode W .

Analysis

Building on the security of the secure network code we show that the scheme is secure. We

delegate the proof of security to Appendix D.1.

Our scheme conveys a message of size n2h using n1 +n2 transmissions, thus our rate is

n2h

n1 +n2
= n2h

n2
z

h−z +n2
= h − z, (5.13)

which is the same as the rate of the secure network coding scheme. We further note that the

amount of randomness we use is |K |+ |Θ| = n2
hz

h−z , which is also the same as the amount of

randomness that the secure network coding scheme uses to securely send a message of size

n2h. By selecting n2 = h − z the rate h − z is achieved in a finite block length.

5.5.3 Discussion

In the case of error-free networks separating the two phases does not make any difference

in the achievable secret-message rate, since the rate of key generation is the same as the

achievable secret-message rate. However, in some cases this might not hold and a higher key

generation rate is possible. In those cases designing the two phases separately results in an

improved secret-message rate. We have seen that the point-to-point erasure channel is an

example, where a gap between the secret-key capacity and the secret-message capacity exists.
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S D

U

Figure 5.7: Example network – triangle topology

5.6 Coding scheme

We provide the proof of Theorem 5.1 by designing a coding scheme for an arbitrary network.

We note that although our model allows that channel state is available for every network node,

in our scheme, on every channel, transmissions depend only on the state of the given channel.

We first describe our scheme for a single receiver node D = {d}, then in Section 5.6.3 we

generalize our description for multicast. We also assume here that z ≤ h. This assumption was

necessary in the case of an error free network to achieve any nonzero rate securely, however

in an erasure network we can achieve some rate even if z > h. We discuss this case in a

subsequent section.

5.6.1 Example

Before a detailed description, we explain ideas through the example network in Figure 5.7.

This network is a special case of the more general triangle network discussed in the previous

chapter. Let z = 1. For simplicity, in the example when we calculate the number of received

packets we work with expected values instead of random variables.

Key generation:

Source S sends independent random packets over all its outgoing links. Both the destination

node D and the intermediate node U receive n1 (1−δ) packets. On the link between U and D

the packets that U received are then sent to D using ARQ. To complete this task U needs n1

transmissions.

The achievable key rate corresponds to the number of packets that D receives but Eve does

not. Eve has three possible choices to select a wiretapped link, and when generating the key

we need to consider her worst-case selection.

Case 1: Eve selects the S-D link. In this case the number of packets that both D and Eve

receive is n1 (1−δ) (1−δE ).

Case 2: Eve selects the U -D link. Since D eventually receives every packet that U has and

every packet is repeated potentially several times, the probability that Eve overhears a

certain packet of D is increased to 1−δE
1−δδE

. Node U sends n1 (1−δ) different packets,

hence Eve has n1 (1−δ) 1−δE
1−δδE

packets in common with D .

Case 3: Eve selects the S-U link. We know that all the packets that U receives D also receives.

Eve and U have n1 (1−δ) (1−δE ) packets that they both receive, we get the same

result as in the first case.
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We conclude that Eve’s best choice (from her perspective) is the U -D link. Destination D has

2n1 (1−δ)−n1 (1−δ)
1−δE

1−δδE
(5.14)

packets not received by Eve, hence a key rate 1−δ+ (1−δ)2δE
1−δδE

is achievable.

Encrypted message transmission:

There are two edge disjoint paths between S and D. Let n2 be the number of transmissions

in the second phase. The message is encrypted in the form that we have already seen: WE =
W +KG , where K is the key and G is an MDS generator matrix. WE is split into two parts

and each half of the message is assigned to one of the paths. The message packets are then

forwarded towards D using ARQ on each link.

The size of the key K we use has to equal the number of packets Eve receives in the second

phase. In this case, the MDS property of G ensures that Eve receives every packet with an

independent linear combination of K , ensuring security of the scheme.

Since the same forwarding strategy is applied on each link, regardless of which link Eve selects,

she receives a certain packet with probability 1−δE
1−δδE

, thus she receives overall n2 (1−δ) 1−δE
1−δδE

different packets. Hence n1 and n2 are chosen such that |K | = n2 (1−δ) 1−δE
1−δδE

.

5.6.2 Algorithm

As a first step we select h edge disjoint paths between S and D . We ignore all other edges of G .

The example in the previous section suggests that the achievable rate depends not only on

h, z,δ and δE , but also on the number of direct S-D links, i.e on ` and t . Recall that h = `+ t ,

where ` denotes the number of direct S-D links and t denotes the number of multihop paths.

Key generation:

We define

n′
1 = n1 −n

3
4
1 (5.15)

ζ1 = n′
1 (z − t )+ (1−δ) (1−δE )+n′

1 min{z, t } (1−δ)
1−δE

1−δδE
(5.16)

|K | = hn′
1 (1−δ)−ζ1 −n

′ 3
4

1 . (5.17)

Parameter ζ1 corresponds to the number of packets Eve might receive in the first phase1.

Source S sends at most n1 random packets on all its h outgoing edges. It stops transmission

on each link as soon as n′
1 (1−δ) packets are acknowledged on the given link. Intermediate

nodes on each path forward the n′
1 (1−δ) packets that they receive to the next node on the

path towards D using ARQ.

1More precisely, with a probability arbitrarily close to 1, Eve does not receive more packets than ζ1.
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If D does not receive hn′
1 (1−δ) packets, then an error is declared. Otherwise, let M denote

the vector of all the packets that D receives. Both S and D compute

K = M H , (5.18)

where H is a
(
hn′

1 (1−δ)×|K |) matrix and it is a parity check matrix of an MDS code.

Encryption and message sending:

We find N ,n2 and n′
2 such that

ζ2 = n′
2z (1−δ)

1−δE

1−δδE
(5.19)

|K | = ζ2 +n
′ 3

4
2 (5.20)

n′
2 = n2 −n

3
4
2 (5.21)

N = hn′
2 (1−δ) . (5.22)

Similarly to ζ1, parameter ζ2 corresponds to the number of packets Eve might receive in the

second phase. The encrypted message WE is computed as

WE =W +KG , (5.23)

where K is the key from the first phase and G is a (|K |×N ) matrix and it is a generator of an

MDS code.

We assign n′
2 (1−δ) packets to each of our paths. These packets are then forwarded on their

assigned path to D using ARQ over each link. If D does not receive all the packets of WE after

n2 transmissions, then an error is declared.

5.6.3 Multicast

In this section we present our scheme for the multicast problem, where there are more than

one destination nodes and all of them have to receive the same message securely. Compared

to the unicast scheme only a few modifications are needed. To avoid repetition, below we

highlight only the differences.

Instead of h edge disjoint paths, first we need to find a network code over Fq for multicasting

at rate (1−δ)h. Again, we can ignore all edges that are not used by the network code.

In the key generation phase we need the following modification. Instead of sending new

random packets on the outgoing edges, S selects in advance n′
1h (1−δ) random packets that

are sent reliably to all destination nodes using ARQ on each link and applying the network

code that we have chosen. The same network code is used in each time slot. This ensures

that all d ∈ D receive the same set of packets and hence they all can compute the same key.
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5.6. Coding scheme

According to this we modify parameter ζ1:

ζ1 = n′
1z (1−δ)

1−δE

1−δδE
. (5.24)

Note that this change implies a change of parameters |K |,n2,n′
2,ζ2 and N , however all formulas

remain the same as defined for unicast.

In the second phase the only difference is that instead of forwarding through h edge-disjoint

paths we use the network code (together with ARQ) to reliably send the encrypted packets to

all destinations.

Another modification is needed in the selection of matrices H and G . Note that in the unicast

case intermediate network nodes do not perform any coding, hence Eve might only receive

packets that S produces. This property enables to code only at the source using any H and

G matrices that have the MDS property. In the case of multicast, intermediate nodes might

produce new linear combinations, hence Eve might receive combined packets as well.

As for matrix H , consider the hn′
1 (1−δ) packets that S sends in the key generation phase and

all their different linear combinations that the prescribed network code produces. Let Qn1
A

denote a coefficient matrix of size hn′
1 (1−δ)×hn′

1 (1−δ)−|K | that describes a hn′
1 (1−δ)−|K |

size subset of these packets. This subset corresponds to a set of packets that Eve might receive.

We will see during the analysis that the probability that Eve receives a larger subset of packets

is negligible. We select H such that
[

H Qn1
A

]
is a full rank (in fact invertible) matrix for all

possible Qn1
A . This property ensures the security of the generated keys. In [70] it was shown

that if H is a parity check matrix of a rank metric code over FqL , this property is satisfied

independently of Qn1
A .

As for matrix G , we consider a |K | size subset of the different encoded packets that Eve might

receive during the second phase. Let Qn2K
A denote the |K | × |K | coefficient matrix of Eve’s

possible receptions that contain the coefficients of packets from K . We select G such that all

possible such Qn2K
A matrix is invertible. As shown in our analysis this property ensures security

of the message. Using again a parity check matrix H ′ of a rank metric code over FqL , we can

find such a G as the last |K | rows of
[

H ′ Z
]−1

, where H ′ has size n2h (1−δ)×n2h (1−δ)−|K |
and Z is a full rank matrix over Fq [70].

5.6.4 Analysis

The proof of security and low error probability of our scheme uses the same techniques that

we have seen in the previous chapters. We prove that the size of the key that we set up in the

first phase is sufficient to encrypt the message in the second phase. We further rely on the

observation that due to the ARQ that we apply, Eve receives the most number of different

packets if she selects edges from different paths. We delegate details to Appendix D.2.

99



Chapter 5. Secret-message sending in arbitrary networks

S DU

Figure 5.8: Two-hop line network

5.7 Outer bounds

Theorems 5.2-5.3 provide outer bounds on the achievable secret-message rate. We highlight

some concepts and provide the complete proofs in Appendix D.3-D.4. When deriving our

upper bounds we make the following two assumptions which can only increase the achievable

rates: (a) The set of eavesdropped edges are known, hence we restrict Eve to one particular

selection of edges. (b) The state of the eavesdropper’s channel is also known to every node

in the network. Both theorems rely on the assumption that intermediate nodes do not use

private randomness.

Theorem 5.2 holds for any network. After a transformation of the network the proof generalizes

the converse part of Theorem 2.1.

Theorem 5.3 considers a special class of network. By intuition, the restriction Os = Id = h

ensures that the deletion of edges that are not on a path towards a destination node does not

reduce the achievable secret-message rate.

5.8 Discussion

5.8.1 Extension for z > h

Assume z = 2 and consider the two-hop line network shown in Figure 5.8. Against this stronger

Eve, we can run our scheme as presented in Section 5.6, but with different parameters. We

need to calculate how many packets Eve might receive in each phase. We give the calculation

in expectation.

In the message sending phase Eve has two independent chances to overhear a certain packet,

on each link she receives a given packet with probability 1−δE
1−δδE

, hence the number of different

packets she receives (in expectation) is:

n2
1−δE

1−δδE
+n2

1−δE

1−δδE

(
1− 1−δE

1−δδE

)
. (5.25)

In the key generation phase she gets n1 (1−δ) (1−δE ) packets in common with U on the

first link, while she receives a packet with probability 1−δE
1−δδE

on the second link, hence she is

expected to get

n1 (1−δ) (1−δE )+n1 (1− (1−δ) (1−δE ))
1−δE

1−δδE
(5.26)
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packets in common with D , which results a key rate

κ= δE (1−δ)− (1− (1−δ) (1−δE ))
1−δE

1−δδE
. (5.27)

To calculate the achievable rate (1−δ)n2
n1+n2

we need to consider n1 and n2 such that

n1κ= n2
1−δE

1−δδE
+n2

1−δE

1−δδE

(
1− 1−δE

1−δδE

)
. (5.28)

Note that for any given network and any given set of wiretapped edges a similar analysis

is feasible. After investigating all the
(|E |

z

)
possible sets of wiretapped edges, we can design

our code such that it provides secrecy against all possible eavesdropped sets. However, the

worst-case selection of eavesdropped edges and thus the actual rates achieved highly depends

on the topology of our network.

5.8.2 Intermediate randomness helps

In our model we assume that no intermediate node in the network can generate additional

randomness. Relaxing this assumption makes the problem significantly more difficult which

is open even for an error-free network. Consider as an example the two hop line network

(Figure 5.8) with z = 1. In case U can also randomize, then we can run our optimal protocol

for a single channel twice, first to send the message securely from S to U and second to send it

from U to D. This strategy achieves a rate δE (1−δ) 1−δδE

1−δδ2
E

. Without randomization we have

seen that the secure capacity is δE
(1−δ)2

1−δδE
. Clearly, intermediate randomness increases the

secure capacity in certain cases.

5.8.3 Unicast rate
?≥ multicast rate?

Note that this scheme for multicast (see Section 5.6.3) results in a lower secure multicast rate

than the minimum of the secure (unicast) communication rates to the individual destinations

achieved by the scheme in the preceding section. There is such a gap in case z > t , where t is

the number of multihop paths between S and the destination with the lowest secure unicast

capacity.

Considering the example on Figure 5.9 with z = 2 helps understanding why this gap shows up.

If we had a unicast problem, with D1 as the only destination, then we could achieve a key rate

δE (1−δ)+ δE (1−δ)2

1−δδE
(5.29)

between S and D1. However, the unicast scheme requires S to send a new random packet on

the S-D1 channel in each time slot of the key generation phase meaning that S has no control

over which packets reach D1 and contribute to the key. If S applies the same strategy over

the S-D2 channel then D1 and D2 share two different keys with S. But in the second phase S
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S U

D1

D2

Figure 5.9: Multicast problem example

cannot use two different keys at the same time on the S-U channel, because the destinations

would not be able to decode. Our proposed scheme overcomes this issue by ensuring that D1

and D2 receive the same set of packets and can generate the same key. Compared to unicast,

this solution comes with a sacrifice in the key generation rate. Instead of the unicast key rate

in (5.29) the multicast key rate is

2
δE (1−δ)2

1−δδE
. (5.30)

Whether there is a fundamental gap between achievable unicast and multicast rates for z > t

remains open.
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6 Discussion and open problems

In this thesis we investigated the problem of secret-message sending in various erasure settings.

We introduced a two-phase scheme design and a linear programming approach which enabled

us to propose optimal coding schemes in several communication scenarios. In particular, we

have derived the secret-message capacity of a point-to-point channel, of a broadcast erasure

channel1, a network with independent parallel channels, the V-network and the triangle

network. We have shown optimality of our scheme designs using novel techniques for deriving

outer bounds. We also considered the secret-message sending problem in an erasure network

with arbitrary topology, where we proposed a general coding scheme.

Our research also leads to a few related open problems. In Section 5.8 we have already

mentioned some of these. Below we provide some questions of interest for future research.

• We have considered erasure channels only. A very natural direction is to consider

channel models other than the erasure channel and further explore the role of feedback

in secure communication.

• We only considered networks composed of point-to-point channels that operate inde-

pendently. It would be relevant for a multihop wireless network to consider broadcast

transmissions through multiple hops, which would necessarily bring together ideas

from Chapters 3 and 4.

• Our outer bound proofs assume in all cases that the channel state of the eavesdropper

is available. Clearly, the outer bound is valid with this assumption and it is tight in

many cases – as we have seen. However, we conjecture that in some cases the resulting

bound is not achievable without knowing Eve’s channel state. We have already seen a

similar phenomena for networks, where we have shown that knowing or not knowing

the location of Eve (i.e., the set of eavesdropped channels) makes a difference in the

achievable secret-message rate – unlike in the case of an error-free network.

Consider a broadcast erasure channel with two receivers and an eavesdropper. State-

feedback is available from the two receivers, who receive a private message each. Assume

1For special cases only: see Chapter 3.
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Chapter 6. Discussion and open problems

we aim to ensure secrecy of both messages against the passive eavesdropper.2 In this

setting we conjecture that a different secret-message rate region is achievable with and

without knowing the channel state of the eavesdropper. If our conjecture is true, a new

technique is required to derive a better outer bound for the problem.

• As we discussed in Section 3.4.2, it remains open whether or not the distribution inde-

pendent secret-message capacity region differs from the secret-message capacity region,

i.e., whether R2
D I S ⊂R2

D H or R2
D I S =R2

D H holds. We conjecture the former.

• We considered networks of arbitrary topology assuming that all channel parameters

are the same. It remains open to generalize ideas for networks with arbitrarily varying

channel parameters. We have to note that the problem becomes significantly harder,

because a special case of the problem is the same as the secure network coding problem

with unequal link capacities, which is known to be NP-hard [67].

• We have derived theoretical results and proposed polynomial time coding schemes for

secure communication. There are still several practical challenges to address in order to

translate these results into practical protocols.

2Note the difference between this setting and the model in Chapter 3. There each message is secured against all
other receivers, whereas here we consider all messages to be secured against one eavesdropper.
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A Summary of often used tools

For reference here we cite technical results we often use in our derivations. We state theorems

without proofs, but we also provide references for an interested reader.

A.1 One-time pad encryption

One-time pad encryption, also known as Vernam cipher was already used for hiding infor-

mation in the early 20th century, while historical documents prove that the idea appeared

as early as 1882 [71]. The name suggests that no encryption key should be used more than

once, which is indeed an important security criterion. A rigorous mathematical treatment was

presented by Shannon [4], which we take as basis here.

Let W denote random finite field element (with any distribution), which represents a message

and K another element of the same field selected uniformly at random. In this thesis we

perform operations over packets, hence the finite field is FL
q in our case. Then, the encrypted

message is

W ′ =W ⊕K , (A.1)

where ⊕ denotes the addition operation of the field. We use the ⊕ operator, because if the field

is a binary extension field, the addition is bitwise XOR.

Theorem A.1. For W ′ and K as defined above

I (W ;W ′) = 0, (A.2)

i.e., one-time pad encryption provides perfect secrecy against an adversary who sees only W ′,
and has no side-information about W or K .

For further details and proofs we refer to [4].
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Appendix A. Summary of often used tools

A.2 Chernoff-Hoeffding bound

We use the following form of the Chernoff-Hoeffding bound. For the proof and other related

inequalities we refer to [72].

Theorem A.2. Let X1, . . . , Xn denote independent random variables taking values in {0,1}, and

let X =∑n
i=1 Xi . Further, µ= E {X }. Then,

Pr
{

X ≤µ−τ}≤ e−
2τ2

n (A.3)

Pr
{

X ≥µ+τ}≤ e−
2τ2

n . (A.4)

As a direct consequence,

Pr
{∣∣X −µ∣∣≥ τ}≤ 2e−

2τ2

n . (A.5)

A.3 MDS matrices

A linear [n,k] code over Fq is described by a k ×n generator matrix G . An information (row-)

vector x of k symbols over Fq is assigned the codeword xG . A linear code C is the set of all

codewords, defined by

C =
{

c ∈ Fn
q |∃x ∈ Fk

q : c = xG
}

. (A.6)

The parity check matrix H of an [n,k] linear code is the n × (n −k) matrix for which

c ∈C ⇐⇒ cH = 0. (A.7)

An MDS code is a code that meets the Singleton-bound with equality. The Singleton-bound

claims the following:

Theorem A.3. For a code C over Fq with block length n and minimum distance d ≤ n, the

number of codewords is upper bounded by

|C | ≤ qn−d+1. (A.8)

If C is a linear [n,k] code, then d ≤ n −k +1.

MDS codes exist for any parameters [n,k] over Fq , provided q is large enough. E.g. Reed-

Solomon codes are linear MDS codes over a filed of size q > n.

Theorem A.4. A linear [n,k] code over Fq with parity check matrix H is an MDS code if and

only if any (n −k) rows of H are linearly independent.

Theorem A.5. The dual of an MDS code is again an MDS code. Thus, if H is the parity check

matrix of an [n,k] MDS code, then Hᵀ is the generator of an [n,n −k] MDS code.
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A.3. MDS matrices

Corollary A.1. Let X denote a row vector of ` random packets, i.e., X is an L ×` matrix over

Fq such that each column of X is selected independently and uniformly at random from FL
q .

Further, let H` denote an arbitrary selected subset of `≤ n rows of a parity check matrix of a

linear [n,k] MDS code over Fq . Then, the entropy of X H` expressed in terms of packets is:

H
(

X H`
)
= min{`,n −k} . (A.9)

Corollary A.2. Let X denote a row vector of k random packets, i.e., X is an L ×k matrix over

Fq such that each column of X is selected independently and uniformly at random from FL
q .

Further, let G` denote an arbitrary selected subset of `≤ n columns of a generator matrix of a

linear [n,k] MDS code over Fq . Then, the entropy of XG` expressed in terms of packets is:

H
(

XG`
)
= min{`,k} . (A.10)

For proofs of the above theorems and for more insight about error correcting codes we refer

to [73, 74].

107





B Proofs for Chapter 3

B.1 Proof of Lemma 3.3

Let UC
B be a vector of length N1 such that the i -th element UC

B ,i is UB ,i if Calvin observes this

UB ,i either in the pure form or added with some element of UC , and UC
B ,i =⊥ otherwise. Let

1C
B ,i be the indicator random variable for the event UC

B ,i 6=⊥, so MC
B =∑N1

i=1 1C
B ,i . The following

are information equivalent, i.e., we can express each side as a deterministic function of the

other. (
Y n

2 ,F n ,ΘC ,UC
)≡ (

UC
B ,Y n1

2 ,F n ,ΘC ,UC
)

. (B.1)

Therefore,

H
(
Y n

2 F nΘCUC
)= H

(
UC

B Y n1
2 F nΘCUC

)
. (B.2)

H
(
Y n

2 |Y n1
2 F nΘCUC

)= H
(
UC

B |Y n1
2 F nΘCUC

)
(B.3)

=
N1∑

i=1
H

(
UC

B ,i |UC i−1
B Y n1

2 F nΘCUC

)
(B.4)

=
N1∑

i=1
H

(
UC

B ,i |1C
B ,iUC i−1

B Y n1
2 F nΘCUC

)
(B.5)

≤
N1∑

i=1
H

(
UC

B ,i |1C
B ,i

)
(B.6)

≤
N1∑

i=1
Pr

{
1C

B ,i = 1
}
= E

{
N1∑

i=1
1C

B ,i

}
. (B.7)

where the third equality follows from the fact that the indicator random variable 1C
B ,i is a

deterministic function of the conditioning random variables.
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Appendix B. Proofs for Chapter 3

B.2 Proof of Lemma 3.4

We adopt the notation for UC
B and 1C

B ,i introduced in the proof of Lemma 3.3. In addition,

let K ′C
B be defined in a similar manner as UC

B such that K ′C
B ,i =⊥ if UC

B ,i =⊥ and K ′C
B ,i = K ′

B ,i

otherwise. Also, let 1C
B be the vector of indicator random variables 1C

B ,i , j = 1, . . . , N1.

Proceeding as in the proof of Lemma 3.3, we have

H
(
Y n

2 |W1Y n1
2 F nΘCUC

)= H
(
UC

B |W1Y n1
2 F nΘCUC

)
(B.8)

= H
(
K ′C

B |W1Y n1
2 F nΘCUC

)
≥ H

(
K ′C

B |1C
B W1Y n1

2 F nΘCUC

)
(B.9)

= H
(
K ′C

B |1C
B

)
− I

(
K ′C

B ;W1Y n1
2 F nΘCUC |1C

B

)
. (B.10)

But, from the MDS property of GK ′
B

, and the fact that KB is uniformly distributed over its

alphabet, we have

H
(
K ′C

B |1C
B

)
=

N1∑
i=1

min
(
i , s′B

)
Pr

{∑
j=1

1C
B , j = i

}
= E

{
min

(
s′B ,

N1∑
i=1

1C
B ,i

)}
. (B.11)

Also,

I
(
K ′C

B ;W1Y n1
2 F nΘCUC |1C

B

)
(a)= I

(
K ′C

B ;Y n1
2 F n1 |1C

B

)
≤ I

(
K ′C

B 1C
B ;Y n1

2 F n1

)
≤ I

(
KB ;Y n1

2 F n1ΘC
)

.

(B.12)

where (a) follows from the fact that the distribution of W2 (uniform and independent of

F n ,ΘA ,ΘC ) implies that UC is independent of ΘA ,F n and using this we can argue that the

following is Markov chain

K ′C
B − (

1C
B ,Y n1

2 ,F n1
)− (W1,ΘC ,UC ) . (B.13)

Substituting back we have the lemma.

B.3 Rate calculation

B.3.1 Honest-but-curious adversary

The achievable rate for user j is R j = limn→∞
N j

n . Compared to the non-secure 1-to-M protocol

we have an overhead of n1 transmissions. We have

lim
n→∞

s j

n
= R j

1−
∏M

k=1δk

δ j

1−∏M
k=1δk

, (B.14)
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B.3. Rate calculation

and thus

lim
n→∞

s j + s3/4
j

n
= R j

1−
∏M

k=1δk

δ j

1−∏M
k=1δk

, (B.15)

lim
n→∞

n1

n
= max

j∈{1,...,M }

R j

(
1−

∏M
k=1δk

δ j

)
(
1−δ j

) ∏M
k=1δk

δ j

(
1−∏M

k=1δk
) . (B.16)

Using Theorem 3.1 the rate assertion of Theorem 3.3 follows.

B.3.2 Dishonest adversary

Similarly as in the honest-but-curious case, we need to compute limn→∞ n1
n and limn→∞

max{n′
2,n′′

2 }
n .

It is immediate that

lim
n→∞

n′
2

n
= R1

1−δ1
+ R2

1−δ1δ2
(B.17)

lim
n→∞

n′′
2

n
= R1

1−δ1δ2
+ R2

1−δ2
. (B.18)

Further,

lim
n→∞

s′B
n

= R1
1−δ2

1−δ1δ2
(B.19)

lim
n→∞

s′C
n

= R2
1−δ1

1−δ1δ2
, (B.20)

from which

lim
n→∞

sB

n
= R1

1−δ2

δ2 (1−δ1δ2)
(B.21)

lim
n→∞

sC

n
= R2

1−δ1

δ1 (1−δ1δ2)
, (B.22)

and

lim
n→∞

n1

n
= max

(
R1

1−δ2

δ2 (1−δ1) (1−δ1δ2)
,R2

1−δ1

δ1 (1−δ2) (1−δ1δ2)

)
. (B.23)

We also observe that

R1
1−δ2

δ2 (1−δ1) (1−δ1δ2)
> R2

1−δ1

δ1 (1−δ2) (1−δ1δ2)
⇐⇒ R1

1−δ1
+ R2

1−δ1δ2
> R1

1−δ1δ2
+ R2

1−δ2
.

(B.24)

From these the rate assertion of Theorem 3.4 follows.
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B.4 Proof of distribution independent security

We need to show that if Bob is honest, then (3.10) holds. In the proof we omit taking the

maximum, but our argument is true for all joint distributions of (W1,W2), hence the property

follows.

We can almost identically follow the proof of Section 3.5.2. Similarly to (3.45) we have

I
(
W1;Y n

2 F nΘC |W2
)≤ I

(
W1;Y n

2 F nΘCUC |W2
)= I

(
W1;Y n

2 |Y n1+n2
2 F nΘCUC W2

)
. (B.25)

The last step follows because given W2, variablesΘA ,ΘC ,F n are independent of W1, further

Y n1+n2
2 ,UC are deterministic functions ofΘA ,ΘC ,W2,F n . The proofs of Lemmas 3.2 and 3.3

directly give us

I
(
KB ;Y n1+n2

2 F n1+n2ΘC
)≤ s′B e−aB.26

p
s′B , (B.26)

H
(
Y n

2 |Y n1+n2
2 F nΘCUC W2

)≤ E{
MC

B

}
, (B.27)

under the same conditions as defined in Lemmas 3.2 and 3.3, where aB.26 > 0 is some constant.

We still need to show that

H
(
Y n

2 |W1W2Y n1+n2
2 F nΘCUC

)≥ E{
min

(
s′B , MC

B

)}− I
(
KB ;Y n1+n2

2 F n1+n2
)

(B.28)

holds. We can again follow the proof of Lemma 3.4, but we have to argue step (a) in (B.12), i.e.,

I
(
K ′C

B ;W1W2Y n1+n2
2 F nΘCUC |1C

B

)
= I

(
K ′C

B ;Y n1+n2
2 F n1+n2 |1C

B

)
, (B.29)

where the independent and uniformly distributed property of W2 was exploited when prov-

ing the lemma. To see that equation (B.29) is true under the modified protocol, consider

that K ′
C is generated from a different set of random packets than K ′C

B , so K ′C
B −Y n1+n2

2 −UC

is a Markov-chain, and since (ΘA ,F n) is generated independently of (W1,W2,ΘC ), K ′C
B −(

Y n1+n2
2 ,1C

B ,F n1+n2
)− (W1,W2,ΘC ,UC ) has the Markov property too.

Having established the three key lemmas for the modified protocol, we can conclude the

proof the same way as we have seen in Section 3.5.2. We omit the details to avoid repetitive

arguments.

B.5 Proof of Lemma 3.1

As a first step we define

Adv∗ss
dis = max

f ,PW1 ,w2,σ

{
max

A
Pr

{
A

(
Y n

2 ,F n ,Θ2,σ, w2
)= f (W1, w2)

}
−max

S
Pr

{
S

(
PW1 , f , w2

)= f (W1, w2)
}}

. (B.30)
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As opposed to Advss here w2 is not a random variable but a constant value from W2. Clearly,

Adv∗ss
dis ≤ Advss

dis, (B.31)

because W2 taking the value w2 with probability 1 is a particular joint distribution W1,W2 can

take, so the scope of the maximization is restricted. We show that Adv∗ss
dis = Advss

dis.

Advss
dis = max

f ,PW1,W2 ,σ

{
max

A
Pr

{
A

(
Y n

2 ,F n ,Θ2,σ,W2
)= f (W1,W2)

}
−max

S
Pr

{
S

(
PW1 , f ,W2

)= f (W1,W2)
}}

(B.32)

= max
f ,PW1,W2 ,σ

∑
w2

pW2 (w2)

{
max

A
Pr

{
A

(
Y n

2 ,F n ,Θ2,σ,W2
)= f (W1,W2) |W2 = w2

}
−max

S
Pr

{
S

(
PW1 , f ,σ,W2

)= f (W1,W2) |W2 = w2
}}

(B.33)

= max
w∗

2 , f ,PW1 |W2=w∗
2

,σ

{
max

A
Pr{A

(
Y n

2 ,F n ,Θ2,σ, w∗
2

)= f
(
W1, w∗

2

)
}

−max
S

Pr
{
S

(
PW1 , f , w∗

2

)= f
(
W1, w∗

2

)}}
(B.34)

= max
f ,PW1,w∗

2
,σ

{
max

A
Pr

{
A

(
Y n

2 ,F n ,Θ2,σ, w∗
2

)= f
(
W1, w∗

2

)}
−max

S
Pr

{
S

(
PW1 , f , w∗

2

)= f
(
W1, w∗

2

)}}
(B.35)

= Adv∗ss
dis , (B.36)

where the second step follows because there is a certain value w∗
2 of W2 that maximizes

the expression inside {. . .}, and moreover this expression depends on PW1|W2 only through

PW1|W2=w2 , hence a maximizing joint distribution of W1,W2 is when W2 takes this particular

value with probability 1.

We continue the proof in two steps, first we define a notion of distinguishing security appli-

cable for jointly distributed messages by extending a similar definition in [24] and show its

equivalence with the above definition of semantic security. Then we show equivalence be-

tween this notion of distinguishing security and distribution independent security as defined

by Advmis
dis .

We define a notion corresponding to distinguishing security by defining the adversarial advan-

tage:

Advds
dis = max

A ,w 0
1 ,w 1

1 ,w2,σ
2Pr

{
A

(
w0

1 , w1
1 , w2, bY n

2 ,F n ,Θ2,σ
)
= b

}
−1, (B.37)

where w0
1 , w1

1 ∈ W1 are possible messages, similarly w2 ∈ W2, b is a variable uniformly dis-

tributed over {0,1} and is independent of all other variables, while bY n
2 is Calvin’s observation

given W1 = wb
1 .
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Distinguishing security defined by Advds
dis is equivalent to semantic security as defined by

Adv∗ss
dis and hence equivalently as defined by Advss

dis. To show that distinguishing security

implies semantic security, we can almost identically follow the proof of Theorem 5 from [24],

with a slight difference that a conditioning on W2 appears. Given an adversary Ass attacking

semantic security, we construct an adversary Ad s attacking distinguishing security as follows:

Ad s outputs 1, if the adversary attacking semantic security Ass gives as output f
(
w1

1 , w2
)
,

otherwise it returns 0. Then, if W 0
1 and W 1

1 are i.i.d. both having the same distribution as W1,

then

Pr
{
Ad s

(
W 0

1 ,W 1
1 ,W2, 1Y n

2 ,F n ,Θ2,σ
)= 1|W2 = w2

}
= Pr

{
Ass

(
Y n

2 ,F n ,Θ2,σ,W2
)= f (W1,W2) |W2 = w2

}
(B.38)

Pr
{
Ad s

(
W 0

1 ,W 1
1 ,W2, 0Y n

2 ,F n ,Θ2,σ
)= 1|W2 = w2

}
≤ max

S
Pr

{
S

(
PW1 , f ,W2

)= f (W1,W2) |W2 = w2
}

. (B.39)

Finishing the derivation as in [24] we get

Pr
{

Ass
(
Y n

2 ,F n ,Θ2,σ,W2
)= f (W1,W2) |W2 = w2

}−max
S

Pr
{
S

(
PW1 , f ,W2

)= f (W1,W2) |W2 = w2
}

≤ max
w 0

1 ,w 1
1 ,w2,Ad s ,σ

2Pr
{
Ad s

(
w0

1 , w1
1 , w2, bY n

2 ,F n ,Θ2,σ
)
= b

}
−1 (B.40)

for all PW1 , f ,Ass ,σ, hence taking the maximum over these variables on the LHS and over w2

on both sides keeps the inequality. This establishes that

Advss
dis = Adv∗ss

dis ≤ Advds
dis ≤ 2Advss

dis. (B.41)

The other direction of implication is a straightforward consequence of the definitions, the

scope of maximization in Advds
dis is a subset of that of Advss

dis, in case of Advds
dis f is a function

that computes b, while PW1,W2 is such that W1 uniformly takes the two values w0
1 and w1

1 and

independently W2 takes w2 with probability 1.

What remains to show is that distinguishing security defined by Advds
dis is equivalent to distri-

bution independent security as defined by Advmis
dis . Clearly, for any particular value of w2,

Advmis
dis ≥ max

PW1 ,σ
I
(
W1;Y n

2 F nΘ2|W2 = w2
)

. (B.42)

If we fix w2 for the scheme, we can directly invoke Theorem 5 from [24] which proves that

max
A ,w 0

1 ,w 1
1 ,σ

2Pr
{
A

(
w0

1 , w1
1 , w2, bY n

2 ,F n ,Θ2,σ
)
= b

}
−1 ≤

√
2 max

PW1 ,σ
I
(
W1;Y n

2 F nΘ2|W2 = w2
)

(B.43)

≤
√

2 ·Advmis
dis , (B.44)
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which holds for every w2, so we can take the maximum in w2 on the LHS, which gives in turn

Advds
dis ≤

√
2 ·Advmis

dis (B.45)

showing that the distribution independent security implies distinguishing security. The

other direction is also true. We can apply the same type of argument as when showing

Advss
dis = Adv∗ss

dis to get:

Advmis
dis = max

PW1,W2 ,σ
I
(
W1;Y n

2 F nΘ2|W2
)= max

w2,PW1 ,σ
I
(
W1;Y n

2 F nΘ2|W2 = w2
)

. (B.46)

Let us denote

Advds (w2) = max
A ,w 0

1 ,w 1
1 ,σ

2Pr
{
A

(
w0

1 , w1
1 , w2, bY n

2 ,F n ,Θ2,σ
)
= b

}
−1. (B.47)

We can apply Theorem 4.9 from [24] with a conditioning on W2 = w2, which implies that for

any w2:

max
PW1 ,σ

I
(
W1;Y n

2 F nΘ2|W2 = w2
)≤ 2Advds (w2) log

(
2n

Advds (w2)

)
. (B.48)

Since the above is true for any w2, we can take the maximum in w2 on both sides resulting

Advmis
dis ≤ 2Advds log

(
2n

Advds

)
. (B.49)

This completes the proof that distribution independent security is equivalent to semantic

security defined by Advss
dis.
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C Proofs and calculations for Chapter 4

C.1 Calculating Ni

Let N ′
i , N ′′

i and Ni be defined by the following equalities:

s′i +
∑̀

j=1, j 6=i
s j = N ′

i
1−δi E

1−δiδi E
+N

′ 3
4

i

1−δi E

1−δiδi E
(C.1)

nmi =
N ′′

i

1−δi
+ N

′′ 3
4

i

1−δ (C.2)

Ni = min
{

N ′
i , N ′′

i

}
. (C.3)

From the paramter defintions it is clear that

lim
n→∞

N ′
i

n
= 1−δiδi E

1−δi E

(
ciδi E (1−δi )+

∑̀
j=1, j 6=i

c j
(
1−δ j

))
(C.4)

lim
n→∞

N ′′
i

n
= mi (1−δi ) . (C.5)

From (4.5) we know that limn→∞
N ′′

i
n ≤ limn→∞

N ′
i

n , hence limn→∞ Ni
n = mi (1−δi ).

C.2 Proofs of Lemmas 4.5-4.6

C.2.1 Proof of Lemma 4.5

Define

nr1

1−δ1
= r ′

1 + r
′ 3

4
1 (C.6)

nr2

1−δ2
= r ′

2 + r
′ 3

4
2 (C.7)

δ′1E = 1−δ1E

1−δ1δ1E
(C.8)

117



Appendix C. Proofs and calculations for Chapter 4

δ′2E = 1−δ1E

1−δ1δ1E
(C.9)

r ′
1 =

r ′′
1

δ′1E

+ r
′ 3

4
1

δ′1E

(C.10)

r ′
2 =

r ′
2

δ′2E

+ r
′ 3

4
2

δ′2E

. (C.11)

S1 and S2 continue ARQ for at most nr1
1−δ1

and nr2
1−δ2

transmissions. Let X1,D denote the first r ′
1

packets that D receives on channel 1 (if no such, an error is declared). Then, for S1 a key is

computed as follows:

K1,2a = X1,D H1,2a , (C.12)

where H1,2a is a r ′
1×r ′′

1 parity check matrix of an MDS code. Another key K1,2b is formed for S1

from the first r ′
2 packets that D receives on channel 2. The same method is applied to create

keys K2,2a , K2,2b for S2.

The security of keys K1,2b and K2,2b is obvious. The generation of K1,2a , K2,2a is the same as

the key generation scheme in Section 1.5, with the only difference that δ′1E and δ′2E play the

role of δE . The same analysis of security and error probability applies. The claimed key rates

follow directly from the parameter definitions after taking the limits with n →∞.

C.2.2 Proof of Lemma 4.6

We provide the proof for the key of S1, the same derivation applies for S2. We define the

following parameters:

nc1 = nc ′1 +
(
nc ′1

)3/4 (C.13)

nc2 = nc ′2 +
(
nc ′2

)3/4 (C.14)

nc ′1 =
nc ′′1

1−δ1δ1E
+

(
nc ′′1

1−δ1δ1E

)3/4

(C.15)

nc ′2 =
nc ′′2

1−δ2
+

(
nc ′′2

1−δ2

)3/4

(C.16)

δ′1E = δ1E (1−δ1)

1−δ1δ1E
(C.17)

nc ′′1 = nc ′′′1

δ′1E

+ 1

δ′1E

(
2nc ′′′1

δ′1E

)3/4

. (C.18)

X D
C 1 denotes the nc ′′1

1−δ1
1−δ1δ1E

vector that consists of the first nc ′′1
1−δ1

1−δ1δ1E
packets that D receives

in this step on the S1 −D channel, while X D
C 2 the first nc ′′2 packets received from S2 in the

corresponding step. Again, we assume that sufficient number of packets are correctly received

to form these matrices, otherwise an error occurs. We later show that the error probability is

negligible.
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Like before, we use the notation X A
C 1 and X A;

C 1 for the packets received by A ∈ {D,E ,DE } and

for those received by S only, where D stands for the destination and E for the eavesdropper on

channel 1. With a slight abuse, we denote corresponding index sets by I A , I A;. Note that the

eavesdropper on channel 1 does not receive any packets from C2.

The key K1,3 is computed as follows:

K1,3 =
[

X D
C 2 X D

C 1G1,3
]

, (C.19)

where G1,3 is a matrix of dimension nc ′′1
1−δ1

1−δ1δ1E
×nc ′′′1 and it is a parity check matrix of an MDS

code.

We show that

I
(
K1,3; X E

C 1

)
(C.20)

can be made arbitrarily small by choosing a large enough n.

From the properties of C1 and C2 (i.e., the MDS property of G) it follows that X D
C 2 and X D

C 1 are

independent as long as

c ′′2 + c ′′1
1−δ1

1−δ1δ1E
< c, (C.21)

which directly follows from (4.59). Thus, we have that

H
(
K1,3

)= H
([

X D
C 2X D

C 1G1,3
])= H

(
X D

C 2

)+H
(
X D

C 1G1,3
)= n

(
c ′′2 + c ′′′1

)
. (C.22)

This already shows that K1,3 has uniform distribution and that it achieves the claimed rate. We

need to show that K1,3 is secret from the eavesdropper on the S1 −D channel.

H
(
K1,3|X E

C 1Sn)= H
([

X D
C 2 X D

C 1G1,3
] |X E

C 1Sn)
(C.23)

= H
(
X D

C 2|X E
C 1Sn)+H

(
X D

C 1G1,3|X E
C 1X D

C 2Sn)
(C.24)

= nc ′2 +H
(
X D

C 1G1,3|X E
C 1X D

C 2Sn)
(C.25)

= nc ′2 +H
(

X D;
C 1 G ID;

1,3 |X E
C 1X D

C 2Sn
)

(C.26)

Further,

H
(

X D;
C 1 G ID;

1,3 |X E
C 1X D

C 2Sn
)

=∑
k

∑
j

Pr
{
|X E

C 1|+ |X D;
C 1 | = k, |X D;

C 1 | = j
}

H
(

X D;
C 1 G ID;

1,3 |X E
C 1X D

C 2Sn , |X E
C 1|+ |X D;

C 1 | = k, |X D;
C 1 | = j

)
(C.27)

≥
n(c−c ′′

2 )∑
k=0

k∑
j=nc ′′′

1

Pr
{
|X E

C 1|+ |X D;
C 1 | = k, |X D;

C 1 | = j
}

H
(

X D;
C 1 G ID;

1,3 |X E
C 1X D

C 2Sn , |X E
C 1|+ |X D;

C 1 | = k, |X D;
C 1 | = j

)
(C.28)
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= nc ′′′1

n(c−c ′′
2 )∑

k=0

k∑
j=nc ′′′

1

Pr
{
|X E

C 1|+ |X D;
C 1 | = k, |X D;

C 1 | = j
}

(C.29)

= nc ′′′1

n(c−c ′′
2 )∑

k=0
Pr

{
|X E

C 1|+ |X D;
C 1 | = k, |X D;

C 1 | ≥ nc ′′′1

}
. (C.30)

We exploited that |X E
C 1| + |X D;

C 1 | ≤ n
(
c − c ′′2

)
implies that |X E

C 1| + |X D;
C 1 | + |X D

C 2| < c, thus the

columns of X D;
C 1 G ID;

1,3 are independent of
(
X E

C 1, X D
C 2

)
.

n(c−c ′′
2 )∑

k=0
Pr

{
|X E

C 1|+ |X D;
C 1 | = k, |X D;

C 1 | ≥ nc ′′′1

}
(C.31)

=
n(c−c ′′

2 )∑
k=0

Pr
{
|X E

C 1|+ |X D;
C 1 | = k

}
Pr

{
|X D;

C 1 | ≥ nc ′′′1 ||X E
C 1|+ |X D;

C 1 | = k
}

(C.32)

≥
n(c−c ′′

2 )∑
k=nc ′′

1

Pr
{
|X E

C 1|+ |X D;
C 1 | = k

}
Pr

{
|X D;

C 1 | ≥ nc ′′′1 ||X E
C 1|+ |X D;

C 1 | = k
}

(C.33)

≥
n(c−c ′′

2 )∑
k=nc ′′

1

Pr
{
|X E

C 1|+ |X D;
C 1 | = k

}
Pr

{
|X D;

C 1 | ≥ nc ′′′1 ||X E
C 1|+ |X D;

C 1 | = nc ′′1
}

(C.34)

= Pr
{

nc ′′1 ≤ |X E
C 1|+ |X D;

C 1 | ≤ n
(
c − c ′′2

)}
Pr

{
|X D;

C 1 | ≥ nc ′′′1 ||X E
C 1|+ |X D;

C 1 | = nc ′′1
}

(C.35)

We show that both these latter two probability terms are close to 1. We use the Chernoff-

Hoeffding bound and that E
{
|X E

C 1|+ |X D;
C 1 |

}
= nc ′1 (1−δ1δ1E ) to get:

Pr
{
|X E

C 1|+ |X D;
C 1 | ≤ n

(
c − c ′′2

)}
(C.36)

= 1−Pr
{
|X E

C 1|+ |X D;
C 1 | > n

(
c − c ′′2

)}
(C.37)

≥ 1−Pr
{
|X E

C 1|+ |X D;
C 1 | > n (c − c2 (1−δ2))

}
(C.38)

≥ 1−Pr
{
||X E

C 1|+ |X D;
C 1 |−E

{
|X E

C 1|+ |X D;
C 1 |

}
| > n

(
c − c2 (1−δ2)− c ′1 (1−δ1δ1E )

)}
(C.39)

(a)≥ 1−Pr
{
||X E

C 1|+ |X D;
C 1 |−E

{
|X E

C 1|+ |X D;
C 1 |

}
| > (1−δ1δ1E )

(
nc ′1

)3/4
}

(C.40)

≥ 1−e−aC .41

p
nc ′

1 , (C.41)

for some constant aC .41 > 0. In step (a) we used (4.59). Also,

Pr
{
|X E

C 1|+ |X D;
C 1 | < nc ′′1

}
(C.42)

≤ Pr

{
||X E

C 1|+ |X D;
C 1 |−E

{
|X E

C 1|+ |X D;
C 1 |

}
| > (1−δ1δ1E )

(
nc ′′1

1−δ1δ1E

)3/4}
(C.43)

≤ e−aC .44

p
nc ′′

1 , (C.44)
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for some constant aC .44 > 0. Thus,

Pr
{

nc ′′1 ≤ |X E
C 1|+ |X D;

C 1 | ≤ n
(
c − c ′′2

)}≥ 1−e−aC .41

p
nc ′

1 −e−aC .44

p
nc ′′

1 . (C.45)

For the second term:

Pr
{
|X D;

C 1 | ≥ nc ′′′1 ||X E
C 1|+ |X D;

C 1 | = nc ′′1
}
= (C.46)

Pr
{
|X E

C 1| ≤ n
(
c ′′1 − c ′′′1

) ||X E
C 1|+ |X D;

C 1 | = nc ′′1
}

(C.47)

= 1−Pr
{
|X E

C 1| > n
(
c ′′1 − c ′′′1

) ||X E
C 1|+ |X D;

C 1 | = nc ′′1
}

. (C.48)

The probability that a given packet in
(

X E
C 1, X D;

C 1

)
is in X E

C 1, or in other words the probabil-

ity that a packet that we know that either D or the eavesdropper received is known to the

eavesdropper, equals 1−δ1E
1−δ1δ1E

, hence

E
{
|X E

C 1|||X E
C 1|+ |X D;

C 1 | = nc ′′1
}
= nc ′′1

1−δ1E

1−δ1δ1E
= nc ′′1

(
1−δ′1E

)
. (C.49)

Using this, we can again apply the Chernoff-Hoeffding bound to get:

Pr
{
|X E

C 1| > n
(
c ′′1 − c ′′′1

) ||X E
C 1|+ |X D;

C 1 | = nc ′′1
}
≤ e−aC .50

p
nc ′′

1 , (C.50)

for some constant aC .50 > 0. With this we have shown that

I
(
K1,1; X E

K 1Sn)≤ ε (C.51)

is satisfied if n is sufficiently large.

The error probability of this step can be shown to be arbitrarily small using the techniques we

have seen before. We omit details to avoid repetitions.

C.3 V-network outer bound proof

We summarize our outer bound linear program below. With a slight abuse of formality, we

do not introduce a name on all the different entropy and mutual information terms, but

from this point we do not use any properties of the information terms except that they are

non-negative. We replace some terms with a named variable to help readability or when there

is a corresponding variable in the scheme program. As before, we work with the asymptotic

form of the inequalities.

Since we use terms as names we can ease notation by omitting 1
n

∑n
i=1, F i−1 (which appears

in all terms), and index i . This should also help the reader not to think of these terms as

meaningful information terms in the sequel.

R = (1−δ1) I (X1;W |Y )+ (1−δ2) I (X2;W |Y )
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R = (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2) I (X2;W |Y Z1)

R = (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1) I (X1;W |Y Z2)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z )

Cr ≥ (1−δ1δ1E ) I (X1;Ψ|Y Z W )+ (1−δ2δ2E ) I (X2;Ψ|Y Z W )

0 ≤− (1−δ2δ2E ) I (X2; Z1|Y Z2W )− (1−δ1) I (X1; Z1|Y Z2W )

+δ1 (1−δ1E ) I (X1;Ψ|Y Z W )+ (1−δ1) I (X1; Z1|Y Z2WΨ)

0 ≤− (1−δ1δ1E ) I (X1; Z2|Y Z1W )− (1−δ2) I (X2; Z2|Y Z1W )

+δ2 (1−δ2E ) I (X2;Ψ|Y Z W )+ (1−δ2) I (X2; Z2|Y Z1WΨ)

0 ≤− (1−δ1E ) I (X1;W |Z1W )+δ1E (1−δ1) H (X1|Y Z1W )+ (1−δ1δ1E ) I (X1;Y2|Y1Z1W )

0 ≤− (1−δ2E ) I (X2;W |Z2W )+δ2E (1−δ2) H (X2|Y Z2W )+ (1−δ2δ2E ) I (X2;Y1|Y2Z2W )

(1−δ1δ1E ) I (X1;Y2|Y1Z1W ) ≤ (1−δ2) I (X2;Ψ|Y Z W )

+ (1−δ2) I (X2; Z2|Y Z1W )− (1−δ2) I (X2; Z2|Y Z1WΨ)

(1−δ2δ2E ) I (X2;Y1|Y2Z2W ) ≤ (1−δ1) I (X1;Ψ|Y Z W )

+ (1−δ1) I (X1; Z1|Y Z2W )− (1−δ1) I (X1; Z1|Y Z2WΨ)

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ I (X1; Z2|Y Z1W )

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ I (X2; Z1|Y Z2W )

1 ≥ H (X1|Y Z2W )+ I (X1;W |Y Z2)

1 ≥ H (X2|Y Z1W )+ I (X2;W |Y Z1)

1 ≥ H (X1|Y Z1W )+ I (X1;W |Y )

1 ≥ H (X2|Y Z2W )+ I (X2;W |Y )

1 ≥ H (X1|Y Z2W )+ I (X1;W |Y )

1 ≥ H (X2|Y Z1W )+ I (X2;W |Y )

H (X1|Y Z W ) = H (X1|Y Z1W )− I (X1; Z2|Y Z1W ) (C.52)

H (X1|Y Z W ) = H (X1|Y Z2W )− I (X1; Z1|Y Z2W ) (C.53)

H (X2|Y Z W ) = H (X2|Y Z1W )− I (X2; Z2|Y Z1W ) (C.54)

H (X2|Y Z W ) = H (X2|Y Z2W )− I (X2; Z1|Y Z2W ) (C.55)

H (X1|Y Z W ) ≥ I (X1;Ψ|Y Z W ) (C.56)

H (X2|Y Z W ) ≥ I (X2;Ψ|Y Z W ) (C.57)

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ I (X1; Z2|Y Z1W )

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ I (X2; Z1|Y Z2W )

We introduce the following naming. Some variables already match variables in the scheme

program, in which case we use the name of the corresponding variable. We distinguish the

variable names used only in the outer bound program with overscore. Recall that in the

following the unnamed terms are also treated as non-negative variables.

I (X1;W |Y ) ∼ m1 (C.58)
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I (X2;W |Y ) ∼ m2 (C.59)

H (X1|Y Z W ) ∼ I (X1;Ψ|Y Z W )+k1 (C.60)

H (X2|Y Z W ) ∼ I (X2;Ψ|Y Z W )+k2 (C.61)

I (X1;Ψ|Y Z W ) ∼ s̄1 (C.62)

I (X1;Ψ|Y Z W ) ∼ s̄2 (C.63)

I (X1; Z2|Y Z1W ) ∼ ¯̀1 (C.64)

I (X2; Z1|Y Z2W ) ∼ ¯̀2 (C.65)

I (X1; Z1|Y Z2W ) ∼ x̄1 (C.66)

I (X2; Z2|Y Z1W ) ∼ x̄2 (C.67)

Besides these, we also apply equalities (C.52)-(C.55) to eliminate the following terms:

H (X1|Y Z1W ) H (X1|Y Z2W )

H (X2|Y Z1W ) H (X2|Y Z2W )

After these steps we can drop (C.56)-(C.57), and we have the following:

R = (1−δ1)m1 + (1−δ2)m2 (C.68)

R = (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2) I (X2;W |Y Z1) (C.69)

R = (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1) I (X1;W |Y Z2) (C.70)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z ) (C.71)

Cr ≥ (1−δ1δ1E ) s̄1 + (1−δ1δ1E ) s̄2 (C.72)

0 ≤− (1−δ2δ2E ) ¯̀2 − (1−δ1) x̄1 +δ1 (1−δ1E ) s̄1 + (1−δ1) I (X1; Z1|Y Z2WΨ) (C.73)

0 ≤− (1−δ1δ1E ) ¯̀1 − (1−δ2) x̄2 +δ2 (1−δ2E ) s̄2 + (1−δ2) I (X2; Z2|Y Z1WΨ) (C.74)

0 ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)− (1−δ1E ) I (X1;W |Z1W )+ (1−δ1δ1E ) I (X1;Y2|Y1Z1W ) (C.75)

0 ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)− (1−δ2E ) I (X2;W |Z2W )+ (1−δ2δ2E ) I (X2;Y1|Y2Z2W ) (C.76)

(1−δ1δ1E ) I (X1;Y2|Y1Z1W ) ≤ (1−δ2) s̄2 + (1−δ2) x̄2 − (1−δ2) I (X2; Z2|Y Z1WΨ) (C.77)

(1−δ2δ2E ) I (X2;Y1|Y2Z2W ) ≤ (1−δ1) s̄1 + (1−δ1) x̄1 − (1−δ1) I (X1; Z1|Y Z2WΨ) (C.78)

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1 (C.79)

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2 (C.80)

1 ≥ k1 + s̄1 + x̄1 + I (X1;W |Y Z2) (C.81)

1 ≥ k2 + s̄2 + x̄2 + I (X2;W |Y Z1) (C.82)

1 ≥ k1 + s̄1 + ¯̀1 +m1 (C.83)

1 ≥ k2 + s̄2 + ¯̀2 +m2 (C.84)

1 ≥ k1 + s̄1 +m1 + x̄1 (C.85)

1 ≥ k2 + s̄2 +m2 + x̄2 (C.86)
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We eliminate I (X2; Z2|Y Z1WΨ) and I (X1; Z1|Y Z2WΨ) using Fourier-Motzkin elimination.

R = (1−δ1)m1 + (1−δ2)m2

R = (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2) I (X2;W |Y Z1)

R = (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1) I (X1;W |Y Z2)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z )

0 ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)− (1−δ1E ) I (X1;W |Y Z1)+ (1−δ1δ1E ) I (X1;Y2|Y1Z1W ) (C.87)

0 ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)− (1−δ2E ) I (X2;W |Y Z2)+ (1−δ2δ2E ) I (X2;Y1|Y2Z2W ) (C.88)

(1−δ1δ1E ) I (X1;Y2|Y1Z1W ) ≤ (1−δ2δ2E ) s̄2 − (1−δ1δ1E ) ¯̀1 (C.89)

(1−δ1δ1E ) I (X1;Y2|Y1Z1W ) ≤ (1−δ2) s̄2 + (1−δ2) x̄2 (C.90)

(1−δ2δ2E ) I (X2;Y1|Y2Z2W ) ≤ (1−δ1δ1E ) s̄1 − (1−δ2δ2E ) ¯̀2 (C.91)

(1−δ2δ2E ) I (X2;Y1|Y2Z2W ) ≤ (1−δ1) s̄1 + (1−δ1) x̄1 (C.92)

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2

1 ≥ k1 + s̄1 + x̄1 + I (X1;W |Y Z2)

1 ≥ k2 + s̄2 + x̄2 + I (X2;W |Y Z1)

1 ≥ k1 + s̄1 + ¯̀1 +m1

1 ≥ k2 + s̄2 + ¯̀2 +m2

1 ≥ k1 + s̄1 +m1 + x̄1

1 ≥ k2 + s̄2 +m2 + x̄2

We apply (C.89)-(C.92) in (C.87) and (C.88). After this, we drop (C.89)-(C.92).

R = (1−δ1)m1 + (1−δ2)m2

R = (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2) I (X2;W |Y Z1) (C.93)

R = (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1) I (X1;W |Y Z2) (C.94)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z )

Cr ≥ (1−δ1δ1E ) s̄1 + (1−δ1δ1E ) s̄2

(1−δ1E ) I (X1;W |Y Z1) ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2) s̄2 + (1−δ2) x̄2 (C.95)

(1−δ1E ) I (X1;W |Y Z1) ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2δ2E ) s̄2 − (1−δ1δ1E ) ¯̀1

(1−δ2E ) I (X2;W |Y Z2) ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1 (C.96)

(1−δ2E ) I (X2;W |Y Z2) ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1δ1E ) s̄1 − (1−δ2δ2E ) ¯̀2

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2

1 ≥ k1 + s̄1 + x̄1 + I (X1;W |Y Z2)

1 ≥ k2 + s̄2 + x̄2 + I (X2;W |Y Z1)

1 ≥ k1 + s̄1 + ¯̀1 +m1
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1 ≥ k2 + s̄2 + ¯̀
2 +m2

1 ≥ k1 + s̄1 +m1 + x̄1

1 ≥ k2 + s̄2 +m2 + x̄2

In (C.93) we write

(1−δ1δ1E ) I (X1;W |Y Z1) = (1−δ1E ) I (X1;W |Y Z1)+δ1E (1−δ1) I (X1;W |Y Z1) (C.97)

and apply (C.95) on the first term. We replace (C.93) with the resulting inequality. We do a

similar replacement with (C.94) using (C.96).

R = (1−δ1)m1 + (1−δ2)m2

R ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2) s̄2 +δ1E (1−δ1) I (X1;W |Y Z1)

+ (1−δ2) I (X2;W |Y Z1)+ (1−δ2) x̄2 (C.98)

R ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 +δ2E (1−δ2) I (X2;W |Y Z2)

+ (1−δ1) I (X1;W |Y Z2)+ (1−δ1) x̄1 (C.99)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z )

Cr ≥ (1−δ1δ1E ) s̄1 + (1−δ1δ1E ) s̄2

(1−δ1E ) I (X1;W |Y Z1) ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2) s̄2 + (1−δ2) x̄2 (C.100)

(1−δ1E ) I (X1;W |Y Z1) ≤ δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2δ2E ) s̄2 − (1−δ1δ1E ) ¯̀1 (C.101)

(1−δ2E ) I (X2;W |Y Z2) ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1 (C.102)

(1−δ2E ) I (X2;W |Y Z2) ≤ δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1δ1E ) s̄1 − (1−δ2δ2E ) ¯̀2 (C.103)

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2

1 ≥ k1 + s̄1 + x̄1 + I (X1;W |Y Z2) (C.104)

1 ≥ k2 + s̄2 + x̄2 + I (X2;W |Y Z1)

1 ≥ k1 + s̄1 + ¯̀1 +m1

1 ≥ k2 + s̄2 + ¯̀2 +m2

1 ≥ k1 + s̄1 +m1 + x̄1

1 ≥ k2 + s̄2 +m2 + x̄2

We show that there is an optimal point where (C.100) is equality. First, there is an optimal point

where either (C.100) or (C.101) is equality. If it is not the case in an optimal point, then we

can increase the value of I (X1;W |Y Z1) without violating any constraints until either becomes

tight. Assume that in an optimal point the RHS of (C.101) is smaller than the RHS of (C.100).

Then we do the following transform, for some ∆> 0:

¯̀1 ↓∆ (C.105)

I (X1;W |Y Z1) ↑∆. (C.106)

125



Appendix C. Proofs and calculations for Chapter 4

One can observe that the (C.101) remains equality, and the RHS of (C.98) does not change,

thus no constraints are violated. As a result either (C.100) becomes equality or ¯̀
1 = 0. If the

latter occurs, do the following transform:

x̄2 ↓∆ (C.107)

I (X2;W |Y Z1) ↑∆. (C.108)

Again, the RHS of (C.98) and (C.104) do not change, thus no constraints are violated. Since
¯̀1 = 0, (C.100) becomes tight at least when x̄2 reaches 0.

With a similar argument it can be assumed that (C.102) is also equality. Thus, adding the

constraints

(1−δ1δ1E ) ¯̀
1 + (1−δ2) x̄2 ≤ δ2 (1−δ2E ) s̄2 (C.109)

(1−δ2δ2E ) ¯̀
2 + (1−δ1) x̄1 ≤ δ1 (1−δ1E ) s̄1 (C.110)

does not restrict the value of the program. We add these two constraints as well as we drop

(C.101), (C.103) and change (C.100) and (C.102) to equalities. We also substitute these equali-

ties back to (C.98)-(C.99).

R = (1−δ1)m1 + (1−δ2)m2 (C.111)

R ≤ (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2) I (X2;W |Y Z1) (C.112)

R ≤ (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1) I (X1;W |Y Z2) (C.113)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z )

Cr ≥ (1−δ1δ1E ) s̄1 + (1−δ1δ1E ) s̄2

(1−δ1E ) I (X1;W |Y Z1) = δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2) s̄2 + (1−δ2) x̄2

(1−δ2E ) I (X2;W |Y Z2) = δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1

(1−δ1δ1E ) ¯̀1 + (1−δ2) x̄2 ≤ δ2 (1−δ2E ) s̄2

(1−δ2δ2E ) ¯̀2 + (1−δ1) x̄1 ≤ δ1 (1−δ1E ) s̄1

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2

1 ≥ k1 + s̄1 + x̄1 + I (X1;W |Y Z2) (C.114)

1 ≥ k2 + s̄2 + x̄2 + I (X2;W |Y Z1)

1 ≥ k1 + s̄1 + ¯̀1 +m1

1 ≥ k2 + s̄2 + ¯̀2 +m2

1 ≥ k1 + s̄1 +m1 + x̄1 (C.115)

1 ≥ k2 + s̄2 +m2 + x̄2 (C.116)
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We show that

m1 = I (X1;W |Y Z2) (C.117)

m2 = I (X2;W |Y Z1) (C.118)

can be assumed without restricting the value of the program. First, we show that

m1 ≤ I (X1;W |Y Z2) (C.119)

can be assumed. If in an optimal point this does not hold, then we can increase the value of

I (X1;W |Y Z2) until it holds without violating any constraints. Note that (C.114) is respected

due to (C.115). With a similar argument

m2 ≤ I (X2;W |Y Z1) (C.120)

can be assumed. We continue the proof in two steps. First we show that at least one of

(C.117)-(C.118) can be assumed. Assume the contrary:

m1 < I (X1;W |Y Z2)

m2 < I (X2;W |Y Z1) .

If in an optimal point (C.112) is not equality, then one can decrease I (X2;W |Y Z1) until either

(C.117) holds or (C.112) becomes equality. Hence, if (C.117) does not hold, then one can

assume that (C.112) is tight. Similarly, we can assume that (C.113) is equality. If ¯̀2 > 0,

consider the following transform for some ∆> 0:

¯̀
2 ↓ ∆

1−δ2δ2E
(C.121)

x̄1 ↑ ∆

1−δ1
(C.122)

I (X1;W |Y Z2) ↓ ∆

1−δ1
(C.123)

I (X2;W |Y Z2) ↑ ∆

1−δ2δ2E
(C.124)

As a result of this transform either ¯̀2 = 0 or m1 = I (X1;W |Y Z2) occurs. Note that other

constraints remain unchanged, except for (C.115). However, if (C.115) was equality, m1 ≥
I (X1;W |Y Z2) would follow. We can also do a symmetric transform:

¯̀
1 ↓ ∆

1−δ1δ1E
(C.125)

x̄2 ↑ ∆

1−δ2
(C.126)

I (X2;W |Y Z1) ↓ ∆

1−δ2
(C.127)
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I (X1;W |Y Z1) ↑ ∆

1−δ1δ1E
. (C.128)

Thus, if still neither of (C.117) and (C.118) holds, we can assume ¯̀1 = ¯̀2 = 0. At this point,

we can increase (1−δ2)m2 and decrease (1−δ1)m1 by the same amount, until (C.118) holds

without violating any constraints (if (C.116) becomes equality, then (C.118) already holds). We

note that it cannot happen that m1 reaches 0 before (C.118) holds, because if m1 = 0, then the

RHS of (C.111) is strictly smaller than the RHS of (C.112), thus (C.112) could not be tight. We

conclude that there is an optimal point, where at least one of (C.117),(C.118) holds. W.l.o.g. we

assume

m2 = I (X2;W |Y Z1) . (C.129)

We then have:

R = (1−δ1)m1 + (1−δ2)m2 (C.130)

R ≤ (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2)m2 (C.131)

R ≤ (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1) I (X1;W |Y Z2) (C.132)

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z ) (C.133)

Cr ≥ (1−δ1δ1E ) s̄1 + (1−δ1δ1E ) s̄2 (C.134)

(1−δ1E ) I (X1;W |Y Z1) = δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2) s̄2 + (1−δ2) x̄2 (C.135)

(1−δ2E ) I (X2;W |Y Z2) = δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1 (C.136)

(1−δ1δ1E ) ¯̀1 + (1−δ2) x̄2 ≤ δ2 (1−δ2E ) s̄2 (C.137)

(1−δ2δ2E ) ¯̀2 + (1−δ1) x̄1 ≤ δ1 (1−δ1E ) s̄1 (C.138)

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1 (C.139)

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2 (C.140)

1 ≥ k1 + s̄1 + x̄1 + I (X1;W |Y Z2) (C.141)

1 ≥ k1 + s̄1 + ¯̀1 +m1 (C.142)

1 ≥ k2 + s̄2 + ¯̀2+ (C.143)

1 ≥ k1 + s̄1 +m1 + x̄1 (C.144)

1 ≥ k2 + s̄2 +m2 + x̄2 (C.145)

m1 ≤ I (X1;W |Y Z2) (C.146)

We show that the last constraint can also be made tight, i.e., m1 = I (X1;W |Y Z2) can be

assumed. If in an optimal point (C.132) is not equality, then one can decrease I (X1;W |Y Z2)

until either (C.146) is tight or (C.132) is equality. Thus, we assume (C.132) is tight. Similarly as

in the previous step, if ¯̀2 > 0 we do the following transform:

¯̀2 ↓ ∆

1−δ2δ2E
(C.147)
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x̄1 ↑ ∆

1−δ1
(C.148)

I (X1;W |Y Z2) ↓ ∆

1−δ1
(C.149)

I (X2;W |Y Z2) ↑ ∆

1−δ2δ2E
. (C.150)

Again, either m1 = I (X1;W |Y Z2) or ¯̀2 = 0. Hence we assume ¯̀2 = 0. We show that ¯̀1 = 0 can

also be assumed. If ¯̀1 > 0, we do the following transform:

¯̀
1 ↓ ∆

1−δ1δ1E
(C.151)

s̄2 ↓ ∆

δ2 (1−δ2E )
(C.152)

s̄1 ↑ 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.153)

x̄1 ↑ δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E ) (1−δ1)
∆ (C.154)

I (X1;W |Y Z1) ↓ 1−δ2

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.155)

I (X1;W |Y Z ) ↓ 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.156)

I (X2;W |Y Z2) ↑ ∆

δ2 (1−δ2E )
(C.157)

I (X2;W |Y Z ) ↑ ∆

δ2 (1−δ2E )
(C.158)

I (X1;W |Y Z2) ↓ 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1)
∆ (C.159)

m1 ↓ 1−δ2

δ2 (1−δ2E ) (1−δ1)
∆ (C.160)

m2 ↑ ∆

δ2 (1−δ2E )
(C.161)

A side calculation in Section C.3.1 shows that no constraints are violated by this transform. If

s̄2 = 0 or I (X1;W |Y Z1) = 0 then ¯̀1 = 0 follows, thus if after this transform m1 < I (X1;W |Y Z2)

still holds and ¯̀
1 6= 0, then there are two cases:

Case 1. m1 = 0. Do the following transform:

I (X1;W |Y Z ) ↓ ∆

1−δ1δ1E
(C.162)

I (X2;W |Y Z ) ↑ ∆

1−δ2δ12E
(C.163)

As a result, either I (X1;W |Y Z ) = 0 (i.e., Case 2) or I (X2;W |Y Z ) = I (X2;W |Y Z2) oc-

curs. Assume the latter. If (C.142) was not equality, we could do the following trans-
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form:

¯̀
1 ↓ ∆

1−δ1δ1E
(C.164)

x̄2 ↑ ∆

1−δ2
(C.165)

m2 ↓ ∆

1−δ2
(C.166)

m1 ↑ ∆

1−δ1
(C.167)

I (X1;W |Y Z1) ↑ ∆

1−δ1δ1E
. (C.168)

Note that m2 = 0 cannot occur, otherwise (C.130) could not be equality. Thus, we

assume (C.142) is equality. From this,

¯̀1 ≥ x̄1 + I (X1;W |Y Z2) (C.169)

which implies that (C.139) cannot be tight, because otherwise, if (C.139) is equality,

then

(1−δ1δ1E ) I (X1;W |Y Z )

≥ (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ1δ1E ) I (X1;W |Y Z2)

would follow. But from the fact that (C.132) is equality and I (X2;W |Y Z ) = I (X2;W |Y Z2)

(1−δ1δ1E ) I (X1;W |Y Z ) = (1−δ1) I (X1;W |Y Z2) (C.170)

holds, thus I (X1;W |Y Z1) = 0 and ¯̀
1 = 0 would follow. Thus, one can decrease ¯̀

1 and

I (X1;W |Y Z1) without violating any constraints until ¯̀1 = 0 holds. Note that since

m1 = 0, (C.131) is not violated.

Case 2. I (X1;W |Y Z ) = 0. Since (C.132) is equality, from (C.140) and (C.133) it follows that

I (X1;W |Y Z2) = 0, thus (C.146) must be equality.

We conclude, that if m1 < I (X1;W |Y Z2) holds, then ¯̀
1 = 0 can be assumed. If this is the case,

then one can decrease (1−δ2)m2 and increase (1−δ1)m1 by the same amount, until either

m1 = I (X1;W |Y Z2) or (C.131) is equality. In the latter case we know that

(1−δ2)m2 > (1−δ2δ2E ) I (X2;W |Y Z2) ≥ (1−δ2δ2E ) I (X2;W |Y Z ) (C.171)

(1−δ1)m1 = (1−δ1δ1E ) I (X1;W |Y Z1) ≥ (1−δ1δ1E ) I (X1;W |Y Z ) . (C.172)

These two imply that the RHS of (C.133) is strictly smaller than the RHS of (C.130), which is not

possible. Thus we can conclude that m1 = I (X1;W |Y Z2) can be assumed without restricting

the value of the program.
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As a result we have:

R = (1−δ1)m1 + (1−δ2)m2 (C.173)

R ≤ (1−δ1δ1E ) I (X1;W |Y Z1)+ (1−δ2)m2 (C.174)

R ≤ (1−δ2δ2E ) I (X2;W |Y Z2)+ (1−δ1)m1

R = (1−δ1δ1E ) I (X1;W |Y Z )+ (1−δ2δ2E ) I (X2;W |Y Z ) (C.175)

Cr ≥ s̄1 + s̄2

(1−δ1E ) I (X1;W |Y Z1) = δ1E (1−δ1)
(
k1 + s̄1 + ¯̀1

)+ (1−δ2) s̄2 + (1−δ2) x̄2 (C.176)

(1−δ2E ) I (X2;W |Y Z2) = δ2E (1−δ2)
(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1 (C.177)

(1−δ1δ1E ) ¯̀1 + (1−δ2) x̄2 ≤ δ2 (1−δ2E ) s̄2

(1−δ2δ2E ) ¯̀2 + (1−δ1) x̄1 ≤ δ1 (1−δ1E ) s̄1

I (X1;W |Y Z ) ≤ I (X1;W |Y Z1)+ ¯̀1 (C.178)

I (X2;W |Y Z ) ≤ I (X2;W |Y Z2)+ ¯̀2 (C.179)

1 ≥ k1 + s̄1 + ¯̀1 +m1

1 ≥ k2 + s̄2 + ¯̀2 +m2

1 ≥ k1 + s̄1 +m1 + x̄1

1 ≥ k2 + s̄2 +m2 + x̄2

From (C.173), (C.174) and (C.176)

(1−δ1) (1−δ1E )

1−δ1δ1E
m1 ≤ δ1E (1−δ1)

(
k1 + s̄1 + ¯̀

1
)+ (1−δ2) s̄2 + (1−δ2) x̄2 (C.180)

follows. Similarly

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)

(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1 (C.181)

holds. We add these two constraints, while we drop (C.175), (C.176), (C.177), (C.178) and

(C.179).

R = (1−δ1)m1 + (1−δ2)m2

Cr ≥ s̄1 + s̄2

(1−δ1) (1−δ1E )

1−δ1δ1E
m1 ≤ δ1E (1−δ1)

(
k1 + s̄1 + ¯̀

1
)+ (1−δ2) s̄2 + (1−δ2) x̄2

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)

(
k2 + s̄2 + ¯̀2

)+ (1−δ1) s̄1 + (1−δ1) x̄1

(1−δ1δ1E ) ¯̀1 + (1−δ2) x̄2 ≤ δ2 (1−δ2E ) s̄2 (C.182)

(1−δ2δ2E ) ¯̀2 + (1−δ1) x̄1 ≤ δ1 (1−δ1E ) s̄1 (C.183)

1 ≥ k1 + s̄1 + ¯̀1 +m1 (C.184)

1 ≥ k2 + s̄2 + ¯̀2 +m2
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1 ≥ k1 + s̄1 +m1 + x̄1 (C.185)

1 ≥ k2 + s̄2 +m2 + x̄2

We show that there is an optimal point where ¯̀
1 ≤ x̄1. If in an optimal point it is not true, then

do the following transform:

¯̀1 ↓ ∆

1−δ1δ1E
(C.186)

s̄2 ↓ ∆

δ2 (1−δ2E )
(C.187)

s̄1 ↑ 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.188)

x̄1 ↑ δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E ) (1−δ1)
∆ (C.189)

m1 ↓ 1−δ2

δ2 (1−δ2E ) (1−δ1)
∆ (C.190)

m2 ↑ ∆

δ2 (1−δ2E )
(C.191)

By this transform, one of the following cases occurs:

Case 1 ¯̀
1 = 0. This immediately implies ¯̀

1 ≤ x̄1.

Case 2 m1 = 0. In this case, we can decrease ¯̀1 without violating any constraints until ¯̀1 = 0.

Case 3 s̄2 = 0. Which also implies ¯̀1 = 0.

Case 4 (C.185) is equality, which together with (C.184) implies ¯̀1 ≤ x̄1.

Similarly we can show that ¯̀2 ≤ x̄2. Let

r1 =
(
x̄1 − ¯̀

1
) (1−δ1δ1E ) (1−δ1)

δ1 (1−δ1E )
(C.192)

r2 =
(
x̄2 − ¯̀2

) (1−δ2δ2E ) (1−δ2)

δ2 (1−δ2E )
(C.193)

c = (1−δ1δ1E ) s̄1 + (1−δ2δ2E ) s̄2 − r1 − r2 (C.194)

c1 = ¯̀
1 + s̄1 − r1

1−δ1δ1E
(C.195)

c2 = ¯̀
2 + s̄2 − r2

1−δ2δ2E
(C.196)

Note that c,c1,c2 ≥ 0 directly follows from (C.182)-(C.183). We get:

R = (1−δ1)m1 + (1−δ2)m2 (C.197)

Cr ≥ c + r1 + r2 (C.198)

1 ≥ k1 +m1 + c1 + r1

1−δ1
(C.199)

1 ≥ k2 +m2 + c2 + r2

1−δ2
(C.200)

132



C.3. V-network outer bound proof

m1
(1−δ1E ) (1−δ1)

1−δ1δ1E
≤ r2 + r1

δ1E (1−δ1)

1−δ1δ1E
+ c2 (1−δ2)+ (c1 +k1)δ1E (1−δ1) (C.201)

m2
(1−δ2E ) (1−δ2)

1−δ2δ2E
≤ r1 + r2

δ2E (1−δ2)

1−δ2δ2E
+ c1 (1−δ1)+ (c2 +k2)δ2E (1−δ2) (C.202)

(1−δ1δ1E )c1 + (1−δ2)c2 ≤ c (C.203)

(1−δ2δ2E )c2 + (1−δ1)c1 ≤ c (C.204)

which is the same as the linear program for the scheme.

C.3.1 Side calculation

Change of RHS of (C.130):

− 1−δ2

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ1)m1

+ 1−δ2

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ2)m2

= 0. (C.205)

Change of RHS of (C.131):

− 1−δ2

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ1δ1E ) I (X1;W |Y Z1)

+ 1−δ2

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ2)m2

= 0. (C.206)

Change of RHS of (C.132):

1−δ2δ2E

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ2δ2E ) I (X2;W |Y Z2)

− 1−δ2δ2E

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ1) I (X1;W |Y Z2)

= 0. (C.207)

Change of RHS of (C.133):

− 1−δ2δ2E

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ1δ1E ) I (X1;W |Y Z )

+ 1−δ2δ2E

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ2δ2E ) I (X2;W |Y Z )

= 0. (C.208)

Change of RHS of (C.134):

1−δ2δ2E

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ1δ1E ) s̄1

− 1−δ2δ2E

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ2δ2E ) s̄2

= 0. (C.209)

Change of LHS of (C.135):

− (1−δ2) (1−δ1E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.210)
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Change of RHS of (C.135):

δ1E (1−δ1) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆︸ ︷︷ ︸

from δ1E (1−δ1) s̄1

−δ1E (1−δ1)

1−δ1δ1E
∆︸ ︷︷ ︸

from δ1E (1−δ1) ¯̀1

− 1−δ2

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from (1−δ2) σ̄2

(C.211)

= δ1E (1−δ1) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆− δ2 (1−δ2E )δ1E (1−δ1)

δ2 (1−δ2E ) (1−δ1δ1E )
∆− (1−δ2) (1−δ1δ1E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.212)

= δ1E (1−δ1) (1−δ2)

δ2 (1−δ2E ) (1−δ1δ1E )
∆− (1−δ2) (1−δ1δ1E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆=− (1−δ2) (1−δ1E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆ (C.213)

Change of LHS of (C.136):

1−δ2E

δ2 (1−δ2E )
∆ (C.214)

Change of RHS of (C.136):

−δ2E (1−δ2)

δ2 (1−δ2E )
∆︸ ︷︷ ︸

from δ2E (1−δ2) s̄2

+ (1−δ2δ2E ) (1−δ1)

δ2 (1−δ2E ) (1−δ1δ1E )
∆︸ ︷︷ ︸

from (1−δ1) s̄1

+ δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆︸ ︷︷ ︸

from (1−δ1) I (X1; Z1|Y Z2W )

(C.215)

− δ2E (1−δ2)

δ2 (1−δ2E )
∆+ 1−δ2δ2E

δ2 (1−δ2E )
∆= 1−δ2E

δ2 (1−δ2E )
∆. (C.216)

Change of LHS of (C.137): −∆, change of RHS: −∆.

Change of LHS of (C.138):

δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆. (C.217)

Change of RHS of (C.138):

δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E )
∆. (C.218)

Change of LHS of (C.139):

− 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆. (C.219)

Change of RHS of (C.139):

− 1−δ2

δ2 (1−δ2E ) (1−δ1δ1E )
∆︸ ︷︷ ︸

from I (X1;W |Y Z1)

− ∆

1−δ1δ1E︸ ︷︷ ︸
from ¯̀1

=− 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆. (C.220)

Change of LHS of (C.140):

∆

δ2 (1−δ2E )
(C.221)
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Change of RHS of (C.140):

∆

δ2 (1−δ2E )
(C.222)

Change of RHS of (C.141):

1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆︸ ︷︷ ︸

from s̄1

+ δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E ) (1−δ1)
∆︸ ︷︷ ︸

from I (X1; Z1|Y Z2W )

− 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1)
∆︸ ︷︷ ︸

from I (X1;W |Y Z2)

(C.223)

= (1−δ2δ2E ) (1−δ1)

δ2 (1−δ2E ) (1−δ1δ1E ) (1−δ1)
∆+ δ1 (1−δ1E ) (1−δ2δ2E )

δ2 (1−δ2E ) (1−δ1δ1E ) (1−δ1)
∆− 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1)
∆

(C.224)

= 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1)
∆− 1−δ2δ2E

δ2 (1−δ2E ) (1−δ1)
∆= 0 (C.225)

Change of RHS of (C.142):

1−δ2δ2E

δ2 (1−δ2E ) (1−δ1δ1E )
∆︸ ︷︷ ︸

from s̄1

− ∆

1−δ1δ1E︸ ︷︷ ︸
from ¯̀1

− 1−δ2

δ2 (1−δ2E ) (1−δ1)
∆︸ ︷︷ ︸

from m1

(C.226)

= 1−δ2

δ2 (1−δ2E ) (1−δ1δ1E )
∆− 1−δ2

δ2 (1−δ2E ) (1−δ1)
∆≤ 0 (C.227)

Since the increase of m2 equals the decrease of s̄2, (C.143) and (C.145) are also respected.
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C.4 Triangle network outer bound proof

When deriving our bounds we will use the assumption that the inputs X1i , X2i , X3i of the

different channels in the same time slot are generated from different independent random

sources. Theorem 4.2 shows that this assumption does not affect capacity. The proof trivially

generalizes for the triangle network. We also assume that Fi contains the channel state of the

eavesdroppers.

C.4.1 Rate constraints

We use the same kind of derivation as in Section 4.3.4 to get the following inequalities. We

omit details.

nR −E4.1 ≤ I
(
W ;Y n

1 Y n
2 F n)

=
n∑

i=1
(1−δ1) I

(
X1i ;W |Y i−1

1 Y i−1
2 F i−1

)
+ (1−δ2) I

(
X2i ;W |Y i−1

1 Y i−1
2 F i−1

)
(C.228)

nR −E4.1 ≤ I
(
W ;Y n

1 Y n
2 Z n

1 F n)
=

n∑
i=1

(1−δ1δ1E ) I
(

X1i ;W |Y i−1
1 Y i−1

2 Z i−1
1 F i−1

)
+ (1−δ2) I

(
X2i ;W |Y i−1

1 Y i−1
2 Z i−1

1 F i−1
)

(C.229)

nR −E4.1 ≤ I
(
W ;Y n

1 Y n
2 Z n

2 F n)
=

n∑
i=1

(1−δ2δ2E ) I
(

X2i ;W |Y i−1
1 Y i−1

2 Z i−1
2 F i−1

)
+ (1−δ1) I

(
X1i ;W |Y i−1

1 Y i−1
2 Z i−1

2 F i−1
)

(C.230)

nR −E4.1 ≤ I
(
W ;Y n

1 Y n
3 F n)

=
n∑

i=1
(1−δ1) I

(
X1i ;W |Y i−1

1 Y i−1
3 F i−1

)
+ (1−δ3) I

(
X3i ;W |Y i−1

1 Y i−1
3 F i−1

)
(C.231)

nR −E4.1 ≤ I
(
W ;Y n

1 Y n
3 Z n

1 F n)
=

n∑
i=1

(1−δ1δ1E ) I
(

X1i ;W |Y i−1
1 Y i−1

3 Z i−1
1 F i−1

)
+ (1−δ3) I

(
X3i ;W |Y i−1

1 Y i−1
3 Z i−1

1 F i−1
)

(C.232)

nR −E4.1 ≤ I
(
W ;Y n

1 Y n
3 Z n

3 F n)
=

n∑
i=1

(1−δ3δ3E ) I
(

X3i ;W |Y i−1
1 Y i−1

3 Z i−1
3 F i−1

)
+ (1−δ1) I

(
X1i ;W |Y i−1

1 Y i−1
3 Z i−1

3 F i−1
)

(C.233)

C.4.2 Security constraints

We use a derivation similar to the derivation of (2.45). We omit details.

0 ≤ H
(
Y n

1 Y n
2 |Z n

1 F nW
)
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=
n∑

i=1
− (1−δ1E ) I

(
Y i−1

1 Y i−1
2 ; X1i |Z i−1

1 F i−1W
)
+δ1E (1−δ1) H

(
X1i |Y i−1

1 Y i−1
2 Z i−1

1 F i−1W
)

+ (1−δ2) H
(

X2i |Y i−1
1 Y i−1

2 Z i−1
1 F i−1W

)
(C.234)

We have a similar inequality for the second eavesdropper.

0 ≤
n∑

i=1
− (1−δ2E ) I

(
Y i−1

1 Y i−1
2 ; X2i |Z i−1

2 F i−1W
)
+δ2E (1−δ2) H

(
X2i |Y i−1

1 Y i−1
2 Z i−1

2 F i−1W
)

+ (1−δ1) H
(

X1i |Y i−1
1 Y i−1

2 Z i−1
2 F i−1W

)
(C.235)

We have two more inequalities of this kind.

0 ≤
n∑

i=1
− (1−δ3E ) I

(
Y i−1

1 Y i−1
3 ; X3i |Z i−1

3 F i−1W
)
+δ3E (1−δ3) H

(
X3i |Y i−1

1 Y i−1
3 Z i−1

3 F i−1W
)

+ (1−δ1) H
(

X1i |Y i−1
1 Y i−1

3 Z i−1
3 F i−1W

)
(C.236)

0 ≤
n∑

i=1
− (1−δ1E ) I

(
Y i−1

1 Y i−1
3 ; X1i |Z i−1

1 F i−1W
)
+δ1E (1−δ1) H

(
X1i |Y i−1

1 Y i−1
3 Z i−1

1 F i−1W
)

+ (1−δ3) H
(

X3i |Y i−1
1 Y i−1

3 Z i−1
1 F i−1W

)
(C.237)

We derive the following inequalities directly from the security criterion:

n∑
i=1

I
(

X1i ;Y i−1
1 Y i−1

2 |Z i−1
1 F i−1W

)
=

n∑
i=1

I
(

X1i ;W |Y i−1
1 Y i−1

2 Z i−1
1 F i−1

)
+ I

(
X1i ;Y i−1

1 Y i−1
2 |Z i−1

1 F i−1
)
− I

(
X1i ;W |Z i−1

1 F i−1
)

(C.238)

≥
n∑

i=1
I
(

X1i ;W |Y i−1
1 Y i−1

2 Z i−1
1 F i−1

)
−nε (C.239)

n∑
i=1

I
(

X2i ;Y i−1
1 Y i−1

2 |Z i−1
2 F i−1W

)
≥

n∑
i=1

I
(

X2i ;W |Y i−1
1 Y i−1

2 Z i−1
2 F i−1

)
−nε (C.240)

n∑
i=1

I
(

X1i ;Y i−1
1 Y i−1

3 |Z i−1
1 F i−1W

)
≥

n∑
i=1

I
(

X1i ;W |Y i−1
1 Y i−1

3 Z i−1
1 F i−1

)
−nε (C.241)

n∑
i=1

I
(

X3i ;Y i−1
1 Y i−1

3 |Z i−1
3 F i−1W

)
≥

n∑
i=1

I
(

X3i ;W |Y i−1
1 Y i−1

3 Z i−1
3 F i−1

)
−nε. (C.242)

C.4.3 Time-sharing constraints

The following few constraints ensure that no more than n transmissions are needed. We omit

details.

n ≥
n∑

i=1
H

(
X1i |Y i−1

1 Y i−1
2 Z i−1

2 F i−1W
)
+ I

(
X1i ;W |Y i−1

1 Y i−1
2 Z i−1

2 F i−1
)

(C.243)
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n ≥
n∑

i=1
H

(
X2i |Y i−1

1 Y i−1
2 Z i−1

1 F i−1W
)
+ I

(
X2i ;W |Y i−1

1 Y i−1
2 Z i−1

1 F i−1
)

(C.244)

n ≥
n∑

i=1
H

(
X1i |Y i−1

1 Y i−1
2 Z i−1

1 F i−1W
)
+ I

(
X1i ;W |Y i−1

1 Y i−1
2 F i−1

)
+ I

(
X1i ; Z i−1

1 |Y i−1
1 Y i−1

2 F i−1W
)

(C.245)

n ≥
n∑

i=1
H

(
X2i |Y i−1

1 Y i−1
2 Z i−1

1 F i−1W
)
+ I

(
X2i ;W |Y i−1

1 Y i−1
2 F i−1

)
+ I

(
X2i ; Z i−1

1 |Y i−1
1 Y i−1

2 F i−1W
)

(C.246)

n ≥
n∑

i=1
H

(
X1i |Y i−1

1 Y i−1
2 Z i−1

2 F i−1W
)
+ I

(
X1i ;W |Y i−1

1 Y i−1
2 F i−1

)
(C.247)

n ≥
n∑

i=1
H

(
X2i |Y i−1

1 Y i−1
2 Z i−1

2 F i−1W
)
+ I

(
X2i ;W |Y i−1

1 Y i−1
2 F i−1

)
(C.248)

n ≥
n∑

i=1
H

(
X1i |Y i−1

1 Y i−1
3 Z i−1

3 F i−1W
)
+ I

(
X1i ;W |Y i−1

1 Y i−1
3 Z i−1

3 F i−1
)

(C.249)

n ≥
n∑

i=1
H

(
X3i |Y i−1

1 Y i−1
3 Z i−1

1 F i−1W
)
+ I

(
X3i ;W |Y i−1

1 Y i−1
3 Z i−1

1 F i−1
)

(C.250)

n ≥
n∑

i=1
H

(
X1i |Y i−1

1 Y i−1
3 Z i−1

1 F i−1W
)
+ I

(
X1i ;W |Y i−1

1 Y i−1
3 F i−1

)
(C.251)

n ≥
n∑

i=1
H

(
X3i |Y i−1

1 Y i−1
3 Z i−1

1 F i−1W
)
+ I

(
X3i ;W |Y i−1

1 Y i−1
3 F i−1

)
(C.252)

n ≥
n∑

i=1
H

(
X1i |Y i−1

1 Y i−1
3 Z i−1

3 F i−1W
)
+ I

(
X1i ;W |Y i−1

1 Y i−1
3 F i−1

)
(C.253)

n ≥
n∑

i=1
H

(
X3i |Y i−1

1 Y i−1
3 Z i−1

3 F i−1W
)
+ I

(
X3i ;W |Y i−1

1 Y i−1
3 F i−1

)
(C.254)

C.4.4 Distinguishing keys

We distinguish keys that we use on channel 1 and on channel 3 based on where they were

generated.

0 ≤ H
(
Y n

1 |Z n
1 F nW

)
=

n∑
i=1

− (1−δ1E ) I
(

X1i ;Y i−1
1 |Z i−1

1 F i−1W
)
+δ1E (1−δ1) H

(
X1i |Y i−1

1 Z i−1
1 F i−1W

)
(C.255)

=
n∑

i=1
− (1−δ1E ) I

(
X1i ;Y i−1

1 |Z i−1
1 F i−1W

)
+δ1E (1−δ1) H

(
X1i |Y i−1

1 Y i−1
3 Z i−1

1 F i−1W
)

+δ1E (1−δ1) I
(

X1i ;Y i−1
3 |Y i−1

1 Z i−1
1 F i−1W

)
(C.256)
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A symmetric inequality holds for the other channel as well.

0 ≤
n∑

i=1
− (1−δ3E ) I

(
X3i ;Y i−1

3 |Z i−1
3 F i−1W

)
+δ3E (1−δ3) H

(
X3i |Y i−1

1 Y i−1
3 Z i−1

3 F i−1W
)

+δ3E (1−δ3) I
(

X3i ;Y i−1
1 |Y i−1

3 Z i−1
3 F i−1W

)
(C.257)

Also,

n∑
i=1

I
(

X1i ;Y i−1
1 Y i−1

3 |Z i−1
1 F i−1W

)
= I

(
X1i ;Y i−1

1 |Z i−1
1 F i−1W

)
+ I

(
X1i ;Y i−1

3 |Y i−1
1 Z i−1

1 F i−1W
)

(C.258)
n∑

i=1
I
(

X3i ;Y i−1
1 Y i−1

3 |Z i−1
3 F i−1W

)
= I

(
X3i ;Y i−1

3 |Z i−1
3 F i−1W

)
+ I

(
X3i ;Y i−1

1 |Y i−1
3 Z i−1

3 F i−1W
)

(C.259)

C.4.5 Connecting cuts

So far all our inequalities hold for either the first cut or the other cut. However, since we want

to show that the cut values are not achievable we need to connect the two cuts through some

more constraints.

0 ≤ H
(
Y n

2 |Y n
1 Y n

3 Z n
1 Z n

3 F nW
)= H

(
Y n−1

2 |Y n
1 Y n

3 Z n
1 Z n

3 F nW
)+H

(
Y2n |Y n

1 Y n−1
2 Y n

3 Z n
1 Z n

3 F nW
)

(C.260)

= H
(
Y n−1

2 |Y n−1
1 Y n−1

3 Z n−1
1 Z n−1

3 F n−1W
)

− I
(
Y1n Z1nY3n Z3n ;Y n−1

2 |Y n−1
1 Y n−1

3 Z n−1
1 Z n−1

3 F n−1W
)

+H
(
Y2n |Y n−1

1 Y n−1
2 Y n−1

3 Z n−1
1 Z n−1

3 F n−1W
)

(C.261)

=
n∑

i=1
− (1−δ1δ1E ) I

(
X1i ;Y i−1

2 |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)

− (1−δ3δ3E ) I
(

X3i ;Y i−1
2 |Y i−1

1 Y i−1
3 Z i−1

1 Z i−1
3 F i−1W

)
+ (1−δ2) H

(
X2i |Y i−1

1 Y i−1
2 Z i−1

1 F i−1W
)

(C.262)

In the last step we used that

n∑
i=1

I
(

X2i ;Y i−1
3 Z i−1

3 |Y i−1
1 Y i−1

2 Z i−1
1 F i−1W

)
= 0 (C.263)

follows from the definition of channel inputs, because
(
Y i−1

2 ,W,ΘU ,F i−1
)

determine X i−1
3

and thus
(
Y i−1

3 , Z i−1
3

)
, while X2i is independent ofΘU . Further,

0 ≤ I
(
Z n

1 Y n
1 ;Y n

2 |Y n
3 Z n

3 F nW
)

(C.264)

= I
(
Z n−1

1 Y n−1
1 ;Y n

2 |Y n
3 Z n

3 F nW
)+ I

(
Z1nY1n ;Y n

2 |Y n−1
1 Y n

3 Z n−1
1 Z n

3 F nW
)

(C.265)

= I
(
Z n−1

1 Y n−1
1 ;Y n−1

2 |Y n
3 Z n

3 F nW
)+ I

(
Y2n ; Z n−1

1 Y n−1
1 |Y n−1

2 Y n
3 Z n

3 F nW
)
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+ I
(
Z1nY1n ;Y n−1

2 |Y n−1
1 Y n−1

3 Z n−1
1 Z n−1

3 F n−1W
)

(C.266)

= I
(
Z n−1

1 Y n−1
1 ;Y n−1

2 |Y n−1
3 Z n−1

3 F n−1W
)− I

(
Y3n Z3n ; Z n−1

1 Y n−1
1 |Y n−1

3 Z n−1
3 F n−1W

)
+ I

(
Y2n ; Z n−1

1 Y n−1
1 |Y n−1

2 Y n−1
3 Z n−1

3 F n−1W
)+ I

(
Z1nY1n ;Y n−1

2 |Y n−1
1 Y n−1

3 Z n−1
1 Z n−1

3 F n−1W
)

(C.267)

=
n∑

i=1
− (1−δ3δ3E ) I

(
X3i ;Y i−1

1 |Y i−1
3 Z i−1

3 F i−1W
)

− (1−δ3δ3E ) I
(

X3i ; Z i−1
1 |Y i−1

1 Y i−1
3 Z i−1

3 F i−1W
)

+ (1−δ2) I
(

X2i ;Y i−1
1 |Y i−1

2 F i−1W
)
+ (1−δ2) I

(
X2i ; Z i−1

1 |Y i−1
1 Y i−1

2 F i−1W
)

+ (1−δ1δ1E ) I
(

X1i ;Y i−1
2 |Y i−1

1 Y i−1
3 Z i−1

1 Z i−1
3 F i−1W

)
(C.268)

In a similar way,

0 ≤ I
(
Y n

3 ;Y n
2 |Y n

1 Z n
1 F nW

)= n∑
i=1

− (1−δ1δ1E ) I
(

X1i ;Y i−1
3 |Y i−1

1 Z i−1
1 F i−1W

)
+ (1−δ2) I

(
X2i ;Y i−1

3 |Y i−1
1 Y i−1

2 Z i−1
1 F i−1W

)
+ (1−δ3) I

(
X3i ;Y i−1

2 |Y i−1
3 Y i−1

1 Z i−1
1 F i−1W

)
(C.269)

=
n∑

i=1
− (1−δ1δ1E ) I

(
X1i ;Y i−1

3 |Y i−1
1 Z i−1

1 F i−1W
)

+ (1−δ3) I
(

X3i ;Y i−1
2 |Y i−1

3 Y i−1
1 Z i−1

1 Z i−1
3 F i−1W

)
+ (1−δ3) I

(
X3i ; Z i−1

3 |Y i−1
3 Y i−1

1 Z i−1
1 F i−1W

)
− (1−δ3) I

(
X3i ; Z i−1

3 |Y i−1
2 Y i−1

3 Y i−1
1 Z i−1

1 F i−1W
)

(C.270)

We used (C.263) again. We further have

H
(
Z n

3 |Y n
3 Y n

1 Z n
1 F nW

)= n∑
i=1

δ3 (1−δ3E ) H
(

X3i |Y i−1
3 Y i−1

1 Z i−1
3 Z i−1

1 F i−1W
)

− (1−δ1δ1E ) I
(

X1i ; Z i−1
3 |Y i−1

3 Y i−1
1 Z i−1

1 F i−1W
)
− (1−δ3) I

(
X3i ; Z i−1

3 |Y i−1
3 Y i−1

1 Z i−1
1 F i−1W

)
(C.271)

H
(
Z n

3 |Y n
3 Y n

2 Y n
1 Z n

1 W
)= n∑

i=1
δ3 (1−δ3E ) H

(
X3i |Y i−1

1 Y i−1
2 Y i−1

3 Z i−1
3 Z i−1

1 F i−1W
)

− (1−δ3) I
(

X3i ; Z i−1
3 |Y i−1

1 Y i−1
2 Y i−1

3 Z i−1
1 F i−1W

)
(C.272)

For the latter equality we used (C.263) and also that for a similar reason

n∑
i=1

I
(

X1i ; Z i−1
3 |Y i−1

1 Y i−1
2 Z i−1

1 F i−1W
)
= 0. (C.273)
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Combining the two equalities gives:

0 ≤ I
(
Z n

3 ;Y n
2 |Y n

1 Y n
3 Z n

1 F nW
)= n∑

i=1
δ3 (1−δ3E ) I

(
X3i ;Y i−1

2 |Y i−1
1 Y i−1

3 Z i−1
3 Z i−1

1 F i−1W
)

− (1−δ1δ1E ) I
(

X1i ; Z i−1
3 |Y i−1

1 Y i−1
3 Z i−1

1 F i−1W
)
− (1−δ3) I

(
X3i ; Z i−1

3 |Y i−1
1 Y i−1

3 Z i−1
1 F i−1W

)
+ (1−δ3) I

(
X3i ; Z i−1

3 |Y i−1
1 Y i−1

2 Y i−1
3 Z i−1

1 F i−1W
)

(C.274)

Also,

0 ≤ H
(
Y n

1 |Y n
2 F nW

)= n∑
i=1

(1−δ1) H
(

X1i |Y i−1
1 Y i−1

2 F i−1W
)
− (1−δ2) I

(
X2i ;Y i−1

1 |Y i−1
2 F i−1W

)
=

n∑
i=1

(1−δ1) H
(

X1i |Y i−1
1 Y i−1

2 Z i−1
1 F i−1W

)
+ (1−δ1) I

(
X1i ; Z i−1

1 |Y i−1
1 Y i−1

2 F i−1W
)

− (1−δ2) I
(

X2i ;Y i−1
1 |Y i−1

2 F i−1W
)

(C.275)

Finally,

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

2 Z i−1
1 F i−1W

)
=

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

2 Y i−1
3 Z i−1

1 Z i−1
3 F i−1W

)
=

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)
− I

(
X1i ;Y i−1

2 |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)

(C.276)

C.4.6 Trivial constraints

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)
=

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

3 Z i−1
1 F i−1W

)
− I

(
X1i ; Z i−1

3 |Y i−1
1 Y i−1

3 Z i−1
1 F i−1W

)
(C.277)

n∑
i=1

H
(

X3i |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)
=

n∑
i=1

H
(

X3i |Y i−1
1 Y i−1

3 Z i−1
3 F i−1W

)
− I

(
X3i ; Z i−1

1 |Y i−1
1 Y i−1

3 Z i−1
3 F i−1W

)
(C.278)

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)
=

n∑
i=1

H
(

X1i |Y i−1
1 Y i−1

3 Z i−1
3 F i−1W

)
− I

(
X1i ; Z i−1

1 |Y i−1
1 Y i−1

3 Z i−1
3 F i−1W

)
(C.279)

n∑
i=1

H
(

X3i |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)
=

n∑
i=1

H
(

X3i |Y i−1
1 Y i−1

3 Z i−1
1 F i−1W

)
− I

(
X3i ; Z i−1

3 |Y i−1
1 Y i−1

3 Z i−1
1 F i−1W

)
(C.280)

n∑
i=1

H
(

X3i |Y i−1
1 Y i−1

3 Z i−1
1 Z i−1

3 F i−1W
)
≥

n∑
i=1

I
(

X3i ;Y i−1
2 |Y i−1

1 Y i−1
3 Z i−1

1 Z i−1
3 F i−1W

)
(C.281)
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C.4.7 Equivalence of LPs

We apply a series of transformations on the outer bound LP until we get back the LP in

Theorem 4.4. The possible steps are as summarized in Section 4.3.4. Here again we work with

the asymptotic form of the inequalities and use terms as names of non-negative variables. We

ease notation by omitting 1
n

∑n
i=1, F i−1 (which appears in all terms), and index i . Summary of

the outer bound program:

R ≤ (1−δ1) I (X1;W |Y1Y2)+ (1−δ2) I (X2;W |Y1Y2)

R ≤ (1−δ1δ1E ) I (X1;W |Y1Y2Z1)+ (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) I (X2;W |Y1Y2Z2)+ (1−δ1) I (X1;W |Y1Y2Z2)

R ≤ (1−δ1) I (X1;W |Y1Y3)+ (1−δ3) I (X3;W |Y1Y3)

R ≤ (1−δ1δ1E ) I (X1;W |Y1Y3Z1)+ (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ3δ3E ) I (X3;W |Y1Y3Z3)+ (1−δ1) I (X1;W |Y1Y3Z3)

0 ≤− (1−δ1E ) I (Y1Y2; X1|Z1W )+δ1E (1−δ1) H (X1|Y1Y2Z1W )+ (1−δ2) H (X2|Y1Y2Z1W )

(C.282)

0 ≤− (1−δ2E ) I (Y1Y2; X2|Z2W )+δ2E (1−δ2) H (X2|Y1Y2Z2W )+ (1−δ1) H (X1|Y1Y2Z2W )

(C.283)

0 ≤− (1−δ3E ) I (Y1Y3; X3|Z3W )+δ3E (1−δ3) H (X3|Y1Y3Z3W )+ (1−δ1) H (X1|Y1Y3Z3W )

(C.284)

0 ≤− (1−δ1E ) I (Y1Y3; X1|Z1W )+δ1E (1−δ1) H (X1|Y1Y3Z1W )+ (1−δ3) H (X3|Y1Y3Z1W )

I (X1;Y1Y2|Z1W ) ≥ I (X1;W |Y1Y2Z1) (C.285)

I (X2;Y1Y2|Z2W ) ≥ I (X2;W |Y1Y2Z2) (C.286)

I (X1;Y1Y3|Z1W ) ≥ I (X1;W |Y1Y3Z1) (C.287)

I (X3;Y1Y3|Z3W ) ≥ I (X3;W |Y1Y3Z3) (C.288)

(1−δ1E ) I (X1;Y1|Z1W ) ≤ δ1E (1−δ1) H (X1|Y1Y3Z1W )+δ1E (1−δ1) I (X1;Y3|Y1Z1W )

(C.289)

(1−δ3E ) I (X3;Y3|Z3W ) ≤ δ3E (1−δ3) H (X3|Y1Y3Z3W )+δ3E (1−δ3) I (X3;Y1|Y3Z3W )

I (X1;Y1Y3|Z1W ) = I (X1;Y1|Z1W )+ I (X1;Y3|Y1Z1W ) (C.290)

I (X3;Y1Y3|Z3W ) = I (X3;Y3|Z3W )+ I (X3;Y1|Y3Z3W )

0 ≤− (1−δ1δ1E ) I (X1;Y2|Y1Y3Z1Z3W )− (1−δ3δ3E ) I (X3;Y2|Y1Y3Z1Z3W )

+ (1−δ2) H (X2|Y1Y2Z1W )

0 ≤− (1−δ3δ3E ) I (X3;Y1|Y3Z3W )− (1−δ3δ3E ) I (X3; Z1|Y1Y3Z3W )

+ (1−δ2) I (X2;Y1|Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W )+ (1−δ1δ1E ) I (X1;Y2|Y1Y3Z1Z3W )

0 ≤− (1−δ1δ1E ) I (X1;Y3|Y1Z1W )+ (1−δ3) I (X3;Y2|Y3Y1Z1Z3W )

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )− (1−δ3) I (X3; Z3|Y2Y3Y1Z1W )

0 ≤ δ3 (1−δ3E ) I (X3;Y2|Y1Y3Z3Z1W )− (1−δ1δ1E ) I (X1; Z3|Y1Y3Z1W )
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− (1−δ3) I (X3; Z3|Y1Y3Z1W )+ (1−δ3) I (X3; Z3|Y1Y2Y3Z1W )

0 ≤ (1−δ1) H (X1|Y1Y2Z1W )+ (1−δ1) I (X1; Z1|Y1Y2W )− (1−δ2) I (X2;Y1|Y2W )

H (X1|Y1Y2Z1W ) = H (X1|Y1Y3Z1Z3W )− I (X1;Y2|Y1Y3Z1Z3W )

H (X1|Y1Y3Z1Z3W ) = H (X1|Y1Y3Z1W )− I (X1; Z3|Y1Y3Z1W ) (C.291)

H (X3|Y1Y3Z1Z3W ) = H (X3|Y1Y3Z3W )− I (X3; Z1|Y1Y3Z3W ) (C.292)

H (X1|Y1Y3Z1Z3W ) = H (X1|Y1Y3Z3W )− I (X1; Z1|Y1Y3Z3W ) (C.293)

H (X3|Y1Y3Z1Z3W ) = H (X3|Y1Y3Z1W )− I (X3; Z3|Y1Y3Z1W ) (C.294)

H (X3|Y1Y3Z1Z3W ) ≥ I (X3;Y2|Y1Y3Z1Z3W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2Z2)

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ H (X1|Y1Y2Z1W )+ I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2)+ I (X2; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ H (X2|Y1Y2Z2W )+ I (X2;W |Y1Y2)

1 ≥ H (X1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3)

1 ≥ H (X3|Y1Y3Z1W )+ I (X3;W |Y1Y3Z1)

1 ≥ H (X1|Y1Y3Z1W )+ I (X1;W |Y1Y3)

1 ≥ H (X3|Y1Y3Z1W )+ I (X3;W |Y1Y3)

1 ≥ H (X1|Y1Y3Z3W )+ I (X1;W |Y1Y3)

1 ≥ H (X3|Y1Y3Z3W )+ I (X3;W |Y1Y3)

We apply (C.285)-(C.286) in (C.282)-(C.283) and keep the resulting inequalities while dropping

(C.285)-(C.286) and (C.282)-(C.283).

We show that (C.287)-(C.288) both can be made equalities without reducing the value of the

program. If (C.287) is not equality, we apply the following transform (for some ∆> 0):

I (X1;Y1Y3|Z1W ) ↓∆ (C.295)

I (X1;Y1|Z1W ) ↓∆. (C.296)

This transform either makes (C.287) tight or I (X1;Y1|Z1W ) becomes 0. No constraints are

violated. If the latter happens, we can do the following transform:

I (X1;Y1Y3|Z1W ) ↓∆ (C.297)

I (X1;Y3|Y1Z1W ) ↓∆. (C.298)

Note that (C.289) cannot be violated, since the RHS is already 0. Eventually, this transform

makes (C.287) tight. A similar argument shows that also (C.288) can be made tight, which

allows to eliminate the variables I (X1;Y1Y3|Z1W ) and I (X3;Y1Y3|Z3W ).
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Using equalities (C.291)-(C.294) we eliminate H (X1|Y1Y3Z1W ), H (X3|Y1Y3Z3W ), H (X1|Y1Y3Z3W )

and H (X3|Y1Y3Z1W ).

Further, we introduce the following naming:

H (X1|Y1Y2Z1W ) ∼ k1 (C.299)

H (X2|Y1Y2Z2W ) ∼ k2 (C.300)

I (X1;W |Y1Y3) ∼ m1 (C.301)

I (X2;W |Y1Y2) ∼ m2 (C.302)

I (X3;W |Y1Y3) ∼ m3 (C.303)

I (X1;Y2|Y1Y3Z1Z3W ) ∼ s̄1 (C.304)

I (X3;Y2|Y1Y3Z1Z3W ) ∼ s̄3 (C.305)

I (X1; Z3|Y1Y3Z1W ) ∼ ¯̀1 (C.306)

I (X3; Z1|Y1Y3Z3W ) ∼ ¯̀3 (C.307)

H (X3|Y1Y3Z1Z3W ) ∼ k3 + s̄3 (C.308)

I (X1;W |Y1Y2Z1) ∼ x̄121 (C.309)

I (X1;W |Y1Y3Z1) ∼ x̄131 (C.310)

I (X3;W |Y1Y3Z3) ∼ x̄313 (C.311)

I (X2;W |Y1Y2Z2) ∼ x̄22 (C.312)

I (X3; Z3|Y1Y3Z1W ) ∼ z̄3 (C.313)

We distinguish the variable names used only in the outer bound program with overscore. We

get the following:

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2Z2)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ3δ3E ) x̄313 + (1−δ1) I (X1;W |Y1Y3Z3)

0 ≤ δ1E (1−δ1)k1 − (1−δ1E ) x̄121 + (1−δ2) H (X2|Y1Y2Z1W )

0 ≤ δ2E (1−δ2)k2 − (1−δ2E ) x̄22 + (1−δ1) H (X1|Y1Y2Z2W )

0 ≤ δ3E (1−δ3) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3 − (1−δ3E ) x̄313

+ (1−δ1) H (X1|Y1Y3Z1Z3W )+ (1−δ1) I (X1; Z1|Y1Y3Z3W )

0 ≤ δ1E (1−δ1) ¯̀1 + (1−δ3)k3 + (1−δ3) s̄3 − (1−δ1E ) x̄131

+ (1−δ3) z̄3 +δ1E (1−δ1) H (X1|Y1Y3Z1Z3W )

(1−δ1E ) I (X1;Y1|Z1W ) ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) H (X1|Y1Y3Z1Z3W )

+δ1E (1−δ1) I (X1;Y3|Y1Z1W )
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(1−δ3E ) I (X3;Y3|Z3W ) ≤ δ3E (1−δ3) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+δ3E (1−δ3) I (X3;Y1|Y3Z3W )

x̄131 = I (X1;Y1|Z1W )+ I (X1;Y3|Y1Z1W ) (C.314)

x̄313 = I (X3;Y3|Z3W )+ I (X3;Y1|Y3Z3W ) (C.315)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

(1−δ3δ3E ) ¯̀3 ≤ (1−δ1δ1E ) s̄1 − (1−δ3δ3E ) I (X3;Y1|Y3Z3W )

+ (1−δ2) I (X2;Y1|Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W )

0 ≤ (1−δ3) s̄3 − (1−δ1δ1E ) I (X1;Y3|Y1Z1W )

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )− (1−δ3) I (X3; Z3|Y2Y3Y1Z1W )

(1−δ1δ1E ) ¯̀1 ≤ δ3 (1−δ3E ) s̄3 − (1−δ3) z̄3

+ (1−δ3) I (X3; Z3|Y1Y2Y3Z1W )

0 ≤ (1−δ1)k1 + (1−δ1) I (X1; Z1|Y1Y2W )− (1−δ2) I (X2;Y1|Y2W )

s̄1 +k1 = H (X1|Y1Y3Z1Z3W ) (C.316)

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2Z2)

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ m2 +k2

1 ≥ H (X1|Y1Y3Z1Z3W )+ I (X1; Z1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3)

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m1 + ¯̀1 +H (X1|Y1Y3Z1Z3W )

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ m1 +H (X1|Y1Y3Z1Z3W )+ I (X1; Z1|Y1Y3Z3W )

1 ≥ m3 + ¯̀3 +k3 + s̄3

We use eqalities (C.314)-(C.315) and (C.316) to eliminate variables I (X1;Y1|Z1W ), I (X3;Y3|Z3W )

and H (X1|Y1Y3Z1Z3W ).

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2Z2)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ3δ3E ) x̄313 + (1−δ1) I (X1;W |Y1Y3Z3)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )
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(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3 + (1−δ1) s̄1 + (1−δ1)k1

+ (1−δ1) I (X1; Z1|Y1Y3Z3W )

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3)k3 + (1−δ3) s̄3 + (1−δ3) z̄3

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ1δ1E ) I (X1;Y3|Y1Z1W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3 + (1−δ3δ3E ) I (X3;Y1|Y3Z3W )

(C.317)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

(1−δ3δ3E ) ¯̀
3 ≤ (1−δ1δ1E ) s̄1 − (1−δ3δ3E ) I (X3;Y1|Y3Z3W )

+ (1−δ2) I (X2;Y1|Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W ) (C.318)

0 ≤ (1−δ3) s̄3 − (1−δ1δ1E ) I (X1;Y3|Y1Z1W )

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )− (1−δ3) I (X3; Z3|Y2Y3Y1Z1W )

(1−δ1δ1E ) ¯̀1 ≤ δ3 (1−δ3E ) s̄3 − (1−δ3) z̄3

+ (1−δ3) I (X3; Z3|Y1Y2Y3Z1W )

0 ≤ (1−δ1)k1 + (1−δ1) I (X1; Z1|Y1Y2W )− (1−δ2) I (X2;Y1|Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2Z2)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3)

1 ≥ m1 + ¯̀1 + s̄1 +k1

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3

We apply (C.318) in (C.317) and keep only the derived inequality.

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2Z2)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ3δ3E ) x̄313 + (1−δ1) I (X1;W |Y1Y3Z3)
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(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3 + (1−δ1) s̄1 + (1−δ1)k1

+ (1−δ1) I (X1; Z1|Y1Y3Z3W )

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3)k3 + (1−δ3) s̄3 + (1−δ3) z̄3

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ1δ1E ) I (X1;Y3|Y1Z1W )

(1−δ3E ) x̄313 ≤ (1−δ1δ1E ) s̄1 − (1−δ3E ) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ2) I (X2;Y1|Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W ) (C.319)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

0 ≤ (1−δ3) s̄3 − (1−δ1δ1E ) I (X1;Y3|Y1Z1W )

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )− (1−δ3) I (X3; Z3|Y2Y3Y1Z1W ) (C.320)

(1−δ1δ1E ) ¯̀1 ≤ δ3 (1−δ3E ) s̄3 − (1−δ3) z̄3

+ (1−δ3) I (X3; Z3|Y1Y2Y3Z1W ) (C.321)

0 ≤ (1−δ1)k1 + (1−δ1) I (X1; Z1|Y1Y2W )− (1−δ2) I (X2;Y1|Y2W ) (C.322)

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2Z2)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3)

1 ≥ m1 + ¯̀1 + s̄1 +k1

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3

We observe that (C.322) can be made tight by increasing I (X2;Y1|Y2W ). We apply the resulting

equality in (C.319). At the same time we eliminate the variable I (X3; Z3|Y2Y3Y1Z1W ) from

(C.320)-(C.321).

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2Z2)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)
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R ≤ (1−δ3δ3E ) x̄313 + (1−δ1) I (X1;W |Y1Y3Z3)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3 + (1−δ1) s̄1 + (1−δ1)k1

+ (1−δ1) I (X1; Z1|Y1Y3Z3W )

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3)k3 + (1−δ3) s̄3 + (1−δ3) z̄3

(C.323)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀
1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ1δ1E ) I (X1;Y3|Y1Z1W )

(1−δ3E ) x̄313 ≤ (1−δ1δ1E ) s̄1 − (1−δ3E ) ¯̀
3 + (1−δ1)k1 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ1) I (X1; Z1|Y1Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W )

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

(1−δ1δ1E ) I (X1;Y3|Y1Z1W ) ≤ (1−δ3) s̄3 + (1−δ3) I (X3; Z3|Y3Y1Z1W )

(1−δ1δ1E ) I (X1;Y3|Y1Z1W ) ≤ (1−δ3δ3E ) s̄3 − (1−δ1δ1E ) ¯̀1

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2Z2)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3)

1 ≥ m1 + ¯̀1 + s̄1 +k1

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3

We eliminate I (X1;Y3|Y1Z1W ). (C.323) becomes redundant.

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2Z2) (C.324)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ3δ3E ) x̄313 + (1−δ1) I (X1;W |Y1Y3Z3) (C.325)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W ) (C.326)

(1−δ1E ) x̄131 ≤− (1−δ1E ) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3δ3E ) s̄3 (C.327)
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(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀
1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W ) (C.328)

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 + (1−δ1) s̄1 + (1−δ1)k1 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ1) I (X1; Z1|Y1Y3Z3W ) (C.329)

(1−δ3E ) x̄313 ≤ (1−δ1δ1E ) s̄1 − (1−δ3E ) ¯̀3 + (1−δ1)k1 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ1) I (X1; Z1|Y1Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W ) (C.330)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2Z2)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I
(

X1;W |Y i−1
1 Y2

)
(C.331)

1 ≥ s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3)

1 ≥ m1 + ¯̀1 + s̄1 +k1

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3

We show that the we can assume that the RHS of (C.328) can be made smaller than the RHS of

(C.327). If this assumption is not true at an optimal point and ¯̀1 > 0 we can decrease ¯̀1 until

the assumption becomes true or ¯̀
1 = 0 without violating any constraints. If ¯̀

1 = 0, then we

can decrease the value of I (X3; Z3|Y3Y1Z1W ) until the assumption holds. Note that we reach

equality between the RHS of (C.328) and the RHS of (C.327) at least when I (X3; Z3|Y3Y1Z1W )

reaches 0. Thus,

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3 (C.332)

can be assumed. Given this, (C.327) can be dropped. We can apply the same argument on

(C.329)-(C.330) with reducing first ¯̀3 and then if needed I (X1; Z1|Y1Y3Z3W ). We thus replace

(C.330) with the following inequality:

(1−δ3δ3E ) ¯̀
3 + (1−δ1) I (X1; Z1|Y1Y3Z3W ) ≤ (C.333)

δ1 (1−δ1E ) s̄1 + (1−δ1) I (X1; Z1|Y1Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W ) . (C.334)

Independently of this transform, we observe that I (X1;W |Y1Y2) and I (X1;W |Y1Y2Z2) can

be assumed to be equal. If at an optimal point I (X1;W |Y1Y2) > I (X1;W |Y1Y2Z2), then
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I (X1;W |Y1Y2Z2) can be increased until equality holds without violating any constraints. In

case I (X1;W |Y1Y2) < I (X1;W |Y1Y2Z2) then we can do the following transform for some ∆> 0,

until equality holds:

I (X1;W |Y1Y2Z2) ↓ ∆

1−δ1
(C.335)

H (X1|Y1Y2Z2W ) ↑ ∆

1−δ1
(C.336)

x̄22 ↑ ∆

1−δ2E
. (C.337)

No constraints are violated by this transform. Note that if (C.331) becomes equality then

I (X1;W |Y1Y2) ≥ I (X1;W |Y1Y2Z2) follows, while the RHS of (C.324) is increasing by the trans-

form.

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2) (C.338)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1) (C.339)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2) (C.340)

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.341)

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1) (C.342)

R ≤ (1−δ3δ3E ) x̄313 + (1−δ1) I (X1;W |Y1Y3Z3) (C.343)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W ) (C.344)

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3 (C.345)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W ) (C.346)

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W ) (C.347)

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 + (1−δ1) s̄1 + (1−δ1)k1 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ1) I (X1; Z1|Y1Y3Z3W ) (C.348)

(1−δ3δ3E ) ¯̀3 + (1−δ1) I (X1; Z1|Y1Y3Z3W ) ≤ δ1 (1−δ1E ) s̄1 + (1−δ1) I (X1; Z1|Y1Y2W )

+ (1−δ2) I (X2; Z1|Y1Y2W ) (C.349)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W ) (C.350)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W ) (C.351)

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2) (C.352)

1 ≥ s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )+ I (X1;W |Y1Y3Z3) (C.353)

1 ≥ m1 + ¯̀1 + s̄1 +k1 (C.354)

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W ) (C.355)

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W ) (C.356)

1 ≥ m2 +k2 (C.357)

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1) (C.358)
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1 ≥ m3 +k3 + s̄3 + z̄3 (C.359)

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1) (C.360)

1 ≥ m3 + ¯̀3 +k3 + s̄3 (C.361)

We observe that

m1 ≤ I (X1;W |Y1Y3Z3) (C.362)

m3 ≤ I (X3;W |Y1Y3Z1) (C.363)

can be assumed. If these are not true at an optimal point then we could increase I (X1;W |Y1Y3Z3)

and/or I (X3;W |Y1Y3Z1) until they both hold. No constraints can be violated by this increase.

We next show that (C.362) can be made equality. We do the following transform (T1) (∆> 0):

¯̀1 ↓ ∆

1−δ1δ1E
(C.364)

s̄3 ↓ ∆

δ3 (1−δ3E )
(C.365)

s̄1 ↑ ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1δ1E )
(C.366)

I (X1; Z1|Y1Y3Z3W ) ↑ ∆ (1−δ3δ3E )δ1 (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E ) (1−δ1)
(C.367)

x̄131 ↓ ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1δ1E )
(C.368)

x̄313 ↑ ∆

δ3 (1−δ3E )
(C.369)

I (X1;W |Y1Y3Z3) ↓ ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1)
(C.370)

m1 ↓ ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1)
(C.371)

m3 ↑ ∆

δ3 (1−δ3E )
(C.372)

I (X3;W |Y1Y3Z1) ↑ ∆

δ3 (1−δ3E )
(C.373)

We give a side-calculation in Appendix C.4.8 to help verifying that the transform does not

violate any constraints. If (C.362) is not yet equality, we can perform this transform unless

any of the variables the transform decreases already equals 0 or (C.355) is equality. In the

latter case m1 ≥ I (X1;W |Y1Y3Z3) follows from (C.353) which implies that (C.362) is equality.

Otherwise, we have the following cases:

1. ¯̀1 = 0. In this case m1 can be increased until (C.362) is equality without violating any

constraints.

2. s̄3 = 0. In this case (C.345) implies ¯̀1 = 0 and the first case applies.

3. x̄131 = 0. In this case ¯̀1 can be decreased until it equals 0 without violating any con-
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straints. Then, the first case applies.

4. I (X1;W |Y1Y3Z3) = 0. In this case (C.362) implies that m1 = 0 and hence (C.362) is

equality.

5. m1 = 0. In this case from (C.363) it follows that the RHS of (C.341) is strictly smaller than

the RHS of (C.342) unless x̄131 = 0. Hence, x̄131 can be decreased to 0 without violating

any constraints and thus case 3 applies.

We have shown that assuming m1 = I (X1;W |Y1Y3Z3) does not restrict the value of the program.

We now have the following program:

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.374)

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1) (C.375)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313 (C.376)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3 (C.377)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 + (1−δ1) s̄1 + (1−δ1)k1 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ1) I (X1; Z1|Y1Y3Z3W )

(1−δ3δ3E ) ¯̀3 + (1−δ1) I (X1; Z1|Y1Y3Z3W ) ≤ δ1 (1−δ1E ) s̄1 + (1−δ1) I (X1; Z1|Y1Y2W )

+ (1−δ2) I (X2; Z1|Y1Y2W )

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

m3 ≤ I (X3;W |Y1Y3Z1) (C.378)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W ) (C.379)

1 ≥ m1 + ¯̀1 + s̄1 +k1 (C.380)

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3
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We show that ¯̀
1 ≤ I (X1; Z1|Y1Y3Z3W ) can be assumed. Do the following transform:

¯̀1 ↓ ∆

1−δ1δ1E
(C.381)

s̄3 ↓ ∆

δ3 (1−δ3E )
(C.382)

s̄1 ↑ ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1δ1E )
(C.383)

I (X1; Z1|Y1Y3Z3W ) ↑ ∆ (1−δ3δ3E )δ1 (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E ) (1−δ1)
(C.384)

x̄131 ↓ ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1δ1E )
(C.385)

x̄313 ↑ ∆

δ3 (1−δ3E )
(C.386)

m1 ↓ ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1)
(C.387)

m3 ↑ ∆

δ3 (1−δ3E )
(C.388)

I (X3;W |Y1Y3Z1) ↑ ∆

δ3 (1−δ3E )
(C.389)

Observe, that this transform is the same as T1, we need to recheck only the changed constraint

(C.376), which is straightforward to verify. We cannot do this transform in the following cases:

1. (C.379) is equality. Then, (C.380) implies that ¯̀1 ≤ I (X1; Z1|Y1Y3Z3W ).

2. ¯̀1 = 0. ¯̀1 ≤ I (X1; Z1|Y1Y3Z3W ) is immediate.

3. s̄3 = 0. From (C.377) ¯̀1 = 0 follows, hence ¯̀1 ≤ I (X1; Z1|Y1Y3Z3W ).

4. x̄131 = 0. Then, ¯̀1 can be reduced to 0 without violating any constraints.

5. m1 = 0. x̄131 = 0 can be reduced to 0 without violating any constraints, because (C.378)

implies that the RHS of (C.375) is no larger than that of (C.374). Then, the previous case

applies.

We can add the constraint

¯̀1 ≤ I (X1; Z1|Y1Y3Z3W ) (C.390)

and then (C.380) becomes redundant.

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313
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(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) ¯̀3 + (1−δ1) s̄1 + (1−δ1)k1 +δ3E (1−δ3)k3 +δ3E (1−δ3) s̄3

+ (1−δ1) I (X1; Z1|Y1Y3Z3W ) (C.391)

(1−δ3δ3E ) ¯̀3 + (1−δ1) I (X1; Z1|Y1Y3Z3W ) ≤ δ1 (1−δ1E ) s̄1 + (1−δ1) I (X1; Z1|Y1Y2W )

+ (1−δ2) I (X2; Z1|Y1Y2W )

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

m3 ≤ I (X3;W |Y1Y3Z1)

¯̀1 ≤ I (X1; Z1|Y1Y3Z3W ) (C.392)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W )

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2)

1 ≥ m1 + s̄1 +k1 + I (X1; Z1|Y1Y3Z3W )

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3

In this system (C.392) can be made equality. In case it is not equality, do the following trans-

form:

I (X1; Z1|Y1Y3Z3W ) ↓ ∆

1−δ1
(C.393)

m1 ↑ ∆

1−δ1
(C.394)

m3 ↓ ∆

1−δ3
(C.395)

¯̀3 ↑ ∆

1−δ3δ3E
(C.396)

x̄313 ↓ ∆

1−δ3δ3E
(C.397)

We verify that (C.391) is not violated. Other constraints are straightforward to check. Change

of LHS of (C.391):

−∆ (1−δ3E )

1−δ3δ3E
(C.398)
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Change of RHS:

∆δ3E (1−δ3)

1−δ3δ3E︸ ︷︷ ︸
from δ3E (1−δ3) ¯̀3

−∆︸︷︷︸
from (1−δ1) I (X1; Z1|Y1Y3 Z3W )

= −∆ (1−δ3E )

1−δ3δ3E
(C.399)

We have two cases when we cannot do this transform:

1. x̄313 = 0. In this case decreasing I (X1; Z1|Y1Y3Z3W ) until equality holds does not violate

any constraints.

2. m3 = 0. In this case decreasing x̄313 to 0 does not violate any constraints and the first

case applies.

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2) (C.400)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2) (C.401)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313 (C.402)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3)
(

¯̀3 +k3 + s̄3
)+ (1−δ1)

(
s̄1 +k1 + ¯̀1

)
(C.403)

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3

(1−δ3δ3E ) ¯̀3 + (1−δ1) ¯̀1 ≤ δ1 (1−δ1E ) s̄1 + (1−δ1) I (X1; Z1|Y1Y2W )+ (1−δ2) I (X2; Z1|Y1Y2W )

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

m3 ≤ I (X3;W |Y1Y3Z1)

1 ≥ k1 + I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W ) (C.404)

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2) (C.405)

1 ≥ m1 + s̄1 +k1 + ¯̀1 (C.406)

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3

In this system one can increase the value of I (X1; Z1|Y1Y2W ), H (X1|Y1Y2Z2W ) and m1 until
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(C.404)-(C.406) all become equality. Then, it follows that we can assume

m1 + s̄1 + ¯̀
1 ≥ I (X1;W |Y1Y2)+ I (X1; Z1|Y1Y2W ) . (C.407)

We can also increase x̄313 until (C.403) is equality. From this, we can assume

(1−δ3δ3E ) x̄313 ≥ (1−δ1)
(
s̄1 + ¯̀

1
)

. (C.408)

We show that I (X1; Z1|Y1Y2W ) = 0 can be assumed. We do the following transform:

I (X1; Z1|Y1Y2W ) ↓ ∆

1−δ1
(C.409)

I (X2; Z1|Y1Y2W ) ↑ ∆

1−δ2
(C.410)

m2 ↓ ∆

1−δ2
(C.411)

k2 ↑ ∆

1−δ2
(C.412)

I (X1;W |Y1Y2) ↑ ∆

1−δ1
(C.413)

H (X1|Y1Y2Z2W ) ↓ ∆

1−δ1
(C.414)

x̄22 ↓ ∆

1−δ2δ2E
. (C.415)

It is straightforward to verify that this transform does not violate any constraints. Note that

H (X1|Y1Y2Z2W ) = 0 implies I (X1; Z1|Y1Y2W ) = 0, so there are two cases when we cannot do

this transform:

1. m2 = 0. In this case we can decrease x̄22 to 0 without violating any constraints (due to

(C.400)).

2. x̄22 = 0. Then, we can decrease m2 to 0 without violating any constraints (due to (C.401)).

Hence, if I (X1; Z1|Y1Y2W ) 6= 0 we can assume that 0 = m2 = x̄22. We observe that in this case

(C.408) and (C.407) together imply that (C.402) cannot be equality. Thus, a transform that

reduces the RHS of (C.402) while maintaining (C.407) and the equality of (C.403) does not

violate (C.402). Apply the following transform of this kind:

¯̀3 ↓ ∆

1−δ3δ3E
(C.416)

I (X1; Z1|Y1Y2W ) ↓ ∆

1−δ1
(C.417)

x̄313 ↓ ∆δ3E (1−δ3)

(1−δ3E ) (1−δ3δ3E )
(C.418)

I (X1;W |Y1Y2) ↑ ∆

1−δ1
(C.419)

H (X1|Y1Y2Z2W ) ↓ ∆

1−δ1
. (C.420)

156



C.4. Triangle network outer bound proof

It is straightforward to verify that all constraints are respected. After this either I (X1; Z1|Y1Y2W ) =
0, or ¯̀

3 = 0. Note that in case x̄313 = 0, since equality of (C.403) is maintained, ¯̀
3 = 0 follows.

We do yet another transform:

¯̀1 ↓ ∆

1−δ1
(C.421)

I (X1; Z1|Y1Y2W ) ↓ ∆

1−δ1
(C.422)

k1 ↑ ∆

1−δ1
. (C.423)

We can do this transform unless ¯̀1 = 0. In this case, since ¯̀3 = 0, reducing I (X1; Z1|Y1Y2W ) to

0 does not violate any constraints. We have shown that I (X1; Z1|Y1Y2W ) = 0 can be assumed.

R ≤ (1−δ2)m2 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ2δ2E ) x̄22 + (1−δ1) I (X1;W |Y1Y2)

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1) H (X1|Y1Y2Z2W )

(1−δ3E ) x̄313 ≤ δ3E (1−δ3)
(

¯̀3 +k3 + s̄3
)+ (1−δ1)

(
s̄1 +k1 + ¯̀1

)
(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3

(1−δ3δ3E ) ¯̀3 + (1−δ1) ¯̀1 ≤ δ1 (1−δ1E ) s̄1 + (1−δ2) I (X2; Z1|Y1Y2W )

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

m3 ≤ I (X3;W |Y1Y3Z1)

1 ≥ k1 + I (X1;W |Y1Y2) (C.424)

1 ≥ H (X1|Y1Y2Z2W )+ I (X1;W |Y1Y2) (C.425)

1 ≥ m1 + s̄1 +k1 + ¯̀1 (C.426)

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W )

1 ≥ m2 +k2

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1)

1 ≥ m3 +k3 + s̄3 + z̄3

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1)

1 ≥ m3 + ¯̀3 +k3 + s̄3
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We show that I (X1;W |Y1Y2) = m1 + s̄1 + ¯̀1 can be assumed. It is enough to show that (C.424)-

(C.426) are all equalities. By increasing H (X1|Y1Y2Z2W ) and m1 we can easily make (C.425)

and (C.426) equality. If (C.424) is not equality, we do the following transform:

I (X1;W |Y1Y2) ↑ ∆

1−δ1
(C.427)

H (X1|Y1Y2Z2W ) ↓ ∆

1−δ1
(C.428)

k2 ↑ ∆

1−δ2
(C.429)

m2 ↓ ∆

1−δ2
(C.430)

x̄22 ↓ ∆

1−δ2δ2E
(C.431)

There are three cases when we cannot do this transform:

1. H (X1|Y1Y2Z2W ) = 0. This implies I (X1;W |Y1Y2) = 1, i.e., (C.424) is equality.

2. x̄22 = 0. The following transform does not violate any constraints:

I (X1;W |Y1Y2) ↑ ∆

1−δ1
(C.432)

H (X1|Y1Y2Z2W ) ↓ ∆

1−δ1
(C.433)

If H (X1|Y1Y2Z2W ) reaches 0, the first case applies.

3. m2 = 0. In this case reducing x̄22 to 0 does not violate any constraints. Then, the second

case applies.

From I (X1;W |Y1Y2) = m1 + s̄1 + ¯̀1 and the equalities (C.424)-(C.426) it also follows that

H (X1|Y1Y2Z2W ) = k1 can be assumed.

R ≤ (1−δ2)m2 + (1−δ1)
(
m1 + s̄1 + ¯̀

1
)

(C.434)

R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1) (C.435)

R ≤ (1−δ1)
(
m1 + s̄1 + ¯̀1

)+ (1−δ2δ2E ) x̄22 (C.436)

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.437)

R ≤ (1−δ1δ1E ) x̄131 + (1−δ3) I (X3;W |Y1Y3Z1) (C.438)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313 (C.439)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W ) (C.440)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W ) (C.441)

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1)k1 (C.442)

(1−δ3E ) x̄313 ≤ δ3E (1−δ3)
(

¯̀3 +k3 + s̄3
)+ (1−δ1)

(
s̄1 +k1 + ¯̀1

)
(C.443)

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3 (C.444)
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(1−δ3δ3E ) ¯̀
3 + (1−δ1) ¯̀

1 ≤ δ1 (1−δ1E ) s̄1 + (1−δ2) I (X2; Z1|Y1Y2W ) (C.445)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W ) (C.446)

m3 ≤ I (X3;W |Y1Y3Z1) (C.447)

1 ≥ m1 + s̄1 + ¯̀1 +k1 (C.448)

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W ) (C.449)

1 ≥ m2 +k2 (C.450)

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1) (C.451)

1 ≥ m3 +k3 + s̄3 + z̄3 (C.452)

1 ≥ k3 + s̄3 + z̄3 + I (X3;W |Y1Y3Z1) (C.453)

1 ≥ m3 + ¯̀3 +k3 + s̄3 (C.454)

In this system we can see that one can increase the value of I (X2; Z1|Y1Y2W ), k2 and I (X2;W |Y1Y2Z1)

until (C.449)-(C.451) all become equalities. We next show that (C.447) can also be made equal-

ity. We do the following transform (T2):

¯̀3 ↓ ∆

1−δ3δ3E
(C.455)

s̄1 ↓ ∆

δ1 (1−δ1E )
(C.456)

s̄3 ↑ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )
(C.457)

z̄3 ↑ ∆ (1−δ1δ1E )δ3 (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E ) (1−δ3)
(C.458)

x̄131 ↑ ∆

δ1 (1−δ1E )
(C.459)

I (X3;W |Y1Y3Z1) ↓ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)
(C.460)

m3 ↓ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3)
(C.461)

m1 ↑ ∆

δ1 (1−δ1E )
(C.462)

x̄313 ↓ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
(C.463)

I (X1;W |Y1Y3Z3) ↑ ∆

δ1 (1−δ1E )
(C.464)

The side-calculations that verify that transform T2 respects all constraints are found in Ap-

pendix C.4.8. If (C.447) is not yet equality we can do this transform unless any variable the

transform decreases is 0 or (C.452) becomes equality. The latter already implies that (C.447) is

equality, so we have the following cases:

1. ¯̀3 = 0. In this case we can increase m3 without violating any constraints until (C.447) is

equality.
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2. I (X3;W |Y1Y3Z1) = 0. This implies m3 = 0, hence equality follows.

3. x̄313 = 0. In this case we can decrease ¯̀
3 to 0 without violating any constraints and then

the first case applies.

4. m3 = 0. In this case decreasing x̄313 to 0 does not violate any constraints, hence the

previous case applies.

5. s̄1 = 0. In this case we do the following transform:

I (X2; Z1|Y1Y2W ) ↓ ∆

1−δ2
(C.465)

H (X2|Y1Y2Z1W ) ↑ ∆

1−δ2
(C.466)

¯̀1 ↓ ∆

1−δ1δ1E
(C.467)

s̄1 ↑ ∆

1−δ1δ1E
(C.468)

I (X2;W |Y1Y2Z1) ↓ ∆

1−δ2
(C.469)

x̄121 ↑ ∆

1−δ1δ1E
(C.470)

It is straightforward to verify that we can do this transform unless any of the decreased

variables equal 0. There are three cases:

(a) I (X2; Z1|Y1Y2W ) = 0. Since s̄1 = 0, (C.445) implies that ¯̀
3 = 0 and then case 1)

applies.

(b) I (X2;W |Y1Y2Z1) = 0. Since the transform maintains the equalities (C.449)-(C.451),

m2 = I (X2; Z1|Y1Y2W ) = 0 also follows, hence the previous case applies.

(c) ¯̀1 = 0. In this case, we do yet another transform:

I (X2; Z1|Y1Y2W ) ↓ ∆

1−δ2
(C.471)

H (X2|Y1Y2Z1W ) ↑ ∆

1−δ2
(C.472)

¯̀
3 ↓ ∆

1−δ3δ3E
(C.473)

s̄3 ↑ ∆

1−δ3δ3E
(C.474)

I (X2;W |Y1Y2Z1) ↓ ∆

1−δ2
(C.475)

x̄121 ↑ ∆

1−δ1δ1E
(C.476)

I (X3;W |Y1Y3Z1) ↓ ∆

1−δ3δ3E
(C.477)

x̄131 ↑ ∆ (1−δ3)

(1−δ3δ3E ) (1−δ1δ1E )
(C.478)

160



C.4. Triangle network outer bound proof

Again, it is straightforward to verify the correctness of this transform. There are

four cases if (C.447) is not equality:

i. I (X2; Z1|Y1Y2W ) = 0. Case 5a) applies.

ii. I (X2;W |Y1Y2Z1) = 0. Since the transform maintains the equalities (C.449)-

(C.451), m2 = I (X2; Z1|Y1Y2W ) = 0 also follows and the previous case holds.

iii. ¯̀3 = 0. Case 1) holds.

iv. I (X3;W |Y3Y1Z1W ) = 0. Case 2) holds.

R ≤ (1−δ2)m2 + (1−δ1)
(
m1 + s̄1 + ¯̀1

)
R ≤ (1−δ1δ1E ) x̄121 + (1−δ2) I (X2;W |Y1Y2Z1)

R ≤ (1−δ1)
(
m1 + s̄1 + ¯̀1

)+ (1−δ2δ2E ) x̄22

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ3)m3 + (1−δ1δ1E ) x̄131

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2) H (X2|Y1Y2Z1W )

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W )

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1)k1

(1−δ3E ) x̄313 ≤ δ3E (1−δ3)
(

¯̀3 +k3 + s̄3
)+ (1−δ1)

(
s̄1 +k1 + ¯̀1

)
(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3

(1−δ3δ3E ) ¯̀3 + (1−δ1) ¯̀1 ≤ δ1 (1−δ1E ) s̄1 + (1−δ2) I (X2; Z1|Y1Y2W )

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2) H (X2|Y1Y2Z1W )

1 ≥ m1 + s̄1 + ¯̀1 +k1

1 ≥ m2 +H (X2|Y1Y2Z1W )+ I (X2; Z1|Y1Y2W ) (C.479)

1 ≥ m2 +k2 (C.480)

1 ≥ H (X2|Y1Y2Z1W )+ I (X2;W |Y1Y2Z1) (C.481)

1 ≥ m3 +k3 + s̄3 + z̄3 (C.482)

1 ≥ m3 + ¯̀3 +k3 + s̄3

We next show that I (X2; Z1|Y1Y2W ) = 0 can be assumed in this system. Again, we can in-

crease the value of I (X2; Z1|Y1Y2W ), k2 and I (X2;W |Y1Y2Z1) until (C.479)-(C.481) all become

equalities. We do the following transform:

I (X2; Z1|Y1Y2W ) ↓ ∆

1−δ2
(C.483)

H (X2|Y1Y2Z1W ) ↑ ∆

1−δ2
(C.484)

¯̀1 ↓ ∆

1−δ1δ1E
(C.485)
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s̄1 ↑ ∆

1−δ1δ1E
(C.486)

I (X2;W |Y1Y2Z1) ↓ ∆

1−δ2
(C.487)

x̄121 ↑ ∆

1−δ1δ1E
(C.488)

The transform maintains all the inequalities, thus we cannot do this transform in the following

two cases:

1. I (X2;W |Y1Y2Z1) = 0. Since the transform maintains the equalities (C.479)-(C.481), m2 =
I (X2; Z1|Y1Y2W ) = 0 also follows.

2. ¯̀
1 = 0. In this case we do the following transform:

I (X2; Z1|Y1Y2W ) ↓ ∆

1−δ2
(C.489)

H (X2|Y1Y2Z1W ) ↑ ∆

1−δ2
(C.490)

¯̀3 ↓ ∆

1−δ3δ3E
(C.491)

s̄3 ↑ ∆

1−δ3δ3E
(C.492)

I (X2;W |Y1Y2Z1) ↓ ∆

1−δ2
(C.493)

x̄121 ↑ ∆

1−δ1δ1E
(C.494)

This transform maintains all inequalities except (C.482), which case is considered as

case 2c below. Hence, there are three cases if I (X2; Z1|Y1Y2W ) is not 0:

(a) I (X2;W |Y1Y2Z1) = 0. Since the transform maintains the equalities (C.479)-(C.481),

m2 = I (X2; Z1|Y1Y2W ) = 0 also follows.

(b) ¯̀
3 = 0. Since ¯̀

1 = 0 we can reduce I (X2; Z1|Y1Y2W ) to 0 without violating any

constraints.

(c) (C.482) is equality. In this case we know that z̄3 ≥ ¯̀3. We do yet another transform:

I (X2; Z1|Y1Y2W ) ↓ ∆

1−δ2
(C.495)

H (X2|Y1Y2Z1W ) ↑ ∆

1−δ2
(C.496)

¯̀3 ↓ ∆

1−δ3δ3E
(C.497)

s̄3 ↑ ∆

1−δ3δ3E
(C.498)

I (X2;W |Y1Y2Z1) ↓ ∆

1−δ2
(C.499)

x̄121 ↑ ∆

1−δ1δ1E
(C.500)
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z̄3 ↓ ∆

1−δ3δ3E
(C.501)

After this transform either case 2a or case 2b occurs.

Since all transforms maintain equalities (C.479)-(C.481), m2 = I (X2;W |Y1Y2Z1) and k2 =
H (X2|Y1Y2Z1W ) can also be assumed.

R ≤ (1−δ2)m2 + (1−δ1)
(
m1 + s̄1 + ¯̀1

)
(C.502)

R ≤ (1−δ2)m2 + (1−δ1δ1E ) x̄121 (C.503)

R ≤ (1−δ1)
(
m1 + s̄1 + ¯̀1

)+ (1−δ2δ2E ) x̄22 (C.504)

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.505)

R ≤ (1−δ3)m3 + (1−δ1δ1E ) x̄131 (C.506)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313 (C.507)

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2)k2 (C.508)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) ¯̀1 +δ1E (1−δ1) s̄1 +δ1E (1−δ1)k1 + (1−δ3) s̄3

+ (1−δ3) I (X3; Z3|Y3Y1Z1W ) (C.509)

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1)k1 (C.510)

(1−δ3E ) x̄313 ≤ δ3E (1−δ3)
(

¯̀3 +k3 + s̄3
)+ (1−δ1)

(
s̄1 +k1 + ¯̀1

)
(C.511)

(1−δ1δ1E ) ¯̀1 + (1−δ3) I (X3; Z3|Y3Y1Z1W ) ≤ δ3 (1−δ3E ) s̄3 (C.512)

(1−δ3δ3E ) ¯̀3 + (1−δ1) ¯̀1 ≤ δ1 (1−δ1E ) s̄1 (C.513)

(1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 ≤ (1−δ2)k2 (C.514)

1 ≥ m1 + s̄1 + ¯̀1 +k1 (C.515)

1 ≥ m2 +k2 (C.516)

1 ≥ m3 +k3 + s̄3 + z̄3 (C.517)

1 ≥ m3 + ¯̀3 +k3 + s̄3 (C.518)

We show that ¯̀3 ≤ z̄3 can be assumed. If in an optimal point this inequality does not hold, do

the following transform (T3):

¯̀
3 ↓ ∆

1−δ3δ3E
(C.519)

s̄1 ↓ ∆

δ1 (1−δ1E )
(C.520)

s̄3 ↑ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )
(C.521)

z̄3 ↑ ∆δ3 (1−δ3E ) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E ) (1−δ3)
(C.522)

m1 ↑ ∆

δ1 (1−δ1E )
(C.523)

x̄131 ↑ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ1δ1E )
(C.524)
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m3 ↓ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3)
(C.525)

x̄313 ↓ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
(C.526)

We verify this transform in Appendix C.4.8. We can do this transform unless one of the

following cases occurs:

1. (C.517) is equality. In this case ¯̀3 ≤ z̄3 already follows from (C.518).

2. ¯̀3 = 0. The inequality in question is immediate.

3. s̄1 = 0. In this case (C.513) implies ¯̀3 = 0 and the inequality follows.

4. x̄313 = 0. Then ¯̀3 can be reduced to 0 without violating any constraints.

5. m3 = 0. In this case x̄313 can be reduced to 0 without violating any constraints and the

previous case applies.

We introduce the following new variables replacing some of the existing ones:

r3 ∼
(
z̄3 − ¯̀3

) (1−δ3δ3E ) (1−δ3)

δ3 (1−δ3E )
(C.527)

c1 ∼ s̄1 + ¯̀
1 (C.528)

c3 ∼ ¯̀3 + s̄3 − r3

1−δ3δ3E
(C.529)

c ∼ (1−δ1δ1E ) s̄1 + (1−δ3δ3E ) s̄3 − r3 (C.530)

The non-negativity of the introduced variables is the consequence of ¯̀3 ≤ z̄3 and (C.512). The

new system is

R ≤ (1−δ2)m2 + (1−δ1) (m1 + c1) (C.531)

R ≤ (1−δ2)m2 + (1−δ1δ1E ) x̄121

R ≤ (1−δ1) (m1 + c1)+ (1−δ2δ2E ) x̄22

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ3)m3 + (1−δ1δ1E ) x̄131

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2)k2

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3

(1−δ2E ) x̄22 ≤ δ2E (1−δ2)k2 + (1−δ1)k1

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) (c3 +k3)+ r3
δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1)

(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c

c + r3 ≤ (1−δ2)k2

1 ≥ m1 + c1 +k1
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1 ≥ m2 +k2

1 ≥ m3 +k3 + c3 + r3

1−δ3

We show that (1−δ2)m2 = (1−δ2δ2E ) x̄22 can be assumed. If equality does not hold, we have

two cases:

1. (1−δ2)m2 < (1−δ2δ2E ) x̄22. In this case the value of x̄22 can be decreased until equality

holds without violating any constraints.

2. (1−δ2)m2 > (1−δ2δ2E ) x̄22. Do the following transform:

m2 ↓ ∆

1−δ2
(C.532)

k2 ↑ ∆

1−δ2
(C.533)

x̄121 ↑ ∆

1−δ1δ1E
(C.534)

Since (C.531) cannot be equality by assumption, we can always do this transform until

equality holds.

R ≤ (1−δ2)m2 + (1−δ1) (m1 + c1)

R ≤ (1−δ2)m2 + (1−δ1δ1E ) x̄121

R ≤ (1−δ1)m1 + (1−δ3)m3

R ≤ (1−δ3)m3 + (1−δ1δ1E ) x̄131 (C.535)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313

(1−δ1E ) x̄121 ≤ δ1E (1−δ1)k1 + (1−δ2)k2 (C.536)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)k2 + (1−δ1)k1

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) (c3 +k3)+ r3
δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1) (C.537)

(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c

c + r3 ≤ (1−δ2)k2

1 ≥ m1 + c1 +k1

1 ≥ m2 +k2

1 ≥ m3 +k3 + c3 + r3

1−δ3

We show that (1−δ1) (m1 + c1) = (1−δ1δ1E ) x̄121 can be assumed. If equality does not hold,

there are two cases:

1. (1−δ1) (m1 + c1) < (1−δ1δ1E ) x̄121. In this case the value of x̄121 can be decreased until
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equality holds without violating any constraints.

2. (1−δ1) (m1 + c1) > (1−δ1δ1E ) x̄121. Increase x̄121 until (C.536) is equality. From this we

know that

(1−δ1E ) x̄121 − (1−δ1E ) x̄131 ≥ (C.538)

≥ (1−δ2)k2 −δ1E (1−δ1)c1 − (1−δ3)c3 − r3 ≥ c −δ1E (1−δ1)c1 − (1−δ3)c3 ≥ (1−δ1E )c1

(C.539)

and hence

(1−δ1δ1E ) x̄121 − (1−δ1δ1E ) x̄131 ≥ (1−δ1)c1 (C.540)

Do the following transform:

m2 ↓ ∆

1−δ2
(C.541)

k2 ↑ ∆

1−δ2
(C.542)

x̄121 ↑ ∆

1−δ1δ1E
(C.543)

We can do this transform, unless m2 = 0. In this case first decrease x̄131 until it is 0 or

(C.535) is equality. We then know that

(1−δ1)m1 ≥ (1−δ1δ1E ) x̄131 (C.544)

Then, increase x̄313 until (C.537) is equality. We then know that

(1−δ3δ3E ) x̄313 ≥ (1−δ1)c1. (C.545)

From these inequalities it follows that decreasing m1 does not violate any constraints

unless (C.544) is equality. In this latter case however, (C.540) implies that

(1−δ1δ1E ) x̄121 ≥ (1−δ1) (m1 + c1) . (C.546)

Thus, we can always decrease m1 until (1−δ1) (m1 + c1) = (1−δ1δ1E ) x̄121.

R ≤ (1−δ1) (m1 + c1)+ (1−δ2)m2 (C.547)

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.548)

R ≤ (1−δ3)m3 + (1−δ1δ1E ) x̄131 (C.549)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313 (C.550)

(1−δ1E ) (1−δ1)

1−δ1δ1E
(m1 + c1) ≤ δ1E (1−δ1)k1 + (1−δ2)k2 (C.551)

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3 (C.552)
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(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)k2 + (1−δ1)k1 (C.553)

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) (c3 +k3)+ r3
δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1) (C.554)

(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c (C.555)

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c (C.556)

c + r3 ≤ (1−δ2)k2 (C.557)

1 ≥ m1 + c1 +k1 (C.558)

1 ≥ m2 +k2 (C.559)

1 ≥ m3 +k3 + c3 + r3

1−δ3
(C.560)

We show that (1−δ3)m3 ≤ (1−δ1)c1+(1−δ2)m2 can be assumed. Assume the contrary. Then,

we know that (C.548) is not equality. Do the following transform (T4):

c1 ↓ ∆

δ1 (1−δ1E )
(C.561)

m1 ↑ ∆

δ1 (1−δ1E )
(C.562)

x̄131 ↑ ∆

δ1 (1−δ1E )
(C.563)

x̄313 ↓ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
(C.564)

m3 ↓ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)
(C.565)

r3 ↑ ∆ (1−δ1δ1E )

δ1 (1−δ1E )
+ ∆ (1−δ3)

δ3 (1−δ3E )
(C.566)

c3 ↓ ∆

δ3 (1−δ3E )
(C.567)

c ↓ ∆ (1−δ1δ1E )

δ1 (1−δ1E )
+ ∆ (1−δ3)

δ3 (1−δ3E )
(C.568)

(C.569)

The side-calculation in C.4.8 shows that the transform respects all inequalities. We have the

following cases:

1. m3 = 0. (1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 already holds.

2. x̄313 = 0. If this variable cannot be increased, then (C.554) is equality and thus c1 = 0

follows, and case 3 applies.

3. c1 = 0. In this case we know that (C.555) is not equality unless c3 = 0. We either can do

the following transform or c3 = 0 (case 3c below):

c1 ↑ ∆

1−δ1
(C.570)
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m1 ↓ ∆

1−δ1
(C.571)

k2 ↑ ∆

1−δ2
(C.572)

c ↑∆ (C.573)

x̄313 ↑ ∆

1−δ3δ3E
(C.574)

m2 ↓ ∆

1−δ2
(C.575)

It is straightforward to verify that the transform does not violate any constraints. We

have thus three cases:

(a) m1 = 0. In this case we know that (C.549) cannot be equality, thus m3 can be

decreased until (1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 holds.

(b) m2 = 0. In this case we can decrease x̄313 to 0 without violating any constraints. Do

the following transform:

m1 ↓ ∆

1−δ1
(C.576)

c1 ↑ ∆

1−δ1
(C.577)

c3 ↓ ∆

1−δ3
(C.578)

m3 ↑ ∆

1−δ3
(C.579)

x̄131 ↓ ∆

1−δ1δ1E
(C.580)

x̄313 ↑ ∆

1−δ3δ3E
(C.581)

We have the following cases:

i. m1 = 0. Then (C.549) cannot be equality (R = 0), hence we can decrease m3 to

0 and then (1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 holds.

ii. c3 = 0. Case 3c.

iii. x̄131 = 0. If this variable cannot be increased then (C.552) is equality, hence

c3 = 0 and case 3c applies.

iv. (C.554) is equality. Then c3 = 0 follows and case 3c applies.

(c) c3 = 0. Do the following transform:

c3 ↑ ∆

1−δ3
(C.582)

m3 ↓ ∆

1−δ3
(C.583)

x̄131 ↑ ∆

1−δ1δ1E
(C.584)
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We can do this transform unless c = 0. (Note that if m3 = 0, then (1−δ3)m3 ≤
(1−δ1)c1 + (1−δ2)m2 already holds.) If c = 0, we can either increase c and do the

transform or (C.557) is equality. Thus we can assume c = 0 and (C.557) is equality.

In this case increase x̄131 until (C.552) is equality. Then from (C.551) and (C.552):

(1−δ1)m1 ≤ 1−δ1δ1E

1−δ1E
(δ1E (1−δ1)k1 + (1−δ2)k2) = 1−δ1δ1E

1−δ1E
(δ1E (1−δ1)k1 + r3)

(C.585)

= (1−δ1δ1E ) x̄131. (C.586)

This means that (C.549) cannot be equality, and hence m3 can be decreased until

(1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 holds.

4. c3 = 0. In this case we know that (C.556) is not equality otherwise we have case 3. Do

the following transform:

c1 ↓ ∆

δ1 (1−δ1E )
(C.587)

m1 ↑ ∆

δ1 (1−δ1E )
(C.588)

x̄131 ↑ ∆

δ1 (1−δ1E )
(C.589)

x̄313 ↓ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
(C.590)

m3 ↓ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)
(C.591)

r3 ↑ ∆ (1−δ1δ1E )

δ1 (1−δ1E )
(C.592)

c ↓ ∆ (1−δ1δ1E )

δ1 (1−δ1E )
(C.593)

It is straightforward to verify that the transform does not violate any constraints. Af-

ter this transform either of the previous three cases occurs. We add the constraint

(1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 and drop the constraint (C.551).

(1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.594)

R ≤ (1−δ3)m3 + (1−δ1δ1E ) x̄131

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313

(1−δ1E ) x̄131 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)k2 + (1−δ1)k1

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) (c3 +k3)+ r3
δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1)
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(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c

c + r3 ≤ (1−δ2)k2

1 ≥ m1 + c1 +k1

1 ≥ m2 +k2

1 ≥ m3 +k3 + c3 + r3

1−δ3

We show that (1−δ1)m1 = (1−δ1δ1E ) x̄131 can be assumed. If (1−δ1)m1 < (1−δ1δ1E ) x̄131,

then we can decrease x̄131 until equality holds without violating any constraint. Assume that

(1−δ1)m1 > (1−δ1δ1E ) x̄131. Do the following transform:

m1 ↓∆ (C.595)

k1 ↑∆ (C.596)

x̄313 ↑ ∆ (1−δ1)

1−δ3δ3E
(C.597)

This transform does not violate any constraints ((C.594) cannot be equality), thus m1 decreases

until (1−δ1)m1 = (1−δ1δ1E ) x̄131.

(1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 (C.598)

R ≤ (1−δ1)m1 + (1−δ3)m3 (C.599)

R ≤ (1−δ1)m1 + (1−δ3δ3E ) x̄313 (C.600)

(1−δ1) (1−δ1E )

1−δ1δ1E
m1 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3 (C.601)

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)k2 + (1−δ1)k1 (C.602)

(1−δ3E ) x̄313 ≤ δ3E (1−δ3) (c3 +k3)+ r3
δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1) (C.603)

(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c (C.604)

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c (C.605)

c + r3 ≤ (1−δ2)k2 (C.606)

1 ≥ m1 + c1 +k1 (C.607)

1 ≥ m2 +k2 (C.608)

1 ≥ m3 +k3 + c3 + r3

1−δ3
(C.609)

We show that (1−δ3)m3 = (1−δ3δ3E ) x̄313 can be assumed. If equality does not hold, then

we can always decrease the variable on the larger side of the inequality without violating any

constraints until equality holds.

(1−δ3)m3 ≤ (1−δ1)c1 + (1−δ2)m2 (C.610)
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R ≤ (1−δ1)m1 + (1−δ3)m3

(1−δ1) (1−δ1E )

1−δ1δ1E
m1 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)k2 + (1−δ1)k1

(1−δ3) (1−δ3E )

1−δ3δ3E
m3 ≤ δ3E (1−δ3) (c3 +k3)+ r3

δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1)

(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c

c + r3 ≤ (1−δ2)k2

1 ≥ m1 + c1 +k1

1 ≥ m2 +k2

1 ≥ m3 +k3 + c3 + r3

1−δ3

Finally, we show that (C.610) can be assumed to be equality. If (1−δ3)m3 < (1−δ1)c1 +
(1−δ2)m2, then m2 can be decreased until equality holds or m2 = 0. In that case, do the

following transform:

c1 ↓∆ (C.611)

k1 ↑∆. (C.612)

Eventually (C.610) becomes equality by this transform. No constraints are violated.

(1−δ3)m3 = (1−δ1)c1 + (1−δ2)m2 (C.613)

R ≤ (1−δ1)m1 + (1−δ3)m3

(1−δ1) (1−δ1E )

1−δ1δ1E
m1 ≤ δ1E (1−δ1) (c1 +k1)+ (1−δ3)c3 + r3

(1−δ2) (1−δ2E )

1−δ2δ2E
m2 ≤ δ2E (1−δ2)k2 + (1−δ1)k1

(1−δ3) (1−δ3E )

1−δ3δ3E
m3 ≤ δ3E (1−δ3) (c3 +k3)+ r3

δ3E (1−δ3)

1−δ3δ3E
+ (1−δ1) (c1 +k1)

(1−δ1δ1E )c1 + (1−δ3)c3 ≤ c

(1−δ3δ3E )c3 + (1−δ1)c1 ≤ c

c + r3 ≤ (1−δ2)k2

1 ≥ m1 + c1 +k1

1 ≥ m2 +k2

1 ≥ m3 +k3 + c3 + r3

1−δ3

The resulting LP is the same as the LP in Theorem 4.4, which concludes the proof.
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C.4.8 Side-calculations

Transform T1

Constraints (C.338)-(C.340) are not affected. Change of RHS of (C.341):

− 1−δ3

δ3 (1−δ3E )
∆︸ ︷︷ ︸

from (1−δ1)m1

+ 1−δ3

δ3 (1−δ3E )
∆︸ ︷︷ ︸

from (1−δ3)m3

= 0. (C.614)

Change of RHS of (C.342):

− 1−δ3

δ3 (1−δ3E )
∆︸ ︷︷ ︸

from (1−δ1δ1E ) x̄131

+ 1−δ3

δ3 (1−δ3E )
∆︸ ︷︷ ︸

from (1−δ3) I (X3;W |Y1Y3 Z1)

= 0. (C.615)

Change of RHS of (C.343):

− 1−δ3δ3E

δ3 (1−δ3E )
∆︸ ︷︷ ︸

from (1−δ3δ3E ) x̄313

+ 1−δ3δ3E

δ3 (1−δ3E )
∆︸ ︷︷ ︸

from (1−δ1) I (X1;W |Y1Y3 Z3)

= 0. (C.616)

Constraint (C.344) is not affected. Change of LHS of (C.345):

−∆︸︷︷︸
from (1−δ1δ1E ) ¯̀1

(C.617)

Change of RHS of (C.345):

−∆︸︷︷︸
from s̄3

(C.618)

Change of LHS of (C.346):

− ∆ (1−δ3) (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from (1−δ1E ) x̄131

(C.619)

Change of RHS of (C.346):

−∆δ1E (1−δ1E )

1−δ1δ1E︸ ︷︷ ︸
from δ1E (1−δ1) ¯̀1

+∆δ1E (1−δ1) (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from δ1E (1−δ1) s̄1

− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from (1−δ3) s̄3

(C.620)

= ∆δ1E (1−δ1) (1−δ3)

δ3 (1−δ3E ) (1−δ1δ1E )
− ∆ (1−δ3)

δ3 (1−δ3E )
=− ∆ (1−δ3) (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E )
(C.621)
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Constraint (C.347) is not affected. Change of LHS of (C.348):

∆

δ3︸︷︷︸
from (1−δ3E ) x̄313

(C.622)

Change of RHS of (C.348):

∆ (1−δ1) (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from (1−δ1) s̄1

−∆δ3E (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from δ3E (1−δ3) s̄3

+∆ (1−δ3δ3E )δ1 (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from (1−δ1) I (X1; Z1|Y1Y3 Z3W )

(C.623)

=−∆δ3E (1−δ3)

δ3 (1−δ3E )
+∆ (1−δ3δ3E )

δ3 (1−δ3E )
= ∆

δ3
(C.624)

Change of LHS of (C.349):

∆ (1−δ3δ3E )δ1 (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from (1−δ1) I (X1; Z1|Y1Y3 Z3W )

(C.625)

Change of RHS of (C.349):

∆ (1−δ3δ3E )δ1 (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from δ1 (1−δ1E ) s̄1

(C.626)

Change of LHS of (C.350):

∆ (1−δ3δ3E )

δ3 (1−δ3E )︸ ︷︷ ︸
from (1−δ1δ1E ) s̄1

− ∆ (1−δ3δ3E )

δ3 (1−δ3E )︸ ︷︷ ︸
from (1−δ3δ3E ) s̄3

= 0 (C.627)

Constraints (C.351)-(C.352) are not affected. Change of RHS of (C.353):

∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from s̄1

+ ∆ (1−δ3δ3E )δ1 (1−δ1E )

δ3 (1−δ3E ) (1−δ1δ1E ) (1−δ1)︸ ︷︷ ︸
from I (X1; Z1|Y1Y3 Z3W )

− ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1)︸ ︷︷ ︸
from I (X1;W |Y1Y3 Z3)

(C.628)

= ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1)
− ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1)
= 0 (C.629)

Change of RHS of (C.354):

− ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1)︸ ︷︷ ︸
from m1

− ∆

1−δ1δ1E︸ ︷︷ ︸
from ¯̀1

+ ∆ (1−δ3δ3E )

δ3 (1−δ3E ) (1−δ1δ1E )︸ ︷︷ ︸
from s̄1

(C.630)

=− ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1)
+ ∆ (1−δ3)

δ3 (1−δ3E ) (1−δ1δ1E )
≤ 0 (C.631)
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Constraint (C.355) cannot be violated by assumption of the transform. Constraints (C.356)-

(C.358) are not affected. Change of RHS of (C.359):

∆

δ3 (1−δ3E )︸ ︷︷ ︸
from m3

− ∆

δ3 (1−δ3E )︸ ︷︷ ︸
from s̄3

= 0 (C.632)

Change of RHS of (C.360):

∆

δ3 (1−δ3E )︸ ︷︷ ︸
from I (X3;W |Y1Y3 Z1)

− ∆

δ3 (1−δ3E )︸ ︷︷ ︸
from s̄3

= 0 (C.633)

Change of RHS of (C.361):

∆

δ3 (1−δ3E )︸ ︷︷ ︸
from I (X3;W |Y1Y3 Z1)

− ∆

δ3 (1−δ3E )︸ ︷︷ ︸
from s̄3

= 0 (C.634)

Change of LHS of (C.363):

∆

δ3 (1−δ3E )︸ ︷︷ ︸
from m3

(C.635)

Change of RHS of (C.363):

∆

δ3 (1−δ3E )︸ ︷︷ ︸
from I (X3;W |Y1Y3 Z1)

(C.636)

Transform T2

Change of RHS of (C.434):

∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1) s̄1

= 0 (C.637)

Constraint (C.435) is not affected. Change of RHS of (C.436) is 0, for the same reason as (C.434).

Change of RHS of (C.437):

∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3)m3

= 0 (C.638)
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Change of RHS of (C.438):

∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1δ1E ) x̄131

−∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3) I (X3;W |Y1Y3 Z1)

= 0 (C.639)

Change of RHS of (C.439):

∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3δ3E ) x̄313

= 0 (C.640)

Constraint (C.440) is not affected. Change of LHS of (C.441):

∆

δ1︸︷︷︸
from (1−δ1E ) x̄131

(C.641)

Change of RHS of (C.441):

−∆δ1E (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from δ1E (1−δ1) s̄1

+ ∆ (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3) s̄3

+∆ (1−δ1δ1E )δ3 (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3) z̄3

(C.642)

=−∆δ1E (1−δ1)

δ1 (1−δ1E )
+∆ (1−δ1δ1E )

δ1 (1−δ1E )
= ∆

δ1
(C.643)

Constraint (C.442) is not affected. Change of LHS of (C.443):

− ∆ (1−δ1) (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3E ) x̄313

(C.644)

Change of RHS of (C.443):

−∆δ3E (1−δ3)

1−δ3δ3E︸ ︷︷ ︸
from δ3E (1−δ3) ¯̀3

+∆δ3E (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from δ3E (1−δ3) s̄3

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1) s̄2

(C.645)

= ∆δ3E (1−δ3) (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
− ∆ (1−δ1)

δ1 (1−δ1E )
=− ∆ (1−δ1) (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )
(C.646)

Change of LHS of (C.444):

∆ (1−δ1δ1E )δ3 (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3) z̄3

(C.647)

175



Appendix C. Proofs and calculations for Chapter 4

Change of RHS of (C.444):

∆ (1−δ1δ1E )δ3 (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from δ3 (1−δ3E ) s̄3

(C.648)

Change of LHS of (C.445):

−∆︸︷︷︸
from (1−δ3δ3E ) l̄3

(C.649)

Change of RHS of (C.445):

−∆︸︷︷︸
from δ1 (1−δ1E ) s̄1

(C.650)

Change of LHS of (C.446):

−∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1δ1E ) s̄1

+∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3δ3E ) s̄3

= 0 (C.651)

Constraint (C.447) is not violated by assumption. Change of RHS of (C.448):

∆

δ1 (1−δ1E )︸ ︷︷ ︸
from m1

− ∆

δ1 (1−δ1E )︸ ︷︷ ︸
from s̄1

= 0 (C.652)

Constraints (C.449)-(C.451) are not affected, (C.452) is not violated by assumption. Change of

RHS of (C.453):

∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from s̄3

+ ∆ (1−δ1δ1E )δ3 (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E ) (1−δ3)︸ ︷︷ ︸
from z̄3

− ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)︸ ︷︷ ︸
from I (X3;W |Y1Y3 Z1)

(C.653)

∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)
− ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)
= 0 (C.654)

Change of RHS of (C.454):

− ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3)︸ ︷︷ ︸
from m3

− ∆

1−δ3δ3E︸ ︷︷ ︸
from ¯̀3

+ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from s̄3

(C.655)

=− ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3)︸ ︷︷ ︸+
∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
≤ 0 (C.656)
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Transform T3

Change of RHS of (C.502):

− (1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1) s̄1

+ (1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

= 0 (C.657)

Constraint (C.503) is not affected, while the RHS of (C.504) changes the same way as (C.502).

Change of RHS of (C.505):

(1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3)m3

= 0 (C.658)

Change of RHS of (C.506):

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3)m3

+ (1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1δ1E ) x̄131

= 0 (C.659)

Change of RHS of (C.507):

(1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3δ3E ) x̄313

= 0 (C.660)

Constraint (C.508) is not affected. Change of LHS of (C.509):

∆ (1−δ1)

δ1 (1−δ1δ1E )︸ ︷︷ ︸
from (1−δ1E ) x̄131

(C.661)

Change of RHS of (C.509):

−∆δ1E (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from δ1E (1−δ1) s̄1

+ ∆ (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3) s̄3

+∆δ3 (1−δ3E ) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3) I (X3; Z3|Y3Y1 Z1W )

(C.662)

=−∆δ1E (1−δ1)

δ1 (1−δ1E )
+∆ (1−δ1δ1E )

δ1 (1−δ1E )
= ∆

δ1
≥ ∆ (1−δ1)

δ1 (1−δ1δ1E )
(C.663)

Constraint (C.510) is not affected. Change of LHS of (C.511):

− ∆ (1−δ3E ) (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3E ) x̄313

(C.664)
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Change of LHS of (C.511):

−∆δ3E (1−δ3)

1−δ3δ3E︸ ︷︷ ︸
from δ3E (1−δ3) l̄3

+∆δ3E (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from δ3E (1−δ3) s̄3

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1) s̄1

(C.665)

= ∆δ3E (1−δ3) (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
− ∆ (1−δ1)

δ1 (1−δ1E )
=− ∆ (1−δ3E ) (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
(C.666)

Change of LHS of (C.512):

∆δ3 (1−δ3E ) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3) I (X3; Z3|Y3Y1 Z1W )

(C.667)

Change of RHS of (C.512):

∆δ3 (1−δ3E ) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from δ3 (1−δ3E ) s̄3

(C.668)

Change of LHS of (C.513):

−∆︸︷︷︸
from (1−δ3δ3E ) ¯̀3

(C.669)

Change of RHS of (C.513):

−∆︸︷︷︸
from δ1 (1−δ1E ) s̄1

(C.670)

Change of LHS of (C.514):

−∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1δ1E ) s̄1

+∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3δ3E ) s̄3

= 0 (C.671)

Change of RHS of (C.515):

∆

δ1 (1−δ1E )︸ ︷︷ ︸
from m1

− ∆

δ1 (1−δ1E )︸ ︷︷ ︸
from s1

= 0 (C.672)

Inequality (C.516) is not affected and (C.517) is not violated by assumption. Change of RHS of

(C.518):

− ∆ (1−δ1)

δ1 (1−δ3) (1−δ1E )︸ ︷︷ ︸
from m3

− ∆

(1−δ3δ3E )︸ ︷︷ ︸
from ¯̀3

+ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from s̄3

(C.673)
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=− ∆ (1−δ1)

δ1 (1−δ3) (1−δ1E )
+ ∆ (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
≤ 0 (C.674)

Transform T4

Change of RHS of (C.547):

(1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− (1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)c1

= 0 (C.675)

Inequality (C.548) is not violated by assumption. Change of RHS of (C.549):

− (1−δ1δ1E )∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3)m3

+ (1−δ1δ1E )∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1δ1E ) x̄131

= 0 (C.676)

Change of RHS of (C.550):

(1−δ1)∆

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)m1

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ3δ3E ) x̄313

= 0 (C.677)

Change of LHS of (C.551):

(1−δ1E ) (1−δ1)

1−δ1δ1E

 ∆

δ1 (1−δ1E )︸ ︷︷ ︸
from m1

− ∆

δ1 (1−δ1E )︸ ︷︷ ︸
from c1

= 0 (C.678)

Change of LHS of (C.552):

∆

δ1︸︷︷︸
from (1−δ1E ) x̄131

(C.679)

Change of RHS of (C.552):

−∆δ1E (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from δ1E (1−δ1)c1

− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from (1−δ3)c3

+∆ (1−δ1δ1E )

δ1 (1−δ1E )
+ ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from r3

= ∆

δ1
(C.680)

Constraint (C.553) is not affected. Change of LHS of (C.554):

− ∆ (1−δ1) (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )︸ ︷︷ ︸
from (1−δ3E ) x̄313

(C.681)
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Change of RHS of (C.554):

−∆δ3E (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from δ3E (1−δ3)c3

+ ∆δ3E (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )
+ ∆δ3E (1−δ3)2

δ3 (1−δE ) (1−δ3δ3E )︸ ︷︷ ︸
from δ3E (1−δ3)

1−δ3δ3E
r3

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)c1

(C.682)

=−∆δ3E (1−δ3)δ3 (1−δ3E )

δ3 (1−δ3E ) (1−δ3δ3E )
+ ∆δ3E (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )
− ∆ (1−δ1)

δ1 (1−δ1E )
(C.683)

=−∆δ3E (1−δ3)

1−δ3δ3E
+ ∆δ3E (1−δ3) (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3δ3E )
− ∆ (1−δ1)

δ1 (1−δ1E )
(C.684)

= ∆δ3E (1−δ3) (1−δ1)

δ1 (1−δ1E ) (1−δ3δ3E )
− ∆ (1−δ1)

δ1 (1−δ1E )
=− ∆ (1−δ1) (1−δ3E )

δ1 (1−δ1E ) (1−δ3δ3E )
(C.685)

Change of LHS of (C.555):

−∆ (1−δ1δ1E )

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1δ1E )c1

− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from (1−δ3)c3

(C.686)

Change of RHS of (C.555):

−∆ (1−δ1δ1E )

δ1 (1−δ1E )
− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from c

(C.687)

Change of LHS of (C.556):

− ∆ (1−δ1)

δ1 (1−δ1E )︸ ︷︷ ︸
from (1−δ1)c1

−∆ (1−δ3δ3E )

δ3 (1−δ3E )︸ ︷︷ ︸
from (1−δ3δ3E )c3

(C.688)

Change of RHS of (C.556):

−∆ (1−δ1δ1E )

δ1 (1−δ1E )
− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from c

(C.689)

=−∆ (1−δ1δ1E )

δ1 (1−δ1E )
+ ∆ (1−δ1)

δ1 (1−δ1E )
− ∆ (1−δ3)

δ3 (1−δ3E )
+ ∆ (1−δ3δ3E )

δ3 (1−δ3E )
− ∆ (1−δ1)

δ1 (1−δ1E )
− ∆ (1−δ3δ3E )

δ3 (1−δ3E )
(C.690)

=−1+1− ∆ (1−δ1)

δ1 (1−δ1E )
− ∆ (1−δ3δ3E )

δ3 (1−δ3E )
=− ∆ (1−δ1)

δ1 (1−δ1E )
− ∆ (1−δ3δ3E )

δ3 (1−δ3E )
(C.691)

Change of LHS of (C.557):

−∆ (1−δ1δ1E )

δ1 (1−δ1E )
− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from c

+∆ (1−δ1δ1E )

δ1 (1−δ1E )
− ∆ (1−δ3)

δ3 (1−δ3E )︸ ︷︷ ︸
from r3

= 0 (C.692)
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Change of LHS of (C.558):

∆

δ1 (1−δ1E )︸ ︷︷ ︸
from m1

− ∆

δ1 (1−δ1E )︸ ︷︷ ︸
from c1

= 0 (C.693)

Constraint (C.559) is not affected. Change of LHS of (C.560):

− ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)︸ ︷︷ ︸
from m3

− ∆

δ3 (1−δ3E )︸ ︷︷ ︸
from c3

+ ∆ (1−δ1δ1E )

δ1 (1−δ1E ) (1−δ3)
− ∆

δ3 (1−δ3E )︸ ︷︷ ︸
from r3

1−δ3

= 0 (C.694)
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D.1 Security of two-phase secure network coding

In the first phase we use new independent randomness in each slot, hence we know from the

secure network code that

I
(
Z n1

A ;K ,W
)= 0. (D.1)

In the second phase we use only randomness of which Eve has no information, hence her

observation of the first phase does not help her learning about W . With a slight abuse of our

notation we denote Eve’s observation in the second phase by Z n2
A . Formally,

I
(
Z n

A ;W
)= I

(
Z n1

A Z n2
A ;W

)= I
(
Z n2

A ;W
)+ I

(
Z n1

A ;W |Z n2
A

)
(D.2)

≤ I
(
Z n2

A ;W
)+ I

(
Z n1

A ;W
)+ I

(
Z n1

A ; Z n2
A |W )

(D.3)

(a)= I
(
Z n2

A ;W
)+ I

(
Z n1

A ; Z n2
A |W )

(D.4)

(b)≤ I
(
Z n2

A ;W
)+ I

(
Z n1

A ;K ,W |W )
(D.5)

= I
(
Z n2

A ;W
)+ I

(
Z n1

A ;K |W )= I
(
Z n2

A ;W
)

, (D.6)

where in (a) we used that transmissions in the first phase are independent of the message, and

to get (b) we used that Z n2
A is a function of (K ,W ). In the last step we used (D.1). Further, in

each slot we use independent randomness, thus

I
(
Z n2

A ;W
)= n2∑

i=n1+1
I
(

Zi ,A ;W |Z i−1
A

)
≤

n2∑
i=n1+1

I
(
Zi ,A ;W

)+ I
(

Zi ,A ; Z i−1
A |W

)
=

n2∑
i=n1+1

I
(
Zi ,A ;W

)
.

(D.7)

Hence, we can focus on one time slot of the second phase. Again we can assume that Eve

discards any packet received more than once. Let z ′ ≤ z be the number of distinct packets she
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receives. We can write Eve’s observation in the i th time slot of the second phase as

Zn1+i ,A =
[

W ′ (i )+K ′ (i ) W (i )
]

Q A =
[

W ′ (i )+K ′ (i ) W (i )
][

QΘᵀ
A

QW ᵀ
A

]
= K ′ (i )QΘᵀ

A +WΦi ,A ,

(D.8)

for some matrix Φi ,A . From the properties of the secure network code and K we see that

K (i )′QΘᵀ
A is a set of uniform random packets and WΦi ,A is at most z ′ linear combinations

of packets from W . Hence, as we noted in the case of secure network coding, from Eve’s

perspective this is a one time pad encrypted data. From this observation

I
(
Z n

A ;W
)≤ I

(
Z n2

A ;W
)≤ n2∑

i=n1+1
I
(
Zi ,A ;W

)= 0 (D.9)

follows, hence our scheme is secure.

D.2 Proof of Theorem 5.1

We first show that a key rate κ is achieved. We denote the size of the generated keys k1,

k1 = |K | = hn′
1 (1−δ)−ζ1 −n

′ 3
4

1 . (D.10)

We denote M the set of packets D receives, M Z is the subset of these that Eve receives and M d

is the subset that only D receives. The corresponding rows of matrix H are H Z and H d . Hence

K can be written as

K = M H =
[

M d M Z
][

H d

H Z

]
. (D.11)

Note that in case the key generation is successful, then |M | is hn′
1 (1−δ), but |M d |, |M Z | are

not deterministic, they depend on the channel realizations F n1 .

K does not depend on |M Z |, hence

I
(
Z n1

A F n1 ;K
)= I

(
Z n1

A F n1 |M Z |;K
)= I

(|M Z |;K
)+ I

(
Z n1

A F n1 ;K ||M Z |)= I
(
Z n1

A F n1 ;K ||M Z |)
(D.12)

= H
(
K ||M Z |)−H

(
K |Z n1

A F n1 |M Z |)= k1 −
n1∑

i=1
H

(
K |Z n1

A F n1 |M Z | = i
)

Pr
{|M Z | = i

}
(D.13)

We have

H
(
K |Z n1

A F n1 |M Z | = i
)= H

(
M d H d +M Z H Z |M Z F n1 |M Z | = i

)
= H

(
M d H d |M Z F n1 |M Z | = i

)
(D.14)
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= H
(
M d H d ||M Z | = i

)
= min{|M |− i ,k1}, (D.15)

since H d is full-rank and |M d | = |M |− |M Z |. Given this,

I
(
Z n1

A F n1 ;K
)= I

(
Z n1

A F n1 |M Z |;K
)= k1 −

|M |−k1∑
i=1

k1 Pr
{|M Z | = i

}− n1∑
i=|M |−k1+1

(|M |− i )Pr
{|M Z | = i

}
≤ k1 −k1 Pr

{|M Z | ≤ |M |−k1
}+n1 Pr

{|M Z | > |M |−k1
}

= (n1 +k1)Pr
{|M Z | > |M |−k1

}
. (D.16)

The probability that Eve receives more than |M |−k1 packets can be bounded as follows:

Pr
{|M Z | > |M |−k1

}= Pr

{
|M Z | > ζ1 +n

′ 3
4

1

}
≤ Pr

{
|M Z |−E{|M Z |}> n

′ 3
4

1

}
≤ Pr

{∣∣|M Z |−E{|M Z |}∣∣> n
′ 3

4
1

}
≤ e−c1

p
n′

1 , (D.17)

for some constant c1 > 0. We used that ζ1 ≥ E
{|M Z |} irrespective of Eve’s selection. The last

inequality follows from the Chernoff-Hoeffding bound. We see from (D.17) and (D.16) that

I
(
Z n1

A F n1 ;K
)

can be made arbitrarily small by choosing a large enough n1. This proves the

security of the key.

The key generation fails if D does not receive hn′
1 (1−δ) packets. We calculate the probability

of the event that a node who has received n′
1 (1−δ) packet fails to forward all of these to the

next node towards D . This event happens if out of n1 transmissions more than n1 −n′
1 (1−δ)

erasures occur. Let η denote the number of erasures of n1 transmissions. Then, the probability

of the event equals

Pr
{
η> n1 −n′

1 (1−δ)
}= Pr

{
η−δn1 >

(
n1 −n′

1

)
(1−δ)

}= Pr

{
η−E{

η
}> n

3
4
1 (1−δ)

}
≤ Pr

{
|η−E{

η
} | > n

3
4
1 (1−δ)

}
= e−c2

p
n1 , (D.18)

where c2 > 0 is some constant and we used the Chernoff-Hoeffding bound. This shows that

the probability of successful forwarding of n′
1 (1−δ) packets can be made arbitrarily close to 1

on each link, hence the probability that D receives hn′
1 (1−δ) packets is also arbitrarily close

to 1 by selecting a large enough n1.

The rate of the key limn1→∞ |K |
n1

= κ directly follows from the parameter values and from the

fact that limn1→∞
n′

1
n1

= 1.

Destination D can decode the message if he receives all packets in the second phase. The

probability of error has the same nature as in the first phase and thus can be made arbitrarily

small by selecting a large enough n2.

Similarly as in the two phase secure network coding scheme, observing the first phase does
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not help Eve to learn about W . Formally, if I
(
Z n1

A F n1 ;K
)= ε′, then

I
(
Z n

A F n ;W
)≤ I

(
Z n2

A F n2 ;W
)+ε′, (D.19)

where Z n2
A denotes the packets that Eve receives in the second phase.

Z n2
A can be written as W Z

E , which denotes the subset of encrypted packets Eve receives. Let G Z

denote the corresponding rows of G , then

W Z
E =W Z +KG Z . (D.20)

In case |W Z
E | ≤ |K |, then KG Z is a set of uniformly distributed independent packets, thus W Z

E

is a set of one-time-pad encrypted message packets, hence

I
(
Z n2

A F n2 ;W
)= I

(
W Z

E F n2 ;W
)= I

(
W Z

E ;W |F n2
)= I

(
W Z

E ;W |F n2 |W Z
E |) (D.21)

= I
(
W Z

E ;W |F n2 |W Z
E | ≤ |K |)Pr

{|W Z
E | ≤ |K |}

+ I
(
W Z

E ;W |F n2 |W Z
E | > |K |)Pr

{|W Z
E | > |K |} (D.22)

= I
(
W Z

E ;W |F n2 |W Z
E | > |K |)Pr

{|W Z
E | > |K |}≤ n2 Pr

{|W Z
E | > |K |}≤ n2e−c3

p
n′

2 ,

(D.23)

where c3 > 0 is a constant. We omit the details of the last step, where we bound the probability

of the event that Eve receives significantly more packets than she is expected to. We use the

same technique as we have seen earlier. This together with (D.19) shows that for a sufficiently

large n = n1 + n2 the scheme satisfies (5.4). The rate assertion follows directly from the

parameter definitions.

D.3 Proof of Theorem 5.2

Given a network G consider the partitioning of the vertices (V1,V2) such that s ∈V1,d ∈V2 and

it has the minimum cut value h. We create a new network G ′ (V ′,E ′) by merging all the nodes

in V1 with S and all the nodes in V2 with D. We further remove all (d , s) edges. The resulting

graph is depicted in Figure D.1. We assume that Eve eavesdrops on the remaining set of edges.

The secret-message capacity over G ′ cannot be smaller than over G . Clearly, merging nodes

and restricting Eve to the remaining edges can only increase capacity. The removal of (d , s)

edges does not affect the achievable rates, since no nodes in V2 can generate randomness,

and thus whatever a scheme could send through the (d , s) edges, S can also generate from its

randomness and from the public acknowledgments. (Note that the channel states are known

to Eve, thus the channel itself cannot be used to generate secure randomness.) We give an

upper bound on the secure capacity over G ′ which is also a valid upper bound for G .

Using Theorem 4.2 we assume that packets sent in the same time slot on different edges are

always all independent.
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S D
...

hz

Figure D.1: Transformed network G ′ after merging network nodes with S or D

We start from the following inequality:

hn ≥
n∑

i=1
H

(
Xi ,s

)≥ n∑
i=1

H
(

Xi ,s |Y i−1
d F i−1

)
(D.24)

=
n∑

i=1
H

(
Xi ,s |Y i−1

d F i−1W
)
+ I

(
Xi ,s ;W |Y i−1

d F i−1
)

(D.25)

≥
n∑

i=1
H

(
Xi ,s |Y i−1

d Z i−1
A F i−1W

)
+ I

(
Xi ,s ;W |Y i−1

d F i−1
)

(D.26)

The following two lemmas that provide bounds for the latter two terms in (D.26). Applying

these results in (D.26) and rearranging terms provide the claimed upper bound on R.

Lemma D.1.

n∑
i=1

I
(

Xi ,s ;W |Y i−1
d F i−1

)
≥ nR

1−δ −nED.1, (D.27)

where ED.1 = Rε+h2(ε)
1−δ .

Lemma D.2.

nR −n (h − z) (1−δ) ≤
n∑

i=1

δE (1−δ) (1−δδE )

1−δE
H

(
Xi ,s |Y i−1

d Z i−1
A F i−1W

)
+nED.2, (D.28)

where ED.2 = Rε+h2 (ε)+ ε(1−δδE )
1−δE

.

The above two lemmas are generalizations of Lemmas 2.1-2.2 with the use of Theorem 4.2. In

the case of Lemma D.1 the generalization is straightforward, hence we omit the proof to avoid

repetition. We provide the proof of Lemma D.2 below.

D.3.1 Proof of Lemma D.2

We show the following two inequalities:

n∑
i=1

I (Xi ,A ;W |Y i−1
d Z i−1

A F i−1)

≥ nR −n(1−δ)(h − z)

1−δδE
−nED.2,a +

n∑
i=1

1−δ
1−δδE

H(Xi ,E ′\A|Y i−1
d Z i−1

A F i−1W ), (D.29)

where ED.2,a = εR+h2(ε)
1−δδE

, and
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n∑
i=1

I (Xi ,A ;W |Y i−1
d Z i−1

A F i−1)− nε

1−δE
≤

n∑
i=1

1−δ
1−δE

H(Xi ,E ′\A|Y i−1
d Z i−1

A F i−1W )+ δE (1−δ)

1−δE
H(Xi ,A|Y i−1

d Z i−1
A F i−1W ). (D.30)

We combine these two and get that

nR −n(1−δ)(h − z)

1−δδE
−nED.2,a − nε

1−δE
+

n∑
i=1

1−δ
1−δδE

H(Xi ,E ′\A|Y i−1
d Z i−1

A F i−1W ) ≤
n∑

i=1

1−δ
1−δE

H(Xi ,E ′\A|Y i−1
d Z i−1

A F i−1W )+ δE (1−δ)

1−δE
H(Xi ,A|Y i−1

d Z i−1
A F i−1W ). (D.31)

We observe that 1−δ
1−δE

− 1−δ
1−δδE

≤ δE (1−δ)
1−δE

and thus we can merge the entropy terms corresponding

to A and E ′ \ A without violating the inequality (we use again the independence property of

parallel transmissions). We conclude that

nR −n(1−δ)(h − z)

1−δδE
−nED.2,a − nε

1−δE
≤

n∑
i=1

δE (1−δ)

1−δE
H(Xi ,s |Y i−1

d Z i−1
A F i−1W ). (D.32)

What remains is to show (D.29) and (D.30). Consider first (D.29). We use again Fano’s inequal-

ity:

nR −nRε−h2(ε) ≤ I (Y n
d Z n

A F n ;W ) (D.33)

=
n∑

i=1
(1−δ)I (Xi ,E ′\A ;W |Y i−1

d Z i−1
A F i−1)+ (1−δδE )I (Xi ,A ;W |Y i−1

d Z i−1
A F i−1) (D.34)

≤
n∑

i=1
(1−δ)(h − z)− (1−δ)H(Xi ,E ′\A|Y i−1

d Z i−1
A F i−1W )+ (1−δδE )I (Xi ,A ;W |Y i−1

d Z i−1
A F i−1),

(D.35)

where we used the independence property of the channel erasures as well as the independence

of packets sent in the same time slot over different channels.

We derive (D.30) as follows.

0 ≤ H(Y n
d |Z n

A F nW ) = H(Y n−1
d |Z n

A F nW )+H(Yn,d |Y n−1
d Z n

A F nW ) (D.36)

= H(Y n−1
d |Z n−1

A F n−1W )− I (Zn,AFn ;Y n−1
d |Z n−1

A F n−1W )+H(Yn,d |Y n
d Z n

A F nW ) (D.37)

= H(Y n−1
d |Z n−1

A F n−1W )− I (Zn,AFn ;Y n−1
d |Z n−1

A F n−1W )

+H(Yn,E ′\A|Y n
d Z n

A F nW )+H(Yn,A|Y n
d Z n

A F nW ) (D.38)

= H(Y n−1
d |Z n−1

A F n−1W )− (1−δE )I (Xn,A ;Y n−1
d |Z n−1

A F n−1W )

+ (1−δ)H(Xn,E ′\A|Y n−1
d Z n−1

A F n−1W )+δE (1−δ)H(Xn,A|Y n−1
d Z n−1

A F n−1W ) (D.39)

=
n∑

i=1
−(1−δE )I (Xi ,A ;Y i−1

d |Z i−1
A F i−1W )

+ (1−δ)H(Xi ,E ′\A|Y i−1
d Z i−1

A F i−1W )+δE (1−δ)H(Xi ,A|Y i−1
d Z i−1

A F i−1W ) (D.40)
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S D

U
...

...

...

h

t ≥ z ′t

`

Figure D.2: Transformed network G ′′ after merging all intermediate nodes and deleting some
edges

≤
n∑

i=1
−(1−δE )I (Xi ,A ;W |Y i−1

d Z i−1
A F i−1)+ (1−δ)H(Xi ,E ′\A|Y i−1

d Z i−1
A F i−1W )

+δE (1−δ)H(Xi ,A|Y i−1
d Z i−1

A F i−1W )+nε. (D.41)

In the last step we used that

n∑
i=1

I (Xi ,A ;Y i−1
d |Z i−1

A F i−1W ) ≥
n∑

i=1
I (Xi ,A ;W |Y i−1

d Z i−1
A F i−1)− I (Xi ,A ;W |Z i−1

A F i−1) (D.42)

and that from (5.4)

nε> I (Z n
A F n ;W ) =

n∑
i=1

I (Zi ,AFi ;W |Z i−1
A F i−1) =

n∑
i=1

(1−δE )I (Xi ,A ;W |Z i−1
A F i−1). (D.43)

D.4 Proof of Theorem 5.3

We proceed similarly as we did in the proof of Theorem 5.2. From a network G we construct

a new graph G ′′ such that the secure capacity over G ′′ cannot be smaller than over G . First,

we delete all nodes U for which (d ,u) ∈ E . Note that this step cannot decrease the secure

capacity of network, because if (d ,u) ∈ E , then there is no path between U and D , otherwise G

would have a cycle. After this step D has only incoming edges. Next, we merge all intermediate

nodes u ∉ {s,d} into one node. As a result, G ′′ is a network with three nodes: S, D and U which

represents all other nodes. By this we could only increase the achievable rates, hence the

upper bound we derive is valid for G . Note that G ′′ might be cyclic, there might be some edges

(u, s). We know that (d ,u) ∉ E ′′, since D does not have any outgoing edges. As a next step we

delete all edges (u, s) from E ′′. This step cannot reduce the secure capacity of the network,

because S knows exactly every packet that U has, hence it can produce any packet that U

might send on the (u, s) link. We derive our bound for z ′ = min{t , z}. In case z > t using z ′

instead of z restricts Eve, hence cannot decrease the secure capacity. Our resulting graph G ′′

looks as depicted in Figure D.2.

For the same reasons as seen in Theorem 5.2 we might assume that transmissions over different

channels in the same time slot are independent. We consider an eavesdropper who wiretaps
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on a known z ′ size subset of the U -D channels.

We have

hn ≥
n∑

i=1
H

(
Xi ,s

)≥ n∑
i=1

H
(

Xi ,s |Y i−1
(s,d)Y

i−1
u F i−1

)
(D.44)

=
n∑

i=1
H

(
Xi ,s |Y i−1

(s,d)Y
i−1

u F i−1W
)
+ I

(
Xi ,s ;W |Y i−1

(s,d)Y
i−1

u F i−1
)

(D.45)

≥
n∑

i=1
H

(
Xi ,(s,u)|Y i−1

(s,d)Y
i−1

u F i−1W
)
+ I

(
Xi ,s ;W |Y i−1

(s,d)Y
i−1

u F i−1
)

(D.46)

≥
n∑

i=1
H

(
Xi ,(s,u)|Y i−1

(s,d)Y
i−1

u Z i−1
A F i−1W

)
+ I

(
Xi ,s ;W |Y i−1

(s,d)Y
i−1

u F i−1
)

. (D.47)

We give bounds on the last two terms seen in (D.47).

Lemma D.3.

n∑
i=1

I
(

Xi ,s ;W |Y i−1
(s,d)Y

i−1
u F i−1

)
≥ nR

1−δ −nED.3, (D.48)

where ED.3 = Rε+h2(ε)
1−δ .

Lemma D.4.

n∑
i=1

(1−δ) H
(

Xi ,(s,u)|Y i−1
(s,d)Y

i−1
u Z i−1

A F i−1W
)
≥

n∑
i=1

(1−δδE ) H
(

Xi ,A|Y i−1
d Z i−1

A F i−1W
)

. (D.49)

Lemma D.5.

nR −n
(
h − z ′) (1−δ) ≤

n∑
i=1

δE (1−δ) (1−δδE )

1−δE
H

(
Xi ,A|Y i−1

d Z i−1
A F i−1W

)
+nED.5, (D.50)

where ED.5 = Rε+h2 (ε)+ ε(1−δδE )
1−δE

.

We give the proof of Lemmas D.3-D.4 in the following subsections. We omit the proof of

Lemma D.5, which follows the same line as the proof of Lemma D.2.

We apply the results of Lemmas D.3-D.5 in (D.47) and get the claim of the theorem after

rearranging terms.

D.4.1 Proof of Lemma D.3

We observe that Y n
A is a function of

(
Y n

u ,F n
)
, and hence

I
(
W ;Y n

d F n)≤ I
(
W ;Y n

(s,d)Y
n

u F n
)
=

n∑
i=1

(1−δ) I
(

Xi ,s ;W |Y i−1
(s,d)Y

i−1
u F i−1

)
(D.51)
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We then use Lemma D.1, from which we know that

nR −nh2 (ε)−nRε≤ I
(
Y n

d F n ;W
)

. (D.52)

From these two inequalities the claim of the lemma follows.

D.4.2 Proof of Lemma D.4

We introduce the notation P = (s,d)∪ (u,d) \ A, i.e., P denotes the set of not eavesdropped

incoming edges of D . We use the fact that Y n
A is a function of

(
Y n

u ,F n
)
. From this we have

H
(
Y n

u |Z n
A Y n

P F nW
)≥ H

(
Y n

A |Z n
A Y n

P F nW
)

. (D.53)

We expand these terms as follows:

H
(
Y n

u |Z n
A Y n

P F nW
)= H

(
Y n−1

u |Z n
A Y n

P F nW
)+H

(
Yn,u |Z n

A Y n
P Y i−1

u F nW
)

(D.54)

= H
(
Y n−1

u |Z n−1
A Y n−1

P F n−1W
)+H

(
Yn,u |Z n−1

A Y n−1
P Y i−1

u F n−1W
)

− I
(
Zn,A ;Y n−1

u |Z n−1
A Y n−1

P F n−1W
)− I

(
Yn,P ;Y n−1

u |Z n−1
A Y n−1

P F n−1W
)

(D.55)

(a)= H
(
Y n−1

u |Z n−1
A Y n−1

P F n−1W
)+H

(
Yn,u |Z n−1

A Y n−1
P Y i−1

u F n−1W
)

−H
(
Zn,A|Z n−1

A Y n−1
P F n−1W

)− I
(
Yn,P ;Y n−1

u |Z n−1
A Y n−1

P F n−1W
)

(D.56)

= H
(
Y n−1

u |Z n−1
A Y n−1

P F n−1W
)+ (1−δ) H

(
Xn,(s,u)|Z n−1

A Y n−1
P Y i−1

u F n−1W
)

− (1−δE ) H
(
Xn,A|Z n−1

A Y n−1
P F n−1W

)
− (1−δ) I

(
Xn,P ;Y n−1

u |Z n−1
A Y n−1

P F n−1W
)

(D.57)

(b)=
n∑

i=1
(1−δ) H

(
Xi ,(s,u)|Z i−1

A Y i−1
(s,d)Y

i−1
u F i−1W

)
− (1−δE ) H

(
Xi ,A|Z i−1

A Y i−1
P F i−1W

)
− (1−δ) I

(
Xi ,P ;Y i−1

u |Z i−1
A Y i−1

P F i−1W
)

. (D.58)

In (a) we used that Zn,A is a function of
(
Y n−1

u ,Fn
)

and Fn is independent of every other

variable. In (b) we used recursion and that Y i−1
(u,d) is a function of

(
Y i−1

u ,F i−1
)
. With a similar

derivation we get

H
(
Y n

A |Z n
A Y n

P F nW
)= n∑

i=1
δE (1−δ) H

(
Xi ,A|Z i−1

A Y i−1
d F i−1W

)
− (1−δE ) I

(
Xi ,A ;Y i−1

A |Z i−1
A Y i−1

P F i−1W
)

− (1−δ) I
(

Xi ,P ;Y i−1
A |Z i−1

A Y i−1
P F i−1W

)
(D.59)
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=
n∑

i=1
(1−δδE ) H

(
Xi ,A|Z i−1

A Y i−1
d F i−1W

)
− (1−δE ) H

(
Xi ,A|Z i−1

A Y i−1
P F i−1W

)
− (1−δ) I

(
Xi ,P ;Y i−1

A |Z i−1
A Y i−1

P F i−1W
)

. (D.60)

To get the statement of our lemma we combine (D.53), (D.58) and (D.60) as well as use the fact

that Y i−1
A is a function of

(
Y i−1

u ,F i−1
)

and thus

n∑
i=1

I
(

Xi ,P ;Y i−1
A |Z i−1

A Y i−1
P F i−1W

)
≤

n∑
i=1

I
(

Xi ,P ;Y i−1
u |Z i−1

A Y i−1
P F i−1W

)
. (D.61)
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