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Abstract
Epigenetic factors like histone modifications are known to play an important role in gene

regulation and cell differentiation. Recently, thanks to advances in technologies like ChIP-Seq

which is a high-throughput, high resolution, and low cost technology for studying histone

modifications and transcription factors, we have large amounts of data available. Therefore

computational techniques become important for studying and interpreting this data.

In this thesis, we have focused on primarily building computational methods to analyze and

study ChIP-Seq histone modification data. The work can be divided into two broad topics : (a)

to process ChIP-Seq data computationally and to identify regions of biological interest ; (b)

to use processed data for higher-level analysis to study problems in cell differentiation and

evolution of cell types, based on phylogenetic approaches.

In the first topic, this thesis makes a contribution by addressing two problems : (i) We propose

a two-stage statistical method, called ChIPnorm, to normalize ChIP-Seq data, and to find

differential regions in the genome, given two libraries of histone modifications of different

cell types. We show that our method removes most of the bias in the data and also provides a

normalization that enables direct comparison of values between the two cell types. We show

that our method outperforms the state of the art techniques in literature. (ii) We propose

probabilistic partitioning methods to discover significant patterns in ChIP-Seq data. Our

methods work on the principle of expectation-maximization, is simple and flexible, and takes

into account signal magnitude, shape, strand orientation, and shifts. It runs in linear time and

gives improved results on the state of the art techniques especially when used on sparse data.

In the second topic, we try to provide a link between the fields of epigenomics and evolution.

We introduce the concept of cell-type trees based on the principles of phylogenetic inference on

ChIP-Seq histone modification data. These cell-type trees are precisely defined and algorithmic

techniques are designed to infer these trees from the data. In the process, we develop new

data representation techniques and also a peak-finder to help us build good cell-type trees.

We obtain biologically meaningful results and show that cell-type trees have the potential to

study cell differentiation and the evolution of cell types across species.

Key words : epigenomics, epigenetics, histone modifications, ChIP-Seq, cell-type trees, evo-

lution, phylogeny, evolution of cell types, ChIPnorm, probabilistic partitioning, expectation

maximization, phylogenetic trees.
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Résumé
Les facteurs épigénétiques, tels que les modifications des histones, joueent un rôle important

dans la régulation des gènes et la différenciation cellulaire. Le développement récent de la

technologie ChIP-Seq, une méthode de laboratoire de haut débit, haute précision, et faible

coût, a mis à disposition des chercheurs de grandes quantité de données pour létude des

modifications de l’histone et des facteurs de transcription. Le développment de techniques de

calcul pour analyser ces données prend donc une place importante dans la recherche.

Dans cette thèse, nous présentons de telles techniques de calcul pour l’analyse des données

ChIP-Seq sur la modification des histones. Le travail couvre deux thèmes principaux : (a) les

méthodes requises pour traiter les données brutes de ChIP-Seq et d’y identifier les régions

d’intérêt dans les sciences de la vie ; et (b) des méthodes pour analyser ces régions à plus haut

niveau pour approfondir nos connaissances dans le domaine de la différenciation cellulaire et

l’évolution des types de cellules.

Sous le premier thème, cette thèse contribue des solutions à deux problèmes. La première est

une méthode statistique en deux étapes, ChIPnorm, pour normaliser les données de ChIP-Seq

et s’en servir pour déceler des régions différentielles dans le génome, étant données deux

bibliothèques de modifications des histones de différents types cellulaires. Notre méthode

supprime la plupart des biais dans les données et permet une comparaison directe des valeurs

entre les deux types cellulaires ; nous montrons qu’elle surpasse l’état de l’art dans ce domaine.

La deuxième est une méthode de partitionnement probabiliste pour découvrir des modèles

intèressants dans les données de ChIP-Seq. Notre méthode fonctionne sur le principe de

l’espérance-maximisation, est simple et flexible, et prend en compte l’amplitude and la forme

du signal, l’orientation des chaînes, et le déphasage. Il tourne en temps linéaire et surpasse

l’état de l’art, en particulier pour les données éparses.

Sous le second thème, nous étudions les liens entre l’épigenomique et l’évolution. Nous

introduisons le concept d’arbres cellulaires, construits selon les principes de l’inférence

phylogénétique sur la base de données de modification des histones. Nous donnons une

définition précise de ces arbres aussi bien que des algorithmes pour les construire à partir des

données ChIP-Seq. Ces algorithmes utilisent de nouvelles représentations de ces données et

un nouveau moteur de recherche pour les pics. Nous obtenons des résultats biologiquement

pertinents et démontrons que les arbres cellulaires offrent un outil valable dans l’étude de la

différenciation cellulaire et de l’évolution des types de cellules.
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1 Introduction

Epigenetics has been usually defined as the study of mitotically and/or meiotically heritable

changes in gene function that cannot be explained by changes in DNA sequence [103]. One

of the main aims of epigenetics is to elucidate how genetic information encoded in the

DNA sequence and non-genetic aspects like how the DNA is packaged in the nucleus jointly

control gene expression [14]. Epigenetic factors are known to play an important role in cell

differentiation and in cancer. Some of the common well-known epigenetic factors are DNA

methylation and histone modifications. Other epigenetic factors may include even small RNA

molecules which are shown to be the reason for the progeny of the unicellular organism

Paramecium tetraurelia to always retain the parental mating type (called even (E) and odd

(O)), although their offsprings all start development with identical, mixed genomes [111].

Histones are proteins that package the DNA into nucleosomes [72]. These histones are sub-

jected to various types of modifications like methylation, citrullination, acetylation, phospho-

rylation, SUMOylation, ubiquitination, and ADP-ribosylation, which alter their interaction

with the DNA and nuclear proteins, thereby influencing gene transcription and genomic

function. These modifications form an important category of epigenetic changes, changes

that help us understand why various types of cells exhibit very different behaviors in spite of

their shared genome. Thus the study of histone modifications is crucial to the understanding

of genomic function.

ChIP-Seq (immunoprecipitation combined with high-throughput DNA sequencing), also

known as ChIP-sequencing, is a recent technology which has become the main approach

for capturing histone modifications and transcription factors bound to the DNA, due to its

high throughput, high resolution, and low cost [7, 59, 80]. A ChIP-Seq experiment produces a

large number of sequence tags that are mapped to the genome thereby resulting in a genome-

wide profile of tag counts. Since there is increasing amount of data on histone modifications

available due to this technology, computational approaches are very important to study such

high-throughput data. Therefore given the importance of histone modifications as an impor-

tant epigenetic mark and given the reasonably large amount of data available, we decided to

study histone modification ChIP-Seq data and its effect on cell-differentiation/evolution in
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more detail.

Quite a few computational problems relating to histone modifications or ChIP-Seq data have

been addressed in literature. One of the important problems is the issue of peak-calling or

peak-finding. Basically a peak is a region of the genome where there are a higher number of

ChIP-Seq fragments compared to the control data, or some fixed threshold, or compared to

what is expected by chance. The presence of a peak is often seen as the presence of a histone

mark and therefore peaks become an important preprocessing step for further biological

study. Several peak finders have been described in literature, like MACS [131], FindPeaks [39],

PeakSeq [102] etc. A detailed evaluation of peak-finders can be found in [124].

One another important problem is to identify differential regions of the genome given two

histone modification ChIP-Seq data libraries (possibly belonging to two different cell types).

This problem is important to help us understand the role of histone marks in differentiating

one cell type from an other, especially given that all cells in one individual organism have

almost the same genome. The problem turns out to be surprisingly difficult, even in simple

pairwise comparisons, because of the varying levels of significant noise in different ChIP-Seq

data. Some methods like ChIPDiff [125], RSEG [115], etc. try to address this problem.

Another important problem is to discover significant recurring patterns in ChIP-Seq data.

Chromatin-signatures are a term used to designate recurrent patterns found in ChIP-Seq-

based histone modification maps and other types of chromatin profiling data [56]. It is usually

represented as a vector of average tag counts in bins of certain sizes in a collection of larger

genomic regions. Identifying these chromatin-signatures have been addressed in literature.

Some of the simplest methods for identification of these signatures is to use hierarchical

clustering [109] and K-means [79] algorithms. For example seqMINER [129] is a method which

organizes data into groups of loci having similar features and it contains an in-built K-means

function. More specialized methods like ChromaSig [55], ArchAlign [68], CATCHprofiles [93]

and CAGT [67] can be used when recurring patterns are in different orientations or misaligned.

There are many other problems related to histone modifications or ChIP-Seq technology which

have been addressed by computational methods in literature. One such problem is make sure

ChIP-Seq experiments are reproducible. Therefore it has been recommended to perform at

least two biological replicates of each ChIP-Seq experiment and examine the reproducibility

of both the reads and identified peaks [69, 102]. To measure the reproducibility at the level of

peak calling, an irreproducible discovery rate (IDR) analysis [73] can be applied to the two sets

of peaks identified from a pair of replicates. A detailed view of many such problems occurring

in ChIP-Seq data has been described in [5]. Also, recently some higher-order analysis like

reconstructing gene regulatory networks from ChIP-Seq and other high throughput data has

been addressed [126, 15, 50].

This thesis addresses three problems related to histone modification ChIP-Seq data, two of

which we have seen above. These three problems can be categorized into two main topics:

(1) Data processing and pattern discovery: to find various methods to normalize or remove
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noise in the histone modification ChIP-Seq data and to use this to identify interesting regions

in the genome which are of biological interest.

(2) A higher-order analysis linking the fields of cell-differentiation and evolution: to study

the role of histone modifications in cell-differentiation and evolution of cell types by using the

processed data.

In the first topic we address two specific problems:

1) Finding differential regions: As seen above, the problem is to identify differential regions of

the genome given two histone modification ChIP-Seq data libraries. We noticed that the results

given by many of the previous approaches were affected by the various levels of signal-to-noise

ratio between the two data libraries. To address this problem, we propose a two stage statistical

method, called ChIPnorm to normalize the two libraries and find differential regions between

them. We compared our approach with the previously reported state of the art techniques and

found that the ChIPnorm technique outperforms them. We have described this work in detail

in chapter 3.

2) Discovering significant patterns: The next problem we address is to find significant recurrent

patterns in histone modification data or transcription factor ChIP-Seq data. Identifying such

significant recurrent patterns is an important problem for understanding biological mecha-

nisms. To address this problem, we propose a probabilistic partitioning approach, based on

an expectation-maximization framework. Our methods take into account signal magnitude,

shape, strand orientation, and shifts. We compare our methods with some current methods

and demonstrate significant improvements, especially when using sparse data. More details

of this work are described in chapter 4.

In the second topic, we attempt to provide a link between the fields of phylogeny and epigenet-

ics. We first discuss the similarities (and dissimilarities) between the cell-differentiation and

evolution; and discuss why phylogenetic trees can be used to study cell-differentiation process,

when using histone modification data. To achieve this, we introduce the novel concept of

cell-type trees and precisely define such trees in the context of histone modifications. We

then provide a procedure for building such trees. We show that these cell-type trees give us

information about how diverse types of cell types are related. In this process, we propose

new data representation techniques, peak-finding techniques, and distance measures for

ChIP-Seq data and use these together with standard phylogenetic inference methods to build

biologically meaningful cell-type trees. We demonstrate our approach on various kinds of

histone modifications for various cell types, also using the datasets to explore various issues

surrounding replicate data, variability between cells of the same type, and robustness. We

use the results to get some interesting biological findings. We discuss that cell-type trees may

be useful in studying the cell-differentiation process. We also discuss how cell-type trees can

be used to study the evolution of cell types and discuss that cell differentiation tree often

recapitulates the phylogeny of cell types. The details of this work are given in chapter 5.

In chapter 6, we outline a few details of our ongoing/future work on cell-type trees. Three
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problems are addressed: (1) the inference of ancestral nodes; (2) using of normalized raw

data instead of peak data for data representation; (3) study of evolution of cell types using

mouse and human data. We outline some basic ideas and the challenges faced in each of these

problems.

The background material required for the future chapters are given in chapter 2. We have

given more details about the previous work present in literature in the introduction sections

of chapters 3-5, for their respective topics. Finally this thesis ends with a conclusion chapter

(chapter 7).

The work shown in this thesis has been mainly done by the author by collaborating with many

others. The collaborator contributions for each chapter are shown below. Keywords used for

collaborator names: NUN - Nishanth Ulhas Nair, BMEM - Bernard M.E. Moret, PB - Philipp

Bucher, ADS - Avinash Das Sahu, YU - Yu Lin, SK -Sunil Kumar, AM - Ana Manasovska, PG -

Paulina Grnarova, JA: Jelena Antic, JAB - Judy A Brusslan, MP - Matteo Pellegrini.

Chapter 3: For most of this chapter, the experiments and methods were conceived and de-

signed by NUN ADS PB BMEM; Implemented the methods and performed the experiments:

NUN ADS; Analyzed the data: NUN ADS PB BMEM; defined the problem statement: PB. The

subsection “Using ChIPnorm in analyzing histone modification data from Arabidopsis” was

carried out by NUN in close collaboration with MP, JAB and their groups. AM helped in making

the ChIPnorm code more user friendly.

Chapter 4: Methods were implemented by NUN PB. Defined the problem statement and main

idea of the approach: PB. Experiments were carried out by NUN, SK, PB. Analyzed the data:

NUN SK BMEM PB.

Chapter 5: Problem was defined by: NUN PB BMEM. Designed the methods and algorithms:

NUN YL BMEM. The experimental design was done by: NUN YL ADS PB BMEM. Implemented

the methods: NUN and JA with help from PG. Carried out the experiments: NUN AM JA PG.

Analyzed the data: NUN YL PB BMEM.

Chapter 6: All problems were defined by NUN PB BMEM. Experiments and methods were

designed for all problems by NUN PB BMEM. YL helped in designing experiment for the lifting

problem. Experiments for lifting was implemented, carried out, and analyzed by NUN. For

experiments using normalized raw data, experiments were implemented, carried out, and

analyzed by NUN JA. Experiments between mouse and human cell types were implemented,

carried out, and analyzed by NUN PG.
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2 Background

This thesis addresses the twin topics of data processing and finding interesting regions in

ChIP-Seq histone modification data (chapters 3 and 4), and doing a higher-level analysis by

building cell-type trees to study the role of histone marks in cell-differentiation and evolution

of cell types (chapters 5 and 6). In this chapter, we provide some introductory material required

for the later chapters.

2.1 Biological concepts

We first look into some of the important biological concepts required for this thesis.

2.1.1 Epigenetics and Histone Modifications

As seen before, epigenetics has been usually defined as the study of mitotically and/or mei-

otically heritable changes in gene function that cannot be explained by changes in DNA

sequence [103]. Some of the most common epigenetic factors are histone modifications and

DNA methylation.

Histones are proteins that package the DNA into nucleosomes [72, 38]. There are five major

families of histones exist: H1/H5, H2A, H2B, H3, H4 [91, 12]. The core histone are H2A, H2B,

H3, and H4, while the linker histones are H1 and H5. Each of the two core histones assemble to

form one octomeric nucleosome core. That is, this nucleosome core is formed of two H2A-H2B

dimers and a H3-H4 tetramer, forming two nearly symmetrical halves by tertiary structure

[77]. 147 base pairs (bp) of DNA wrap around this core particle [77]. There is approximately a

50 bp of DNA, called linker DNA, separating each pair of nucleosomes.

These histone proteins are subjected to post translational modification by enzymes primarily

on their N-terminal tails. Some of the various types of chemical modifications are methy-

lation, citrullination, acetylation, phosphorylation, SUMOylation, ubiquitination, and ADP-

ribosylation. These modifications influence how tightly the DNA is wrapped around in the
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nucleus and they influence which genes are transcribed in which way in different cell types,

thus allowing various types of cells to exhibit very different behaviors in spite of their shared

genome. Some of the well known histone modifications are H3K4me3, H3K27me3, H3K4me1,

H3K9me3, H3K27ac. H3K4me3 is usually associated with activation of genes while H3K27me3

is usually associated with repression of genes [85]. Some examples of other activators are

H3K27ac [23], H3K4me1 [8] while for repressors it is H3K9me3 [7].

2.1.2 Phylogenetic trees

Figure 2.1 – Example of a phylogenetic tree (source: http://sites.duke.edu/dukeresearch/2011/11/14/
being-the-shy-kid-may-have-its-benefits/ and adapted from http://phylogenous.files.wordpress.com/2011/
01/treea.png).

Phylogenetics is the study of evolutionary relationships among groups of organisms and

phylogenetic trees are used to represent such relationships. There are three commonly used

tree building frameworks to build phylogenetic trees using DNA sequence data: distance

based, maximum parsimony, and maximum likelihood approaches [40]. Phylogenetic trees

build on DNA or protein sequences are usually represented as binary trees, with leaf nodes

representing the modern species and the ancestral nodes representing some ancestral species

from which the modern species were derived. The branches (edges) of the tree represent

number of evolutionary changes or evolutionary time. An example of a phylogenetic tree is

shown in Figure 2.1.

2.1.3 Developmental biology and Evolution

In developmental biology, the process by which a less specialized cell becomes a more spe-

cialized cell type is called cell differentiation [22]. During the development of a multicellular

organism, differentiation occurs numerous times as the organism changes from a simple
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zygote to a complex system of tissues and cell types. Cell differentiation almost never involves

a change in the DNA sequence itself (with a few exceptions). Therefore since all cells in one

individual organism have the same genome, epigenetic factors and transcriptional factors

play an important role in cell differentiation [71, 75, 76]. For mammals, early development

is characterized by the zygote becoming a ball of cells called blastocyst which later becomes

embryonic stem cells. Embryonic stem cells are basically undifferentiated biological cells that

can differentiate into specialized cells and can divide through mitosis to produce more stem

cells [22].

Figure 2.2 – Example of cell-differentiation among blood cells (source: Wikipedia). The arrows indicate a tree
structure.

Cells of a multicellular organism are classified into cell types based on their morphological,

physiological or molecular characteristics. Since cell differentiation transforms less specialized

cell types into more specialized ones and since most specialized cells of one organ cannot

be converted into specialized cells of some other organ, the paths of differentiation together

form a tree, in many ways similar to the phylogenetic trees used to represent evolutionary

histories. An example of tree structure among differentiation of blood cells is shown in Figure

2.2. In contrast to cell differentiation, evolution deals with changes taking place in the genome

across species.

We outline some of the similarities and differences between the fields of cell-differentiation

and evolution. Some similarities are as follows: (1) In cell differentiation, more specialized cells

are evolved from less specialized cells, while in evolution, present-day species have evolved

from some ancestral species — so a tree representation is possible in both cases. (2) The

observed changes in the epigenetic state are inheritable, again much as mutations in the

genome are (although, of course, through very different mechanisms and at very different

scales). As histone modifications are replicated in the cell-differentiation process we can
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assume not all histone modification marks are perfectly copied from parent to child, due

to the stochastic nature of chemical reactions. Therefore there could be stochastic changes

in epigenetic features. (Some plausible mechanisms of inheritance of histone modifications

marks are given in [81, 132, 98].) (3) Epigenetic traits are subject to stochastic changes, just

like genetic mutations. Some of the differences are: (1) The time scales may be very different,

cell differentiation happens in a few days or weeks, while evolutionary time scales can be large

(millions of years in the case of evolution of mammals). (2) While phylogenetic analysis places

all the modern data at the leaves of a tree, with regard to cell differentiation some of the less

specialized cell types may continue to exist in the organism and hence they could be ancestral

nodes and not leaf nodes. (3) There are well defined models of evolution of DNA sequences

for phylogeny while the models of differentiation for mutations in epigenetic states across cell

types are not so well defined.

In cell differentiation, the program of mutational events is itself the result of evolution, so as

observed by Arendt [3], the cell differentiation tree often recapitulates the phylogeny of cell

types. Thus keeping the similarities and differences between the fields of evolution and cell

differentiation in mind, we used phylogenetic methods for the analysis of cell types using

histone modification data to study cell differentiation. We call the trees we build as cell-type

trees (details given in chapter 5).

We also discuss the role of evolution of cell types and how cell-type trees can be used to study

this phenomenon in chapter 5. The number of cell types in various organisms do vary. We

discuss in chapter 5, how cell-type trees can be used to study the evolution of cell types when

comparing the current species to some ancestral species.

2.2 Experimental technology and data

2.2.1 ChIP-Seq technology

The current technology to capture histone modifications is chromatin immunoprecipitation

(ChIP), which uses an antibody to isolate DNA fragments in contact with histones that carry a

specific modification or transcription factors. ChIP-chip, ChIP-PET, and ChIP-SAGE are some

of the ChIP-based technologies used for the study of histone modifications or transcription fac-

tor binding in genomic regions [57, 63, 123]. Thanks to advances in sequencing technologies,

ChIP-Seq has become the main approach for capturing histone modifications and transcrip-

tion factors, due to its high throughput, high resolution, and low cost [7, 59, 80, 66]. In the

ChIP-Seq process, the sequence of one end of the DNA fragment is read to provide a tag which

is then mapped to an assembled genome to determine the location of the DNA fragment.

Various steps of the ChIP-Seq process are shown in Figure 2.3.
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2.2. Experimental technology and data

Figure 2.3 – The various steps in the ChIP-Seq procedure are shown (source Wikipedia).

2.2.2 Common data formats

The ChIP-Seq process gives us a collection of fragments whose ends are sequenced (tags)

and mapped back into the genome, the data we get is usually represented as a collection of
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fragments with chromosome no., starting and ending position in the chromosome (base pair

resolution). The common data formats are BED or BAM.

The first three required BED fields are:

chrom - The name of the chromosome (e.g. chr1, chrY).

chromStart - The starting position of the feature in the chromosome.

chromEnd - The ending position of the feature in the chromosome.

There are 9 additional optional BED fields. The sixth position usually signifies the positive (+)

or negative strand (-).

BAM is the compressed binary version of the Sequence Alignment/Map (SAM) format, a

compact and index-able representation of nucleotide sequence alignments. More details of

the formats are given in the UCSC Genome Browser http://genome.ucsc.edu/FAQ/FAQformat.

html.

2.2.3 Data availability

The most common sources of data for histone modifications are ENCODE project [82],

Roadmap Epigenomics project, Gene Expression Omnibus (GEO) repository.

2.2.4 Data visualization

The UCSC genome browser is often used to visualize the data [61].

2.3 Computational Methods

2.3.1 Data representation

One of the common ways to represent the ChIP-Seq data, is by dividing the genome into

non-overlapping windows (called bins) and collecting, for each bin, a count of the mapped

sequence tags that fall within the bin (called bincount). Thus we get a “library", which is simply

a list of non-negative integers, each successive integer associated with the next bin. Since

the median length of each histone modification ChIP-Seq fragment is about 200 bp [7, 99],

one can approximate the center of each fragment by shifting the tag end position by 100 bp

(or so) downstream or upstream, according to its orientation on the chromosome, as done

in [125]. (We note that for paired-end data the fragment length distribution is known and

for single-end data the fragment length distribution can be inferred from an autocorrelation

analysis. Knowledge of this distribution may be important for proper normalization and data

processing.) We also use the word “library” for other forms of data representation of ChIP-Seq

data too.

Now these ChIP-Seq libraries are used for statistical analysis. A hand-drawn example of a
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Peak
Peak

Genome

Figure 2.4 – Profile of a ChIP-Seq data library. Signal above some threshold are classified as peaks.

ChIP-Seq data library is shown Figure 2.4. The regions of the genome where the signal falls

above some threshold are classified as peak regions.

differential regions

L1

L2

Figure 2.5 – Profile of two ChIP-Seq data libraries L1 and L2. Differential regions in the genome are marked.

Another hand-drawn example showing two ChIP-Seq libraries L1 and L2 is shown in Figure 2.5.

Regions of the genome where L1 is significantly enriched when compared to L2 or vice-versa

are called differential regions. The problem of detecting such differential regions is what we

address in chapter 3.

A real example of a ChIP-Seq library as visualized in the UCSC Genome Browser is shown in

Figure 3.1.
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2.3.2 Statistical measures

Some of the statistical measures used in this thesis are given below.

Fold change threshold

Fold change thresholds have been used in literature to determine which regions are enriched

when comparing ChIP-Seq data from two different cell types. In [125], a fold-change threshold

value of 3 was used. We used a fold change threshold for our work in chapter 3.

False discovery rate

False discovery rate (FDR) [9] is a statistical measure which is used in multiple hypothesis

testing to correct for multiple comparisons. For the ChIPnorm method we binned the ChIP-

Seq data into various bins. FDR estimation is done to find which bins are significantly enriched

or not. FDR is estimated as F DR(t ) =
∑

≥t Enull (t )∑
≥t Eobs (t ) [94], where Eobs(t ) is the number of observed

bins which have bincount values ≥ t and Enull (t) the number of expected bins which have

bincount values ≥ t . The FDR threshold which is often used in literature is 0.05. More details

are given in [94].

p-value

In statistical significance testing, p-value is the probability of obtaining a test statistic result at

least as extreme as the one that was actually observed, assuming that the null hypothesis is true

[48, 49]. The null hypothesis is rejected if the p-value turns out to be less than a predetermined

significance level, often 0.05 [117, 25] or 0.01. p-values are often used to show the significance

of ChIP-Seq peaks. The smaller the p-value (or greater the negative log p-value), the more

significant the peak is. We use p-values when using the peak data in chapter 5. In the multiple

testing problem it may be better to use a tighter p-value threshold so that we do not get a large

number of false positives by chance alone. Therefore it is better to adjust the p-values using

an optimized FDR approach. the adjusted p-value is called a q-value in literature. More details

of this can be found in [118, 119].

IDR

Reproducibility is important for high throughput experiments to be considered reliable. Irre-

producible discovery rate (IDR) framework is a unified approach to measure the reproducibility

of findings identified from replicate experiments. Unlike the usual scalar measures of repro-

ducibility, the IDR approach creates a curve and quantitatively assesses when the findings

are no longer consistent across replicates. The IDR score can be computed at each set of

paired replicate ranks and permits the principled setting of thresholds both for assessing re-

producibility and combining replicates [73]. The paper [73] reproducibility is described as the
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extent to which the ranks of the signals are no longer consistent across replicates in decreasing

significance. The authors of that paper propose a copula-based graphical tool to visualize the

loss of consistency and localize the possible breakdown of consistency empirically. After that

reproducibility is quantified by classifying signals into a reproducible and an irreproducible

group, using a copula mixture model. Their model then assigns each signal a reproducibility

index (which estimates its probability to be reproducible) by jointly modeling the significance

of scores on individual replicates and their consistency between replicates. Then based on

this index, they define the irreproducible discovery rate (IDR) and a selection procedure, in a

fashion analogous to their counterparts in multiple testing, to rank and select signals [73]. IDR

is intended to be analogous to FDR [73]. We use some IDR analysis for our work in chapters 4

and 5.

2.3.3 Normalization techniques

Data normalization techniques are very important for us to compare data arising from two

different experiments. There are many normalization techniques present in literature, the

simplest of those being mean normalization, standard score normalization.

Quantile normalization is one such normalization technique used in statistics, for making two

distributions identical in statistical properties. Quantile normalization has often been used in

microarray data analysis [1, 16]. One way to do quantile normalization on a test distribution

to a reference distribution of the same length is to sort the test distribution and sort the

reference distribution; then the highest entry in the test distribution takes the value of the

highest entry in the reference distribution, the next highest entry in the reference distribution,

and so on, until the test distribution is a perturbation of the reference distribution. If we

wish to do quantile normalization on two or more distributions to each other, without a

reference distribution, sort as before, then set to the average (usually, arithmetical mean) of

the distributions. Now the highest value in all cases becomes the mean of the highest values,

the second highest value becomes the mean of the second highest values, and so on. We have

adapted the quantile normalization method and used it on ChIP-Seq data (chapter 3).

2.3.4 Expectation-maximization algorithm

The expectation-maximization (EM) algorithm [28] is an iterative method for finding maxi-

mum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models,

where the model depends on unobserved latent variables or missing data. The EM algorithm

alternates over two steps: guessing a probability distribution over completions of missing data

given the current model (known as the E-step) and then re-estimating the model parameters

using these completions (known as the M-step). The name ‘E-step’ comes because one does

not usually need to form the probability distribution over completions explicitly, but rather

need only to compute ‘expected’ sufficient statistics over these completions. Also the name ‘M-

step’ comes because model re-estimation can be thought of as ’maximization’ of the expected
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log-likelihood of the data [31].

EM algorithms are widely used in many areas of computational biology [31], like gene expres-

sion clustering [30], motif finding [70], haplotype inference problem [37], learning profiles of

protein domains [64] and RNA families [34], discovery of transcriptional modules [108], tests

of linkage disequilibrium [112], genome segmentation [54], protein identification [92] and

medical imaging [27], etc. We have used an EM framework for our probabilistic partitioning

approach given in chapter 4.

2.3.5 Phylogenetic tree building methods

Three of the most commonly used phylogenetic tree building framework are: using distance

based, maximum parsimony, and maximum likelihood approaches [40]. Some details of each

approach are outlined below.

Distance based methods

Distance based methods or distance matrix methods were introduced in [35] and [43]. They

were influenced by the clustering algorithms of Sokal and Sneath [113]. The general idea of

distance based measures is to calculate a measure of distance between each pair of species,

and then find a tree that predicts the observed set of distances as closely as possible [40]. A

multiple sequence alignment (MSA) of the DNA or protein sequences are given as input to the

distance based algorithms.

One of the most commonly used distance based method is the neighbor-joining algorithm

[104]. It takes the distance matrix, specifying the distance between each pair of taxa, as an

input. The algorithm starts with completely unresolved tree (star shaped) and iteratively

follows a series of steps till the tree is resolved and all branch lengths are known. The simple

neighbor-joining method produces unrooted trees. (A rooted phylogenetic tree is a directed

tree with a unique node corresponding to the the most recent common ancestor of all the

entities at the leaves of the tree. Unrooted tree is tree without a root.) It does not assume a

constant rate of evolution (i.e. a molecular clock) across lineages.

Unlike the neighbor-joining method, its relative called the UPGMA (Unweighted Pair Group

Method with Arithmetic Mean) which is simple agglomerative (bottom-up) hierarchical clus-

tering method produces rooted trees and requires a constant-rate assumption - that is, it

assumes an ultrametric tree in which the distances from the root to every branch tip are

equal [114, 40]. Since the UPGMA assumes the molecular clock hypothesis (constant rate of

evolution), it is not a well-regarded method for inferring relationships unless this assumption

has been tested and justified for the data set being used. The use of neighbor-joining method

is thus seen as an advantage as it does not make the molecular clock assumption. The other

important feature of neighbor-joining and most other distance based methods is that they

are polynomial-time algorithms and are very fast. Neighbor-joining tree also has the property
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that if the input distance matrix is additive, then the output tree will be a unique correct tree.

That is, the distance between any two leaves of the tree is given by the sum of the edges of the

path connecting them and it will be same as the corresponding number in the given additive

matrix. Also if the distance matrix is “nearly additive”, that is if each entry in the distance

matrix differs from the true distance by less than half of the shortest branch length in the

tree, then the correctness of the output tree topology given by neighbor-joining method is

guaranteed [4]. Although the distance matrix rarely satisfies this condition, it has been seen

that neighbor-joining quite often constructs the correct tree topology anyway [84]. We have

used neighbor-joining approaches in building cell-type trees in chapters 5 and 6.

Maximum parsimony based methods

Maximum parsimony methods were among the first methods used for inferring phylogenies

and their general idea was first described in [35] which declared that the evolutionary tree is

to be preferred that involves “the minimum net amount of evolution”. Maximum parsimony

predicts the evolutionary tree or trees that minimize the number of steps required to generate

the observed variation in the sequences from common ancestral sequences [86]. Therefore this

method is also sometimes called minimum evolution method. Maximum parsimony methods

are more time consuming and finding the most parsimonious tree is an NP-Hard problem [26].

However given a fixed tree, the Fitch’s algorithm (a dynamic programming approach) can be

used to compute the parsimony score and the states of the internal nodes in polynomial time

(small parsimony problem) [42]. In some datasets, maximum parsimony methods are found

to be better than distance based approaches. The software TNT is a popular parsimony based

method to find a phylogenetic tree [47]. We have also used maximum parsimony approaches

in building cell-type trees in chapters 5 and 6.

Maximum likelihood based methods

The maximum likelihood method uses underlying probabilistic model on a set of observed

sequences and outputs a tree which maximizes the likelihood of the data [121, 40]. The

likelihood of the data is basically the conditional probability of producing the data given the

model parameters. Usually a substitution model is the probabilistic model used. Maximum

likelihood uses a probability of base substitution per evolutionary unit. Maximum likelihood

based methods are found to computationally time consuming but usually more accurate than

distance based or maximum parsimony based methods [45]. RAxML is a popular method to

find phylogenetic tree using a maximum likelihood framework [116].

2.3.6 Minimum spanning tree

Spanning tree of a given connected undirected graph is an acyclic subgraph which connects all

the vertices together. Typically there are multiple spanning trees in a single graph. There could
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be weights assigned to each edge. The sum of the weights of all the edges in that spanning

tree gives the weight of the spanning tree. A minimum spanning tree (MST) is a spanning tree

with weight less than or equal to the weight of every other spanning tree. Two very common

algorithms to find a MST are Prim’s algorithm [97] and Kruskal’s algorithm [65], both of which

are greedy algorithms. We have used MST method in chapter 6.
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3 ChIPnorm: a statistical method for
normalizing and identifying differen-
tial regions in histone modification
ChIP-Seq libraries

3.1 Introduction

As we have seen in the earlier chapters, histones are proteins that package the DNA into

nucleosomes [72]. These histones are subjected to various types of modifications which alter

their interaction with the DNA and nuclear proteins, thereby influencing transcription and

genomic function. These modifications along with other epigenetic marks help us understand

why various types of cells exhibit very different behaviors in spite of their shared genome.

Thus the study of histone modifications, and more particularly of the differential enrichment

of these modifications in different cell types, is a crucial tool in the understanding of genomic

function. Because of the advances in sequencing technologies, ChIP-Seq has become the main

approach for capturing histone modifications, due to its high throughput, high resolution, and

low cost [7, 59, 80]. In the ChIP-Seq process, there is first the chromatin immunoprecipitation

(ChIP) step, which uses an antibody to isolate DNA fragments in contact with histones that

carry a specific modification or transcription factors. Then the sequence of one end of the

DNA fragment is read to provide a tag which is then mapped to an assembled genome to

determine the location of the DNA fragment.

Genome-wide chromatin maps (using ChIP-Seq technology) for three mouse cell types—

embryonic stem (ES) cells, neural progenitor (NP) cells, and embryonic fibroblasts (EF) —

have been published [85]. The authors of the paper compared the occurrence of histone-

modification sites in promoter regions of the three cell types in a qualitative manner. Sub-

sequently, the first quantitative comparison of two ChIP-Seq libraries using computational

techniques appeared [125]; there the authors addressed the problem of finding differential

regions given two histone-modification libraries for two different cell types. Their method,
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ChIPDiff, is based on hidden Markov models. Recently, Taslim et al. 2009 [122] proposed a

two-step nonlinear normalization method based on locally weighted regression (LOESS) [20]

to compare ChIP-Seq data across multiple samples; they modeled the difference using an

exponential-normalK mixture model, then used this fitted model to identify genes associated

with differential binding sites. This method first normalizes the data using a locally weighted

polynomial least square regression to estimate a LOESS smoother of the mean and variance of

the observed data. After normalization they fit a finite mixture model to the normalized data

and perform model-based classification to identify genes associated with enrichment regions.

The assumption used in the mixture model is that the data comes from three (non-differential,

positive- and negative-differential) groups. The non-differential regions are assumed to come

from a mixture of K -component normal distributions, where K is unknown and needs to be

estimated from the data. The assumption used is that the positive- and negative-differential re-

gions follow exponential and the mirror of exponential distributions, respectively [122]. Using

the fitted model they identify genes associated with differential binding sites based on local

false discovery rate. However we would like to identify differential regions not just on genes but

throughout the genome. Another recent method is RSEG [115]. RSEG identifies epigenomic

domains from ChIP-Seq data for histone modifications and is based on hidden Markov model

(HMM) framework including the Baum-Welch training and posterior decoding. The method is

also able to incorporate a control sample and find genomic regions with differential histone

modifications between two samples. From a mathematical viewpoint the problem of finding

genomic regions with differential histone modifications between two tissues is not fundamen-

tally different from that of peak finding in ChIP-Seq data using an input control to correct

for technical biases. Many such peak finders have been proposed [131]. Some of the other

methods present in literature for differential analysis for ChIP-Seq data are DESeq [2], DBChip

[74]. The DESeq method assumes the number of reads in a sample that are assigned to a gene

can be modeled by a negative binomial distribution, and then the model is fitted to data. This

method again works only for finding differential genes and not for all regions in the genome.

DBChip is mainly meant for transcription factor ChIP-Seq data. Even after the work done by

us in this chapter, some new literature regarding differential analysis has come up in literature.

One such method is called MMDiff [107] which detects differential regions taking into account

any shape changes of the signals. MMDiff is a multivariate non-parametric approach to testing

significant differences in profile patterns between peaks in different conditions and it exploits

higher order features in the peak shapes.

A significant impediment to the analysis of ChIP-Seq data is the high level of noise. Noise or

systematic distortion can enter at various stages of the procedure: variations in the number of

cells used in the experiment, variation in the amount of antibody that attaches to the DNA

fragments, tandem repeats, uneven rates of success in sequencing different fragments, etc. The

type of histone modification and the cell types can also affect the level of noise. For example, we

show in this chapter that histone modification H3K27me3 (K27) in ES cells has less background

noise and a better signal-to-noise (S/N) ratio than the same modification in NP cells. In

addition, the signal tends to be found mostly in gene-rich regions of the genome. Therefore

18



3.2. Methods

computational methods may produce many false positives. In the case of modification K27 for

ES and NP cells, for instance, false positives are likely in gene-poor regions for NP cells and in

gene-rich regions for ES cells. Such bias problems are present in microarray data and many

authors have addressed this issue [33]. Similar studies are needed in ChIP-Seq data, as the

data characteristics differ [19].

To address the problems of noise and bias in finding differential regions, we propose a two-

stage statistical method, called ChIPnorm [88], to remove the noise and the bias from two

ChIP-Seq libraries and to normalize the data so as to enable a direct comparison between

the two libraries to identify differential regions. Our normalization step is similar to quantile

normalization [16]; however we have simplified the method so that it can be readily extended

for normalization of more than two libraries. Our method is computationally efficient and

can be applied to very large datasets. We use it to analyze ChIP-Seq histone modification data

from different types of mouse and human cells, confirming previous findings and making

some new observations. We also point to the usefulness of our approach to study histone

modification data from Arabidopsis in the context of leaf senescence.

3.2 Methods

To motivate our work, we examine data for histone modification H3K27me3 (K27) in mouse

ES and NP cells [85]. Figure 3.1 displays a window of the data mapped onto the mouse genome

through the UCSC genome browser [61]. ES data has better S/N ratio as well as more peaks in

gene-rich regions than in gene-poor regions (as seen visually from Figure 3.1 and quantita-

tively from Figure 3.7). These characteristics introduce a bias that must be eliminated before

comparing ES data to NP data, as can be seen in the results of the ChIPDiff method [125] in the

same figure: most of the differentially NP enriched regions proposed by ChIPDiff fall within

gene-poor regions and are almost certainly false positives.

In the following, we use a notation similar to that of Xu et al. 2008 [125]. In particular, we

assume that the data has been processed by dividing the genome into bins and collecting, for

each bin, a count of the mapped sequence tags that fall within the bin. The result is a “library",

which is simply a list of non-negative integers, each successive integer associated with the

next bin. Let La and Lb be two libraries containing the same histone modification for two

different cell types—in our example, modification K27 for ES and NP cell types. Let m be the

total number of bins in the library and set Ya = {yai |1 ≤ i ≤ m} and Yb = {ybi |1 ≤ i ≤ m} to be

the observed counts of the ChIP-Seq fragments for libraries La and Lb respectively, where

yai , respectively ybi , are the sum of the fragments lying in the i th bin. In ChIP-Seq, a tag is

retrieved by sequencing one end of the ChIP fragment, and the median length of this fragment

is around 200 bp [7, 99]. As was done in Xu et al. 2008 [125], we approximate the center of each

fragment by shifting the tag end position by 100 bp downstream or upstream, according to its

orientation on the chromosome. (We note that instead of using a fixed value like 100 bp to

approximate the center of each fragment, one could also infer a proper value separately for

19



Chapter 3. ChIPnorm: a statistical method for normalizing and identifying differential
regions in histone modification ChIP-Seq libraries

Scale

chr1:

ChIPnorm

ChIPDiff DHMS

UCSC Genes

2 Mb

44500000450000004550000046000000465000004700000047500000480000004850000049000000495000005000000050500000

K27_mouse_ESC_1000

30 -

0 _

K27_mouse_NPC_1000

30 -

0 _

Figure 3.1 – Histone modification profile as seen in the UCSC genome browser [61]. Tracks 1 (red) and 2 (green)
show the H3K27me3 modifications for ES and NP cells, respectively. Track 3 shows the differentially enriched
regions found by our ChIPnorm method. Track 4 shows the differentially enriched regions found by the ChIPDiff
method [125]. In tracks 3 and 4, red indicates differential enrichment in ES cells and green indicates differential
enrichment in NP cells. Track 5 shows the UCSC genes.

each dataset — however for simplicity we choose a fixed value of 100 bp for this work.) We

choose different bin sizes for different types of the histone modifications so as to maximize the

discriminative information between the two libraries of the different cell types and minimize

the discrimination of the two replicates of the same libraries. We use the spread of the data in

the scatter plots as a measure for discriminative information. A lower bin size favors a better

spread (away from the diagonal) between the data of the two cell types in the scatter plot. (For

robustness studies we also tried using a range of bin sizes, as shown in results section.)

An observed fragment count yai at the i th bin can be related to the actual number of histone

modifications xai at the i th bin using the following model:

yai = ga(xai )+εai +νai

ybi = gb(xbi )+εbi +νbi (3.1)

Function g is the (unknown) deterministic function that describes the nonlinear transforma-

tion of the actual histone modifications, accounting for the various experimental conditions

that may influence the observations in a systematic way. The additive ε term accounts for the

stochastic (background) noise introduced by the experimental setup, such as stray fragments

from neighbouring modifications. Finally, the parameter ν accounts for local genomic bias,

mainly bias due to open chromatin regions and mapability, such noise is common in both the

actual ChIP-Seq library and the corresponding control dataset. Naturally, one could choose a

stochastic, rather than a deterministic model for g ; but since our goal is to detect regions with

differential enrichment, and not to produce a detailed predictive model, the deterministic

approach suffices.
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3.2.1 ChIPnorm scheme

We will address each source of error separately and proceed in two main stages. In the first

stage, we address the removal of stochastic background noise and local genomic bias in each

library. In the second stage, we address the problem of normalization.

3.2.2 Stochastic noise ε

To solve the problem of stochastic background noise, both Bayesian modelling methods [36]

and statistical confidence measure methods have been used. In terms of statistical confidence,

the problem reduces to evaluating the probability that a particular bincount (bincount is the

total number of DNA fragments captured inside a bin of some size) would occur by chance [94].

We estimate this probability by defining a “null hypothesis”, which is a random distribution of

bincounts, and then comparing it with the distribution of bincounts of the ChIP-Seq library.

To understand the rationale for choosing the amplified binomial distribution (ABD) as the

random distribution for the bincounts of ChIP-Seq library, we must examine the ChIP-Seq

process as illustrated in Figure 3.2. The short segments of DNA are treated with a specific

antibody to capture a particular histone modification in the genome. The rest of the fragments

are washed away. The captured fragments are sequenced by a high-throughput sequencing

method, which typically uses PCR amplification of the captured fragments [52] before per-

forming the final base-pair sequencing. The sequenced data is binned to obtain a ChIP-Seq

library.

To estimate the null distribution of a ChIP-Seq library, we assume that the fragmented DNA

from the sonicated whole cell is treated with an antibody that randomly captures fragments

without any specificity. The bincounts of captured fragments then follow a binomial distribu-

tion. The captured fragments are amplified, sequenced, and binned to get the null distribution

of the ChIP-Seq library. This binned data follows a random distribution, in which each of

the fragments following the binomial distribution is amplified; we refer to it as the ampli-

fied binomial distribution (ABD). We assume that each fragment is amplified by a constant

amplification factor.

An ABD can be defined by two parameters: the total number of fragments Nbi no in its corre-

sponding binomial distribution and the amplification factor α. We made two assumptions

to calculate these parameters for the desired null distribution: (a) the total number of the

fragments in the original ChIP-Seq data Nd at a and in the corresponding null distribution

Nnull =α×Nbi no are the same, and (b) the total number of bins with zero bincount is the same

in the ChIP-Seq library (Zd at a) and the null distribution. Since the amplification does not

change the number of bins with bin-count zero, we can write Zbi no = Zd at a = (
1− 1

B

)Nbi no B ,

where B is total number of bins in the library. Since Zd at a and B are observed variables, Nbi no

and α= Nd at a
Nbi no

can be evaluated. Now the probability mass function of the random distribution
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Figure 3.2 – Overview of ChIP-Seq process. We see how we can get the ChIP-Seq library, input DNA control, and
the random distribution (null hypothesis).

prior to amplification is

Pr andom(t ) =
(

Nbi no

t

)(
1

B

)t (
1− 1

B

)Nbi no−t

, 0 ≤ t ≤ Nbi no .

The ABD is thus estimated as P ABD (t ) = Pr andom(t/α).

The estimated real distribution of the original ChIP-Seq data for one chromosome is shown

in Fig. 3.3 (blue). An example of random distribution (amplified binomial distribution with

α= 2) is also shown (red). The figure is zoomed into a small region for clarity. We can see that

since the number of zero bins are same, the probability that bincount is 0 is same for both.

The random distribution tends to have a higher probability than real distribution at lower

bincounts but a lower probability at higher bincounts.

We calculated the false discovery rate (FDR) for a ChIP-Seq data using its corresponding

estimated null distribution (ABD) [94]. We declared bins with FDR ≤ 0.05 as significant bins in

the ChIP-Seq library. The value 0.05 is the standard value used in the field [94].
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Figure 3.3 – An example of random distribution (amplified binomial distribution with α= 2) is shown in red
and the estimated real distribution of the original ChIP-Seq data for one chromosome is also shown (blue). ABD —
amplified binomial distribution. Data probability — estimated real distribution. The figure is zoomed into a small
region for clarity.

3.2.3 Local genomic bias ν

ChIP-Seq data contains many local genomic biases corresponding to open chromatin regions,

over-amplified satellite repeats, GC-rich regions, and unmappable perfect repeat regions.

Some of these biases depend on experimental conditions and others may vary among the cell

lines in a systematic manner. If such cell-specific biases are not taken care of while comparing

ChIP-Seq libraries it will give many false positive differential regions. Some of these biases

can be reduced by using an input DNA control library. To find differential regions, we must

consider only those regions that are significantly enriched with respect to the input DNA

control. The input DNA control are the DNA fragments in the ChIP-Seq experiment prior

to the application of the histone specific antibody. To find the enriched bins, we need to

normalize the input DNA control with respect to the data.

Yang et al. 2002 [127] recommended the use of locally weighted regression (LOESS) normal-

ization. The basic assumption is that the percentage of the differential sites, considered as

outliers by LOESS, is small so that these sites do not affect the normalization. However, this is

not true in the case of a ChIP-Seq library. In a ChIP-Seq library, the percentage of bins that are

differentially enriched relative to the input DNA control can exceed 50%. These differentially

enriched bins will affect the LOESS normalization as shown in Figure 3.4(a) and lead to many

false negatives. We introduce an iterative normalization to overcome this problem.

In the first stage of iterative normalization, we normalize the DNA control with respect to the

data using quantile normalization. For illustration purposes, we first show the LOESS curve

of the MA plot in 3.4(a). (MA plot is often used for visual representation of two channel DNA

microarray gene expression data [33] which has been transformed onto the M (log ratios)
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Figure 3.4 – Iterative Normalization of input DNA. (a) before first iteration. (b) after first iteration, post removal of
outliers.

and A (mean average) scale.) We first classify bins enriched with respect to the DNA control

(fold change > 1) after quantile normalization as outliers. These outliers are then removed

from further iterations. Figure 3.4(b) shows the LOESS curve after removing the outliers. We

see that the LOESS curve is relatively less affected by outliers. In the next iteration, we use

non-outliers bins for second quantile normalization to get a more accurate estimate of the

normalization function. Once we get this normalization function, we normalize (quantile) all

bins. The process of removing outliers and then performing normalization can be repeated

to rescue more bins falsely declared as non-enriched. Each bin is declared as enriched if its

fold-change value of ChIP-Seq data and quantile normalized control data is > 1. (The LOESS

normalization is not used in the ChIPnorm method but is shown here only for illustrating the

affects of normalization and removing outliers. Instead quantile normalization is used.)

Bins which are declared both as significant in the ABD approach and as enriched in the

iterative approach, are declared as ‘enriched-significant’. Bins which are declared as enriched-

significant in either of the two libraries are passed on to the second stage, with their original

bincount values.

3.2.4 Quantile normalization

Since our first stage removed the majority of bins with low S/N ratios and genomic bias,

and since we expect interesting regions to have good S/N ratios, we make the simplifying
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assumption:

εai = εbi = 0

νai = νbi = 0; (3.2)

With this assumption the next step is to normalize the data to the same scale so that bin

values in the two libraries are comparable. We propose a quantile normalization method

(similar to Bolstad et al. 2003 [16]) to solve this normalization problem. Quantile normalization

assumes that the distribution of the data of the two libraries that are being compared are

similar. This may seem problematic because histone modifications change significantly during

differentiation. But it is reasonable to assume that their probability distribution of the bincount

over the whole genome is similar across different cell types. (This might not be true if one of the

two libraries have histone modifications knocked out. This may also not be a valid assumption

if the development stage includes a major redistribution of a given histone modification,

for example the marking or unmarking of large portions of the genome.) We formulate the

problem mathematically as follows. Given two observed data yai = ga(xai ) and ybi = gb(xbi ),

find a transformation f ∗ = (ga ◦ g−1
b ) such that y∗

bi = f ∗(ybi ) = ga(xbi ). We make the following

assumptions:

– The actual histone modifications Xa = {xai | i ∈ {1,m}} and Xb = {xbi | i ∈ {1,m}} follow the

same distribution, i.e., we have FXa (x) = FXb (x).
– Cumulative distribution functions (cdf) FXa and FXb are monotonically increasing.
– ga( ) and gb( ) are monotonically increasing.

The last two conditions imply that FYa and FYb are also monotonically increasing.

Theorem 1

Any function f̂ : ybi → ŷbi satisfies FŶb
(y) = FYa (y) if and only if we have f̂ = f ∗.

Lemma 1 FY ∗
b

(y) = FYa (y)

Proof (of lemma):

FYa (y) = P (Ya ≤ y) = P (ga(Xa) ≤ y) = P (Xa ≤ g−1
a (y)) = FXa (g−1

a (y)) and

FY ∗
b

(y) = P (Y ∗
b ≤ y) = P (ga(Xb) ≤ y) = P (Xb ≤ g−1

a (y)) = FXb (g−1
a (y)) = FXa (g−1

a (y))

Proof (of theorem):

only if part: if we have f̂ = f ∗, then from Lemma 1, we also have FŶb
(y) = FY ∗

b
(y) = FYa (y).

if part: if we have FŶb
(y) = FYa (y), then from Lemma 1, we also have FY ∗

b
(y) = FŶb

(y). Addi-

tionally, as cdfs are assumed to be monotonically increasing, they are one-to-one functions.

Hence we can write ∀i , ŷbi = y∗
bi , which in turn implies f̂ = f ∗.
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Figure 3.5 – The new inverse cumulative distribution function on the modified libraries (after stage 1). On the x
axis is the percentile, on the y axis are the bin values.

Theorem 1 states that if (i) we have FXa (x) = FXb (x), (ii) the cumulative density functions of Xa

and Xb are identical and monotonically increasing, and (iii) ga( ) and gb( ) are deterministic

monotonic increasing functions, then any transformation that meets the conditions of the

theorem is our desired transformation f ∗ = (ga ◦ g−1
b ).

To find such a transformation, we use the inverse cumulative distribution function (on the

modified data after removing noisy bins) of the enrichment level, as shown in Figure 3.5. The x

axis of this figure is the percentile while the y axis is the bin values. The figure shows the La and

Lb bin values plotted against their cumulative percentile. To get the desired transformation of

Yb , we must ensure that the post-transformation data Ŷb follows the same cdf as Ya . We fit a

spline smoothing function on the bin values of library La , then, for all percentile values p, we

perform a transformation f̂ : yb → ŷb such that ŷb(p) = ya(p). The transformation f̂ ensures

that the conditions of Theorem 1 are met.

This transformation reduces the problem of comparing two libraries with different probability

distributions to the problem of comparing two libraries following the same probability dis-

tribution, so that a direct comparison of values can now be used. Since in the second stage

we considered bins which were declared as enriched-significant in either of the two libraries

La and Lb (a union operation), some bins which are not declared as enriched-significant

would be present in the second stage too. If both libraries were completely independent

events, we would expect 50% of the bins to be enriched-significant, because of the union

operation. In effect, we define a bin in library Lb to be differentially enriched for the target

modification if (i) observed bin value in libraries Lb lies above the 50% region in the inverse

cumulative distribution function and (ii) for some chosen fold change threshold τ (> 1), we

have ŷbi /yai ≥ τ. Similarly we can define a bin in library La as differentially enriched if the bin

value in library La lies above the 50% region in the inverse cumulative distribution function

and for for some chosen threshold τ (> 1), we have yai /ŷbi ≥ τ. All bins are thus reported as

differentially enriched or not. Adjacent bins of the same type of differential enrichment can be
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grouped together to form differential regions (DHE).

3.2.5 The complete ChIPnorm method summarized

The complete ChIPnorm method is summarized in the Figure 3.6. In the first stage, we identify

bins having a significant bincount compared to the estimated random distribution of a ChIP-

Seq library as significant bins, by using a false discovery rate (FDR) analysis. We also identify

bins of a ChIP-Seq library as enriched bins, if their bincounts are higher than the corresponding

bincounts of the normalized input DNA control. Those bins which are both significant w.r.t.

null hypothesis and enriched w.r.t. normalized input control DNA are declared as enriched-

significant bins. Bins which are declared as enriched-significant in either of these two libraries

are passed to the second stage. In the second stage, we normalize the enriched-significant

bincounts of the two ChIP-Seq libraries and use a fold change to obtain differentially enriched

bins.
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Figure 3.6 – The schematic diagram of the ChIPnorm method. In the first stage one we find the enriched-significant
bins by removing various kinds of errors in the data. In the second stage we normalize the two ChIP-Seq libraries and
find differentially enriched bins.

The normalization can also be used to find bins that are enriched in both libraries, thereafter

called constitutively highly enriched (CHE). Bins which are above 50% in La and Lb in the
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inverse cumulative distribution function and also below threshold τ are declared as CHE.

While differential histone modification enrichment (DHE) regions help us understand why

different types of cells behave differently, CHE regions are conserved between the cell types

and thus presumably essential to the survival of both types.

The normalization method also facilitates the comparison of more than two libraries. Our

method is easily extended to handle multiple types of histone modifications in multiple cell

types. Such analyses can give more insight into combinatorial patterns of histone modifica-

tions, sometimes referred to as “histone language" [120]. For example, Bernstein et al. 2006

[11] hypothesized that a bivalent domain with both H3K27me3 and H3K4me3 modification at

the same site plays a crucial functional role in embryonic stem cells. Finally, the ChIPnorm

method can be used with any ChIP-Seq data—not just with histone modifications.

3.3 Experimental Design

We carried out a series of experiments with the two libraries for H3K27me3 and H3K4me3

histone modifications (ES and NP cells), including experiments for bias and sensitivity. Since

H3K4me3 has sharper peaks than H3K27me3, it needs a finer resolution, and smaller bin sizes

are used. Using the replicate data analysis described earlier, we chose a bin size of 1000 bp

for H3K27me3 (K27) and a bin size of 200 bp for H3K4me3 (K4). The bin size of 1000 bp for

H3K27me3 has also been used previously in literature [125]. We compared ChIPnorm with

six other normalization methods: (a) unit mean normalization; (b) quantile normalization;

(c) MACS peak finder; (d) ChIPDiff method [125]; (e) rank normalization; and (f) two-stage

unit mean normalization. We ran these methods on the H3K27me3 data for ES and NP mouse

cells provided by Mikkelsen et al. 2007 [85] (with whole cell extract (WCE) control library) and

on the H3K27me3 data (of Broad Institute) for ES and GM12878 (replicate 1) from the human

ENCODE project [13, 100]. (GM12878 is a lymphoblastoid cell line produced from the blood of

a female donor with northern and western European ancestry by EBV transformation [13].)

Processing was done on individual chromosomes of the two libraries.

The five methods not yet described are as follows:

– unit mean normalization: is the standard Affymetrix scaling method for microarray data

[16]. To perform consistent comparison with the ChIPnorm method, we normalized the

two libraries to have unit mean using a method similar to the Affymetrix scaling method. To

normalize the bin values xi of a library we calculated its trimmed mean x̄ (the mean of the

non-zero bins in the library) and then the normalized bin value is set to x ′
i = xi /x̄. Finally a

threshold (τ) was used to classify bins as differential or not.

– quantile normalization: the two libraries are quantile normalized, and a fold change thresh-

old (τ) is used to classify bins as differential or not.

– MACS peak finder method: Although MACS is a peak-finding software [131], we use it

indirectly to find differential regions as follows: peaks for one library are detected by giving

the other library as control, and the bins with peaks are considered as differential regions.
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The version of MACS software used is “macs14 1.4.1 20110622”.

– rank normalization: the bin values of each of the libraries are sorted separately; the sorted

lists are divided into 10 equal partitions, which we define as rank. Finally we compare the

values of corresponding ranks at each bin value in both libraries. If the difference between

the values is greater than a threshold ν then the bin is classified as differential.

– RSEG method: RSEG is a recently published method [115] to not only find peaks in his-

tone modifications but to also identify differential regions (rseg-diff) between two histone

modification ChIP-Seq libraries.

– two-stage unit mean normalization: we removed the noisy bins using the first stage of

the ChIPnorm method before applying the unit mean normalization and fold change

classification.

For methods unit mean normalization, quantile normalization, rank normalization, two-stage

unit mean normalization, ChIPnorm, the fold change ratios where calculated by adding +1 on

the numerator and denominator before calculating the ratio so as to avoid the divide-by-zero

case. For the sensitivity analysis using the ENCODE data the corresponding gene expression

data (RPKM - Reads Per Kilobase of exon model per Million mapped reads) is obtained from

the ENCODE Caltech RNA-seq database [13, 100]. To calculate four-fold gene expression

ratio for the ENCODE human data, the RPKM values of the two libraries were required to be

normalized so that they are comparable to each other. So RPKM values of the library Lb was

normalized by dividing it by the sum of all the RPKM values (of all genes) of library Lb and

multiplying it by sum of all the RPKM values (of all genes) of library La . A small offset value

of 5 was added to the RPKM values of each library before taking the fold change ratio so as

to avoid division by zero or very small values. This is a common procedure and some other

values of offset could also be chosen as it does not bias the results.

For the correlation with gene expression studies and the bivalent analysis studies, we classified

the genes from Mikkelsen et al. 2007 [85] into the five groups (A-E) based on their increasing

log-ratio of their expression levels in ES and NP cells. To ensure that each group has a good

representation in terms of the number of genes, we created a histogram of the differential

gene expression and divide them into <−6σ, −6σ to −2σ, −2σ to 2σ, 2σ to 6σ, > 6σ, from the

mean, where σ is the standard deviation.

3.4 Results

Our results are of two kinds. First, we present the characteristics of the ChIPnorm method and

compare it to various other methods for normalization. Next, we use the ChIPnorm method to

investigate the libraries of various cell types, both to confirm existing findings and to evince

new correlations.
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3.4.1 Comparative Analysis

Bias with respect to gene density

We now look how the number of histone modifications change with respect to gene density.

Basically gene-rich regions are those regions of the genome where there are large number of

genes. Even regions of the genome which are upstream and downstream of genes will fall into

gene-rich/poor regions depending on the number of genes in that region. Usually the number

of histone modifications is comparatively small in long stretches of the genome which have

less or no genes (inactive regions). Gene poor regions have a high number of inactive regions.

We noticed that most of the earlier methods for comparing two libraries suffer from bias with

respect to gene density. In order to study this bias quantitatively, we divided the whole genome

(data from Mikkelsen et al. 2007 [85]) into regions of size 1 Mbp each. The size of 1 Mbp was

chosen so that there are sufficient number of genes within each region and also so that each

region is not too big. Each of these regions is then classified into 10 classes according to the

number of genes present in that region. Then we compared the number of bins declared

enriched by previous methods and by the ChIPnorm method. Histone modifications like

H3K27me3 and H3K4me3 mostly occur near the promoter regions of genes. Therefore there

should be more differentially enriched regions in gene-rich regions than in gene-poor regions.

First we give evidence that there are more histone modifications in gene-rich regions than

gene-poor regions. Figure 3.7(a) shows the total number of H3K27me3 ChIP-Seq fragments

divided by the number of Mbp regions (counts per megabase) found in each gene density. We

see from the figure that there is an increasing trend of ChIP-Seq fragments with gene density.

This is true for both ES and NP cells. We also notice that the curve for ES cells is steeper than

the curve for NP cells. This shows that NP cells have more background noise than ES cells and

a lower signal-to-noise ratio. We think that the positive correlation of H3K27me3 levels and

gene density is biologically meaningful: the more genes, the more gene regulatory regions that

are potential targets of H3K27me3-mediated repression. From this perspective, the reversal

of the trend in the top two gene-rich bins is due to the stronger “signal” (higher number of

ChIP-Seq fragments originating from truly H3K27me3-enriched regions) in ES cells.

Now we show the bias of various methods with respect to gene density. Figure 3.8 shows that

other methods, namely unit-mean normalization (3.8(a)), quantile normalization (3.8(b)),

ChIPDiff (3.8(d)), rank normalization (3.8(e)), and RSEG method (3.8(f)) all follow the trend

for ES differentially enriched bins, but show an opposite trend for NP differentially enriched

bins (For MACS peak-finder method (3.8(c)) the trend for NP with respect to gene density

is not exactly opposite but more random). Because of the increased background noise and

lower signal-to-noise ratio in NP data compared to ES data, these methods incorrectly show

an increased number of H3K27me3 NP differentially enriched regions in gene-poor regions.

This is due to the ineffective normalization techniques. This ineffectiveness is removed by

the first stage of the ChIPnorm approach, as it removes the noisy or insignificant bins for

each ChIP-Seq library separately. The unit-mean and quantile normalization (Figure 3.8 (a)

and (b)) methods shows decreasing trends in gene density for NP cells, but after applying the
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Figure 3.7 – Enrichment level of bins with respect to gene density in a 1 Mbp region. The x axis indicates lowest
to highest gene density. (a) The y axis indicates the total number of H3K27me3 ChIP-Seq fragments divided by the
number of Mbp regions (counts per megabase) found in each gene density. (b) The plots are re-normalized so that the
y axis range is same for both ES and NP cell data. We see that the enrichment level of ChIP-Seq data increases with
respect to gene density for both ES and NP cells.

first stage of ChIPnorm, this trend is reversed (Figure 3.8 (g) and (h) for two-stage unit-mean

normalization and ChIPnorm). This shows the importance of the first stage of the ChIPnorm

method, which is common to both these approaches.

Sensitivity analysis

From the 13,438 genes whose microarray gene expression data is available in Mikkelsen et

al. 2007 [85], we selected genes for which expression levels are at least four-fold upregulated

in ES cells compared to NP cells, and vice-versa. Out of 13,438 genes, 925 genes were at least

four-fold differentially over-expressed in NP cells, and 1104 genes were at least four-fold

differentially over-expressed in ES cells. We carried out sensitivity analysis on these genes on

the various methods. Since K27 is thought to be a gene repressor [7, 85], we expect that there

are more ES enriched differential regions in the promoter region (which we define here as

± 1 kbp of the transcription start site (TSS)) of those genes which are over-expressed in NP

cells, and more NP enriched differential regions in the promoter region of genes which are

over-expressed in ES cells. Note however that we do not expect a high correlation in such a test,

as H3K27me3 modification of histone H3 is only one of several mechanisms of gene repression.

We are also aware of recent work that questions the exclusively repressive role of H3K27me3

in gene regulation. Young et al. 2011 [130] identified a new subclass of H3K27me3-marked

genes, which are highly expressed. However, as these genes were reported to have unchanged

expression levels between ES and NP cells in the same paper, they are unlikely to interfere

with our evaluation protocol.

The results of our sensitivity analysis are summarized in Table 3.1 (data from Mikkelsen et al.

2007 [85]). The TSS positions were taken from the “knownGene” track of the UCSC genome

browser. For each gene all the promoters were considered. Experiment “sensitivity (ES K27-
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(a) unit mean normalization (b) quantile normalization
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(c) MACs peak finder (d) ChIPDiff
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(g) two-stage unit mean normalization (h) ChIPnorm

Figure 3.8 – Enriched bins with respect to gene density in 1 Mbp region. The plots are normalized. x axis 1 to 10
indicates lowest to highest gene density, while y axis 0 to 1 indicates minimum to maximum average number of
differentially enriched bins for both ES and NP cells. Blue line indicates ES differentially enriched bins and red line
indicates NP differentially enriched bins. The number of enriched bins per 1 Mbp should increase with gene density.

enriched)” shows the percentage of ES differentially enriched regions around the TSS ± 1 kbp

of the 925 genes which are at least four-fold over-expressed in NP cells. Experiment “error (NP

K27-enriched)” was done on the same 925 genes as experiment “sensitivity (ES K27-enriched)”,

but these regions were erroneously declared as NP-enriched instead of being declared as

ES-enriched. Likewise, “sensitivity (NP K27-enriched)” and “error (ES K27-enriched)” was

determined for the 1104 genes over-expressed in ES cells. To compare the output of the various

methods we fixed the parameters so that each of the methods give similar sensitivity for ES

K27-enriched regions (≈ 15%). The MACS peak-finder method could not be made to get a

sensitivity close to 15% by changing the p-value threshold. We see that all methods give a

low “error (NP K27-enriched)” rate which shows that all methods have a good one-sided
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accuracy. However, we see that for the same thresholds, unit-mean, quantile normalization,

MACS peak-finder and rank normalization methods show very small sensitivity for ES dif-

ferentially over-expressed genes (“sensitivity (NP K27-enriched)”) and a corresponding high

error rate (“error (ES K27-enriched)”). In fact, we find that the error rates are higher in the

quantile normalization method, the MACS peak-finder method, the ChIPDiff method, the

RSEG method, than the sensitivity for ES differentially over-expressed genes. This clearly

shows a bias towards ES enrichment in promoter regions. However, for the two-stage unit

mean and the ChIPnorm method, the problem of bias disappears, as these methods give a

higher sensitivity and lower error rate on both the ES and NP differentially over-expressed

genes. The reason the ChIPnorm method, improves over the other methods is because the

first stage of the ChIPnorm approach, removes the noisy regions, while the second stage which

uses quantile normalization, transforms one distribution of one library to that of the other

library, thereby reducing the differences in the amplification factors and the SNR of the two

libraries. The two-stage unit mean method also works well showing the importance of the first

stage that we used, which is common in both these methods.

Table 3.1 – Sensitivity analysis percentages using various methods (data from Mikkelsen et al. 2007 [85]). Experi-
ments: unit-mean; quantile; MACS peak finder; ChIPDiff; Rank normalization; two-stage unit-mean; ChIPnorm.
The parameters of all the methods (except for MACS as explained in the text) were adjusted so that all of them give
almost the same percentage (≈ 15%) of experiment “sensitivity (ES K27-enriched)”.

unit-mean quantile MACS ChIPDiff rank RSEG two-stage ChIPnorm
unit-mean

thresholds τ= 7 τ= 15 p-val = 10−16 τ= 7 ν= 7.5 cdf = 0.95 τ= 1.98 τ= 3

NP differential (four-fold) expressed: 925 genes
sensitivity (ES K27-enriched) 14.49 15.24 31.24 14.64 17.62 18.16 15.14 15.14
error (NP K27-enriched) 0 0 0 0.27 6.05 0.11 0 0

ES differential (four-fold) expressed: 1104 genes
sensitivity (NP K27-enriched) 0 1.27 0.27 0 12.59 1.9 6.88 7.16
error (ES K27-enriched) 1.27 1.99 5.07 0.91 5.43 3.08 1.18 1.99

Since the above sensitivity analysis was done by fixing the sensitivity value to 15%, we tested

the various methods over a wide range of thresholds. Figure 3.9 gives the plot of sensitivity
(sensitivity + error)

over five different threshold values (T1, T2, T3, T4, T5) in increasing order. The actual values

of these five thresholds for each method is given in Table 3.2. The higher the value of this

ratio, the better the method works, as it shows the error is less. Figure 3.9(a) gives the plots

for the case when NP is differentially over-expressed compared to ES while 3.9(b) shows the

case when ES is differentially over-expressed compared to NP. We see from the plots that

although most methods work well when NP is differentially over-expressed, only the two-stage

unit mean normalization and the ChIPnorm method works well when ES is differentially

over-expressed compared to NP. In fact the other methods show a ratio less than 0.5 (Figure

3.9(b)), indicating that the error is greater than sensitivity. This clearly indicates that the first

stage of the proposed ChIPnorm approach helps remove the problem of bias which happens

because of the different signal-to-noise ratios in the two libraries.

In this chapter, we used a bin size of 1000 bp for H3K27me3 data and 200 bp for H3K4me3

data. However we have done robustness studies by varying bin sizes. The sensitivity and error

experiments shown in Table 3.1 for the data in Mikkelsen et al. 2007 [85] are repeated here
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Table 3.2 – Values of the various thresholds (T1, T2, T3, T4, T5) used for the various methods used in Figure 3.9.

thresholds unit-mean quantile MACS ChIPDiff RSEG two-stage ChIPnorm
unit-mean

τ τ p-val τ cdf τ τ

T1 3 11 10−2 1.1 0.25 0.98 2
T2 5 13 10−4 2 0.5 1.48 2.5
T3 7 15 10−6 3 0.75 1.98 3
T4 9 17 10−8 4 0.9 2.48 3.5
T5 11 19 10−10 5 0.95 2.98 4
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Figure 3.9 – Plot of sensitivity
(sensitivity + error) over five different threshold values. (a) NP is differentially over-expressed

compared to ES, (b) ES is differentially over-expressed compared to NP.

for the ChIPnorm approach by varying the bin sizes for H3K27me3 and H3K4me3 data. The

fold change threshold (τ) is fixed at 3 (as done in Table 3.1) for the ChIPnorm method and

the bin sizes vary from 200 bp to 2000 bp in steps of 200 bp. We see from Figure 3.10 that the

sensitivity and error vary little for bin sizes varying from 400 bp to 2000 bp for H3K27me3 and

200 bp to 800 bp for H3K4me3. (For H3K4me3 data, while the sensitivity drops after 800 bp

bin size, so does the error.) This shows that the ChIPnorm method is robust over a wide range

of bin sizes and that there is a large range of bin sizes where ChIPnorm works well for both

H3K27me3 and H3K4me3 data.

We repeated the sensitivity tests for the human data from the ENCODE Broad database

(hg18). We tested the experiments on ES and GM12878 cell lines for H3K27me3 histone

modifications [13]. The corresponding gene expression data (RPKM) is from the ENCODE

Caltech RNA-seq database [13]. The parameters of all the methods (except rank normalization)

were adjusted so that all of them give almost the same percentage (≈ 11%) of experiment

“sensitivity (HES K27-enriched)”. For the rank normalization method we could not further

change the threshold to get a sensitivity close to 11%. The results are summarized in Table

3.3. We can clearly see that ChIPnorm and the two-stage unit-mean approach outperform all

other methods. However the two-stage unit mean approach results vary a lot based on the

thresholds. When the threshold τ is changed from 1.4 to 1.89, so as to fix “sensitivity (GM12878
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Figure 3.10 – Robustness studies: sensitivity and error analysis for ChIPnorm by fixing the fold-change threshold
τ= 3 and varying the bin size from 200 bp to 2000 bp in steps of 200 bp. Data from Mikkelsen et al. 2007 [85].

K27-enriched)” to approximately the same as that of ChIPnorm approach (i.e. approximately

12%), the results are: “sensitivity (GM12878 K27-enriched)” is 12.07% while the corresponding

“error (HES K27-enriched)” is 0.86%; “sensitivity (HES K27-enriched)” reduces to 4.67% (from

the earlier 10.69% for τ= 1.4) while the corresponding “error (GM12878 K27-enriched)” value

is 0.21%. Therefore the sensitivity of the two-stage unit-mean approach (“sensitivity (HES

K27-enriched)”) reduced with change in threshold. In fact for this data set, ChIPnorm results

varies very little with change in threshold. For example, for ChIPnorm when we change the

threshold τ from 3 to 15, the “sensitivity (HES K27-enriched)” values change from 12.71 to

10.07. Similarly the rest of the results do not vary much. This leads us to believe that the second

stage quantile normalization approach in ChIPnorm, gives stabler results as it equates the

distributions of the two libraries.

Table 3.3 – Sensitivity analysis for human ES and GM12878 cells (replicate 1 data from ENCODE Broad database)
percentages using various methods. Experiments: unit-mean; quantile; MACS peak finder; ChIPDiff; Rank nor-
malization; two-stage unit-mean; ChIPnorm. The parameters of all the methods (except for rank normalization
as explained in the text) were adjusted so that all of them give almost the same percentage (≈ 11%) of experiment
“sensitivity (HES K27-enriched)”.

unit-mean quantile MACS ChIPDiff rank RSEG two-stage ChIPnorm
unit-mean

thresholds τ= 5.3 τ= 15.7 p-val = 10−12 τ= 7 ν= 7 cdf = 0.9 τ= 1.4 τ= 10

GM12878 differential (four-fold) expressed: 1927 genes
sensitivity (HES K27-enriched) 11.26 11.26 11.26 10.85 17.85 8.27 10.69 11.05
error (GM12878 K27-enriched) 0.10 0.21 0 0.16 5.35 0 0.31 0.16

HES differential (four-fold) expressed: 2908 genes
sensitivity (GM12878 K27-enriched) 1.55 10.97 1.79 4.09 33.29 0.06 14.65 12.00
error (HES K27-enriched) 1.38 0.93 3.54 1.20 2.27 11.81 1.20 0.55

ROC curves

We next plot receiver operating characteristics (ROC) for H3K27me3 histone modification

data (Mikkelsen et al. 2007 [85]) to compare the various techniques. Since what is a ‘true’

differential region is unknown, we used indirect ways of calculating true positives (TP), true

negatives (TN), false positives (FP), false negatives (FN), by comparing the results with gene
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expression data. For the sake of plotting the ROC curves, we convert the 3-sided testing

problem (ES differentially enriched, NP differentially enriched, or non-differential) into a

two-sided problem. We plot two different ROC curves and define the various parameters

keeping in mind that K27 is a repressor.

For the first ROC: Class 1 is defined as four-fold NP differentially over-expressed genes

compared to ES; Class 0 is rest of the genes.

TP - genes were ES (ChIP-Seq) is declared differentially enriched (i.e. above threshold) in Class

1 (since H3K27me3 is a repressor).

FN - rest of the genes which fall in Class 1.

FP - genes were ES (ChIP-Seq) is declared differentially enriched (i.e. above threshold) in Class

0.

TN - rest of the genes which fall in Class 0.

True positive rate (TPR) = sensitivity = TP/(TP + FN)

False positive rate (FPR) = (1 - specificity) = FP/(FP+ TN)

For the second ROC: Now Class 1 is defined as four-fold ES differentially over-expressed

genes compared to NP; Class 0 is rest of the genes. And the rest of the parameters are defined

for NP differentially enriched (opposite of the previous case).

The two ROC curves are shown in Figure 3.11. It is important to note that this is only an ap-

proximate way of calculating ROCs as gene expression depends on more than just H3K27me3

histone markers but also on many other factors (like other histone modifications, transcription

factors, etc.). Therefore a 100% TPR is not necessarily a good result. We varied the thresholds

for various methods. In some methods, the values of TPR and FPR do not go beyond a certain

value, irrespective of the thresholds. Therefore we show the plots of the regions where max-

imum value of the FPR exists for all methods. From the figure, it is seen that most methods

work well for the first ROC, while for the second ROC curve, ChIPnorm and two-stage unit

mean normalization outperforms all other methods, clearly showing the removal of the one

sided bias.

False-positive rate

Since the ENCODE Broad database for human histone modifications data [13] has a two

replicates for each cell type, we did a false-positive rate study on this data. Basically we ran the

methods on H3K27me3 libraries for ES cells for replicates 1 and 2. Since the two libraries used

are replicates, we do not expect any differentially enriched regions between the libraries. So

any bin declared as differential is considered a false positive. Since the false-positive rate is

dependent on the thresholds used, we used the same thresholds as used in Table 3.3 for the

various methods. The results are shown in Table 3.4. We see that the false-positive rates are

below 1% in all the methods (except rank normalization) and for ChIPnorm it is very close to
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Figure 3.11 – Two ROC curves are shown for various methods. (a) first ROC: Class 1 - four-fold NP differentially
over-expressed genes compared to ES; Class 0: rest of the genes. (b) second ROC: Class 1 - four-fold ES differentially
over-expressed genes compared to NP; Class 0: rest of the genes.

0%.

Table 3.4 – False-positive rate (FPR) analysis for human ES cells (H3K27me3 data from ENCODE Broad database)
for the two replicates. We see the percentage of false positive using various methods. Experiments: unit-mean;
quantile; MACS peak finder; ChIPDiff; Rank normalization; two-stage unit-mean; ChIPnorm. The thresholds used
are same as those in Table 3.3.

unit-mean quantile MACS ChIPDiff rank RSEG two-stage ChIPnorm
unit-mean

thresholds τ= 5.3 τ= 15.7 p-val = 10−12 τ= 7 ν= 7 cdf = 0.9 τ= 1.4 τ= 10

FPR 0.3924 0.0004902 0.0053 0 8.2753 0.4845 0.8652 0.0088

3.4.2 Correlation with gene expression

We analyze the effect of presence of K27 and K4 sites (mouse data from Mikkelsen et al.

2007 [85]) on gene expression levels. K4 is associated with activation of genes, while K27 is

associated with repression [85]. 13,000 UCSC known genes are used for this purpose. We divide

these genes into five groups (A–E) according to the increasing log ratio of their expression

levels in ES and NP cells. We take into account the distribution of the number of genes with

respect to the log ratio of their expression levels to make the division. This grouping ensures

enough representation in each group. Genes in each group are further classified for each K27

or K4 according to the presence of modifications in the promoter (± 1 kbp of TSS) region.

These categories are: type 1 genes have neither DHE nor CHE bins in their promoter regions;

type 2 genes have at least one DHE bin enriched for ES cells, but not even one CHE or DHE bin

with NP enrichment; type 3 genes have at least one CHE bin or at least two bins with opposite

enrichments; type 4 genes have at least one DHE bin enriched for NP cells, but no CHE or

DHE bin enriched for ES cells.

Figure 3.12(a) shows the percentages of genes in each group for H3K27me3. These percentages

decrease from group A to group E, indicating that the number of genes differentially enriched

37



Chapter 3. ChIPnorm: a statistical method for normalizing and identifying differential
regions in histone modification ChIP-Seq libraries

for modification K27 in ES cells decreases at higher levels of differential gene expression. On

the other hand, type 4 genes, which are differentially enriched for NP cells, increase from group

A to group E. Thus we see clear evidence of negative correlation of K27 with gene expression,

confirming the repressive regulation by K27. Similar conclusions can be drawn for K4 from

Figure 3.12(b), indicating the positive correlation of K4 with expression levels and thereby

confirming its association with the activation of genes.
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Figure 3.12 – Gene profile according to expression and histone modifications. Genes are grouped in (A-E) according
to increasing ratio of expression level in ES cells and NP cells. Within each groups, genes are classified into 4 types.
Type 2 genes have differential histone enrichment in ES cells in their promoter regions and type 4 genes have
differential enrichment in NP cells. (a) Percentage of type 2 genes is decreasing, while percentage of type 4 genes
is increasing along the group (A-E). (b) Percentage of type 2 genes is increasing, while percentage of type 4 genes is
decreasing along the group (A-E).

3.4.3 Bivalent region analysis

H3K27me3 and H3K4me3 are sometimes present simultaneously at the same promoter [11, 85].

Such bivalent regions may repress the developmental genes in ES cells, while keeping them

poised for activation at later stages of development in partially differentiated cells. Thus

bivalent regions could play an important role in the maintenance of pluripotency for ES cells.

We would therefore expect bivalent regions to be enriched in ES cells as compared to the

better differentiated NP cells. We would also expect that bivalent regions in ES cells would

preferentially lose the K27 rather than the K4 mark in NP cells.

We applied the ChIPnorm method to investigate these conjectures about bivalent regions in ES

cells. First we selected 333 genes from chromosomal regions that are rich in highly conserved

noncoding elements (HCNEs) which were previously analyzed by Bernstein et al. 2006 [11].

We classified these genes into 16 classes according to the presence or absence of K27 or K4

modifications in one or both of ES and NP cells (data from Mikkelsen et al. 2007 [85]). Figure

3.13 shows the representation of each class of genes among these selected HCNE genes.

The “A-B” in a label indicates the presence of modification “A” in ES cells and of modification

“B” in NP cells; as before, detected but depleted modifications are treated as if they were
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Figure 3.13 – Bivalent regions in genes: in 333 selected genes and in UCSC known genes. Genes are attributed
to classes according to the presence of modifications in ES and NP cells. The “A-B” notation in the labels indicates
the presence of modification of type “A” in ES cells and modification of type “B” in NP cells. (*) marked labels have
bivalent domains in ES cells.

absent; labels marked with an asterisk denote bivalent regions. We found that about 20%

of these 333 genes had bivalent regions within 1 kb from the promoter in ES cells—a result

consistent with Bernstein et al. 2006 [11]. We then examined the whole genome for the pres-

ence of bivalent regions. Figure 3.13 also shows the representation of such classes among

UCSC known genes. Though the percentage of genes with bivalent regions drops to about

10%, it remains surprisingly high, suggesting that bivalent histone marks in ES cells are not

confined to key developmental regulators. We also note that bivalent marks specific to NP cells

are extremely rare, while bivalent mark present in both cell types occur at an intermediate

frequency. Contrary to our expectation, bivalent marks of ES cells do not preferentially lose

their K27 mark. A substantial fraction loses the K4 mark instead, which may reflect a transition

into a permanently repressed state.

Finally we studied the connection between bivalent regions and gene expression levels. We

divided the UCSC known genes in the same A–E groups according to the log ratio of expression

levels in ES and NP cells. Within each class we further classified genes into 16 classes according

to the presence of one or both histone modifications in ES and NP cells. Figure 3.14 shows a

strong over-representation of the K4+K27-K4 transition in the class of genes that are strongly

up-regulated in NP cells, indicating that the fate of a bivalent mark indeed influences the

expression of the corresponding gene in a progenitor cell. Overall, our findings support the

hypothesis of Bernstein et al. 2006 [11] that bivalent K4+K27 marks are frequent in ES cells and

associated with a temporary repression of genes that need be activated later in development.

Our results extend Berstein’s hypothesis in that we show that bivalent marks are not confined

to HCNE-associated key-regulatory genes, and that a sizable fraction of them transits into a

K27-only state possibly reflecting permanent repression. Moreover, using our normalization

method, we show that transition of a bivalent state into a K27-only state is a rather frequent

event rather than an exception as reported in previous papers (e.g. Cui et al. 2009 [24]).
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Figure 3.14 – Bivalent gene profile vs. expression data. Genes are grouped in (A-E) according to increasing ratio
of expression level in ES cells and NP cells. Each bar shows the percentage of genes with the corresponding “A-B”
modifications (as listed in the box), “A” for modifications in ES cells and “B” for modifications in NP cells. It is seen
that there is a strong over-representation of the K4+K27-K4 transition (yellow) in the genes class, which is strongly
up-regulated in NP cells.

3.4.4 Differential enriched regions along protein-coding genes

We analyzed the human ENCODE ES and GM12878 H3K27me3 ChIP-Seq data [13] using Seg-

tools [18]. Figure 3.15 shows the relative enrichment of the regions identified by the ChIPnorm

for human ES and GM12878 H3K27me3 ENCODE data along the various genomic features

of protein coding genes (GENCODE v3c genes [53]). The regions, which are differentially

enriched in ES cells (L1_enrich), are present along the 5’ flanking end and initial exons of

genes. This shows that these regions are mostly present in the promoter regions of genes.

We also see that the regions that are differentially enriched in GM12878 cells (L2_enrich)

are also present in the promoter regions of genes. However, regions, which are not differen-

tially enriched. (non_differential) are absent along the promoter regions of genes. Therefore

we provide some evidence that most of the promoter regions of protein coding genes have

differentially enriched histone-modification sites, and very few non-differential sites.

3.4.5 Using ChIPnorm in analyzing histone modification data from Arabidopsis

Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients

to developing portions of the plant. It is accompanied by major changes in gene expression

[17]. We used the ChIPnorm method to study the effect of H3K4me3 and H3K27me3 on soil-

grown mature and naturally senescent Arabidopsis leaves. The ChIPnorm method was used to

normalize data sets and identify genomic regions with significant differences in the two histone
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Figure 3.15 – Feature aggregate plot of the differential/non-differential regions identified by the ChIPnorm method.
Each row corresponds to a region from ChIPnorm and each column corresponds to a genomic feature of protein
coding GENCODE genes. Curve inside a cell represents the relative frequency of overlap between the ChIPnorm
identified regions and the genomic feature of GENCODE genes, when compared to a similar relative frequency of
overlap that would occur by random chance. Figure created using Segtools [18].

methylation patterns. These differences were then correlated with gene expression. We found

that genes that showed an increase in the H3K4me3 mark in older leaves were senescence

up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves

were senescence down-regulated. We also found that for the H3K27me3 modification, genes

that lost the H3K27me3 mark in older tissue were senescence up-regulated. From our analysis

we found that only a small number of genes gained the H3K27me3 mark, and these were

senescence down-regulated. And approximately 50% of senescence up-regulated genes lacked

the H3K4me3 mark in both mature and senescent leaf tissue. More details of our work can be
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found in [17].

3.4.6 Software Availability

The software for this work can be downloaded from http://lcbb.epfl.ch/software.html. The

code is mostly written in MATLAB.

3.5 Conclusion

We have presented an approach for the analysis of ChIP-Seq data, with particular emphasis on

the discovery of differentially enriched histone-modification sites. The problem of the bias

inherent in the comparison of two sets of data with different noise backgrounds is biologically

more relevant because such bias shows a false correlation between computationally identified

differential regions with gene density. The ChIPnorm removes most of this bias and provides

a normalization that enables direct comparison of values. We have conducted experiments

that demonstrate that this new approach improves significantly on the state of the art. One of

the main reasons that the ChIPnorm method outperforms other methods is because of the

first stage of normalization that we proposed. This is the reason when we used the two-stage

unit-mean normalization, which used the same first stage as the ChIPnorm method, the

results were quite good. We also think that since we used the amplified binomial distribution

as the random distribution (instead of using only control data), our results were better than

the earlier proposed methods. Finally, we have used our approach to highlight some aspects of

K27 modifications in mouse embryonic stem cells and neural progenitor cells, including a so

far unnoticed transition of bivalent mark of K4 and K27 in embryonic stem cell to a K27-only

state in differentiated cells, possibly reflecting permanent repression of developmental genes.

For the human ENCODE H3K27me3 data for ES and GM12878 cells, when we look at protein-

coding genes, we provide evidence that most of the promoter regions have differentially

enriched histone-modification sites. Also the ChIPnorm approach has also been used to study

histone methylation changes associated with leaf senescence in Arabidopsis.

Our approach is not restricted to the identification of differentially enriched sites nor is it

limited to pairwise comparisons. A natural next step, therefore, is to apply it to more complex

data (multiple cell types with multiple histone modifications, for instance), to verify its efficacy,

and to use it to shed light on the complex interactions described in the “histone language".

42



4 Probabilistic partitioning methods to
find significant patterns in ChIP-Seq
data

4.1 Introduction

As seen before, a ChIP-Seq experiment produces a large number of sequence tags that are

mapped to the genome, resulting is a genome-wide profile of tag counts. A high tag count at a

location on the chromosome indicates the presence of a particular protein at that location. The

regions enriched in ChIP-Seq tags are diverse in terms of magnitude, shape and orientation

[69]. Sequence-specific transcription factors typically produce uniform, narrow Gaussian

peaks, while regions enriched in histone modifications tend to show complex multimodal

signal distributions.

The term “chromatin signature” has been coined to designate recurrent patterns found in

ChIP-Seq-based histone modification maps and other types of chromatin profiling data [56].

A chromatin signature is usually represented by a vector of average tag counts in bins of

certain sizes (typically 50bp to 500bp) in a collection of larger genomic regions of sizes 1 kb

to 10 kb. Chromatin signatures can be detected by so-called aggregation plots (AP) [58], if

precisely mapped experimentally defined anchor points (e.g., transcription start sites, known

as TSSs) are available for selection and delineation of the genomic regions of interest. A basic

assumption in ChIP-Seq data analysis is that specific chromatin signatures are associated with

specific functions. For instance, human promoters are characterized by a nucleosome-free

region of about 150bp and a rigidly positioned H3K4me3-marked +1 nucleosome centered

120bp downstream from the TSS [105].

Given a set of genomic regions of constant size around some fixed anchor points (like tran-

scription start sites of genes) we would like to discover recurring patterns or classes (chromatin

signatures) in the ChIP-Seq data which arise within these regions. However, discovering a

recurring pattern is a difficult problem, especially when precise anchor points are not available.
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An effective algorithm must be capable to cope with the following obstacles.

– Biological inhomogeneity of the samples: The set of analyzed genomic regions often consists

of multiple unknown subclasses, in which case a plot derived from all samples shows the

superposition of several different chromatin signatures.

– Alignment uncertainty: Precise anchor points are rarely available for delineating genomic

regions. Selected chromatin regions first need to be optimally shifted (registered) with

respect to each other before an AP can reveal a high-resolution chromatin signature.

– Asymmetry: Chromatin signatures associated with directional molecular mechanisms (such

as transcription) are usually asymmetrical. However, the orientation of the genomic regions

is often unknown. The input count vectors should then be compared with each other in

both orientations.

– Sparse count data: Certain bins may have very low tag counts, leading to high sampling

errors.

The problem of inhomogeneity can be tackled by off-the-shelf clustering and partitioning

algorithms. In fact, hierarchical clustering [109] and K-means [79] have been incorporated in

several multipurpose computational platforms for ChIP-Seq data analysis. seqMINER [129]

offers an in-built K-means function, while ChIPseeker [46] is interfaced with a third-party hier-

archical clustering software. However, shifting and flipping is only implemented in specialized

programs like ChromaSig [55], ArchAlign [68], CATCHprofiles [93] and CAGT [67]. CATCH-

profile is a tool for exhaustive pattern detection in ChIP profiling data. and it implements

the CATCH algorithm. In the CATCH algorithm, a hierarchical clustering approach combined

with pairwise alignment is used. It keeps a pool of profiles from which it iteratively aligns

all pairs and chooses the most similar pair [93]. The exhaustive all-against-all comparison

and alignment in the CATCH algorithm makes it computationally expensive. ArchAlign has

two methods for aligning regions — the first one is the single-best-pair approach which uses

the two regions with the highest similarity as the template pattern to seed the alignment; the

second approach, known as seed sampling, is a more comprehensive search of the possible

alignment space. ArchAlign performs only shifting and flipping and can find only one single

signature. CAGT supports flipping but not shifting. (The problem of optimal shifting is typi-

cally solved by exhaustive comparison of all overlapping subregions of a given size from two

genomic regions, possibly in both orientations.) ChromaSig, ArchAlign and CATCHprofiles

use progressive multiple alignment strategies to assemble similar tag profiles. Since these

algorithms have to carry out a large number of pairwise comparisons, they tend to be slow. To

overcome this drawback, CAGT applies a two-step divide-and-conquer approach. It first uses

the the K-median algorithm (a variant of K-means) to define top-level classes and then runs a

hierarchical clustering algorithm on each of these classes in turn. The shifting and clustering

functions require some type of distance measure. All of these programs, except ChromaSig,

use non-probabilistic measures such as the Euclidean distance or the Pearson correlation

coefficient, neither of which does well with low counts per bin. ChromaSig assesses similarity

between samples and class membership assuming position-specific Gaussian distributions

of the normalized ChIP-Seq signal within a chromatin signature. The use of Gaussian distri-

butions, which seems unnatural for count data, is explained by the fact that ChromaSig was
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originally designed for ChIP-chip data.

In this chapter, we propose as an alternative approach for finding recurrent patterns in ChIP-

Seq data by probabilistic partitioning [87]. The underlying principle of this general method is

to optimize a mixture model by an Expectation-Maximization (EM) algorithm, a strategy that

has already proved effective in finding recurrent DNA motifs in selected genomic regions [78].

A key difference of this method compared to the other clustering methods mentioned is that

samples are not deterministically assigned to a single class: rather, their classification status is

defined by a vector of class membership probabilities. While EM has long been a standard tool

in machine learning, it is a general-purpose method, whose convergence rates and running

times depends on the exact formulation of the objective function and the updating formulae.

The purpose of this chapter is to demonstrate the merits of EM when applied to ChIP-Seq

data and to explain by examples how it can be applied to classification and motif-discovery

problems in research on chromatin structure. The probabilistic partitioning approach offers

the following advantages.

1. The use of probabilistic distance functions naturally takes into account random sam-

pling variation in low-count data.

2. Probabilistic class assignment allows for accurate characterization of classes even in

situations where the classification of individual samples is uncertain.

3. Probabilistic class assignment is flexible and can combine goals, for instance the ranking

and prioritizing of ChIP-Seq signal enriched regions based on peak-shape.

4. Shifting and flipping can be implemented in the EM framework via hidden variables.

5. The implementation of probabilistic partitioning is straightforward with existing pro-

gramming platforms. All algorithms used in this work can be implemented by less than

30 lines of R code.

6. Flexibility: Methods are readily customized to meet the needs of a particular application.

For instance, the switching from a Poisson probabilistic model to a negative binomial

model requires only one change in the corresponding R code.

7. Efficiency: In contrast to most existing methods, the EM algorithm does not require ex-

haustive pairwise comparisons, so that each iteration runs in time linear in the number

of samples.

8. Transparency and Reproducibility: Methods can be accurately described in a research

paper by reproducing a few lines of R code (see the R codes given in Appendix A).

Section 4.2 presents in detail several variants of the probabilistic partitioning algorithms.

Section 4.3 analyses the performance of these algorithms on carefully chosen examples based

on simulated and real ChIP-Seq data and compares its performance with K-means clustering

and CAGT.
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4.2 Methods

We are given N samples, S1, S2, . . ., SN . Samples are regions of certain sizes around fixed anchor

points. These anchor points could be transcription start sites (TSS) of genes or transcription

factor binding sites. (For example, a sample could be a region of +/- 1 kbp region around a

TSS of a particular gene.) We divide the genome into bins and count the number of ChIP-Seq

fragments that fall into each bin to obtain bin counts. Thus each sample Si is an integer

vector of length L, Si = (si 1si 2 . . . si L), where each element si l is a bin count. Bincount vectors

of several ChIP-Seq libraries (e.g. different histone marks) may be concatenated in order to

partition them together. We assume that the samples originate from a mixture of K different

classes, C1, C2, . . ., CK . Each class C j occurs with characteristic probability p j = P (C j ) and is

further characterized by “profiles” of expected bin counts: C j = (c j 1c j 2 . . .c j L).

4.2.1 Expectation-Maximization (EM) algorithm

The probability of sample Si given class C j is computed as follows:

P (Si |C j ) =
L∏

v=1
Poisson(si v ,λ= c j v ) (4.1)

Now, the probability of class C j given sample Si is given by:

P (C j |Si ) = p j P (Si |C j )∑K
b=1 pbP (Si |Cb)

(4.2)

Using this probability, we update the classes as follows:

c j l =
∑N

a=1 P (C j |Sa)sal∑N
a=1 P (C j |Sa)

(4.3)

p j =
∑N

a=1 P (C j |Sa)

N
(4.4)

These computations are carried out iteratively for a fixed number of steps.

4.2.2 Modified “Shape-Only” EM algorithm

We also propose a shape-only version of the EM algorithm for normalization purposes. For all

K classes, the average count frequency is set to 1. In other words, we impose:

E(C j ) = 1 ⇐⇒
L∑

v=1
c j v = L (4.5)
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Equation 4.1 is modified as follows:

P (Si |C j ) =
L∏

v=1
Poisson(si v ,λ j = c j v (1/L)

L∑
g=1

si g ) (4.6)

The purpose is to adjust the average count frequency of class j to the average count value of

sample i .

E(λ j ) = E(Si ) (4.7)

We further have to make sure that the average count frequency of the re-estimated class j

equals 1. To this end, equation 4.3 is modified as follows:

c j l =
L

∑N
a=1 P (C j |Sa)sal∑L

v=1
∑N

a=1 P (C j |Sa)sav
(4.8)

4.2.3 Variations - with shift and flip

We propose some variations of the basic method. In the following we show how flipping and

shifting can be implemented. Note that these two options could be implemented separately.

Here (for the sake of generality) we show the version which supports both. Shifting and flipping

is modeled with two hidden variables, the shift index m and the flip state inv.

Let m be the shift index and M be the maximum number of shifts allowed; and let inv be

equal 1 when there is no flip and equal to 2 when there is one. Note that with shifting, the

patterns C j are shorter than the samples Si by M −1. The notation si l (m, inv) will be used

to represent the data for a particular shift and flip state: for inv = 1, si l (m, inv) = si ,l+m−1;

for inv = 2, si l (m, inv) = si ,L−M+m−l+1. Now, the probability of sample Si given class C j and

further conditioned on shift index m and flip state inv, is computed as follows:

P (Si |C j ;m, inv) =
L∏

v=1
Poisson(si v (m, inv),λ= c j v ) (4.9)

Now, the probability of class C j given sample Si is given by:

P (C j ,m, inv|Si ) = p j (m, inv)P (Si |C j ;m, inv)∑K
b=1

∑M
d=1

∑2
e=1 pb(d ,e)P (Si |Cb ;d ,e)

(4.10)

Using this probability, we update the classes as follows:

c j l =
∑N

a=1
∑M

d=1

∑2
e=1 P (C j ,d ,e|Sa)sal (d ,e)∑N

a=1
∑M

d=1

∑2
e=1 P (C j ,d ,e|Sa)

(4.11)
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p∗
j (m, inv) =

∑N
a=1 P (C j ,m, inv|Sa)

N
(4.12)

Here we assume that the shift states follow a centered Gaussian distribution with equal width

for all classes. Therefore, we infer only the standard deviation of the distribution from the data.

Practically, this is achieved by applying the following regularization step to the re-estimated

probabilities p∗
j (m, inv).

µ=
∑K

b=1

∑M
d=1

∑2
e=1 p∗

b (d ,e) d∑K
b=1

∑M
d=1

∑2
e=1 p∗

b (d ,e)
(4.13)

σ=
√√√√∑K

b=1

∑M
d=1

∑2
e=1 p∗

b (d ,e)(d −µ)2∑K
b=1

∑M
d=1

∑2
e=1 p∗

b (d ,e)
(4.14)

Let Normal(m|(M +1)/2,σ) be the probability of shift m which has a Gaussian distribution of

mean (M +1)/2 and standard deviation σ.

p j (m, inv) = Normal(m|(M +1)/2,σ)∑M
d=1 Normal(d |(M +1)/2,σ)

M∑
h=1

p∗
j (h, inv) (4.15)

As before, these computations are iterated for a fixed number of steps.

Since we are able to estimate the probability of each shift for every sample and class, we

can use these probabilities to estimate the internal position of a given pattern in a particular

sample. Under sub-heading 4.3.2, we present a biological example where we make use of this

possibility.

4.2.4 Seeding and initialization strategies

Various possible seeding and initialization strategies are possible for the proposed probabilistic

partitioning algorithms. Here are two such possibilities.

– Start with one class (K = 1). Set P (C1|Si ) = 1 (for partitioning without shifts or flips) and

p1 = 1. The initial distribution of class one (c1l ) can be defined in either of these two ways:

(a) we can take the mean of the entire data across all the samples; (b) choose a random

distribution by either picking a random subset of the data or by choosing a random proba-

bility for each sample, and then taking the weighted sum over all the samples according to

their probability value. Then increase the number of classes iteratively (K = K +1) till the

maximum number of classes is reached. With each iteration, the new class is initialized to

a uniform distribution (c j l = 1) ∀l and j is the new class. The new class will have a prior

probability (pnew class) = 1/K where K is the total number of classes so far. The remaining

classes have a total probability (
∑

j p j ) of (1−1/K ), where each class is p j = (1−1/K ) pol d
j
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(the earlier value of p j is pol d
j ). After the initialization (for each increase in the number of

classes), the EM method is applied.

– Start with K classes (K ≥ 1). Like done before, we could take K different subsets of the

original data and compute their mean, and use that to compute the initial distributions

for the different classes. Alternatively one could also choose K random probability vectors

(each vector containing probabilities for all samples) and use that to compute K weighted

sums for finding the initial distributions of the K classes. After this initialization, the EM

method is applied.

Determining the optimum number of classes or clusters (choosing K ) in a dataset has been a

problem which has been addressed in the literature for many decades now. The number of

classes should strike a balance between assigning all samples into one class and assigning

each sample into a separate class. Methods which look at percentage of variance as a function

of number of classes [62] or by using methods based on information criteria like Akaike

information criterion or Bayesian information criterion are often used (among many others).

However most of these methods have their drawbacks [128]. Since probabilistic partitioning

method is to be used as an exploratory tool, we leave it to the user to manually see what is the

best number of interesting classes for the dataset being used.

4.3 Results and Discussion

4.3.1 On simulated data

We first run the computational experiments on simulated data. The data is composed of a

mixture of two classes characterized by bin count frequency profiles of different shapes. The

samples were integer vectors of length 100. Counts were generated by randomly sampling

from a Poisson distribution with λ varying in a class and position specific manner along the

bin count frequency profiles. Since we were particularly interested in the algorithm’s capability

of recovering patterns from sparse count data, we varied the total count coverage f over a

wide range of relevant values ( f is defined as the total expected bin counts per sample). The

simulated data was generated using statistical software R. The R code and additional details

of the computational protocols are given in the Appendix A.

Data without shifts or flips.

We first generated random samples belonging to two classes, 1000 samples for each class. The

classes were defined by bin count profiles of Gaussian shape, each one with a different mean

and variance. The experiments were repeated several times with coverage f ranging from

50 to 0.5. The shape-based version of probabilistic partitioning (Partition) was compared to

K-means and the recently introduced Clustered AGgretation Tool (CAGT). The latter was used

with two different distance metrics, Euclidean and correlation (henceforth denoted as CAGT

(Euclidean) and CAGT (correlation)). CAGT differs from the other two methods in that it tries
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Figure 4.1 – Simulated data without shifts or flips. Shows the data and the patterns found using the the K-Means
clustering method, CAGT methods, and the probabilistic partition method (shape-based without shift or flips).
Sub-figures a1, b1, c1, d1, and e1 are for f = 50 and a2, b2, c2, d2, and e2 are for f = 1. Red is class 1 (class c1 in
Table 4.1) and cyan is class 2 (class c2 in Table 4.1).

to infer the number of classes from the data, a behaviour that can be partly controlled by the

command line parameter “K-means/median”. For the sake of fair comparison, we changed

the value of this parameter, so as to force the program to always return exactly two classes.

For CAGT (Euclidean), the parameter k (the number of clusters for K-means/medians) was

always set to 2, while for CAGT (correlation) it was set 2 when f < 5 and to the default value of

40 when f ≥ 5. For the same reason, we disabled the flipping option with CAGT. During the

test we observed that CAGT (correlation) returned an error when trying to process samples

consisting of zeros only. We therefore eliminated these samples from the input data sets fed

to CAGT (correlation). The number of EM iterations in the probabilistic partitioning method

was set to 30 for any value of f . Here and in all subsequent experiments, we used the iterative

version of EM, starting with an initial class consisting of the mean bin count vector taken over

all samples.

The performance of the different methods was assessed in several ways: (i) by visual inspec-

tion of aggregation plots for the true and rediscovered classes (Figure 4.1) - in the case of

probabilistic partitioning method the aggregation plot represents a probability-weighted aver-

age; (ii) by measuring the similarity between the true and rediscovered patterns as a Pearson

correlation coefficient of the corresponding bin count profiles (Table 4.1); (iii) by comparing
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Table 4.1 – Results for simulated data without shifts or flips. Model accuracy is expressed as Pearson correlation
coefficient between original and rediscovered patterns/classes. The percentage of samples attributed to a class is
shown in parentheses. The classes c1 and c2 correspond to the red and cyan curves in Figure 4.1, respectively.

f 50 10 5 2 1 0.5

K-means c1 1 (50%) 0.9986 (53.00%) 0.9905 (58.45%) 0.5588 (88.6%) 0.5732 (92.55%) 0.5576 (96.45%)
K-means c2 1 (50%) 0.9999 (47.00%) 0.9993 (41.55%) 0.7443 (11.4%) 0.6459 (7.45%) 0.4590 (3.55%)
CAGT (Euclidean) c1 1 (50%) 1.0000 (49.9%) 0.9990 (50.2%) 0.9742 (59.15%) 0.5730 (92.55%) 0.5802 (96.35%)
CAGT (Euclidean) c2 1 (50%) 1.0000 (50.1%) 0.9998 (49.8%) 0.9950 (40.85%) 0.6459 (7.45%) 0.4965 (3.65%)
CAGT (correlation) c1 1 (50%) 0.9994 (47.9%) 0.9956 (44.53%) 0.9829 (57.06%) 0.5498 (80.62%) 0.5874 (88.30%)
CAGT (correlation) c2 1 (50%) 0.9998 (52.1%) 0.9993 (55.47%) 0.9987 (42.94%) 0.6748 (19.38%) 0.4391 (11.70%)
Partition c1 1 (50%) 1.0000 (50.03%) 1.0000 (49.99%) 0.9989 (49.23%) 0.9929 (48.59%) 0.9407 (48.44%)
Partition c2 1 (50%) 1.0000 (49.97%) 1.0000 (50.01%) 0.9998 (50.77%) 0.9985 (51.41%) 0.9862 (51.56%)

Table 4.2 – Classification error (in percentage) between the discovered patterns and their data classes.

f 50 10 5 2 1 0.5

K-means 0 3.00 8.85 40.20 43.85 47.75
CAGT (Euclidean) 0 0.30 3.60 32.15 43.85 48.00
CAGT (correlation) 0 1.75 5.44 17.41 39.63 43.96
Partition 0 0.00 1.05 11.20 23.55 33.95

the re-estimated class frequencies to the true class frequencies of 50% (Table 4.1); (iv) by

computing the classification error defined as the percentage of misclassified samples (Table

4.2). Classification error is calculated as
( N−cr 1−cr 2

N

)
100, where cr 1 and cr 2 are number of

samples from class 1 and class 2 respectively which were correctly classified as belonging to

their respective classes, and N is the total number of samples in the data. In order to com-

pute the classification error, we need to label the classes inferred by the various algorithms.

Since the setup of the simulations involves only two classes, we could easily do this by hand.

In addition for the probabilistic partitioning method, we need to give a deterministic class

assignment for each sample and we give it to the most probable class.

As a general trend, we can see that all methods work well when the count coverage is high

( f ≥ 10). When there is a lower coverage, probabilistic partitioning clearly outperforms all

other methods. In fact it recovers the underlying patterns of the two classes surprisingly well

(r > 0.94) even at very low coverage ( f = 0.5) and this in spite of a high classification error

of about 33% (Table 4.2). The high classification error is probably due to the expected large

number of samples consisting of zeros only (60%) all of which will be attributed to class c2

which has the higher estimated frequency (Table 4.1). K-means and CAGT (correlation) still

recover the count frequency profiles of the two classes with reasonable accuracy at a coverage

as low as f = 2. Note further that probabilistic partitioning is the only method capable of

accurately estimating the frequencies of the two classes at low coverage. This is clearly related

to the probabilistic rather than deterministic assignment of class membership.
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Table 4.3 – Results for simulated data with flips. Model accuracy is expressed as Pearson correlation coefficient
between the original and rediscovered patterns/classes. The percentage of samples attributed to a class is shown in
parentheses. The classes c1 and c2 correspond to the red and cyan curves in Figure 4.2, respectively.

f 50 10 5 2 1

CAGT (correlation) c1 0.9999 (50%) 0.9996 (49.8%) 0.9990 (48.99%) 0.9946 (23.08%) 0.9918 (22.97%)
CAGT (correlation) c2 1.0000 (50%) 0.9999 (50.2%) 0.9998 (51.01%) 0.9791 (76.92%) 0.9598 (77.03%)
Partition c1 0.9999 (50%) 0.9996 (49.99%) 0.9991 (50.05%) 0.9986 (50.06%) 0.9965 (50.13%)
Partition c2 1.0000 (50%) 0.9999 (50.01%) 0.9998 (49.95%) 0.9997 (49.93%) 0.9986 (49.87%)

Data with flips.

The next thing we wanted to see was how well the method works when there are flips in

the data. We used two classes as before. The simulated data now contains 2000 samples per

class, 1000 presented in one orientation and 1000 in the reversed orientation. We compared

probabilistic partitioning in shape-based mode to CAGT (correlation) with flipping enabled.

Since CAGT (correlation) in default mode returned variable numbers of patterns for f < 5,

we reduced the parameter k to 5 for f = 2 and to 4 for f = 1, in order to force the program to

output only 2 classes. Overall, the results (Figure 4.2 and Table 4.3) were similar. The methods

were able to recover the underlying patterns with high accuracy if coverage was not too low.

At lower coverage, probabilistic partitioning worked better. Note, however, that in this test

we had to increase the number of iterations from 30 to 70 to reach good performance with

low coverage (for f ≤ 2). In general it was seen that for very low values of f , we may need

to increase the maximum number of EM iterations for this experiment. The probabilistic

partitioning method is however seen to be robust over a wide range of EM iterations.

Additional tests with simulated data

We performed similar tests with mixtures of more than two classes and show that the prob-

abilistic partitioning approach works well. As an example, we show the performance of the

probabilistic partitioning algorithm on a simulated data set containing a mixture of four

classes, each one represented by 1000 samples. The average total count coverage f was set

to 5 for all classes. The results are presented in Figure 4.3. We first note that the algorithm

is capable of discovering the four classes. Moreover, the virtually identical curves obtained

for the original and rediscovered classes indicate that virtually all samples were correctly

classified.

We were wondering whether probabilistic partitioning is able to discover two classes with

similar count frequency distributions. To answer this question, we generated simulated data

composed of two classes characterized by Gaussian distributions with identical center posi-

tions but different widths. As in previous tests, we generated 1000 samples per class. The total

count coverage per sample was set to 50. We then tested four different methods: K-means,

CAGT (Euclidean), CAGT (correlation), and shape-based probabilistic partitioning. The results

are presented in Figure 4.4. We can see that all but one method perform well in this test. The ex-

52



4.3. Results and Discussion

0 20 40 60 80 100

(a1) data: individual classes

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

0 20 40 60 80 100

(b1) data: flip and average

0 20 40 60 80 100

0 20 40 60 80 100

(c1) CAGT (correlation)

0 20 40 60 80 100

0 20 40 60 80 100

(d1) partition (shape−based)

0 20 40 60 80 100

0 20 40 60 80 100

(a2) data: individual classes

0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100

0 20 40 60 80 100

(b2) data: flip and average

0 20 40 60 80 100

0 20 40 60 80 100

(c2) CAGT (correlation)

0 20 40 60 80 100

0 20 40 60 80 100

(d2) partition (shape−based)

0 20 40 60 80 100

Figure 4.2 – Simulated data with flips. Data (4000 samples) consist of two classes characterized by Gaussian-
shaped patterns. Each class is represented by two subsets of 1000 samples, one showing the underlying pattern in
native, the other one in reversed (flipped) orientation. Sub-figures a1, b1, c1, and d1 are for f = 50 and a2, b2, c2,
and d2 are for f = 1. b1 and b2 are aggregation plots of the same data but with all samples presented in their native
orientation. It can be seen that the probabilistic partitioning method (shape-based) using flips captures the actual
data patterns at high (f = 50) and low (f = 1) coverage. The CAGT (correlation) method works well for f = 50 only.
Red and cyan colors correspond to classes c1 and c2 in Table 4.3, respectively.

ception is CAGT (correlation) which reported only one class (Note that CAGT cannot be forced

to report exactly 2 classes). Overall, this experiment confirms that probabilistic partitioning

robustly performs well on a variety of data sets posing different kinds of difficulties.

4.3.2 On real ChIP-Seq data

We now check the usefulness on the method on real data from ChIP-Seq experiments.

H3K4me1 and H3K4me3 promoter signatures

These two histone marks exhibit characteristic and distinct chromatin signatures around

promoters. In the following experiment we mix H3K4me1 and H3K4me3 bin count profiles

representing promoter regions to test whether automatic classification methods can correctly
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Figure 4.3 – Results from experiment with four classes. (a)-(e) Aggregation plots (APs) for simulated data. (f)-(i)
Probability weighted APs of samples as classified by the probabilistic partitioning algorithm.

Table 4.4 – Model accuracy (represented by Pearson correlation) and classification error between the discovered
patterns and their data classes for the various methods. The time (in seconds) taken for each of the methods is also
shown. Real data for H3K4me1 and H3K4me3 around TSS regions are mixed (34741 samples in each dataset with
each sample containing 99 bins). The percentage of each class is shown in brackets. H3K4me1 and H3K4me3 stand
for the 2 datasets. (Values are rounded to the fourth decimal place for model accuracy and two decimal places for
classification error.)

Model accuracy Model accuracy Classification error Time (sec)
H3K4me1 H3K4me3

K-means 0.0244 (83.65%) 0.9980 (16.35%) 33.72 1.16
CAGT (Euclidean) 0.9270 (69.03%) 0.9987 (30.97%) 23.85 106.31
CAGT (correlation) 0.9463 (42.86%) 0.9994 (57.14%) 26.98 108.35
Partition (non shape-based) 0.8959 (75.76%) 0.9997 (24.24%) 27.26 97.91
Partition (shape-based) 0.9713 (62.53%) 0.9996 (37.47%) 20.64 149.57

identify the two classes of samples and accurately reconstruct the corresponding chromatin

signatures (i.e. bin count frequency profiles). As promoter collection, we used 34741 annotated

transcription start sites (TSS) from ENSEMBL. We then extracted H3K4me1 and H3K4me3

tag counts from public ChIP-Seq data for mouse embryonic stem (ES) cells ([23], GEO entries
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Figure 4.4 – Experiment with two classes characterized by co-localizing Gaussian peaks. Shown are aggrega-
tion plots (APs) for the two classes in the data, and for the rediscovered classes obtained with different clustering
algorithms. Note that CAGT (correlation) reports only one class. The absence of a second class is reflected by the
horizontal red dashed line at height zero in subfigure (c).

GSM594577 and GSM594581). For each sample, tags for H3K4me1 and H3K4me3 were counted

in bins of 50 bp over a region of -2500 to +2500 relative the TSS. The two datasets were then

combined into one. The advantage of having such a combined dataset (by mixing two real

datasets) is that we know the underlying truth and we can do the quantitative comparisons

similar to what we have done using simulated experiments by trying to separate the two

datasets from the combined dataset.

This test data set potentially poses several new difficulties as compared to the previous syn-

thetic data sets. (i) The two classes are likely to be inhomogeneous themselves since not all

promoters are active in ES cells and this is known to be reflected by the respective histone

modification signatures. (ii) The two classes are highly unequal in terms of coverage ( f = 11

for H3K4me1, f = 90 for H3K4me3). This explains why an aggregation plot of the mixed data

set looks quasi-identical to an aggregation plot for H3K4me3 only (Figure 4.5(a), 4.5(b)). Since

unequal coverage may help to distinguish between the two classes, we tested probabilistic

partitioning in both basic and shape-based mode. (iii) This data set is much larger than the

previously tested synthetic data sets and thus may represent a challenge in terms of CPU
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Figure 4.5 – H3K4me1 and H3K4me3 histone modification data. H3K4me1 and H3K4me3 data mixed together
and separated using the K-means, CAGT (correlation), CAGT (Euclidean), and probabilistic partitioning approach
(non-shape and shape-based). Red is for the class which represents H3K4me1 and cyan is for H3K4me3 for figures (b)
to (h). In the figures, each class is normalized so that the maximum value is 1 for the sake of clarity for each class.
Only for sub-figure (b) we normalize using a global maximum of H3K4me1 and H3K4me3.

requirements. We exploited this fact to carry out a speed comparison of the different programs.

In total, we tested 5 methods on this data set, K-means, CAGT (Euclidean), CAGT (correlation),

partitioning (basic - non shape-based) and partitioning (shape-based). The results are shown

in Figure 4.5 and Table 4.4. Not surprisingly, all methods perform well in reconstructing the

H3K4me3 signature around promoters, which dominates the data set in terms of tag coverage.

For the H3K4me1 signature, probabilistic partitioning (shape-based) performs best, followed

by CAGT (correlation) and partitioning (basic). A possible explanation for this fact as that

coverage is highly inhomogeneous within the H3K4me3 class, causing misclassification of

low coverage H3K4me3 samples as H3K4me1 by the basic but not the shape-based version of

probabilistic partitioning. It is noteworthy that CAGT (correlation) outperforms probabilistic

partitioning in estimating the relative frequencies of the two classes. This may be due to the

fact that CAGT (correlation) was tested on a reduced data set lacking samples with zeros only.

Regarding speed, we note that probabilistic partitioning (shape-based) is a little slower than
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Figure 4.6 – Partitioning of nucleosome positioning patterns in human promoters. All curves are drawn to the
same scale. Probabilistic partitioning reveals strong oscillatory patterns for subclasses of promoters which partially
cancel each other out when mixed together.

CAGT but is still capable of processing the data sets in a few minutes. The speed figures should

be interpreted with caution as they depend on the number of iterations carried out by the

probabilistic partitioning algorithm. We further note that K-means is very fast but basically

incapable of recovering the two histone modification signatures.

Application to nucleosome positioning in promoters

In the previous example, we have shown that our method can separate H3K4me1 and H3K4me3

signals that are artificially pooled together. Such a test is useful for method validation but

obviously not representative of an interesting biological application. In the following, we apply

probabilistic partitioning to a potentially inhomogeneous data set where the subclasses are

not known in advance. Specifically, we analyze the positioning of nucleosomes in human

promoters. As anchor points we use 9714 precisely mapped TSSs from EPDnew version 1 [32].

Nucleosome mapping data produced by MNase digestion were taken from [106]. Prior to par-

titioning, the mapped MNase tags were shifted by 70 bp towards the center of the nucleosome

and then counted in bins of 20 bp. Thus the input data vectors reflect the frequency at which a

nucleosome center occurs at a given distance from a TSS.

The AP plot for the complete promoter set (Figure 4.6) shows a well positioned +1 nucleosome

flanked downstream by a damped oscillatory pattern with the expected period of about 200

bp. The region immediately upstream of the TSS appears to be nucleosome-free. No clear
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(a)

(b)

Figure 4.7 – Aggregation plots (APs) for various genomic features in different promoter classes. (a) APs for
different features superposed for the same class. (b) Same feature for different classes in one plot. Position zero
corresponds to the transcription start site.

oscillatory pattern is seen in the promoter upstream region. The absence of an oscillatory

pattern could mean that nucleosomes are randomly positioned or that different promoters

have regularly positioned nucleosomes with different phase shifts relative to the TSS. We used
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shape-based probabilistic partitioning with limited shifting (± 1 bins/20 bp) to discriminate

between these two alternatives. The results obtained with K = 4 are shown in Figure 4.6(b-f).

With one exception (class 4), the class-specific AP plots show higher nucleosome peaks and

stronger oscillatory patterns than the AP plot for the complete set. Therefore, we conclude

that the absence of a periodic signal in the upstream region in Fig 4.6(a) promoters results

from interference of periodic patterns with different phase shifts that almost entirely cancel

out each other. We were wondering whether the four promoter classes with distinct nucleo-

some architectures may differ in terms of regulatory properties. To this end, we analyzed the

distribution of an active and a repressive histone mark (H3K4me3 and H3K27me3) as well

as Pol II in the same cell type. We analyzed four genomic features in four promoter classes

with distinct nucleosome architectures (see Figure 4.6). Specifically, we plotted the ChIP-Seq

signal for H3K4me3, H3K27me3 and Pol II [7] and average phastCons conservation scores

[110] relative to the transcription start site (see Figure 4.7). Note that the nucleosome mapping

data used for defining the promoter classes and the ChIP-Seq data used here were generated

with the same cell type (resting CD4+ T cells). Several interesting observations can be made.

For instance, class 1 is highly enriched in PolII and the active promoter mark H3K4me3, and

thus appears to be the transcriptionally most active class. Classes 2 and 3 have elevated levels

of the repressive H3K27me3 modification indicative of a role in development. Interestingly,

sequence conservation is inversely correlated with active chromatin marks, suggesting that

repressed or weakly expressed genes are subject to more complex regulation than strongly

expressed genes. Among these differences, perhaps most interestingly, classes 2 and 3 show

regularly positioned H3K27me3-labeled nucleosomes indicative of a repressed state.

Shape-based peak evaluation with shifting

In this example, we apply probabilistic partitioning to improve a publicly available peak list

originating from a ChIP-Seq experiment against a sequence-specific DNA-binding protein.

Note that this application is different from the previous ones in that we are not trying to

discover distinct classes. We are merely trying to separate typical examples (belonging to the

majority class) from atypical examples, assuming that atypical examples are contaminants.

The second goal is to refocus the peak center positions. To reach these objectives, we use shape-

based probabilistic partitioning with two classes, one corresponding to the majority class

and trained during EM, the other one with a flat count distribution representing background

and not modified during EM. As output, we obtain for each peak region in the input list a

probability of being a true binding site plus an optimal shifting distance under the true peak

model.

To test this approach we used ChIP-Seq data for CTCF in HUVEC from Broad/ENCODE

downloaded from GEO [6]. As anchor points we used the midpoints of the CTCF binding

regions given in the peak file included in the GEO sample entry (GSM733716). For each binding

region, we counted sequence tags in bins of 10 bp within a 1 kb region around the anchor point.

Probabilistic shifting was done by evaluating the ChIP-Seq signal in 31 overlapping windows
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Figure 4.8 – Shape-based peak evaluation with shifting. The figure illustrates the effects of probabilistic par-
titioning on a CTCF peak list provided by ENCODE in terms of motif enrichment. (a) Probabilistic partitioning
with shifting. (b) Partitioning based on original p-values. Method details: CTCF binding motifs where identified
by scanning the DNA sequence around peak centers with the JASPAR matrix MA0139.1 at a P-value threshold of
10−5. The percentage of sequences containing a CTCF motif is plotted in a sliding window of 50 bp. The numbers in
parentheses indicate the sizes of the peak lists. For fair comparison, the threshold for partitioning with the original
P-values was chosen such as to match the numbers of good and bad peak obtained with probabilistic partitioning.
The motif enrichment profile for the complete peak list (dotted line) is included in both graphs.

of 700 bp (70 bins). After partitioning, we split the input peak list into a “good” and a “bad”

peak class, applying a threshold probability of 0.5. We also shifted the center positions of the

good peaks based on the posterior probability distribution over the 31 shift classes. We then

evaluated the peak lists obtained in this way by motif enrichment using the CTCF position

weight matrix from the JASPAR database [96]. The details of how the JASPAR CTCF is scanned

against the genome is given in http://ccg.vital-it.ch/pwmscan/ which is the website we used

for this purpose. Figure 4.8(a) shows the frequency of CTCF binding motifs around the peak

center positions. We note an essentially flat ChIP-Seq signal distribution for the bad peaks and

a drastically enhanced Gaussian-like distribution with increased height and narrower width

for the shifted good peaks. Given the relatively small size of the bad peak set (12552 out of

63904), the increase in peak height primarily results from shifting and only to a lesser extent

from false binding sites elimination.

As a control, we split the same peak list into good and bad examples using the p-values

contained in the file downloaded from GEO. (The probability threshold was chosen such

as to match the numbers of the subsets obtained with probabilistic partitioning.) With this

filtering criterion, the aggregation plot for the bad peak set still shows a low Gaussian-shaped

signal distribution suggesting the retention of a few true binding sites, whereas the good peaks

exhibit only a modest increase in signal height (Figure 4.8(b)). The latter was expected since

these peaks were not subjected to optimal shifting.

We also evaluated probabilistic peak ranking in terms of reproducibility, using a GEO sample

which provides separate peak lists for replicates. This analysis is based on CTCF ChIP-Seq data

for the K562 cell line downloaded from replicate GEO entries GSM749690 and GSM749733.
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4.3. Results and Discussion

Figure 4.9 – Motif enrichment profiles for IDR-selected ChIP-Seq peak lists. Peak sets were selected at an IDR of
1%.

For peak shape evaluation, we used the shape-based version of probabilistic partitioning with

and without shifting. As anchor points for extracting CTCF tag count profiles, we used the

midpoints of the peak regions given in the “narrowPeak” file provided by the data submit-

ters. IDR (irreproducible discovery rate) analysis was carried out with a R script downloaded

from: https://sites.google.com/site/anshulkundaje/projects/idr. P-values were used as rank-

ing measure for the original peak lists. In the case of probabilistic partitioning, we replaced the

P-values in the original peak files with the posterior probabilities of the samples for the “good”

class, prior to IDR analysis. With shifting enabled, we also shifted the peak regions by the

most probable shift distance prior to IDR analysis. At an irreproducible discovery rate (IDR)

of 1%, we obtain the following numbers of peaks with the different peak ranking methods:

original P-values 22069, probabilistic partitioning with (without) shifting 19061 (18993). We

then generated CTCF motif enrichment profiles for the three peak collections, in order to

estimate their relative enrichment in biologically relevant sites. We noticed that our proba-

bilistic evaluation of peak shapes results in a slightly higher enrichment in CTCF motifs as

compared to the original P-value ranking (Figure 4.9(a)) . Furthermore, probabilistic shifting

leads to a more focused motif distribution around estimated peak centers (Figure 4.9(b)).

Therefore to summarize, at an equivalent IDR of 1%, our method finds slightly fewer peaks

than the peak-finder used by the data submitters though our peak list was more enriched in

CTCF motifs. A possible interpretation of these findings is that our method, which attempts

to eliminate peaks of atypical shape, removes artifacts that are reproducibly called by other

peak-finders.

Taken together, our results show that probabilistic partitioning is an effective post-processing

method for filtering and focusing a publicly available ChIP-Seq peak list obtained with a state-
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of-the-art peak finder.

4.4 Conclusion

We presented a probabilistic partitioning method to find significant patterns in ChIP-Seq data

(which works for both histone modification and transcription factor data). The corresponding

algorithm runs in O(n) time given a fixed number of classes and EM iterations. It is capable

of processing large datasets (tens of thousands of samples) in minutes. The method is con-

ceptually simple yet very flexible, and has been implemented in a few lines of R code. The

basic partitioning algorithm is readily adjusted to handling flips and shifts following standard

principles of EM. With low data coverage, the probabilistic partitioning method gives excellent

model accuracy, superior to K-means or CAGT when tested on the same data examples. We

have further shown that probabilistic partitioning can serve other purposes than pattern

discovery and classification, like partitioning of nucleosome positioning patterns in human

promoters, and shape-based evaluation and re-focusing of ChIP-Seq peaks from published

peak lists.
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5 Cell-type trees

5.1 Introduction

In the previous two chapters (chapters 3 and 4) we saw how to process ChIP-seq data and get

some interesting regions from it using some statistical or computational techniques. In this

chapter, we do a higher level analysis, once we have the process ChIP-Seq histone modification

data (we use peak data in this chapter)

As we have seen before, in developmental biology, the process by which a less specialized

cell becomes a more specialized cell type is called cell differentiation. Since all cells in one

individual organism have the same genome, epigenetic factors and transcriptional factors

play an important role in cell differentiation [71, 75, 76]. Thus a study of epigenetic changes

among different cell types is necessary to understand cell development.

Histone modifications form one important class of epigenetic marks; such modifications have

been found to vary across various cell types and to play a role in gene regulation [10]. A study

of how histone marks change across various cell types could play an important role in our

understanding of developmental biology and how cell differentiation occurs, particularly as

the epigenetic state of chromatin is inheritable across cell generations [81].

In this chapter, we provide a definition for a cell-type tree. Cell-type trees are trees which

represent the relationships between various cell-types. The nodes of this tree represent cell-

types while the edges between two nodes tell us that one cell-type is differentiated from

some cells of the other cell-type. It is not necessary that these various cell-types come from

one individual, and therefore cell-type trees are different from cell-lineage trees. Cell-lineage

trees, reconstructed from genomic variability caused by somatic mutations, represent the

history of cell division in one individual organism from the very first cell, the zygote [44].

However we know that almost the entire genome (within one individual) is the same across

cell-types; and it is also highly similar between individuals of the same species. However

we know that epigenomic states are different across various cell types. So it is possible that

in the cell differentiation process, a complex interplay between histone modifications, DNA
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methylation, transcription factors etc. plays an important role in how cells of various cell-types

in one organism behave differently although the genome is almost same. Therefore in this

study we attempt to build cell-type trees by looking at histone modification data. Currently we

look at only some histone modifications for the sake of simplicity. We do this to see if there is a

link between histone modifications and cell differentiation. Although it is possible (though

not always) that we have some knowledge of the topology of a cell-type tree from known

biology, inferring such trees from just histone modification data is important to see if there is

correlation between histone modifications and cell differentiation. We note that in literature

certain clustering techniques like hierarchical clustering have been used to cluster cell types

using various kinds of data. For example, in [51] unsupervised hierarchical clustering of whole

genome expression data was done for some cell-types.

Since cell differentiation transforms less specialized cell types into more specialized ones and

since most specialized cells of one organ cannot be converted into specialized cells of some

other organ, the paths of differentiation together form a tree, in many ways similar to the

phylogenetic trees used to represent evolutionary histories. In evolution, present-day species

have evolved from some ancestral species, while in cell development the more specialized

cells have evolved from less specialized cells. Moreover, observed changes in the epigenetic

state are inheritable, again much as mutations in the genome are (although, of course, through

very different mechanisms and at very different scales); and in further similarity, epigenetic

traits are subject to stochastic changes, much as in genetic mutations. (It should be noted that

we are interested here in populations of cells of a certain type, not all coming from the same

individual, rather than in developmental lineages of cells within one individual.) Finally, one

may object that derived and more basic cell types coexist within the body, while phylogenetic

analysis places all modern data at the leaves of the tree and typically qualifies internal nodes

as “ancestral". However, species in a phylogenetic tree correspond to paths, not to nodes

(since a species exists for a certain duration of time and the actual species may correspond

to parts of branches). In particular, a species that has survived millions of years until today

and yet has given rise to daughter species, much like a basic cell type that is observed within

the organism, but from which derived cell types have also been produced and observed, is

simply a path to a leaf in the tree, a path along which changes are slight enough not to cause

a change in identification. (The time scale makes such occurrences unlikely in the case of

species phylogenies, but the framework is general enough to include them.)

Therefore it may be possible to use or adapt some of the techniques used in building phylo-

genetic trees for building cell-type trees [89, 90]. The major difference between phylogenetic

trees and cell-type trees is that functional changes in cell differentiation are primarily driven

by programmed mutational events rather than by selection. An immediate consequence is

that the design of an “evolutionary” model has hardly begun in sharp contrast to sequence

evolution. However, note that the program of mutational events is itself the result of evolution,

so that, as observed by Arendt [3], the cell differentiation tree often recapitulates the phylogeny

of cell types. Thus we felt justified to apply phylogenetic methods to the analysis of cell types.
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In this chapter, we provide evidence that such a scenario is possible. We do this by proposing

new data representation techniques, distance measures, then by applying standard phylo-

genetic methods to produce biologically meaningful results. We used data on a few histone

modifications (but mostly on H3K4me3) for many cell types, including replicate data, to

construct cell-type trees—to our knowledge, these are the first such trees produced by com-

putational methods. We show that preprocessing the data is very important: not only are

ChIP-Seq data fairly noisy, but the ENCODE data are based on several individuals and this

adds an independent source of noise. We propose a new peak-finding method to address

this problem. We show how various patterns of histone modification change during the

cell-differentiation process and the biological significance of it. We also outline some of the

computational challenges in the analysis of cell differentiation, opening new perspectives

that may prove of interest to computer scientists, biologists, and bioinformaticians. We also

discuss how these cell-type trees can be used to study the evolution of cell types.

5.2 Methods

5.2.1 Model of differentiation for histone marks

We assume that histone marks can be independently gained or lost in regions of the genome

as cells differentiate from a less specialized type to a more specialized one. Histones marks

are known to disappear from less specialized cell types or to appear in more specialized

ones and are often correlated with gene expression, so our assumption is reasonable. The

independence assumption simply reflects our lack of knowledge, but it also enormously

simplifies computations.

5.2.2 Data representation techniques

The analysis of ChIP-Seq data typically starts with a peak-finding step that defines a set of

chromosomal regions enriched in the target molecule. We therefore use peak lists as the raw

data for our study. We use both publically available peak lists (give in ENCODE database) and

also define our own ‘peak-finder’ which basically identifies regions of the genome which have

significant amounts of histone modification signal (see sub-section “Peak-finding" described

later). We can decide on the presence or absence of peaks at any given position and treat this

as a binary character, matching our model of gain or loss of histone marks. Since all of the cell

types have the same genome (subject only to individual SNPs or varying copy numbers), we

can compare specific regions across cell types. Therefore we code the data into a matrix in

which each row is associated with a different ChIP-Seq library (a different cell type or replicate),

while each column is associated with a specific genomic region.

We use two different data representations for the peak data for each cell type. Our first method

is a simple windowing (or binning) method. We divide the genome into bins of certain sizes; if

the bin contains at least one peak, we code it 1, otherwise we code it 0. The coding of each
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library is thus independent of that of any other library.

Our second method uses overlap and takes into account all libraries at once. We first find

interesting regions in the genome, based on peaks. Denote the i th peak in library n as P n
i =

[P n
i L ,P n

i R ], where P n
i L and P n

i R are the left and right endpoints (as basepair indices). Consider

each peak as an interval on the genome (or on the real line) and build the interval graph

defined by all peaks in all libraries. An interval graph has one vertex for each interval and an

edge between two vertices whenever the two corresponding intervals overlap [41]. We simply

want the connected components of the interval graph.

Definition 1 An interval in the genome is an interesting region iff it corresponds to a connected

component of the interval graph.

A straight forward algorithm to identify these interesting regions in linear time is shown below:

We assume that we have a set of sorted peaks given to us with respect to their positions in each

chromosome, otherwise we first sort the peaks.

Choose a chromosome, let PS be its set of peaks, set AS = {∅} and z = 0, and enter the follow-

ing loop:

1. P∗
i∗ = argminP n

i ∈PS P n
i L . Set a = P∗

i∗L and AS = AS ∪ {P∗
i∗}

2. Set S = {P | P ∩P∗
i∗ 6=∅ and P ∈ PS} and AS = AS ∪S.

3. If S is not empty, then find P∗
i∗ = argmaxP n

i ∈S P n
i R and go to step 2.

4. Let b = P∗
i∗R and set PS = PS − AS.

5. The interesting region lies between a and b, I R[a,b]. Let Dn
I R [z] be the data represen-

tation for I R[a,b] in library n. Set z = z +1. Set Dn
I R [z] = 1 if there is a peak in library n

that lies in I R[a,b]; otherwise set Dn
I R [z] = 0 (1 ≤ n ≤ N ).

Repeat this procedure for all chromosomes in the genome. The above algorithm can imple-

mented by sweeping from left to right (two ends of each chromosome) and we visit each peak

only once. Therefore the algorithm takes time linear in the size of the number of all peaks in

order to identify all the interesting regions. Figure 5.1 shows an example of interesting region

as defined by overlap representation.

For a given collection of libraries, these interesting regions have a unique representation. We

assume that it is in these interesting regions that histone marks are lost or gained and we

consider that the size of the histone mark (which depends at least in part on the experimental

procedures and is typically noisy) does not matter. Our major reason for this choice of repre-

sentation is noise elimination: since the positioning of peaks and the signal strength both vary

from cell to cell as well as from test to test, we gain significant robustness (at the expense of

detail) by merging all overlapping peaks into one signal, which we use to decide on the value

of a single bit. The loss of information may be illusory (because of the noise), but in any case

we do not need a lot of information to build a phylogeny on a few dozen cell types.
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Figure 5.1 – An example of an interesting region as defined by overlap representation is shown. The dotted
horizontal lines represents a portion of the genome. Each row stands for a separate ChIP-Seq library (L1-L5). The
dark lines represent peak regions. 1 and 0 is the data representation for each library.

5.2.3 Phylogenetic analysis

Phylogenetic analysis attempts to infer the evolutionary relationships of modern species or

taxa—they could also be proteins, binding sites, regulatory networks, etc. The best tools for

phylogenetic inference, based on maximum parsimony (MP) or maximum likelihood (ML),

use established models of sequence evolution, something for which we have no equivalent

in the context of cell differentiation. However, one class of phylogenetic inference methods,

so-called distance-based methods, are founded on hierarchical clustering under some suitable

measure of pairwise distance for similarity. This type of method is directly applicable to our

problem, provided we can define a reasonable measure of distance, or similarity between cell

types in terms of our data representations. (We are not implying that models of differentiation

do not exist nor that they could not be derived, but simply stating that none exist at present

that could plausibly be used for maximum-likelihood phylogenetic inference.) Finally note

that, with 0/1 data, we can also use an MP method, in effect assuming that all changes are

equally likely.

In a cell type tree, most cell types coexist in the present; thus at least some of them can be

found both at leaves and at internal nodes. (We may not have data for all internal nodes, as we

cannot claim to have observed all cell types.) Fortunately, phylogenetic inference still works in

such cases: as mentioned earlier, when the same taxon should be associated with both a leaf

and an internal node, we should simply observe that each edge on the path from that internal
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node to that leaf is extremely short, since that distance between the two nodes should be zero

(within noise limits). The tree inferred will have the correct shape; however, should we desire

to reconstruct the basic cell types, then we would have to lift some of the leaf data by copying

them to some internal nodes.

Of the many distance-based methods, we chose the most commonly used one, Neighbor-

Joining (NJ) [104]. While faster and possibly better distance-based methods exist, such as

FastME [29], it was not clear that their advantages would still obtain in this new domain;

and, while very simple, the NJ method has the advantage of not assuming a constant rate of

evolution across lineages. In each of the two data representation approaches, we compute

pairwise distance between two libraries as the Hamming distance of their representations.

(The Hamming distance between two strings of equal length is the number of positions at

which corresponding symbols differ.) We thus obtain a distance matrix between all pairs of

histone modification libraries; running NJ on this matrix yields an unrooted tree. For MP, we

used the TNT software [47].

5.2.4 On the inference of ancestral nodes

We mentioned that lifting some of the leaf data into internal nodes is the natural next step

after tree inference. However, in general, not all internal nodes can be labelled in this way, due

mostly to sampling issues: we may not have observed the type that should be associated with

a particular internal node, or we may be missing enough fully differentiated types that some

internal tree nodes do not correspond to any real cell type. Thus we are faced with a problem

of ancestral reconstruction and, more specifically, with three distinct questions:

– For a given internal node, is there a natural lifting from a leaf?

– If there is no suitable lifting, is the node nevertheless a natural ancestor—i.e., does it corre-

spond to a valid (real) cell type?

– If the node has no suitable lifting and does correspond to a valid cell type, can we infer its

data representation?

These are hard questions, in terms of both modelling and computational complexity; they are

further complicated by the noisy nature of the data. Such questions remain poorly solved in

standard phylogenetic analysis; in the case of cell-type trees, we judged it best not to address

these problems until the tree inference part is better understood and more data are analyzed.

5.2.5 Peak-finding

Since our algorithms work on peak data, one needs to use some peak finder to convert the

ChIP-Seq histone modification libraries into peaks. One can use any peak finder. We used the

publically available peaks given by the ENCODE project for our analysis.

Since we found the peaks to be noisy, we also tried to develop our own ‘peak-finder’. In

chapter 3, we had proposed a two stage statistical method called ChIPnorm for identifying
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differential regions between two ChIP-Seq histone modification libraries. It normalizes the

data, identifies significant and enriched regions, and finally identifies differential regions. This

method was shown to be significantly better than the previously proposed methods. Now

in this chapter, we used one of the pre-filtering steps of the ChIPnorm method to identify

significant regions of individual ChIP-Seq libraries and we use them as ‘peak’ regions. We call

this adapted method ChIPnormSig. Regions of the genome which are significantly enriched

compared to a theoretical random distribution (which is estimated) are declared as significant

(Figure 5.2). We used an amplified binomial distribution to represent this theoretical random

distribution. Details on the theoretical distribution and how to infer its parameters from the

data can be found in chapter 3. A false discovery rate threshold of 5% was used to identify

significant regions as that is the value commonly used in literature (though this threshold

value can be changed).

FDR

Significant bins

ChIP−Seq

     binsrandom
distribution

Estimated

Peak regions

Figure 5.2 – ChIPnormSig method to identify significant regions (which are used as peak regions) from histone
modification ChIP-Seq library.

5.3 Results and Discussion

Experimental Design

The histone modification ChIP-Seq data were taken from the ENCODE project database (UW

ENCODE group) for human (hg19) data [82, 21]. We carried out experiments on H3K4me3 and

H3K27me3 histone mark data from University of Washington (UW) ENCODE group and on

H3K4me1, H3K9me3, H3K27ac histone mark data from Broad ENCODE group [82]. H3K4me3

is a well studied histone mark usually associated with gene activation, while the less well

studied H3K27me3 is usually associated with gene repression [85]. We used data for cell types

classified as “normal” and for embryonic stem cells—we did not retain cancerous or EBV

cells as their differentiation processes might be completely distinct from those of normal

cells. The ENCODE project provides peaks of ChIP-Seq data for each replicate of each cell

type. We therefore used their peaks as the raw input data for our work. For the windowing

representation, we used bins of 200 bp: this is a good size for histone marks, because 147 bp of
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DNA wrap around the histone and linker DNA of about 80 bp connect two histones, so that

each bin represents approximately the absence or presence of just one histone modification.

We programmed our procedures in R and used the NJ implementation from the ape library in

R.

Table 5.1 shows the list of the 37 cell types (72 libraries including all replicates) used for

H3K4me3 data and 13 cell types (23 libraries including all replicates) for H3K27me3 data,

giving for each an abbreviation and a short description. The table also shows the 10, 11, and

12 cell types used for H3K4me1, H3K9me3, H3K27ac respectively. In addition, the cells are

classified into various groups whose names are based on their cell type. Keratinocytes (NHEK)

is included in the Epithelial group. We have two replicates for most cell types, but only one

replicate for types HCFaa, HFF, and CD14, and three replicates for CD20. (CD20(1) is a B-

cell from an African-American individual while CD20(2) and CD20(3) are from a Caucasian

individual). The replicates are biological replicates, i.e., the data come from two independent

samples. For human Embryonic Stem Cells (hESC) we have data for different days of the

cell culture (day 0, 2, 5, 9, 14) ) for H3K4me3 and H3K27me3 data, so we shall use hESC D2

(or hESC T2) to mean data for hESC cells on day 2. For each cell type, we shall mention the

replicate number in brackets, unless the cell type has only one replicate. All our experiments

are done using the neighbor-joining distance based approach unless otherwise mentioned.

More information about where we collected ENCODE peak data from is given in appendix B.

H3K4me3 data on individual replicates

We report on our analyses using peak data from the ENCODE database for H3K4me3 histone

modifications. We carried out the same analyses using H3K27me3 data, but results were very

similar and so are not detailed here—we simply give one tree for comparison purposes. The

similarity of results between the two datasets reinforces our contention that phylogenetic

analyses yield biologically meaningful results on such data. We color-code trees to reflect the

major groupings listed in Table 5.1.

Figure 5.3 shows the trees constructed using only one replicate for each cell type using both

windowing and overlap representations. The color-coding shows that embryonic stem cells

and blood cells are in well separated clades of their own, while fibroblasts and epithelial cells

fall in just two clades each. Even within the hESC group we see that day 0 is far off from day 14

compared to its distance from day 2. Thus epigenetic data such as histone marks do contain a

lot of information about cell differentiation history.

In order to quantify the quality of the groupings, we compute the total number of cells in a

subtree that belong to one group. Since our groups are based on cell type only, there could

be many subdivisions possible within each group. Therefore we choose the two largest such

subtrees available for each group such that each subtree contains only the leaf nodes of that

group. The results are shown in Table 5.2: most of the cell types in each group do cluster

together in the tree.
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Table 5.1 – Cell types, short description, and general group for H3K4me3, H3K27me3, H3K4me1, H3K9me3,
H3K27ac data. For details see the ENCODE website [101]. The mark Xshows the usage of that cell type for that
particular histone mark.

Cell Name Short Description Group H3K4me3 H3K27me3 H3K4me1 H3K9me3 H3K27ac

AG04449 fetal buttock/thigh fibroblast Fibroblast X
AG04450 fetal lung fibroblast Fibroblast X X
AG09319 gum tissue fibroblasts Fibroblast X
AoAF aortic adventitial fibroblast cells Fibroblast X
BJ skin fibroblast Fibroblast X X
CD14 Monocytes-CD14+ from human leukapheresis production Blood X X X X X
CD20(1) B cells replicate, African American Blood X X
CD20(2) and CD20(3) B cells replicates, Caucasian Blood X
hESC undifferentiated embryonic stem cells hESC X X X X X
HAc astrocytes-cerebellar Astrocytes X
HAsp astrocytes spinal cord Astrocytes X
HBMEC brain microvascular endothelial cells Endothelial X
HCFaa cardiac fibroblasts- adult atrial Fibroblast X
HCF cardiac fibroblasts Fibroblast X
HCM cardiac myocytes Myocytes X
HCPEpiC choroid plexus epithelial cells Epithelial X
HEEpiC esophageal epithelial cells Epithelial X
HFF foreskin fibroblast Fibroblast X
HFF MyC foreskin fibroblast cells expressing canine cMyc Fibroblast X
HMEC mammary epithelial cells Epithelial X X X X X
HPAF pulmonary artery fibroblasts Fibroblast X
HPF pulmonary fibroblasts isolated from lung tissue Fibroblast X
HRE renal epithelial cells Epithelial X X
HRPEpiC retinal pigment epithelial cells Epithelial X
HSMM skeletal muscle myoblasts Skeletal Muscle X X X
HSMMtube skeletal muscle myotubes differentiated from the HSMM cell line Skeletal Muscle X X X
HUVEC umbilical vein endothelial cells Endothelial X X X X X
HVMF villous mesenchymal fibroblast cells Fibroblast X
NHA astrocytes (also called Astrocy) Astrocytes X X X
NHDFAD adult dermal fibroblasts Fibroblast X X
NHDF Neo neonatal dermal fibroblasts Fibroblast X
NHEK epidermal keratinocytes Epithelial X X X X X
NHLF lung fibroblasts Fibroblast X X X X
Osteobl osteoblasts (NHOst) Osteoblasts X X X
RPTEC renal proximal tubule epithelial cells Epithelial X
SAEC small airway epithelial cells Epithelial X X
SKMC skeletal muscle cells Skeletal Muscle X
WI 38 embryonic lung fibroblast cells Fibroblast X
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Figure 5.3 – Cell-type tree on H3K4me3 data (ENCODE peaks) using only one replicate: (a) windowing representa-
tion, (b) overlap representation.

Figure 5.3 shows long edges between (most) leaf nodes and their parents—a disquieting

feature, as it casts doubt as to the robustness of the tree, parts of which could be assimilated to
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Table 5.2 – Statistics for cell-type trees on H3K4me3 data. 2nd to 9th columns show the number of cells (of the
same type) belonging to the largest and second-largest clades; the total number of cells of that type is in the top
row. Rows correspond to various methods (WM: windowing; OM: overlap; TP: top peaks with threshold of 10). The
second last column shows the SR ratio. The last column contains the percent deviation (PD) of the distances between
the leaves found using the NJ tree from the Hamming distance between the leaves. ENCODE means peaks from
ENCODE data is used while ChIPnormSig means peaks from ChIPnormSig program is used. (one replicate) means
only one replicate for each cell type is used, (all replicates) means all available replicates (1, 2, or 3) for each cell type
is used, (profile) means a profile representation created using all replicates for each cell type is used. MP - maximum
parsimony using TNT software.

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal Muscle SR PD
(5) (8) (16) (2) (2) (1) (2) (1) (%)

WM (one replicate)-ENCODE 5,0 6,1 8,4 2,0 1,1 1,0 1,1 1,0 0.93 3.20
OM (one replicate)-ENCODE 5,0 4,1 6,3 2,0 2,0 1,0 1,1 1,0 0.92 3.94

OM (one replicate)-ENCODE-MP 5,0 4,2 6,4 2,0 1,1 1,0 1,1 1,0 0.63 -
WM (one replicate)-ChIPnormSig 5,0 4,2 10,5 2,0 1,1 1,0 1,1 1,0 0.86 6.50
OM (one replicate)-ChIPnormSig 5,0 4,2 10,5 2,0 1,1 1,0 1,1 1,0 0.87 5.02

WM (all replicates)-ENCODE 5,0 6,1 11,2 2,0 1,1 1,0 1,1 1,0 0.84 3.30
OM (all replicates)-ENCODE 5,0 4,2 9,4 2,0 2,0 1,0 1,1 1,0 0.78 3.88

WM (all replicates)-ChIPnormSig 5,0 4,2 15,1 2,0 2,0 1,0 1,1 1,0 0.64 6.40
OM (all replicates)-ChIPnormSig 5,0 4,2 12,3 2,0 1,1 1,0 1,1 1,0 0.63 5.81
WM (all replicates)-TP-ENCODE 5,0 6,1 7,4 2,0 1,1 1,0 1,1 1,0 0.81 3.73
OM (all replicates)-TP-ENCODE 5,0 4,3 8,5 2,0 2,0 1,0 1,1 1,0 0.74 3.98

OM (profile)-ENCODE 5,0 4,3 12,2 2,0 2,0 1,0 1,1 1,0 0.90 4.05
OM (profile)-ChIPnormSig 5,0 4,2 12,3 2,0 1,1 1,0 1,1 1,0 0.85 4.84

star-shaped trees (a tree with only one internal node and the remaining nodes being leaves).

To quantify this observation, we measured the SR ratio, defined as SR =
∑

e∈I l (e)∑
e∈E l (e) , where I is the

set of all edges connecting leaf nodes to their parents, E is the set of all edges in the tree, and

l (e) is the length of edge e. If this ratio SR is close to 1, then the tree looks star-shaped with

long branches to the leaves. This ratio was 0.93 using the windowing representation; using the

overlap representation reduced it very slightly to 0.92. These long branches are due in part to

the very high level of noise in the data, explaining why the overlap representation provided a

slight improvement.

As a final entry in the table, we added another measure on the tree and the data. The NJ

algorithm is known to return the “correct" tree when the distance matrix is ultrametric; the

technical definition does not matter so much here as the consequence: if the matrix is ultra-

metric, then the sum of the length of the edges on the path between two leaves always equals

the pairwise distance between those two leaves in the matrix. Thus one way to estimate how

far the distance matrix deviates from this ideal is to compare its distances to the length of the

leaf-to-leaf paths in the tree:

PD =
∑

i , j |N J (i , j )−M(i , j )|∑
i , j N J (i , j )

where i and j are leaf nodes, N J(i , j ) is the tree distance between i and j , and M(i , j ) is the

matrix distance between i and j . A high value of PD indicates that the data representations

and measures do not fit well to any tree. We get very low values (of less than 4% for both

windowing and overlap representations), suggesting that the distances we compute are in fact

representative of a tree and thus offering confirmation of the validity of the inference.

Finally, the trees obtained using TNT software (MP based method) are very similar but we got a
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better SR ratio as shown in Table 5.2. The results using TNT software for overlap representation

when using only one replicate of H3K4me3 data is shown in Figure 5.4.
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Figure 5.4 – Using maximum parsimony (TNT software) on H3K4me3 data (ENCODE peaks) using only one
replicate (overlap representation).

H3K4me3 data with all replicates

By bringing replicates into the analysis, we can expect to see a stronger phylogenetic signal

as each replicate adds to the characterization of its cell type. In particular, wherever we have

two or more replicates, they should form a tight subtree of their own. We thus used our

replicate data (two replicates for 33 of the 37 cell types, and three for one type, for a total of

72 libraries) in the same analysis pipeline. Figure 5.5 shows the differentiation trees obtained

using windowing and overlap representations. We also include the same study (in overlap

representation only) on H3K27me3 data in Figure 5.6. As expected, almost all replicates are

grouped; since we usually have two replicates, we get a collection of “cherries" (pairs of leaves)

where we had a single leaf before. In most cases, it is now the distance from each leaf in a

cherry to their common parent that is large, indicating that the distance between the two

replicates is quite large—as we can also verify from the distance matrix. This suggests much

noise in the data. This noise could be at the level of raw ChIP-Seq data, but also due to the

bias of peak-finding methods used—one expects a general-purpose peak finder to be biased

against false negatives and more tolerant of false positives, but for our application we would

be better served by the inverse bias. Another reason for the large distance is the nature of the

data: these are biological replicates, grown in separate cultures, so that many random losses or

gains of histone marks could happen once the cell is differentiated. Thus it may be that only a

few of the variations in the data are correlated with cell differentiation. Identifying these few
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variations would be of high interest, but with just two replicates we are unlikely to pinpoint

them with any accuracy.
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Figure 5.5 – Cell-type tree on H3K4me3 data (ENCODE peaks, using all replicates): (a) windowing representation,
(b) overlap representation.

AG04450

BJ(1)

BJ(
2)

C
D

1
4

hE
S
C
 T14(1)

hESC T14(2)

hE
S
C
 T

2(
1)

h
E

S
C

 T
2
(2

)

hESC T5(1)

hESC T5(2)

hESC T9(1)

hESC T9(2)

h
E

S
C

 T
0
(1

)
h
E

S
C

 T
0
(2

)

H
M

E
C

HRE(1)

H
R

E
(2)

HUVEC(1)
HUVEC(2)

N
H

E
K

(1
)

N
H

E
K

(2
)

S
A
E
C

(1
) S

A
E

C
(2

)

hESC
Epithelial
Fibroblast
Blood
Endothelial

Figure 5.6 – Cell-type tree on H3K27me3 data (ENCODE peaks), using all replicates and overlap representation.

Looking again at Table 5.2, we see that, using the windowing representation, the value of SR

for the full set of replicates is 0.84 and that here the overlap representation, which is more

effective at noise filtering, yields an SR value of 0.78. This is a substantial reduction and

indicates that the long edges are indeed due to noise. The PD percentage values remain very

low for both representations, so the trees we obtained do represent the data well. Note that

the groupings appear (in the color-coding in the figure) somewhat better than when we used

only one replicate, and the values in columns 2 through 9 of Table 5.2 confirm this impression.

We also include results using windowing representation on H3K4me1 data, H3K9me3 data,

and H3K27ac data in Figs. 5.7, 5.8, 5.9 respectively. We got good results on these datasets as

seen from these figures as well.
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Figure 5.7 – Cell-type tree using windowing representation on H3K4me1 data.
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Figure 5.8 – Cell-type tree using windowing representation on H3K9me3 data.

Using top peaks, masking regions, IDR analysis

In order to study the nature of the noise, we removed some of the less robust peaks. The

ENCODE dataset gives a p-value for each peak listed; we kept only peaks with (negative) log
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Figure 5.9 – Cell-type tree using windowing representation on H3K27ac data.

p-values greater than or equal to a threshold of 10. We kept all replicates and ran the analysis

again, with the results depicted in Figure 5.10. The PD percentage values are again very low,

so the trees once again fit the data well. The improvement looks superficially minor, but we

obtained some more biologically meaningful clusters with this approach. For example, in the

fibroblast group when we used only top peaks in the overlap representation, one cell type

HFF moved to sub-tree containing HFF-Myc (which makes more sense as both are foreskin

fibroblast cells). Such a change could be due to particularly noisy data for the HFF cells having

obscured the relationship before we removed noisy peaks. Overall, removing noisy peaks

further reduced the SR ratio from 0.78 to 0.74 for the overlap representation and from 0.84

to 0.81 for the windowing representation. To test for robustness of the method, we also ran

the overlap representation on ENCODE peak data with (negative) log p-values greater than or

equal to various thresholds. The results are shown in Table 5.3. The table shows the method

works quite well in most of these thresholds.

Another typical noise-reduction procedure, much used in sequence analysis, is to remove

regions that appear to carry little information or to produce confounding indications—a

procedure known as masking. We devised a very simplified version of masking for our problem,

for use only with replicate data, by removing any region within which at most one library gave

a different result (1 instead of 0 or vice versa) from the others. In such regions, the presence of

absence of peaks is perfectly conserved across all but one replicate. It is possible that replicate

data differs from each other because of the noisy nature of the data or because the differences
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Figure 5.10 – Cell-type tree on H3K4me3 data (ENCODE peaks, using all replicates) on peaks with negative log
p-value ≥ 10: (a) windowing representation, (b) overlap representation.

Table 5.3 – Statistics for cell-type trees on H3K4me3 data using top peaks. 2nd to 9th columns show the number
of cells (of the same type) belonging to the largest and second-largest clades; the total number of cells of that type
is in the top row. Rows correspond to various methods (OM: overlap; TP: top peaks). threshold x means that the
peaks which have a (negative) log p-value ≥ x is used. The second last column shows the SR ratio. The last column
contains the percent deviation (PD) of the distances between the leaves found using the neighbor-joining (NJ) tree
from the Hamming distance between the leaves. ENCODE peak data is used. (all replicates) means all available
replicates (1, 2, or 3) for each cell type is used. We can see that the method is robust to various kinds of threshold used.

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal Muscle SR PD
(5) (8) (16) (2) (2) (1) (2) (1) (%)

OM (all replicates) 5,0 4,2 9,4 2,0 2,0 1,0 1,1 1,0 0.78 3.88
OM (all replicates)-TP (threshold 5) 5,0 5,1 9,4 2,0 2,0 1,0 1,1 1,0 0.76 4.00
OM (all replicates)-TP (threshold 8) 5,0 6,1 9,4 2,0 2,0 1,0 1,1 1,0 0.74 3.77

OM (all replicates)-TP (threshold 10) 5,0 4,3 8,5 2,0 2,0 1,0 1,1 1,0 0.74 3.98
OM (all replicates)-TP (threshold 12) 5,0 4,2 8,5 2,0 2,0 1,0 1,1 1,0 0.73 3.85

are actually present in the cells due to biological reasons. In the latter case, the differences

between the two replicates are not cell type specific (as they differ among replicates), hence

they are not important for our analysis. After removing such regions, we have somewhat

shorter representations, but follow the same procedure. The trees returned have exactly the

same topology and so are not shown; the length of edges changed very slightly, as the SR value

decreased from 0.74 down to 0.70 using top peaks in the overlap representation.

IDR (irreproducible discovery rate) analysis [73] was carried out with a R script downloaded

from: https://sites.google.com/site/anshulkundaje/projects/idr. We used data containing

exactly 2 replicates on H3K4me3 ENCODE peak data. That is we removed CD14, CD20(1), HFF,

HCFaa since they have only one replicate from the earlier used dataset. Therefore we have

34 cell types and 68 libraries (2 replicates per cell type). The IDR analysis was carried out for

overlap representation at various IDR thresholds of 0.01, 0.1, 0.25 for the overlapping peaks

between the two replicates for each cell type. The results are shown in Table 5.4 and Figure

5.11. As shown in the table, we see a slight improvement of the clustering in epithelial cell

types when using an IDR analysis. Since the IDR analysis was done on overlapping peaks, we
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Chapter 5. Cell-type trees

Table 5.4 – Statistics for cell-type trees on H3K4me3 data using IDR analysis. 2nd to 9th columns show the
number of cells (of the same type) belonging to the largest and second-largest clades; the total number of cells of that
type is in the top row. The second last column shows the SR ratio. The last column contains the percent deviation
(PD) of the distances between the leaves found using the NJ tree from the Hamming distance between the leaves.
Rows correspond to various methods OM (two replicates): overlap representation on all cell-types which have exactly
two replicates (on all available peaks). OM-IDR (two replicates), (threshold x): Overlap representation used on
overlapping peaks (between replicates) which have an IDR value ≤ x (output of IDR program). Since these are
overlapping peaks the SR ratio is always 0 given the nature of overlap representation. ENCODE peak data is used.
(two replicates) means all two replicates for each cell type is used (34 cell-types, 68 libraries). We considered data
containing only two replicates for this work.

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal Muscle SR PD
(5) (8) (14) (1) (2) (1) (2) (1) (%)

OM (two replicates) 5,0 4,3 8,4 1,0 2,0 1,0 1,1 1,0 0.77 3.85
OM-IDR (two replicates), (threshold 0.01) 3,1 4,2 4,4 1,0 2,0 1,0 1,1 1,0 0 4.26

OM-IDR (two replicates), (threshold 0.1) 5,0 6,1 7,4 1,0 1,1 1,0 1,1 1,0 0 3.47
OM-IDR (two replicates), (threshold 0.25) 5,0 6,1 8,4 1,0 1,1 1,0 1,1 1,0 0 3.00

got an SR ratio of 0 between two replicates due to the nature of the overlap representation.
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Figure 5.11 – Overlap representation using overlapping peaks (between replicates) which have an IDR value
≤ 0.025 (output of IDR program). Since the distance between replicates is 0, the two replicates of each cell type are
represented in one label.

A better looking tree

Barring the addition of many replicates, the SR ratio of 0.70 appears difficult to reduce and yet

remains high. However, the cherries of replicate pairs by themselves give an indication of the

amount of “noise" (variation among individual cells as well as real noise) present in the data.
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5.3. Results and Discussion

We can take that noise out directly by replacing each cherry in the tree with its parent, which

is a better representative of the population of this particular cell type than either of the two

leaves. We carried out this removal on the tree of Figure 5.10(b) and obtained the tree shown

in Figure 5.12. Since hESC cells do not form clear pairs, we replaced the entire clade of hESC

cells by their last common ancestor. The leaves with remaining long edges are those for which

we did not have a replicate (CD14, HCFaa, and HFF).
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Figure 5.12 – H3K4me3 data (ENCODE peaks), overlap representation on peaks with negative log p-value ≥ 10.
Replicate leaves are removed and replaced by their parent.

Bootstrap analysis

We did some bootstrap analysis on the cell-type tree obtained using overlap method on single

replicates using ENCODE H3K4me3 peak data and neighbor-joining tree approach (Figure

5.3(b)). We found that 62.86% of internal edges have bootstrap scores of above 80%. When we

used all replicates on the ENCODE H3K4me3 peak data using overlap method and neighbor-

joining tree approach (Figure 5.5(b)), we found that 84.29% of internal edges have bootstrap

scores of above 80%. (We used the function boot.phylo from the ape package [95] of R software

for our analysis. 1000 bootstrap replicates were used for the analysis.)

Using ChIPnormSig peaks

To reduce the amount of noise in the ENCODE peaks, we look at the cell-type trees obtained

using ChIPnormSig peaks. A false discovery rate (FDR) of 5% was used. The results are shown

in Figure 5.13 (using only one replicate for each cell type), Figure 5.14 (using all replicates),

and Table 5.2. We see from the figure that the results are considerably better with less noisy

edge lengths between replicates (lower SR ratio) and also better grouping of cell types. This

also indicates the importance of data preprocessing.
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Figure 5.13 – Cell-type tree on H3K4me3 data (using one replicate) using (a) windowing representation (b) overlap
representation. Peaks generated by ChIPnormSig method (FDR 5%).
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Figure 5.14 – Cell-type tree on H3K4me3 data (using all replicates) using (a) windowing representation (b) overlap
representation. Peaks generated by ChIPnormSig method (FDR 5%).

Creating a profile using replicate data

We also show a method of creating profile of a cell type using the data representation of indi-

vidual replicates. For each cell type, the profile in each bin or interesting region is represented

as sum of all 1/0 (data representation value) of each replicate of that cell type in that bin or

interesting region divided by the number of replicates. For example, if there are 2 replicates for

one cell type, the profile at interesting region i would be 1 if both replicates have 1, 0 if both

replicates are 0, 0.5 if one replicate is 1 and the other is 0. Using this new data representation

using the profile data representation, we build trees using the neighbor-joining method. The

distance between two profile representation (one for each cell type) is sum of all the absolute

value of the difference between the profile values at each bin/interesting region. The results

are shown in Figure 5.15 and Table 5.2. We see an improvement of results using the profile

representation when compared to using all replicates or one replicate data.
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Figure 5.15 – Cell-type tree on H3K4me3 data (using profile data representation) using Overlap representation: (a)
ENCODE peaks, (b) ChIPnormSig peaks.

Looking at changes along specific branches of the tree

Phylogenetic analysis allows to reconstruct ancestral nodes and thus to study important

branches of a tree. We are interested in the changes that happen early in development when

ES cells start to differentiate into lineage-specific cell types. To this end, we selected genomic

regions which are all 1s in the ES samples and 0s elsewhere allowing for one error in each

group. We also selected genomic regions showing the opposite behavior. The results we show

are all based on ENCODE peak lists (including replicates) using the overlap representation.

We then looked at the enrichment of gene ontology (GO) and other gene annotation terms for

genes adjacent to the identified genomic regions, using the GREAT website [83]. This type of

analysis was carried for both H3K4me3 data and H3K27me3. The detailed results are shown in

appendix B.

We found 322 and 126 regions that were specifically marked by H3K4me3 in ES or non-ES cells,

respectively. In the ES positive group, we found significant associations with expression in

neural tissues (Figure B.1). This could be explained by the fact that both brain and ES cells

have unusually broad expression patterns compared to other tissues. H3K4me3-depleted

regions are often flanked by transcription factor genes with zing-finger domains (Figure B.2).

The majority of these genes are probably repressed in undifferentiated ES cells.

Carrying out the same type of analysis with H3K27me3 data, we found 4036 regions that

were specifically marked in ES cells, but only seven regions showing the opposite histone

modification pattern. We find the ES-specific regions to be enriched near genes involved

in morphogenesis, consistent with the assumption that such genes have to be repressed in

undifferentiated ES cells (Figure B.3). By looking at the numbers of the individual classes, it

appears that loss of a histone mark is a more frequent event during development than a gain

of a histone mark. The imbalance is stronger for the repressive mark H3K27me3 than for the

activating mark H3K4me3.
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Chapter 5. Cell-type trees

We explored the distribution of H3K4me3 and H3K27me3 modifications along various path-

ways of cell differentiation. As before, the analysis was done on ENCODE peak lists (including

replicates) using the overlap representation. We considered only regions which do not show

ambiguity between replicates. Table 5.5 shows the distribution of histone modification pat-

terns over days 0, 2, 5, 9 and 14 of the ES cell differentiation time course. (Note that the all-zero

pattern is not included since the overlap representation requires that a peak be found in

at least one sample.) We see from this table that the “all one” pattern (‘11111’) is the most

dominant. We also see that patterns with one change over time such as ‘00001’, ‘00011’, ‘00111’,

‘01111’, ‘11110’, ‘11100’, ‘11000’, ‘10000’ are relatively frequent, whereas patterns involving

multiple losses or gains such as ‘10101’, ‘01010’, ‘11011’ are rarely found. Patterns with a single

gain followed by a loss immediately thereafter (like ‘00100’) are not so rare. However, the op-

posite class of patterns (like ‘11011’) is very rare. We did gene enrichment analysis on regions

showing pattern ‘01000’. While analyzing H3K4me3 data, we found a great diversity of gene

annotation terms, with a preponderance of terms related to proliferation and development

(Figure B.4). While analyzing H3K27me3 data, many gene annotation terms associated with

development were found — like heart development, palate development, nerve development

etc. (Figure B.5). The gene annotation terms associated with specific histone modifications ap-

pearing on day two are compatible with a sudden response to an external stimulus activating

a developmental pathway.

Table 5.6 shows results from a similar kind of analysis along another developmental pathway

comprising ES (day 0), HUVEC, and HBMEC. (These three cell types should occur one after

the other during development.) Table 5.7 shows results for yet another such developmental

pathway consisting of ES (day 0), WI38, AG04550, and HPF. Again we see that the “all one”

pattern is quite frequent for H3K4me3 data compared to other patterns. However such was

not the case for H3K27me3. The contrasting behavior may be due to the fact that H3K4me3

is often associated with constitutive (house-keeping) genes whereas H3K27me3 primarily

regulates developmental genes. From this perspective, it would be unlikely to find invariantly

H3K27me3 marked regions along a complete differentiation pathway starting from ES.

Discussion on the evolutionary interpretation of cell-type trees

In this chapter, we have used cell-type trees for studying cell differentiation. We used phylo-

genetic methods such as neighbor-joining for our work because of the similarities between

cell-differentiation process and evolution (as we outlined earlier). Now we discuss how cell-

type trees can be used to study the evolution of cell-types among different species.

Arendt [3] outlines the interrelationship between the evolution of cell types and the cell devel-

opment process, mentioning that, in some cases, cell type development seems to recapitulate

cell type evolution. Cell-type trees can be used to study the evolution of cell types. These trees

are somewhat similar to phylogenetic trees based on gene duplication-loss models or trees

build on morphology based characters. We explain the concept through an example. Figure
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5.3. Results and Discussion

Table 5.5 – Analysis on paths. Table shows the number of different types of changes across various days of ES
cells. Dx means day x of ES cell type. 1 and 0 represents the presence or absence of a peak as defined by the overlap
representation in one region of the genome. The number of such 1-0 patterns are counted and presented in the last
column.

Row no. D0 D2 D5 D9 D14 H3K4me3 (total) H3K27me3 (total)

1 0 0 0 0 1 1075 3496
2 0 0 0 1 0 342 743
3 0 0 0 1 1 387 599
4 0 0 1 0 0 331 1459
5 0 0 1 0 1 15 97
6 0 0 1 1 0 40 112
7 0 0 1 1 1 247 461
8 0 1 0 0 0 1278 1919
9 0 1 0 0 1 14 22

10 0 1 0 1 0 9 57
11 0 1 0 1 1 30 82
12 0 1 1 0 0 60 74
13 0 1 1 0 1 5 11
14 0 1 1 1 0 9 34
15 0 1 1 1 1 147 253
16 1 0 0 0 0 450 641
17 1 0 0 0 1 11 9
18 1 0 0 1 0 11 5
19 1 0 0 1 1 14 3
20 1 0 1 0 0 24 40
21 1 0 1 0 1 6 5
22 1 0 1 1 0 10 5
23 1 0 1 1 1 101 81
24 1 1 0 0 0 630 1140
25 1 1 0 0 1 17 21
26 1 1 0 1 0 11 26
27 1 1 0 1 1 47 71
28 1 1 1 0 0 309 548
29 1 1 1 0 1 54 52
30 1 1 1 1 0 263 335
31 1 1 1 1 1 25112 10926

5.16 shows an constructed example of a particular current species S2 (bottom cell-type tree

T 2) to a particular ancestral species S1 (top cell-type tree T 1). The leaf nodes in tree T 2: C 1−1,

C 1−2, C 2, C 3, C 4 represent blood cells of the current species S2. The leaf nodes of tree T 1: C 1,

C 2, C 3 represent blood cells of ancestral species S1. The internal nodes of each tree represent

cell types of some ancestral species. We can see that leaf node C 1 of tree T 1 is the parent of leaf

nodes C 1−1 and C 1−2 of tree T 2. Similarly some other nodes are from one tree to another are

marked by red arrows. The leaf nodes of each tree represent various blood cell types present in

that species. The figure shows how the ancestral nodes in S2 could be leaf nodes in ancestor

S1. Other possibilities are also shown. One possibility is that current species have more blood

cell types than an ancestral species and this is captured by a cell-type tree. Thus the cell-type

trees we generate using histone modification data could also be used to study the evolution of

cell types.
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Chapter 5. Cell-type trees

Table 5.6 – Analysis on paths. Table shows the number of different types of changes for ES, HUVEC, and HBMEC
cell types. 1 and 0 represents the presence or absence of a peak as defined by the overlap representation in one region
of the genome. The number of such 1-0 patterns are counted and presented in the last column. NA - not applicable
(because data for the cell-type is not available).

H3K4me3 (row no.) ES (D0) HUVEC HBMEC Total

1 0 0 1 3407
2 0 1 0 1769
3 0 1 1 1805
4 1 0 0 5224
5 1 0 1 1415
6 1 1 0 417
7 1 1 1 23824

H3K27me3 (row no.) ES (D0) HUVEC HBMEC Total

1 0 1 NA 12468
2 1 0 NA 14684
3 1 1 NA 8403

R

R

C1

N1

N2

N1

N2

C2 C3

X

C1

C1−1 C1−2 C2 C4 C3

T1

T2

ST

ST

Figure 5.16 – Cell-type trees to study evolution of cell types - a constructed example is shown in this figure. Tree T 2
- current species S2. Tree T 1 - ancestral species S1. ST - sub-tree.
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5.4. Conclusions

Table 5.7 – Analysis on paths. Table shows the number of different types of changes for ES, WI38, AG04550, HPF
cell types. 1 and 0 represents the presence or absence of a peak as defined by the overlap representation in one region
of the genome. The number of such 1-0 patterns are counted and presented in the last column. NA - not applicable
(because data for the cell-type is not available).

H3K4me3 (row no.) ES (D0) WI38 AG04550 HPF Total

1 0 0 0 1 2946
2 0 0 1 0 1050
3 0 0 1 1 1106
4 0 1 0 0 1670
5 0 1 0 1 382
6 0 1 1 0 879
7 0 1 1 1 4644
8 1 0 0 0 5465
9 1 0 0 1 354

10 1 0 1 0 353
11 1 0 1 1 989
12 1 1 0 0 62
13 1 1 0 1 35
14 1 1 1 0 506
15 1 1 1 1 21806

H3K27me3 (row no.) ES (D0) WI38 AG04550 HPF Total

1 0 NA 1 NA 14734
2 1 NA 0 NA 20108
3 1 NA 1 NA 6342

5.3.1 Code

The code for finding cell-type trees (in R code) and also ChIPnormSig significant regions

(peaks) (in MATLAB code) is made available in http://lcbb.epfl.ch/software.html.

5.4 Conclusions

We studied the novel problem of inferring cell-type trees from histone modification data. We

defined methods for representing the peaks as 0/1 vectors and used these vectors to infer trees.

We obtained meaningful trees, conforming closely to expectations and biologically plausible,

in spite of the high level of noise in the data and the very limited number of samples per cell

type. Our results confirm that histone modification data contain much information about

the history of cell differentiation. We carried out a number of experiments to understand

the source of the noise, using replicate data where available, but also devising various noise

filters. Our results show that larger replicate populations are needed to infer ancestral nodes,

an important step in understanding the process of differentiation. We also discussed how

cell-type trees can be used to study the evolution of cell types.

Much work remains to be done on methods for building good cell-type trees. In particular, the

noisy nature of the data remains an issue. We are exploring various other data preprocessing

and representation techniques which can be used for this purpose. Refining the model of gain

or loss of marks may enable the use of maximum likelihood methods, which deal better with

large ranges of pairwise dissimilarities and also yield more accurate inferences for internal

85

http://lcbb.epfl.ch/software.html


Chapter 5. Cell-type trees

nodes.

Since many histone marks appear independent of cell differentiation, identifying which marks

are most strongly correlated with the differentiation process is of significant interest. Once

such marks have been identified, reconstructing their state in ancestral nodes will enable us to

identify which regions of the genome play an active role in which steps of cell differentiation.
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6 Further study using cell-type trees

6.1 Introduction

This chapter is continuation of the work done on cell-type trees that we have discussed in

chapter 5. Here we discuss the work in progress that we have been doing. Therefore in this

chapter we just show some preliminary work and results.

6.2 Lifting: inferring ancestral nodes

In chapter 5 we discussed cell-type trees. However we did not discuss how ancestral nodes

could be inferred from the given data. One possible way to do that is through using a cell-

type tree and then lifting leaf nodes to internal nodes in such a way as it reflects the cell-

differentiation process. This lifting procedure is important because in the cell-differentiation

process, more specialized cell types arise from less specialized cell types. Therefore for example

ES (at day 0) could be the root node given set of cell-types.

To do the lifting procedure - we relook at some of the questions we had mentioned in chapter

5.

1. For a given internal node, is there a natural lifting from a leaf?

2. If there is no suitable lifting, is the node nevertheless a natural ancestor—i.e., does it corre-

spond to a valid (real) cell type?

3. If the node has no suitable lifting and does correspond to a valid cell type, can we infer its

data representation?

We do not currently address all the above questions but simply give a method for lifting and

see how it works.

6.2.1 Algorithm for lifting
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Algorithm 1 Algorithm for lifting

1: INPUT: a maximum parsimony cell-type tree T
2: OUTPUT: a new cell-type tree that internal nodes are labeled by leaf nodes
3: INITIAL: Set Li f t (i ) = i for all the nodes in the input tree T , where i is the node name.
4: Root this tree by some method.
5: Infer the ancestral states of the internal nodes and parsimony score for the tree using

Fitch’s algorithm [42] on T .
6: while when there are more than two nodes left in the tree do
7: Compute the hamming distance from each leaf i to their respective ancestor node

Ancestor (i ).
8: Choose the edge which has the minimum length between leaf i and Ancestor (i ). The

leaf i is considered only if the sibling of leaf i is also a leaf and not an internal node.
9: Lift leaf i to its ancestor Ancestor (i ) by setting Li f t (Ancestor (i )) = Li f t (i ).

10: Set Ancestor (i ) to be a new leaf (or mask all other nodes in the subtree rooted at
Ancestor (i )) and derive a new tree T

′
.

11: Set T = T
′
.

12: Recompute the ancestral states of the internal nodes using Fitch’s algorithm [42] on T .
13: end while
14: EXIT: for each internal node i in the input tree, Li f t (i ) represents its new label after lifting.

A B C D

1

2
3

A

C D

1

3

Figure 6.1 – Part of lifting procedure. An example showing a small portion of the lifting algorithm is shown. The
edge between node A and node 2 is the smallest among the considered edges. Therefore node A is lifted upwards to its
ancestor and it is made the new leaf.

A small example showing a portion of the lifting procedure is shown in Figure 6.1.

6.2.2 Results and Discussion

We select a small set of cell types for our analysis using H3K4me3 peak data from ENCODE

project (University of Washington group) [82]. The cell types used are CD14, CD20, HUVEC,

HBMEC, WI 38, WI 38 TAM, HPF, AG04550, ES day 0, 2, 5, 9, 14. Only one replicate of each cell

type was used. ES at day 0 is marked as hESC T0 or hESC D0 in the figures. We chose these

cell types because most of them were present in Tables 5.5, 5.6, 5.7. These tables showed a

possible time sequence in how some cell-types occurred. (We had discussed this in some

detail in chapter 5.)
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6.2. Lifting: inferring ancestral nodes

Figure 6.2 – Lifting procedure for ancestral node reconstruction. Shows cell-type tree for H3K4me3 data using
overlap representation. The internal nodes are labelled using green edges to one of the cell-types in the leaf node (by
lifting procedure).

Figures 6.2 and 6.3 shows the cell-type tree (using overlap representation) along with the lifted

cell-types at the internal nodes. The initial tree was found using maximum parsimony analysis

using TNT software [47] on the data representation given by overlap representation. The tree

obtained was then rooted at a fixed root node which was the ancestor node of all the ES cell

types for various days (shown in figure) before lifting. The above mentioned lifting procedure

was applied. We can get Figures 6.2 from this procedure. The internal nodes are labelled using

green edges. Each internal node is labelled from one of the leaf nodes which was lifted up.

We get Figure 6.3 from by Figure 6.2 by collapsing nodes which have the same label (nodes

with the same label occur next to each other). The lifting shows that the tree more or less

agrees with the biological pathways discussed in chapter 5 and Tables 5.5, 5.6, 5.7. We find

from Figures 6.2 and 6.3 that ES at day 0 got lifted to the root (which is the ancestor of all the

ES cell types for different days), which is as expected. From the figure we also find that ES day

2 occurs after ES day 0. Similarly ES cells at day 5 got lifted and is closer to the root before day

9 and day 14. However ES at day 14 is shown as closer to the root than ES at day 9, which is

contrary to expectation. From the figure we see that HUVEC is closer to the root node (ES day

0) than HBMEC as shown in Table 5.6. We also see that WI 38 (or WI 38 TAM) is closer to root

node (ES day 0) than AG04550, while AG04550 is an ancestor to HPF as shown in Table 5.7.

This seems to suggest the lifting procedure works quite well for a small data set.

We also compare our results with a minimum spanning tree (MST) [97, 65]. The MST approach
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hESC T2

hESC T14

hESC T9

WI 38 TAM

HPF

AG04550

WI 38

CD14

hESC T0

hESC T5

ROOT

CD20

HBMEC

HUVEC

hESC

Blood

Fibroblast

Endothelial

Figure 6.3 – Lifting procedure for ancestral node reconstruction. Shows cell-type tree for H3K4me3 data using
overlap representation after lifting process. (Figure is not drawn to scale.)

was used on the data obtained by finding hamming distances on the data obtained from

overlap representation. The results using a minimum spanning tree are shown in Figure 6.4.

We see that even using MST approach we get somewhat similar results while compared to

cell-type trees on this dataset. However we get one additional error - because WI 38, WI 38

TAM and AG04550, HPF (all fibroblasts) seem to be separated by HBMEC (endothelial cell) -

contrary to expectation. We don’t see this error while using the lifting procedure.

More experiments need to be done on various real and simulated datasets for us to see how

good the lifting techniques are for ancestral inference. Also given a tree we need to stop the

lifting procedure at some point. A statistical measure about when to stop lifting is also required.
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6.3. Using normalized raw data

Figure 6.4 – Minimum spanning tree. Minimum spanning tree for H3K4me3 data using overlap representation
(the edges are not drawn to scale).

One possibility to study this problem is to combine lifting procedures with minimum spanning

tree methods and build a new algorithm based on that.

6.3 Using normalized raw data

As we have seen in chapter 5, cell-type trees use histone modification peak data for data

representation purposes. Since the peak-finding step from the raw data could lead to a loss

of information and/or be itself noisy, we look at building cell type trees by using raw or

normalized ChIP-Seq data for data representation purposes.

6.3.1 Evaluation of different data representations

As done in chapter 3, we get the data has by dividing the genome into bins and collecting, for

each bin, a count of the mapped sequence tags that fall within the bin. The result is a “library",

which is simply a list of positive integers, each successive integer associated with the next bin.

Since ChIP-Seq histone modification fragments are approximately 200 bp, like what was done

in Xu et al. 2008 [125], we approximate the center of each fragment by shifting the tag end

position by 100 bp downstream or upstream, according to its orientation on the chromosome.

Then we try the following ratio:

R =
1
2

[∑
i |A1(i )− A2(i )|+∑

j |B1( j )−B2( j )|]
1
4

[∑
a |A1(a)−B1(a)|+∑

b |A1(b)−B2(b)|+∑
c |A2(c)−B1(c)|+∑

d |A2(d)−B2(d)|]
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Table 6.1 – R ratio. The R ratios for different kinds of data representation are shown for 37 cell-types of H3K4me3
data, each cell-type compared with every other. The frequency of occurrence with a small range of R ratio is shown
for all the data representations.

Peak data Raw data Mean normalization Mean normalization per chromosome Standard score normalization

>1 0 0 0 0 1
[0.9 1) 3 9 4 4 1

[0.8 0.9) 6 46 5 7 4
[0.7 0.8) 80 138 31 41 3
[0.6 0.7) 229 195 117 148 7
[0.5 0.6) 221 136 184 213 31
[0.4 0.5) 22 36 155 114 52
[0.3 0.4) 0 1 61 33 118
[0.2 0.3) 0 0 4 1 174
[0.1 0.2) 0 0 0 0 170

where A1(i ) and A2(i ) are bincount values for replicates 1 (library A1) and 2 (library A2)

respectively of cell type A at bin i ; and B1(i ) and B2(i ) are bincount values for replicates 1

(library B1) and 2 (library B2) respectively of cell type B at bin i . |x| means the absolute value

of x. We can also calculate the value for R for peak data too - in such a case value of A1(i ),

A2(i ), B1(i ) or B2(i ) will be either 1 (peak) or 0 (no peak) for each bin i (data representation

as in window representation in chapter 5).

A smaller value of R (much below 1) shows that the distance between replicates of same cell

type is much smaller than the distance between different cell types. We find the ratio of R for

various types of input - whether we use peak data or different forms of normalized raw data.

We tried the following approaches for our data representation. Let L(i ) be the value at bin i .

1. Peak data (as done before): L(i ) is 1 (peak) or 0 (no peak).

2. Raw data without any normalization: consider bincount values in each bin. L(i ) = BC (i )

where BC (i ) is bincount at bin i .

3. Mean normalization of raw data: L(i ) = BC (i )
µBC

, where µBC is the mean bincount value of all

bins in the genome.

4. Mean normalization of raw data (for each chromosome): L(i ) = BC (i )
µC

BC
, where µC

BC is the

mean bincount value of all bins in chromosome C (to which BC belongs).

5. Standard score normalization of raw data (for each chromosome): L(i ) = BC (i )−µC
BC

σC
BC

, where

σC
BC is the standard deviation of the bincount values of all the bins in the genome.

We first test the R ratio for each of these five data representations for 37 cell-types of H3K4me3

data, each cell-type compared with every other. The frequency of occurrence with a small

range of R ratio is shown for all the data representations in Table 6.1. We see from the table

that standard score normalization works best.

Now for each of the above five mentioned data representations we using windowing repre-

sentation to build cell-type trees. The pairwise distance measure used (instead of the simple

Hamming distance used earlier) between the two data representations of the two libraries is

the sum of the absolute values of the differences between two data representations. Neighbor-

joining method was the tree building technique used. We have shown the results in Table 6.2
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6.4. Comparing human and mouse cell types

Table 6.2 – Statistics for cell-type trees on H3K4me3 data for different data representation. 2nd to 9th columns
show the number of cells (of the same type) belonging to the largest and second-largest clades (fraction values indicate
only one of the two replicates fall in that clade); the total number of cells of that type is in the top row. Fractions
are used when only one of the two replicates fall into the clades. Rows correspond to various data representation
techniques. Windowing representation is used for all. The second last column shows the SR ratio. The last column
contains the percent deviation (PD) of the distances between the leaves found using the neighbor-joining tree from
the Hamming distance between the leaves. Only peaks from the ENCODE data are used.

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal Muscle SR PD
(5) (8) (16) (2) (2) (1) (2) (1) (%)

Peak data 5,0 6,1 11,2 2,0 1,1 1,0 1,1 1,0 0.84 3.30
Raw data 5,0 2,2 8,2 2,0 1,1 1,0 1,0.5 1,0 0.86 6.03

Mean normalization 5,0 4,2 8,4 2,0 1,1 1,0 1,1 1,0 0.77 6.43
Mean normalization per chromosome 5,0 4,2 10,4 2,0 1,1 1,0 1,1 1,0 0.79 6.17

Standard score normalization per chromosome 5,0 4,2 8,5 2,0 1,1 1,0 1,1 1,0 0.54 8.70

and Figure 6.5. We see that some of the normalization techniques work better than using raw

data, however they did not so far better than using peak data. Probably more sophisticated

normalization techniques need to be used to get better trees.

6.4 Comparing human and mouse cell types

In this section, we study the phylogenetic relationships on the evolution of cell types across

species. In the previous chapter, we had discussed about how the evolution of cell types can be

studied using cell-type trees. In this chapter, we look at cell types between human and mouse.

Orthologous regions between two species are those regions which are inferred to be descended

from the same ancestral sequence separated by a speciation event. For all practical purposes,

all pairwise aligned regions are considered orthologous regions. The orthologous regions

(pairwise aligned regions) between human and mouse genomes were selected. Mouse genome

was aligned to the human genome. The data was taken from UCSC Genome Browser [60] and

the link for this data is http://hgdownload.soe.ucsc.edu/goldenPath/hg19/vsMm9/. We look

at the peak regions of H3K4me3 ChIP-Seq data only on these orthologous regions. The peaks

which fell within the orthologous regions in mouse where mapped to corresponding positions

in the human genome. We used both overlap representation with neighbor-joining approach

to build cell-type trees. We used some cell types from the ENCODE project (UW data) for the

human data. For the mouse data (mm9), we took it from the LICR ENCODE project [21]. Cell

type mE14 is mouse ES cell type (day 0), strain 129/Ola, and cell type mBMDM is mouse bone

marrow derived macrophage data.

Figure 6.6 with shows the results considering overlap representation for peaks in the ortholo-

gous regions of human and mouse. We had expected the mBMDM to be close to blood cells of

human, and mE14 close to human ES cells in the phylogenetic tree. However we find that the

mouse cell types seem to cluster together. We see that the number of mouse peaks in the data

far exceeds the number of human peaks. Therefore to reduce the bias due the varying number

of peaks, we try to reduce the variations in the following ways. (a) Delete peaks in mouse data

whose negative log p-value is smaller than 50. (b) Divide the genome into windows of 1 Mbp.
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Then remove those windows if the length of the peak region in either human or mouse data

was 50% more than the other (comparing hESC T0 and mE14). The results are shown in Figure

6.7. However we still find that mouse data cells cluster together. This could be because of

various reasons. One could be biological, i.e. maybe H3K4me3 is not that strongly associated

with cell differentiation as some other factors and may not be the best histone modification to

use. So we would need to explore other histone modification data. We may also need to look

at only some regions of the genome which are tissue specific (and not all orthologous regions).

The other reason could be due to noise in the data. We get the mouse and human data from

different labs and there could be lab specific bias in the data. The number of peaks for mouse

is very different from that of human, so even that could be an issue. So preprocessing of data

maybe very important. We are currently exploring many of these points.

6.5 Conclusion

In this chapter, we outlined some details of three pieces of ongoing work. First we provide an

algorithm for lifting for reconstructing ancestral nodes in a cell-type tree. Secondly, we explore

the use of normalized raw data instead of peak data for building cell-type trees. Thirdly, we

study the evolution of cell types in human and mouse using histone modifications. In each of

these problems we outline some of the issues we faced and the challenges ahead.
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Figure 6.5 – Cell-type tree using windowing representation. Data representation using: (a) Peak data, (b) Raw
data, (c) Mean normalization of raw data, (d) Mean normalization of raw data (for each chromosome), (e) Standard
score normalization of raw data (for each chromosome).

95



Chapter 6. Further study using cell-type trees

H
C

P
E

p
iC

(1
)

H
C

P
E
piC

(2)

HEEpiC(1)

HEEpiC(2)

H
M

E
C

(1
)

H
M

E
C

(2
)

HRE(1)

HRE(2)

HRPEpiC(1)

HRPEpiC
(2

)

N
H

E
K

(1
)

N
H

E
K

(2
)

R
P
TE

C
(1

)

R
P

T
E

C
(2

)

S
A
E
C

(1
)

S
A

E
C

(2
)

mE14m
BM

DM

CD14

CD20(1)

CD20(2)

CD20(3)

h
E

S
C

 T
1
4
(1

)

hE
S
C

 T14(2)

h
E

S
C

 T
2
(1

)

h
E

S
C

 T
2
(2

)

hESC T5(1)

h
E

S
C

 T
5
(2

)

hESC T9(1)
hESC T9(2)

hESC T0(1)

h
E

S
C

 T
0
(2

)

hESC
Epithelial
Blood
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Figure 6.7 – Human and mouse cell types by removing some peaks. The number of peaks available for mouse
where much more than for human. Therefore the number of peaks used in mouse data were reduced so as to reduce
the bias in the results. (Peak data considered only on orthologous regions of human and mouse.) (a) Deleting peaks
in mouse data whose negative log p-value is smaller than 50. (b) Divide the genome into windows of 1 Mbp. Then
remove those windows if the length of the peak region in either human or mouse data was 50% more than the other
(comparing hESC T0 and mE14).

96



7 Conclusions

In this thesis, we addressed problems in computationally analyzing and studying problems in

histone modification ChIP-Seq data.

We first proposed a two-stage statistical technique called ChIPnorm to normalize ChIP-Seq

data, and to find differential regions in the genome, given two libraries of histone modifications

of different cell types. We showed that the ChIPnorm program removes most of the bias in

the data and provides a normalization that enables direct comparison of values between

the two cell types. We showed that our approach improved upon the state of the art, and we

were able to highlight some aspects of H3K27me3 modifications in mouse embryonic stem

cells and neural progenitor cells, including a so far unnoticed transition of bivalent mark of

H3K4me3 and H3K27me3 in embryonic stem cell to a H3K27me3-only state in differentiated

cells, possibly reflecting permanent repression of developmental genes.

The next thing that we proposed was a probabilistic partitioning method to find significant

patterns in ChIP-Seq data. The probabilistic partitioning method works on the principles of

expectation and maximization. The method is simple, very flexible and implementable in

a few lines of R code and is capable of running large datasets in a few minutes. We showed

that the when there is low data coverage, the probabilistic partitioning method gives excellent

model accuracy, superior to some of the existing techniques. We showed that other than

pattern discover and classification, the probabilistic partitioning approach could also be used

in partitioning of nucleosome positioning patterns in human promoters, and shape-based

evaluation and re-focusing of ChIP-Seq peaks from published peak lists.

In the third part of this thesis, we addressed the novel problem of inferring cell-type trees from

histone modification data. We defined new data representation techniques, a new peak finder,

and phylogenetic methods to infer these trees. We obtained biologically meaningful trees in

spite of the high level of noise in the data and the very limited number of samples per cell type

— thus confirming that histone modification data contain much information about the history

of cell differentiation. We also discussed how cell-type trees can be used to study the evolution

of cell types. Thus we tried to combine the fields of evolution and development.
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Chapter 7. Conclusions

In the final part of the thesis, we present some on-going work trying to build on the work done

on cell-type trees. We suggest an algorithm for lifting for reconstructing ancestral nodes in

a cell-type tree. We explore the use of normalized raw data instead of peak data for building

cell-type trees. We also study the evolution of cell types in human and mouse using histone

modifications. We outline some of the issues we faced and the challenges ahead, in each of

these problems.
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A Appendix for Chapter 4

A.1 R code for probabilistic partitioning

This section present prototype R code for the various flavors of probabilistic partitioning

presented and exemplified in this paper. The functions performing a single EM iteration, and

the envelope programs implement different seeding strategies, are given in separate tables.

The code for the EM functions can be pasted and executed in an R command line without

modification. The code for the envelope programs may require adjustments. For instance, the

user may want to change the number classes to be discovered, or the number of EM iterations

to be carried out.

A.1.1 Expectation-Maximization step for basic ChIP-partitioning algorithm

1 em_basic = function(c,q,data) {
2 K=dim(c)[1]; N=dim(data)[1]
3 l=matrix(nrow=N, ncol=K); p=matrix(nrow=N, ncol=K)
4 for(i in 1:N) { for (j in 1:K) {
5 l[i,j] = sum(dpois(data[i,], c[j,], log=T)) }}
6 for(i in 1:N) {
7 p[i,] = q*exp(l[i,]-max(l[i,])); p[i,] = p[i,]/sum(p[i,])}
8 q = colMeans(p)
9 c = (t(p) %*% data)/colSums(p)

10

11 c <<- c; q <<- q; p <<- p;
12 }

Notes:

Line 1: The arguments of the function have the following structure and contents:

c : a matrix containing the classes to be optimized. c[i , j ] is the expected bincount value

of class i at position j .

q : a vector defining the prior probabilities of each class.

data: a matrix containing the samples. data[i , j ] is the bincount of sample i at position

j .
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Appendix A. Appendix for Chapter 4

Line 9: The expected bincounts for each classes are computed at once by means of a matrix

multiplication.

Line 11: c , q , p are exported for use outside this function. The output variable p is a matrix con-

taining the samples’ posterior probabilities of belonging to particular classes (rows correspond

to samples, columns to classes).

A.1.2 Complete algorithm for partitioning with random seeds

1 K=2; N=dim(data)[1]
2 p=matrix(nrow=N, ncol=K)
3 for(i in 1:K) {p[,i] = rbeta(N,N**-0.5,1)}
4 c = (t(p) %*% data)/colSums(p)
5 q=rep(1/K,K)
6

7 for(i in 1:20) {em_basic(c,q,data)}

Notes:

Line 1: K is the number of classes to be found.

Line 3: Generation of random seeds. Samples are randomly assigned probabilities (weights)

for each class. (The choice of a Beta function is not crucial). On the next line, these proba-

bilities will be used to generate expected bincount vectors for each class. The probabilistic

class assignment makes sure that classes will be free of zero values. (Initial zero values are

undesirable as they cannot be changed during EM.).

Line 5: q is a vector containing the prior probabilities for each class.

Line 7: For simplicity, the code proposes a fixed number of EM iterations. Alternatively, the

loop could be terminated after some convergence criterion is reached.

A.1.3 Iterative partitioning - standard version for two classes

1 K=2; N=dim(data)[1]; L=dim(data)[2]
2 c = matrix(data=colMeans(data), nrow=1, ncol=L)
3 flat = matrix(data= mean(data), nrow=1, ncol=L)
4 q = 1
5

6 for (m in 1:(K-1)) {
7 c = rbind(flat,c)
8 q = c(1/m,q); q = q/sum(q)
9 for(i in 1:20) {em_basic(c,q,data)}

10 }

Notes:

Line 1: K is the number of classes to be found.

Line 2: The process is initialized with a single class corresponding to the average bincount

profile from all samples as visualized by an aggregation plot.

Line 3: Defines a “flat” class, which serves to absorb atypical samples not corresponding to
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A.1. R code for probabilistic partitioning

any of the already defined classes during iterative partitioning.

Line 6: Outer loop: m is the current number of classes.

Line 7: The flat class is added to the current set of classes. (The number of classes is now m+1.)

Line 8: Redefines the probabilities of the current classes (variable q). The new class enters the

EM algorithm with a prior probability of 1/(m +1). The probabilities of the already existing

classes are diminished proportionally.

A.1.4 Iterative EM partitioning with untrained flat class

1 K=2; N=dim(data)[1]; L=dim(data)[2]
2 c = matrix(data=colMeans(data), nrow=1, ncol=L)
3 flat = matrix(data= mean(data), nrow=1, ncol=L)
4 q = 1
5

6 for (m in 1:(K-1)) {
7 c = rbind(flat,c)
8 q = c(1/m,q); q = q/sum(q)
9 for(i in 1:20) {c[1,]=flat; em_basic(c,q,data)}

10 }

Notes:

Differences with respect to the standard version shown before are marked in red.

A.1.5 Variations of the EM algorithm - shape-based partitioning

1 em_shape = function(c,q,data) {
2 K=dim(c)[1]; N=dim(data)[1]
3 l=matrix(nrow=N, ncol=K); p=matrix(nrow=N, ncol=K)
4 for(i in 1:K) {c[i,]=c[i,]/mean(c[i,])}
5 rm=rowMeans(data)
6 for(i in 1:N) { for (j in 1:K) {
7 l[i,j] = sum(dpois(data[i,], c[j,]*rm[i], log=T)) }}
8 for(i in 1:N) {
9 p[i,] = q*exp(l[i,]-max(l[i,])); p[i,] = p[i,]/sum(p[i,])}

10 q = colMeans(p)
11 c = (t(p) %*% data)/colSums(p)
12

13 c <<- c; q <<- q; p <<- p;
14 }

Notes:

Differences with respect to the basic version shown before are marked in red.

Line 4: Sets mean of class vector elements to 1.

Line 5: r m is a vector containing the mean of the bin counts for each sample.

Line 7: The expected bin counts are adjusted to the sample mean.
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A.1.6 Shape-based partitioning with flips

1 em_shape_flip = function(c,q,data) {
2 K=dim(c)[1]; N=dim(data)[1]
3 l=array(dim=c(N,K,2)); p=array(dim=c(N,K,2))
4 for(i in 1:K) {c[i,]=c[i,]/mean(c[i,])}
5 rm=rowMeans(data)
6 for(i in 1:N) {
7 for(j in 1:K) {l[i,j,1] = sum(dpois(data[i,], c[j,] *rm[i],log=T))}
8 for(j in 1:K) {l[i,j,2] = sum(dpois(data[i,],rev(c[j,])*rm[i],log=T))}
9 }

10 for(i in 1:N) {
11 p[i,,] = q*exp(l[i,,]-max(l[i,,])); p[i,,] = p[i,,]/sum(p[i,,])}
12 q = apply(p, c(2,3), mean)
13 c = (t(p[,,1]) %*% data) + (t(p[,,2]) %*% t(apply(data,1,rev)))
14 c = c / apply(p,2,sum)
15

16 c <<- c; q <<- q; p <<- p;
17 }

Notes:

Differences with respect to the shape-based version without flips are marked in red.

Line 1: The argument q is now a matrix with rows corresponding to classes and columns to

flip states.

Line 3: l and p are now 3-dimensional arrays.

Line 11: The mean is also taken over the two flip states. This reflects the assumption and

ensures that the two flip states are equally probable for equal class. Different choices are

conceivable.

A.1.7 Shape-based partitioning with shifts

1 em_shape_shift = function(c,q,data) {
2 K=dim(c)[1]; L=dim(c)[2]; N=dim(data)[1]; S=dim(q)[2]
3 l=array(dim=c(N,K,S)); p=array(dim=c(N,K,S))
4 for(i in 1:K) {c[i,]=c[i,]/mean(c[i,])}
5 rm=matrix(nrow=N, ncol=S)
6 for(k in 1:S) {rm[,k] = rowMeans(data[,k:(k+L-1)])}
7 for(i in 1:N) { for (j in 1:K) { for (k in 1:S) {
8 l[i,j,k]=sum(dpois(data[i,k:(k+L-1)], c[j,] *rm[i,k],log=T)) }}}
9 for(i in 1:N) {

10 p[i,,] = q*exp(l[i,,]-max(l[i,,])); p[i,,] = p[i,,]/sum(p[i,,])}
11 q = apply(p, c(2,3), mean)
12 c = 0; for(k in 1:S) {
13 c = c + (t(p[,,k]) %*% data[,k:(k+L-1)])/colSums(p[,,k])}
14 c = c / apply(p,2,sum)
15

16 m=sum((1:S)*colSums(q)); s=sum(((1:S)-m)**2*colSums(q))**0.5
17 for (i in 1:K) {
18 q[i,] = sum(q[i,]) * dnorm(1:S,floor(S/2)+1,s) /
19 sum(dnorm(1:S,floor(S/2)+1,s))
20 }
21

22 c <<- c; q <<- q; p <<- p;
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23 }

Notes:

Differences with respect to the shape-based version without flips are marked in red.

Line 1: The argument q is now a matrix with rows corresponding to classes and columns to

shift indices.

Line 2: L is the length of the pattern/class, which now is shorter than the length of the samples.

Line 3: l and p are now 3-dimensional arrays. The 3rd dimension relates to the shift index.

Line 5: r m is now a matrix because the mean bincount value varies as a function of the shift

index.

Line 12: c is computed as a probability-weighted sum over samples and shift indices. The sum

over samples is achieved via a matrix multiplication, the sum over shift states via a loop.

Line 16: This and the following four lines implemented is a regularization step, which prevents

the shift state probability distribution from moving out of the center. In fact, a centered

Gaussian distribution is imposed. Only the variance parameter is estimated from the data in a

non-class specific manner. Other regularization recipes are conceivable.

A.1.8 Shape-based partitioning with flips and shifts

1 em_shape_shift_flip = function(c,q,data) {
2 K=dim(c)[1]; L=dim(c)[2]; N=dim(data)[1]; S=dim(q)[2]
3 l=array(dim=c(N,K,S,2)); p=array(dim=c(N,K,S,2))
4 for(i in 1:K) {c[i,]=c[i,]/mean(c[i,])}
5 rm=matrix(nrow=N, ncol=S)
6 for(k in 1:S) {rm[,k] = rowMeans(data[,k:(k+L-1)])}
7 for(i in 1:N) { for (j in 1:K) { for (k in 1:S) {
8 l[i,j,k,1]=sum(dpois(
9 data[i,k :(k+L-1)],c[j,]*rm[i,k ],log=T))

10 l[i,j,k,2]=sum(dpois(
11 rev(data[i,])[k:(k+L-1)],c[j,]*rm[i,S-k+1],log=T))
12 }}}
13

14 for(i in 1:N) {
15 p[i,,,] = q*exp(l[i,,,]-max(l[i,,,]))
16 p[i,,,] = p[i,,,]/sum(p[i,,,])
17 }
18 q = apply(p, c(2,3,4), mean)
19 c = 0; for(k in 1:S) {c = c
20 + (t(p[,,k,1]) %*% data[,k :(k+L-1)])
21 + (t(p[,,k,2]) %*% t(apply(data[,(S-k+1):(S+L-k)],1,rev)))
22 }
23 c = c / apply(p,2,sum)
24

25 m= sum((1:S)* apply(q,2,sum));
26 s=sum(((1:S)-m)**2*apply(q,2,sum))**0.5
27 for (i in 1:K) {
28 q[i,,1] = q[i,,2] = sum(q[i,,]) * dnorm(1:S,floor(S/2)+1,s) /
29 sum(dnorm(1:S,floor(S/2)+1,s)) / 2
30 }
31

32 c <<- c; q <<- q; p <<- p;
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33 }

Notes:

Differences with respect to the shape-based version with shifts are marked in red.

Line 1: The argument q is now a 3-dimensional array with dimensions 1, 2 and 3 corresponding

classes, shift indices and flip states, respectively.

Line 3: l and p are now 4-dimensional arrays.

Line 8: (.. and following lines) The two flip states are treated separately.

A.2 R code for generating simulated data

A.2.1 Two classes without shifts and flips

The code below was used to generate the data for the experiments summarized by Figure 4.1

and Tables 4.1, 4.2. Note that the coverage parameter f (here set to 50) was varied from 0.5 to

50 to generate data sets of different coverage.

1 n_samples = 1000
2 class1_m = 60
3 class1_s = 10
4 class2_m = 75
5 class2_s = 3
6 f = 50
7

8 data1 = matrix(NA,nrow=n_samples, ncol=100)
9 for(sample in 1:n_samples) {

10 lambda = dnorm(1:100, class1_m, class1_s)
11 lambda = f*lambda/sum(lambda)
12 data1[sample,] = rpois(100,lambda)
13 }
14 data2 = matrix(NA,nrow=n_samples, ncol=100)
15 for(sample in 1:n_samples) {
16 lambda = dnorm(1:100, class2_m, class2_s)
17 lambda = f*lambda/sum(lambda)
18 data2[sample,] = rpois(100,lambda)
19 }
20 data = rbind( data1, data2)

A.2.2 Two classes with flips

The code below was used to generate the data for the experiments summarized by Figure 4.2

and Table 4.3.

1 n_samples = 1000
2 class1_m = 40
3 class1_s = 1
4 class2_m = 70
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5 class2_s = 5
6 f = 50
7

8 data1 = matrix(NA,nrow=n_samples, ncol=100)
9 for(sample in 1:n_samples) {

10 lambda = dnorm(1:100, class1_m, class1_s)
11 lambda = f*lambda/sum(lambda)
12 data1[sample,] = rpois(100,lambda)
13 }
14 data2 = matrix(NA,nrow=n_samples, ncol=100)
15 for(sample in 1:n_samples) {
16 lambda = dnorm(1:100, class1_m, class1_s)
17 lambda = f*lambda/sum(lambda)
18 data2[sample,] = rev(rpois(100,lambda))
19 }
20 data3 = matrix(NA,nrow=n_samples, ncol=100)
21 for(sample in 1:n_samples) {
22 lambda = dnorm(1:100, class2_m, class2_s)
23 lambda = f*lambda/sum(lambda)
24 data3[sample,] = rpois(100,lambda)
25 }
26 data4 = matrix(NA,nrow=n_samples, ncol=100)
27 for(sample in 1:n_samples) {
28 lambda = dnorm(1:100, class2_m, class2_s)
29 lambda = f*lambda/sum(lambda)
30 data4[sample,] = rev(rpois(100,lambda))
31 }
32

33 data = rbind( data1, data2, data3, data4)

A.2.3 Four classes

The code below was used to generate the data for the experiments summarized by Figure 4.3:

1 n_samples = 1000
2

3 class1_m = 40
4 class1_s = 3
5 class2_m = 40
6 class2_s = 10
7 class3_m = 70
8 class3_s = 2
9 class4_m = 60

10 class4_s = 5
11

12 f = 5
13

14 data1 = matrix(NA,nrow=n_samples, ncol=100)
15 for(sample in 1:n_samples) {
16 lambda = dnorm(1:100, class1_m, class1_s)
17 lambda = f*lambda/sum(lambda)
18 data1[sample,] = rpois(100,lambda)
19 }
20 data2 = matrix(NA,nrow=n_samples, ncol=100)
21 for(sample in 1:n_samples) {
22 lambda = dnorm(1:100, class2_m, class2_s)
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23 lambda = f*lambda/sum(lambda)
24 data2[sample,] = rpois(100,lambda)
25 }
26 data3 = matrix(NA,nrow=n_samples, ncol=100)
27 for(sample in 1:n_samples) {
28 lambda = dnorm(1:100, class3_m, class3_s)
29 lambda = f*lambda/sum(lambda)
30 data3[sample,] = rpois(100,lambda)
31 }
32 data4 = matrix(NA,nrow=n_samples, ncol=100)
33 for(sample in 1:n_samples) {
34 lambda = dnorm(1:100, class4_m, class4_s)
35 lambda = f*lambda/sum(lambda)
36 data4[sample,] = rpois(100,lambda)
37 }
38

39 data = rbind( data1, data2, data3, data4)

A.2.4 Two classes characterized by co-localizing peaks of different width

The code below was used to generate the data for the experiments summarized by Figure 4.4:

1 n_samples = 1000
2 class1_m = 60
3 class1_s = 10
4 class2_m = 60
5 class2_s = 3
6 f = 50
7

8 data1 = matrix(NA,nrow=n_samples, ncol=100)
9 for(sample in 1:n_samples) {

10 lambda = dnorm(1:100, class1_m, class1_s)
11 lambda = f*lambda/sum(lambda)
12 data1[sample,] = rpois(100,lambda)
13 }
14 data2 = matrix(NA,nrow=n_samples, ncol=100)
15 for(sample in 1:n_samples) {
16 lambda = dnorm(1:100, class2_m, class2_s)
17 lambda = f*lambda/sum(lambda)
18 data2[sample,] = rpois(100,lambda)
19 }
20

21 data = rbind( data1, data2)
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For the H3K4me3, H3K27me3 ENCODE peak data we used the University of Washington (UW)

ENCODE data. Both replicates used and the file type used is “narrowPeak".

For H3K4me3 data the GEO accession numbers are: GSM945187, GSM945177, GSM945166,

GSM945170, GSM945178, GSM945225, GSM945198, GSM945229, GSM945185, GSM945191,

GSM945322, GSM945190, GSM945321, GSM945242, GSM945249, GSM945163, GSM945310,

GSM945312, GSM945308, GSM945306, GSM945286, GSM945218, GSM945239, GSM945159,

GSM945292, GSM945284, GSM945276, GSM945271, GSM945181, GSM945273, GSM945251,

GSM945175, GSM945262, GSM945216, GSM945199, GSM945214, GSM945265, GSM945215.

For H3K27me3 data the GEO accession numbers are: GSM1010913, GSM945204, GSM945301,

GSM945183, GSM945325, GSM945326, GSM945323, GSM945320, GSM945277, GSM945160,

GSM945180, GSM945300, GSM945200.

For the H3K4me1, H3K9me3, H3K27ac ENCODE peak data we used the Broad ENCODE data.

The file type used is “broadPeak".

For H3K4me1 data the GEO accession numbers are: GSM1003535, GSM733782, GSM733705,

GSM733761, GSM733661, GSM733690, GSM733710, GSM733698, GSM733649, GSM733704.

For H3K9me3 data the GEO accession numbers are: GSM1003538, GSM1003585, GSM1003485,

GSM733730, GSM1003482, GSM1003517, GSM1003491, GSM1003553, GSM1003528, GSM1003531,

GSM733681.

For H3K27ac data the GEO accession numbers are: GSM1003559, GSM1003459, GSM733718,

GSM733660, GSM733755, GSM733666, GSM733691, GSM733763, GSM733662, GSM733674,

GSM733646, GSM733739.
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(c) HGNC Gene Families

Figure B.1 – For H3K4me3 data: gene enrichment analysis containing regions of the genome where ES cells (10
replicates) are all 1 and rest of the cell types (62 replicates) have all 0 (one error allowed at most on both sides) using
all replicate ENCODE peak data.
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Figure B.2 – For H3K4me3 data: gene enrichment analysis containing regions of the genome where ES cells (10
replicates) are all 0 and rest of the cell types (62 replicates) have all 1 (one error allowed at most on both sides) using
all replicate ENCODE peak data.
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Figure B.3 – For H3K27me3 data: gene enrichment analysis containing regions of the genome where ES cells (10
replicates) are all 1 and rest of the cell types (13 replicates) have all 0 (one error allowed at most on both sides) using
all replicate ENCODE peak data.
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(e) Pathway Commons

Figure B.4 – For H3K4me3 data: gene enrichment analysis containing regions of the genome where ES cells for day
0, 2, 5, 9, 14 have a pattern 01000. ENCODE peaks are used and only regions which have identical values of all the
replicates for each cell type are considered.
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Appendix B. Appendix for Chapter 5
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(e) MSigDB Perturbation

Figure B.5 – For H3K27me3 data: gene enrichment analysis containing regions of the genome where ES cells for
day 0, 2, 5, 9, 14 have a pattern 01000. ENCODE peaks are used and only regions which have identical values of all
the replicates for each cell type are considered.
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