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Abstract

Contemporary Computer Vision applications, such as visual search or 3D re-

construction, need to handle massive amounts of visual content. This poses

a significant challenge, especially when these applications are expected to

run in real-time on mobile platforms with limited resources. One of the

computational bottlenecks in a typical real-life Computer Vision system is

establishing a set of correspondences across multiple views of a scene, which

is known as the local feature matching problem. In this thesis, we address

the local feature matching problem from two angles: first, by learning ef-

ficient and compact local feature descriptors, and second, by providing a

set of fast methods to match the proposed descriptors using approximate

nearest neighbor search.

We start by presenting two methods to construct robust binary local feature

descriptors. To represent salient image regions in a way that is invariant to

unwanted image transformations, we employ machine learning techniques,

such as linear discriminative analysis and boosting. Our interest is mainly

focused on binary descriptors, because they enable faster processing while

requiring significantly less memory than their floating-point competitors.

This approach enables modern Computer Vision applications, even those

deployed on mobile devices, to process higher amounts of visual data much

faster.

We first propose an extremely compact and quick to compute binary de-

scriptor, D-Brief, that is built by projecting an image patch to a more dis-

criminative subspace and thresholding the resulting coordinates. However,

applying complex projections to the patches is slow which negates some

of the advantages of binary descriptors. Hence, our key idea is to learn

the discriminative projections so that they can be decomposed into a small



number of simple filters for which the responses can be computed fast. The

resulting 32-bit descriptor outperforms the state-of-the-art intensity-based

binary descriptors, in terms of both accuracy and efficiency, and is there-

fore a perfect candidate for real-time applications run on low-end mobile

devices.

We then introduce a more complex and powerful binary descriptor called

BinBoost that provides much higher discriminative power and robustness,

characteristics necessary for large-scale applications such as visual search.

To efficiently train our binary descriptor, we leverage the boosting-trick and

optimize consecutive binary dimensions so that they complement each other,

which is key to robustness and compactness of the resulting descriptor.

The final feature representation is computed with a set of hash functions

that are applied directly to the image patches, which frees us from any

intermediate representation and lets us automatically learn the descriptor

sampling pattern. As a result, our formulation encompasses that of many

hand-crafted descriptors and allows BinBoost to outperform the state-of-

the-art binary and floating-point descriptors at a fraction of matching time

and memory footprint.

Although binary descriptors can be matched much faster than their floating-

point competitors, exhaustive search over truly large-scale datasets still

remains problematic, especially on mobile devices. Hence, we investigate

different approximate nearest neighbor search methods in the context of

binary vectors, as they improve the efficiency of matching while maintain-

ing a good matching quality. Unfortunately, the readily available ANN

search methods for floating-point vectors fail on binary ones. We explain

this phenomenon, that we call thick Voronoi boundaries, by analyzing the

peculiarities of binary spaces and propose two effective ways to overcome

this limitation by appropriately randomizing either a tree-based algorithm

or hashing-based one.

Keywords: Computer vision, machine learning, binary local feature

descriptors, binary approximate nearest neighbor search.



Résumé

Aujourd’hui, de nombreuses applications de vision par ordinateur, telles que

la recherche d’images ou de la reconstruction 3D, doivent traiter du contenu

visuel en grande quantité. Cela pose un défi de taille, surtout lorsque ces

applications doivent fonctionner en temps réel sur des plateformes mobiles

aux ressources limitées. L’un des goulots d’étranglement pour un système

classique de vision par ordinateur est d’établir un ensemble de correspon-

dances entre plusieurs vues d’une scène, ceci est connu comme le problème

d’appariement de points d’intérêts locaux. Dans cette thèse, nous abordons

le problème d’appariement de points d’intérêts locaux sous deux angles:

d’abord, par l’apprentissage de descripteurs de points caractéristiques lo-

caux efficaces et compacts, et d’autre part, en fournissant un ensemble de

méthodes rapides pour apparier les descripteurs proposés en utilisant la

recherche approximative du plus proche voisin.

Nous commenons par présenter deux méthodes pour construire de solides

descripteurs binaires de point caractéristiques locaux. Pour représenter les

régions d’image saillantes d’une manière qui soit invariante aux transforma-

tions indsirables de l’image, nous utilisons des techniques d’apprentissage

automatique, comme l’analyse discriminante linéaire et boosting. Notre

intérêt se concentre principalement sur les descripteurs binaires, car ils per-

mettent un traitement plus rapide tout en exigeant beaucoup moins de

mémoire que leurs concurrents à virgule flottante. Cette approche permet

aux applications de vision par ordinateur modernes, même celles qui sont

déployées sur les appareils mobiles, de traiter de plus grandes quantités de

données visuelles beaucoup plus rapidement.

Nous proposons d’abord un descripteur binaire extrêmement compact et

rapide pour calculer, D-Brief, qui est construit par la projection d’image



sur un sous-espace plus discriminant et par le seuillage des coordonnées

obtenues. Toutefois, l’application des projections complexes aux images

est lente ce qui annule une partie des avantages des descripteurs binaires.

Par conséquent, notre idée clé est d’apprendre à decomposer les projections

discriminatoires en un petit nombre de filtres simples dont les réponses

peuvent être calculées rapidement. Le descripteur 32 bits résultant surpasse

les meilleurs descripteurs binaires basés sur l’intensité, tant en termes de

précision que d’efficacité, et est donc un candidat idéal pour les applications

en temps réel exécutées sur les appareils mobiles bas de gamme.

Nous introduisons ensuite un descripteur binaire plus complexe et puissant

appelé BinBoost dont la robustesse et le pouvoir discriminant sont plus

élevés. Ce sont là, les caractéristiques nécessaires pour les applications à

grande échelle telles que la recherche d’images. Pour entrâıner efficacement

notre descripteur binaire, nous utilisons le boosting-trick et optimisons des

dimensions binaires consécutives de sorte qu’ils se complémentent mutuelle-

ment, ce qui est essentiel pour la robustesse et la compacité du descripteur

résultant. La représentation finale est calculée avec un ensemble de fonc-

tions de hachage qui sont appliqués directement sur l’image, qui nous libère

de toute représentation intermédiaire et nous permet d’apprendre automa-

tiquement le descripteur de motif d’échantillonnage. En conséquence, notre

formulation englobe de nombreux descripteurs construits à la main et per-

met à BinBoost de surpasser les meilleurs descripteurs binaire et à virgule

flottante en une fraction du temps et de l’occupation.

Bien que les descripteurs binaires peuvent être mis en correspondance beau-

coup plus rapidement que leurs concurrents en virgule flottante, la recherche

exhaustive sur des ensembles de données de grande échelle reste problématique,

en particulier sur les appareils mobiles. Par conséquent, nous étudions

différentes méthodes approximatives de recherche de plus proches voisins,

utilisant des vecteurs binaires, car ils améliorent l’efficacité de l’appariement

à faible coût. Malheureusement, les méthodes approximatives de recherche

de plus proches voisins disponibles pour vecteurs à virgule flottante ne

marchent pas bien pour les vecteurs binaires. Nous expliquons ce phénomène,



que nous appelons limites de Voronoi épaisse, en analysant les particularités

des espaces binaires et nous proposons deux moyens efficaces pour surmon-

ter cette limitation par randomisation appropriée.

Mots-clés: Vision par ordinateur, apprentissage automatique, descrip-

teurs binaires de point caractéristiques locaux, méthodes approximatives

de recherche de plus proches voisins binaires.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

A multitude of Computer Vision applications, such as visual search, 3D reconstruction

or object recognition, is based on finding correspondences between images. This prob-

lem can be solved by representing salient image patches in a way that is invariant to

illumination and viewpoint changes and finding the correspondences in the resulting

representation space. The representation of an image patch, referred to as a local fea-

ture descriptor, can be typically defined as a multi-dimensional vector of floating-point

or binary values. In addition to robustness to various image transformations, local

feature descriptors should also possess a high discriminative power, i.e. they should

be able to discriminate between patches corresponding to different 3D points. The

problem of designing optimal feature descriptors has received a significant attention

from the Computer Vision community [3, 10, 17, 21, 54, 62, 65, 92, 103, 114]. To model

the non-linear nature of the above mentioned transformations, well-known local feature

descriptors typically apply a set of expert-designed filters and aggregate or pool their

responses within pre-defined regions of the image patch. Although significant progress

has been made, most of the proposed solutions are mainly designed for standalone

machines with high processing power and few memory limitations.

Today, in the era of ubiquitous mobile computing, there is an ever growing need for

Computer Vision technologies which can be deployed on portable devices with limited

resources. The increasing content of visual data along with the need to access this

data from any point in the world and as quickly as possible require extremely fast

1



1. INTRODUCTION

processing. It also requires lowering the data throughput as mobile networks are still

underdeveloped to handle the constant flow of megabytes of visual information.

To tackle these problems, several binary local feature descriptors have been pro-

posed in the recent years [3, 21, 54, 92]. Their binary nature reduces their memory

footprint and allows for significantly faster processing due to the fast computation of the

Hamming distance. Furthermore, they are typically built as a concatenation of simple

intensity comparisons which results in an extremely short computation time. There-

fore, binary descriptors have quickly become an attractive alternative to floating-point

descriptors, especially for real-time applications run on low-end handheld devices. Nev-

ertheless, their performance quality still cannot reach the level of their floating-point

competitors which blocks their proliferation into more quality-oriented applications

such as visual search or image-based localization.

Another approach to mobile computing is to use machine learning to find an optimal

representation of an image patch [17, 98, 103]. By optimizing over the selection of

pooling regions and filter responses, these solutions aim at reducing the dimensionality

of the resulting representation and, hence, decreasing the computational burden of

matching and storing them. These approaches, however, are either built on top of

hand-crafted representations [98] or still require significant parameter tuning, as in [17]

that relies on a non-analytical objective that is difficult to optimize. Finally, they

typically result in floating-point descriptors which requires matching with Euclidean

distance instead of Hamming distance and further increases the computational cost.

Although the recent techniques to compute binary local feature descriptors allow for

using fast Hamming distance computations instead of the Euclidean ones to compute

similarities between the descriptors, it still remains prohibitively expensive when using

linear search to find the nearest match in a database of millions or billions of datapoints.

Approximate Nearest Neighbor search is therefore a valid alternative that enables truly

large-scale processing of visual data. A lot of research has been focused on providing

working solutions for approximate nearest neighbor search in the multi-dimensional

space of floating-point vectors [62, 73, 78]. Surprisingly few works, however, focus on

this problem in the case of binary descriptors [74]. One explanation of this situation

might be that under favorable conditions binary vectors can be used as individual

indices to access the memory and hence nearest neighbor matching amounts to simple

look-ups. Unfortunately, this approach does not provide a feasible solution when the

2



1.2 Applications

Figure 1.1: images.google.com relies on Computer Vision techniques for querying a

database of images by finding similarities between local feature descriptors.

size of the binary vectors becomes larger than a few bits. It is therefore necessary to

investigate if the solutions available for the floating-point vectors can be used to find

approximate nearest neighbors also in the case of binary descriptors.

1.2 Applications

The image patch representation that is robust to various illumination and viewpoint

changes, plays a crucial role in a plethora of Computer Vision applications. Among the

most important ones are:

Large-scale Visual Search

Thanks to Google and its text-based search engine, the idea of searching the web with a

set of words is a natural way of discovering the world and answering various questions.

However, in the world of ubiquitous mobile cameras, the users become more and more

interested in querying the Internet not only with textual hints, but also with visual

data. As a matter of fact, images can convey much more contextual data than even the
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most descriptive phrase. Thus, there is a significant demand to provide solutions for

visual search which can be defined as retrieving information, both textual and visual, in

response to a visual query, e.g. in the form of an image. The most popular framework

developed to answer this need [105] relies on a set of quantized local feature descrip-

tors, so called visual words. After the quantization, each image can be represented

with a histogram of visual words and a set of corresponding weights. This process is

repeated for descriptors of a query image and the database images are ranked according

to the dot product between the query weight vector and the corresponding vectors of

database images. After the first ranking step, the list of images is typically re-ranked

using spatial verification [84] which uses the projective geometry constraints to detect

the correct transformation between the query and reference image. Fig. 1.1 presents a

screenshot of a representative example of a large-scale visual search application, namely

images.google.com, which is already available to the public. Other use cases of vi-

sual search engine include image-based localization [88] and structured medical image

retrieval [102]. Finding more discriminative and compact binary representations can

potentially lead to increased quality of visual search as well as faster processing, e.g.,

in the spatial verification step.

3D Reconstruction

One of the recent Computer Vision applications that was enabled by the abundance of

visual information is automatic image-based 3D reconstruction which can be described

as a process of reconstructing 3D models of objects seen in a collection of images from

different vantage points. Fig. 1.2 shows an example of a 3D model reconstructed from

a set of images. A crucial component of 3D reconstruction systems is matching local

feature descriptors to provide the correspondences between the images representing

the same object. Since this operation is usually performed on a significant number of

images, extraction as well as matching of the descriptors should be very fast to enable

efficient processing. Another requirement of 3D reconstruction system is the reliability

of the extracted feature descriptors in terms of description of the same 3D points.

To provide a solid set of correspondences between images, local feature descriptors

have to be robust to various illumination and viewpoint changes and the distance

between descriptors representing the same 3D point should be significantly smaller

than the distance between distinct 3D points. Thus, using machine learning methods
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Figure 1.2: A textured 3D model reconstructed from the images of Lausanne, Switzerland.

Courtesy of Pix4d (pix4d.com).

to obtain an image patch representation that can reliably discriminate between similar

and different 3D points can immensely contribute to a better performance of many 3D

reconstruction systems.

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping refers to a task performed by a robot whose

goal is to build a map of the surrounding, unknown environment while keeping track of

its own location. This problem when it involves cameras as sensors, also called V-SLAM

for Visual SLAM, poses a significant challenge due to the reduced computational bud-

get of a typical CPU used by robots. The problem is further exacerbated by the noise

of measurements performed by robot’s sensors. Furthermore, SLAM can be considered

a chicken-egg problem as an accurate position is required to build a precise map, while

a correct map is needed to determine one’s position. Due to the above mentioned

difficulties SLAM has gained a significant attention from the computer vision commu-

nity [7, 28, 29]. One of the fundamental steps to solve the SLAM problem requires

assigning subsets of image features to common 3D world points. Since this assignment

assumes certain level of robustness of the features with respect to typical transfor-
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Figure 1.3: Screenshot of a running object detection application.

mations and robot’s viewpoint changes, the resulting partitioning depends highly on

the quality of selected feature descriptors. Moreover, real-time image processing on a

mobile platform poses yet another challenge to the underlying feature extraction and

matching algorithm, as the computational power of the mobile CPU is highly limited.

Hence, it becomes evident that SLAM, or more precisely V-SLAM, would immensely

benefit from using compact and discriminative binary local feature descriptors which

are fast to match and can reduce memory footprint.

Object Detection

Given an object presented in one or more images, we define object detection as the

process of finding the object in each image. If the object can be found, the system

should return a set of image coordinates defining the location of the object, the so-called

region of interest, otherwise it should inform that the object is not present in the scene.

Furthermore, we can define instance-level object detection when we are interested only

in a given object and category-level object detection when we look for all the objects

of the same category as the selected object, e.g. when we look for all cars or all chairs.

For the purpose of this thesis, we focus on the instance-level object detection problem,

as successful approaches to solve it rely heavily on local feature descriptors due to their

robustness to occlusions and various transformations. An example of instance-level

object detection application can be seen in Fig. 1.3 where the object selected by the

user is detected and tracked across the video frames. Performing this kind of tasks in

real time, i.e. with more than 25 frames per second, requires fast feature description
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and descriptor processing. These are exactly the constraints that binary descriptors

can successfully address and, thus, they give us yet another motivation for the work on

compact descriptors that can be efficiently computed.

1.3 Contributions

In this thesis, we first propose two novel methods to develop robust binary local feature

descriptors. We essentially try to bridge the performance gap between the state-of-the-

art binary and floating-point descriptors without increasing the computational cost of

computing and matching our binary descriptors. To that end, we employ machine

learning techniques, such as linear discriminant analysis and boosting, that allow us

to learn the invariance desired for local feature descriptors from the data. Since local

feature descriptors are typically employed in more complicated systems, the shift from

floating-point to binary descriptor type has to be accompanied with a corresponding

change in many other elements, one of them being nearest neighbor search. Thus, this

thesis also provides an analysis of the multi-dimensional space generated by binary

descriptors along with an approach that addresses the peculiarities of this space.

More precisely the contributions of this thesis are the following:

• An efficient method for approximating discriminative projections which enables us

to quickly compute an extremely compact binary descriptor we call D-Brief [118]

(Chapter 3).

• A boosting-based framework to learn a highly discriminative non-linear binary

descriptor called BinBoost that encompasses various hand-crafted descriptors,

while significantly improving their performance [119, 121] (Chapter 4).

• An extensive study of the performances of proposed binary descriptors that show

a clear advantage of using the binary descriptors over the state-of-the-art floating

point descriptors, both in terms of quality and computational cost (Chapter 5).

• An analysis of the partitioning of the space of binary descriptors, which we call

the thick Voronoi boundary problem [120] (Chapter 6).

• A set of solutions for the thick Voronoi boundary problem that enable effective

approximate nearest neighbor search for binary vectors [120] (Chapter 6).
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To summarize, the work presented in this thesis provides a set of algorithms to learn

compact binary descriptors which address both the complexity and quality requirements

of mobile Computer Vision applications. Since the shift from floating-point to binary

descriptors has a significant impact on many elements of those applications, including

the matching step, we also analyze the characteristics of approximate nearest neighbor

search in binary spaces and provide a set of methods that successfully adapt the existing

techniques for matching local feature descriptors.1

1.4 Outline

This thesis is organized as follows. The next chapter provides an extensive overview

of the state of the art in the field of local feature detection and description. In Chap-

ter 3 we propose a method for building compact binary representations that relies on

efficient approximations of discriminative projections. Chapter 4 introduces a more

complex learning algorithm based on boosting which allows us to build a highly non-

linear binary representation of image patches. We then compare the above mentioned

methods against the state of the art in Chapter 5. In Chapter 6 we analyze high-

dimensional spaces generated by binary descriptors in terms of nearest neighbor search

and we explain the crucial differences between floating-point and binary approximate

nearest neighbor search. Finally, Chapter 7 provides final remarks and discusses future

research.

1The source codes for the binary descriptors, approximate nearest neighbor methods and experi-

ments reported in this thesis can be found at the address: http://cvlab.epfl.ch/research.
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CHAPTER

TWO

RELATED WORK

In this chapter we discuss works related to local feature descriptors. Our goal is to

provide an extensive overview of the currently available feature descriptors. Neverthe-

less, the number of proposed feature descriptors is still growing and, hence, providing

a description of all the methods remains a very challenging task. We therefore focus

here on the works that remain the most relevant for this thesis.

Let us first define the concept of an image feature as an image structure that provides

a distinctive piece of information relevant for a given task. Typical image features, such

as points or regions, can be characterized by a given property, e.g. a dominant color

or orientation of a particular set of pixels. The representation of this characteristic,

which we refer to as a image feature descriptor, is a corresponding scalar or vector that

comprises the information about a given image. Depending on the final application,

feature descriptors should provide a certain level of robustness towards image transfor-

mations such as image scaling, rotation, illumination and viewpoint changes. Due to

the complexity of the image registration process as well as some intrinsic difficulties of

mapping 3D objects into 2D image planes, obtaining this kind of invariance remains a

challenging task, not only for machines but also for humans.

We can divide image feature descriptors based on the image structure that they

aim to describe. Image feature descriptors that represent the entire image are typ-

ically referred to as global feature descriptors, as their goal is to summarize all the

information provided in the image [75, 112, 122]. One well-known example of this

type of descriptor is GIST [82] which relies on a set of orientation histograms com-
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puted over a grid of image regions. Since global feature descriptors aim to provide a

very compact representation of multiple objects shown in the image, their robustness

to occlusions and diversified scene compositions is fairly low. To solve this problem,

an alternative approach that relies on multiple local feature descriptors has been pro-

posed [62, 95, 97, 124]. Local feature descriptors, contrary to the global ones, provide a

representation of an image patch, instead of the entire image. Although this approach

is more robust against occlusions, it requires a stable method to find salient image

patches in the image. This task is typically referred to as a feature or interest point

detection and it should be clearly distinguished from the process of encoding a given

salient image patch into a feature descriptor, which is defined as feature description. In

this thesis, we focus on the latter part, i.e. on local feature description, however here

we provide an overview of the feature detection algorithms as well for completeness.

A notable group of feature descriptors called dense descriptors does not rely on

the detection algorithm and computes the image region representation for each ele-

ment of a regularly spaced grid [58, 114, 117]. The motivation is the fact that in some

settings uniform regular sampling-based descriptors were reported to outperform de-

tection based descriptors [27, 81]. This approach is truly interesting when the number

of key points to be detected is so high that avoiding altogether the detection step and

describing each consecutive image patch leads to computational savings. Although in

this thesis we focus on the detection-based feature descriptors, the methods presented

here are detector-invariant and, hence, one can image their potential extensions to the

dense descriptor case.

Perhaps the simplest way of building a local feature descriptor of a given image

patch is by using its pixel values, i.e. by encoding the image grayscale values into a

multi-dimensional vector. This method is typically combined with a matching algo-

rithm based on the Euclidean distance and is known under the name of sum of squared

differences (SSD) [44]. Along with its extension, the normalized sum of squared differ-

ences (NSSD) it is still used in applications where the differences in image viewpoint

or illumination between the analyzed images are not significant. It is, however, fairly

sensitive to more complex transformation.

As a result, more robust algorithms have been proposed for describing image feature

points using other types of image information, e.g. gradients, image moments, higher

order image derivatives or various filter responses [11, 50, 62, 95, 129]. Among those

10



methods, the most well-known is the Scale Invariant Feature Transform (SIFT) descrip-

tor [62]. Although highly discriminative and robust to various image transformations,

SIFT relies on computationally expensive gradient histogram pooling and results in a

high dimensional feature vector of floating-point values. To reduce the computational

complexity, the Speeded Up Robust Features (SURF) [11] descriptor substitutes gra-

dient pooling by aggregating Haar wavelet responses and reduces the dimensionality of

the output descriptor from 128 to 64.

To decrease the dimensionality of local feature descriptors, few recent methods pro-

pose to construct efficient descriptors using compression or quantization techniques [14,

24, 48, 49, 133]. These approaches, however, rely on an underlying high-dimensional

feature representation, such as concatenated responses of gradient filters, and have to

be therefore coupled with a particular compression technique, such as Huffman coding

to present a valid alternative to SIFT or SURF.

In order to provide even more compact descriptors, recent works propose several

approaches to design binary, not real-valued, local feature descriptors [3, 21, 54, 92, 93,

136], since they require much less storage. They also enable faster matching as there

are efficient indexing schemes for binary vectors [36, 131] and Hamming distances can

be computed fast on many architectures, including mobile devices. Thanks to all these

properties, binary descriptors are perfect candidates for real-time applications. The

most recently proposed binary feature descriptors [3, 21, 54, 92, 93] are computed by

applying simple tests directly to the image patch . These tests compare the image inten-

sities at two pixel locations and, hence, they are extremely fast to compute. For noise

removal, the image is pre-smoothed with a box filter or a Gaussian filter. BRIEF [21]

uses random pre-determined locations, whereas BRISK [54] uses an exhaustive set of

comparisons of close locations. ORB [92] relies on optimization like we do and aims

at improving the recognition rates by choosing the locations that decorrelate the tests.

Similarly, FREAK [3] selects the intensity tests that provide the highest bit variance.

Thanks to the simplicity of the above mentioned binary descriptors, they quickly at-

tracted a lot of attention in the Computer Vision community and have become a very

popular element of many real-time applications [19, 109]. Their performances, how-

ever, suffer from a relatively moderate discriminative power of intensity comparisons

and leave some place for improvement.
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To improve the performances of hand-crafted binary descriptors, much research has

been done on learning the optimal image patch representation. Both unsupervised

and supervised approaches have been proposed. Unsupervised approaches seek for a

transformation that preserves the similarity as evaluated in the original space, typically

using the Euclidean distance [6, 37, 131]. The supervised approaches aim to outperform

unsupervised ones by exploiting labeled data to produce similar binary representations

for data with the same class labels [98, 111, 116, 128]. For example LDAHash [111],

one of the most successful supervised approaches, computes a binary descriptor using

discriminative projections applied to SIFT descriptors. Nevertheless, most of the data-

driven methods mentioned above, including LDAHash, are applied to a sophisticated

descriptor, such as SIFT or GIST [115], and thus can lead to unnecessary computational

overhead and in many cases are limited to the accuracy of the original input space.

Recent works have emphasized the importance of learning the entire descriptor design

starting from raw image patches [17, 101, 103, 104] and in this thesis we follow this

approach to learn our binary local feature descriptors.

In the remainder of this chapter we first discuss the algorithms for detecting salient

image patches, i.e. feature detection methods. Then, in Section 2.2 we outline the

second step of generating local feature descriptors that is feature description. We start

by presenting the details of the most prominent floating-point local feature descriptors,

namely SIFT and SURF. Following the evolution of the research on local feature de-

scriptors we introduce the intensity-based binary feature descriptors such as BRIEF,

BRISK and ORB. We conclude this chapter with an overview of the machine learning

algorithms to build compact local feature descriptors.

2.1 Feature Detection

An ideal local feature detector would be able to identify features that correspond to

semantically meaningful objects or their parts. Due to the complexity of this task, how-

ever, it is infeasible as it requires a deeper understanding of the scene presented in the

image. Instead, currently available feature detectors modestly aim at detecting image

patterns that differ significantly from their imminent neighborhoods. Consequently,

good detectors should be able to provide features that are [123]:
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2.1 Feature Detection

(a) Corner features (b) Blob features (c) Region features

Figure 2.1: Features detected with different detection algorithms. (a) Harris corners. (b)

SIFT features (Difference-of-Gaussian points). (c) MSER features [68].

• repeatable: the overlap of features detected in two images of the same object

should be high, regardless of the change in viewing conditions.

• distinctive: the underlying intensity pattern of the features should allow to dis-

tinguish and match features.

• local: the detections should be local to enable simple model approximations and

avoid occlusions.

• numerous: there should be a multitude of features detected in a typical image.

• accurate: the features should provide the exact location, also with respect to

scale, and preferably more, e.g. feature orientation.

• efficient: the detection should be fast as this plays a significant role, especially in

the case of real-time applications.

Depending on the feature type detected in the image, feature detectors can be

divided into three categories: corner, blob and region detectors. An example of the

features detected using different detectors are shown in Fig. 2.1. Discussing all the

feature detection algorithms proposed in the literature is beyond the scope of this

thesis and, thus, we focus here on the most prominent and widely used methods. More

precisely, we start by presenting Harris corner detector [41] and its efficient alternative

designed for real-time applications - FAST [90]. We then discuss more complex, yet

more robust blob detectors: Difference of Gaussian [61] and Determinant of Hessian [57].
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2.1.1 Harris Detector

The Harris detector [41], also known as the Harris operator is one of the first successful

attempts to localize image features. It proposes to use a measure of cornerness, defined

as the response strength of the following operation:

cornerness = det(M)− λ trace(M) (2.1)

where M is an auto-correlation matrix describing the gradient distribution in a local

neighborhood of a point, i.e.:

M =
∑
u,v

w(u, v)

[
I2
x IxIy

IxIy I2
y

]
(2.2)

with w(u, v) representing averaging with a Gaussian smoothing function, and Ix and

Iy being the image derivatives along x and y axis, respectively. A typical value for λ

is 0.04. The matrix M can be useful to detect corners, as its eigenvalues correspond

to the principal signal changes in two orthogonal directions and so large eigenvalues

represent significant variation of the signal which can be interpreted as a corner. To

simplify computations, instead of performing eigenvalue decomposition, the Harris de-

tector calculates the difference between the determinant of matrix M and its scaled

trace. Despite the efficiency of such computations, the elementary Harris detector pro-

vides only moderate performance as it is not robust enough for various viewpoint and

scale changes [69].

Several extensions of Harris detector have been proposed, one of the most successful

ones being Harris-Laplace and Harris-Affine detectors [70]. The Harris-Laplace operator

introduces scale invariance by means of a scale space [55, 57] and, hence, allows to

detect stable feature points across different scales and image resolutions. The Harris-

Affine detector builds up on [56] to obtain affine invariant corners. Instead of detecting

circular neighborhoods, the Harris-Affine detector iteratively estimates elliptical affine

regions. This approach provides a better estimate of the object shape, regardless of

transformations caused by the viewpoint changes.

2.1.2 FAST

Although the extensions discussed above significantly improve robustness of the Har-

ris corner detection method, they also lead to a massive increase of computational
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2.1 Feature Detection

Figure 2.2: Selection of the circle pixels used to detect corners in FAST. Source: [90].

complexity. To overcome this limitation, which becomes especially important for the

real-time applications, Smith and Brady proposed the SUSAN detector [106]. Instead

of using local gradient information, SUSAN relies on a simple morphological analysis

of the neighboring intensity values and, based on the proportion of similar to different

pixel values, it decides whether to classify the central point as a corner. Building up on

this idea, FAST [90] suggests using only the intensities of the pixels lying on a circle of

radius 3. To classify the central point as a corner, FAST uses a set of comparisons be-

tween the intensity values of the pixels on the circle and the central pixel. The selection

of the comparisons is entropy-driven and if n consecutive comparisons are consistent,

i .e. if all n pixels on the circle have higher (or lower) intensity than the central one,

the central pixel is considered to be a corner candidate. The process is concluded with

a non-maximum suppression stage [76]. Fig. 2.2 shows angraphical interpretation of

the FAST corner detection. The scale invariance of the FAST detector is obtained

by modifying the size of the area that is examined. Since intensity lookups are fairly

inexpensive in terms of computational cost, the FAST detector can run up to 30 times

faster than the competing state-of-the-art feature detection methods.

2.1.3 Difference of Gaussian

One of the most well-known blob detectors is the Difference of Gaussian (DoG) function.

It can be interpreted as an approximation of a more complex, but also effective blob

detector, namely Laplacian of Gaussian (LoG). In the case of images, we define the
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Figure 2.3: Overview of the DoG blob detection scheme. Source: [123].

LoG operator as a trace of the Hessian matrix, i.e. LoG = tr(H) where

H =

[
Ixx Ixy
Ixy Iyy

]
(2.3)

with Ixx a second-order Gaussian smoothed image derivative along the x axis. Although

intrinsically LoG is not affine invariant, an extension similar in spirit to this for Harris

corner detector was proposed [70].

Nonetheless, the computational complexity of applying the LoG operator makes

this approach quite cumbersome and therefore a more efficient Difference of Gaussian

is preferred. Introduced by Lowe and coupled with the SIFT descriptor [61], DoG

operator avoids computing second-order derivatives inherent in the LoG operator by

calculating differences between Gaussian-blurred images representing different scales.

This approach is consistent with the diffusion equation in a scale-space theory, since it

accounts for approximating derivatives in the scale direction.

The scale-space pyramid is computed from the bottom to the top where each consec-

utive image is a smoothed version of the preceding and the transition from one octave

to the next corresponds to downsampling the image by a factor of 2

Fig. 2.3 shows the process of applying the DoG operator in practice. Generation of

the image scale space is very efficient, since the pyramid is build from the bottom to

the top and each consecutive image is a Gaussian smoothed version of the preceding

image. Additionally, images at higher octaves are subsampled versions of the original

and therefore Gaussian blurring can be applied even faster.

Once the scale-space pyramid is built, a non-maximum suppression is computed

over the DoG blob response maps. The candidate locations defined as extrema in
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Figure 2.4: Example approximations of Gaussian second order derivatives proposed for

SURF feature detector. From left to right: partial derivative in x and xy direction, their

approximations with box filters. Source: [10].

the response maps, are further refined with quadratic interpolation. Since Laplacian

(approximated by the DoG operator) gives fairly strong responses on edges, additional

filtering step based on Harris cornerness score is necessary.

2.1.4 Determinant of Hessian

The determinant of Hessian (DoH) is another blob detection method that can be derived

from the Hessian matrix. Instead of approximating the trace of Hessian as it is done

in DoG, the DoH operator looks at its determinant. Although the performance of DoH

in terms of scale selection was proven superior to this of DoG [57], its popularity can

be mainly traced to the success of the SURF [10] feature detector which ingeniously

approximates DoH using efficient integral images. Hence, we will discuss those two

detectors together.

To provide scale-space invariance, the DoH operator, similarly to the Harris corner

detector, should be coupled with the appropriate Laplace operator across the scale

direction. Nonetheless, the SURF detector suggests using the determinant of Hessian

not only in the spatial domain, but also across the scales. More precisely, Bay et al.

propose to use box filters to roughly approximate Gaussian kernels as shown in Fig. 2.4

and use the resulting approximations to generate the scale-space pyramid. This step,

when combined with integral images [126], leads to over five-fold speedup with respect

to the DoG operator with virtually no performance loss, since there are many more

important sources of noise present in the detection pipeline.

17



2. RELATED WORK

2.2 Feature Description

Having detected feature points in the image, the next objective is to represent them in a

way that is invariant to unwanted image transformations. We outline this task, defined

as feature description, in this section. We start by discussing one of the most successful

local feature descriptors: SIFT [62]. Despite its wide recognition in the Computer

Vision community, SIFT remains computationally prohibitive for many applications

and several simpler methods were proposed. We therefore give a short overview of

those methods, starting with SURF [10]. We continue with the recent advances in

the theory of local feature descriptors, namely the shift from floating-point descriptors

to binary ones, which was sparked by BRIEF [20]. Although orders of magnitude

faster than the state-of-the-art floating point descriptors, BRIEF was criticized for

its lack of invariance towards scale and rotation and, hence, several extensions were

proposed [3, 54, 92] and we discuss them briefly in the following sections. We conclude

this part by outlining the most recent trend in the field of local feature descriptors:

data-driven approaches used for learning local feature descriptors.

2.2.1 SIFT

SIFT local feature descriptor was introduced by Lowe in his seminal work on distinctive

image features [62]. Although many competing algorithms have been proposed, SIFT

still stands out of many Computer Vision algorithms as it provides a fairly stable

performance regardless of the application and image registration conditions. Moreover,

it has become a de facto standard descriptor for matching objects and scenes [15, 30,

39, 84, 107] underlying various applications, such as visual search [78] or panorama

stitching [16]. We therefore outline the key concepts behind the SIFT descriptor in

this section and we compare the performances of our binary descriptor to SIFT in

Chapter 5.

Although theoretically, computation of local feature descriptors can be indepen-

dent from feature detection step, Lowe proposes to build SIFT descriptors for features

detected with the DoG operator, described in details in the previous section. The ra-

tional behind this decision is the goal of obtaining scale and rotational invariance of

the resulting representation. Since DoG provides a fairly stable set of candidate fea-

ture points across different scales, the scale invariance is guaranteed for the candidate
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features. Orientation invariance, however, has to be provided separately. This requires

an effective method of assigning a repeatable orientation to the feature points.

To that end, SIFT takes the feature points, also called keypoints, along with the

detected scale and selects from the scale-space pyramid the image L(x, y) that corre-

sponds to the the closest scale to the keypoint’s actual scale. For a given feature point

at location (x, y) and scale s, the gradient magnitude m(x, y) and orientation θ(x, y)

are precomputed using pixel differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2, (2.4)

θ(x, y) = arctan

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
. (2.5)

Orientation values θ(x, y) around the feature location are used to form a 36-bin his-

togram which covers 360 degrees. When adding orientation samples to the histogram,

each sample is weighted by the corresponding gradient magnitude and Gaussian-weighting

centred on the key point. Eventually, the dominant orientation is determined accord-

ing to the histogram bin with the highest peak. If the histogram contains other peaks

within 80% of the value of the highest peak, the feature is replicated and the additional

orientations are assigned to the newly created features. Although this step seems re-

dundant at first, it contributes significantly to the increased stability of SIFT.

In the final step, local gradient information is summarized into a 128-dimensional

descriptor by concatenating sub-regional histograms of gradients around a feature point,

as shown in Fig. 2.5. Although one could imagine using simpler descriptors, e.g. in-

tensity histograms, accumulating gradients is inspired by a model of biological vision

that relies on complex neurons in primary visual cortex [32]. According to this model,

neurons in visual cortex respond to gradients at particular orientations, but the exact

location of the gradient response does not have to be precisely defined. SIFT descrip-

tor is therefore computed by first computing a set of 8-bin orientation histograms in

4 × 4 sample regions and then concatenating them into a 4 × 4 × 8 = 128 dimen-

sional representation. Since the keypoint dominant orientation is known at that point,

the histograms can be offset accordingly, thus providing rotational invariance. Finally,

the resulting vector is clipped and renormalized to unit length to increase descriptor’s

robustness against affine illumination changes.

As a final remark, we would like to point out that although SIFT enjoys fairly wide

recognition as one of the most robust local feature descriptor, its computational scheme
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Figure 2.5: Pooling scheme of SIFT. Descriptor is built by first applying Gaussian weight-

ing on local gradients (left) and then accumulating the resulting weighted gradients into a

set of histograms (right). The histograms are then concatenated to form a final represen-

tation. Source: [62].

comprises a multitude of fine-tuned and meticulously engineered steps. In this thesis we

try to understand the process of building a descriptor from a data-driven perspective

and surprisingly discover that many of those steps are coherent with Lowe’s findings,

which proves the ingenuity of the SIFT algorithm.

2.2.2 SURF

Conceptually similar to SIFT, SURF significantly improves the computational efficiency

of feature extraction process by leveraging the use of integral images and approximating

gradient computations with Haar wavelets as shown in Fig. 2.6(a). Although this might

seem to be a very radical step, the results show that in favorable conditions SURF

can outperform SIFT. As a result, SURF has quickly become well-known as a more

efficient alternative for SIFT and since we compare the performances of the descriptors

proposed in this thesis against SURF, we briefly outline the process of generating SURF

descriptors in this section.

After efficient feature detection presented in Section 2.1.4, SURF computes a set of

orientation estimates dx and dy by means of scale-adapted Haar wavelets and weights

them with an appropriate Gaussian kernel. The weighted responses dx and dy are

then plotted on a corresponding 2D plane as (dx, dy)T points and a sliding window of

size π/3 is finally used to estimate the dominant keypoint orientation (see Fig. 2.6(b)).

Since orientation information might not be required for certain applications, SURF
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(a) (b)

Figure 2.6: (a) Haar wavelet filters used to build SURF descriptors. Black areas are

associated with a weight of +1, whereas white areas are associated with a weight of -1. (b)

SURF orientation assignment mechanism. Source: [10].

is also available in the upright version where the orientation computation is skipped

and all keypoints are assigned with an orientation of 0. This allows for even further

reduction in computational time.

The SURF descriptor, similarly to SIFT, aggregates filter responses in 4×4 oriented

square sub-regions. Contrary to SIFT, however, the filters are the above mentioned

Haar wavelets and the aggregation step accounts for simple summing which can be done

efficiently by using integral filters. The final descriptor is then built by concatenating

the sums, and results in 64-dimensional vector. Note that reducing the dimensionality

by half with respect to SIFT leads to further speedup when it comes to matching SURF

descriptors.

2.2.3 BRIEF and Its Extensions

Thanks to all the simplifications, SURF features can offer a significant speedup with

respect to SIFT. Nevertheless, its use in real-time applications remain prohibitive,

unless coupled with highly optimized GPU implementations [21]. Furthermore, with

64 dimensions of floating-point values, the memory footprint of SURF reaches 256

bytes. This becomes significant when millions of descriptors need to be processed and

stored, especially on limited mobile devices.

To address those limitations, Calonder et al. propose an intensity-based binary de-

scriptor, called BRIEF, that is build by concatenating the results of simple comparisons
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(a) BRIEF (b) BRISK (c) FREAK

(d) ORB

Figure 2.7: Sampling schemes of the intensity-based binary descriptors. (a) BRIEF

uses random Gaussian sampling. (b) BRISK proposes a determininstic non-overlapping

sampling regions pre-smoothed with various Gaussian kernels. (c) FREAK postulates

using overlapping sampling regions pre-smoothed with Gaussian kernels of sizes related to

log-polar retinal pattern. (d) ORB takes the initial set of intensity comparisons generated

by considering high-variance under orientation (left) and decorrelates them to form the

final descriptors (right). Source: [3, 20, 54, 92].

of pixel values at pre-defined sampling locations [20]. The sampling locations are drawn

at random from a Gaussian distribution relative to the center of the image patch (see

Fig. 2.7(a)). As a matter of fact, the intensity comparisons used to build BRIEF can

be interpreted as primitive approximations of gradients along random orientations. By

applying 256 of those comparisons, BRIEF represents a particular fingerprint of an im-

age patch which can provide certain distinctiveness while remaining very robust against

illumination changes. Moreover, to obtain some invariance towards spatial shifts the

image is pre-smoothed with a box filter or a Gaussian filter before applying intensity
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comparisons. Thanks to the simplicity of the operations the BRIEF descriptor can be

extracted astonishingly fast and its binary nature allows to match it efficiently with

Hamming distance.

Building on the success of BRIEF, several extensions were proposed [3, 54, 92].

While BRIEF relies on random Gaussian sampling to generate a set of sampling points,

BRISK [54] proposes a deterministic approach which is inspired by a wide baseline

feature descriptor called DAISY [114]. The uniform sampling scheme of BRISK (see

Fig. 2.7(b)) is based on a circular pattern that is rotated according to the dominant

orientation detected in the feature detection step. The final descriptor is assembled by

performing an exhaustive set of the short-distance intensity comparisons between the

neighboring locations. Furthermore, BRISK proposes to pre-smooth sampling locations

with a Gaussian kernel of standard deviation σi that is proportional to the distance

between the points and the center of the patch. Thanks to this step, BRISK avoids

aliasing effect. FREAK [3] also postulates using different Gaussian kernels to smooth

sampling locations, but the size of Gaussian kernel changes in the case of FREAK with

respect to the log-polar retinal pattern presented in Fig. 2.7(c).

ORB [92] is yet another extension of BRIEF which enhances the discriminative

power of intensity-based binary descriptors by decorrelating the responses of intensity

comparisons. By using a greedy algorithm over a set of 300k keypoints, Rublee et al.

is able to significantly increase the variance of each bit in ORB and, hence, increase

their amount of information they contain. Fig. 2.7(d) shows the initial subset of the

binary tests generated by maximizing the variance for each bit and the results of the

decorrelation of those tests. The rotation invariance of ORB is obtained by rotating the

sampling scheme according to the dominant patch orientation, as it is done in BRISK.

Due to their efficiency, binary descriptors based on simple intensity comparisons

have become widely used in many real-time applications such as Visual SLAM [109] or

object detection [19]. Not only do they enable fast feature extraction, but they also

are very fast to match as the Hamming distance between two binary vectors can be

computed much faster than the Euclidean one, especially on modern CPU architectures

where a popcount1 instruction is implemented. Nevertheless, their discriminative power

remains sufficient only when matching is done across reasonably sized datasets [21] and

1The popcount instruction computes the number of bits set to 1, and can be used after a bitwise

XOR operation to compute the Hamming distance very efficiently.
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in the case of truly large-scale applications they are still outperformed by their floating-

point competitors.

2.2.4 Learning-based Methods

Although the above mentioned descriptors have been widely in Computer Vision, they

still do not provide full invariance with respect to various viewpoint and illumination

changes. Recent advancements in statistical methods motivated researchers to look

into machine learning algorithms to improve both the efficiency and accuracy of image

descriptors.

Perhaps the first attempt to use data information to form a descriptor is PCA-

SIFT [50] where PCA is applied on normalized gradient patches to form feature de-

scriptors. Other unsupervised methods include hashing-based algorithms that learn

compact binary descriptors whose Hamming distance is correlated with the similarity

in the original input space [38, 51, 87, 94, 131, 132]. Semantic hashing [94] trains

a multi-layer neural network to learn compact representative binary codes. Spectral

hashing [131] minimizes the expected Hamming distance between similar training ex-

amples, and was recently extended to optimize over example affinities [132]. Similarly,

[51, 79] find codes whose Hamming distances well approximate the original Euclidean

ones. In [38, 127], iterative and sequential optimization strategies that find projections

with minimal quantization error are explored. While these approaches have proven

highly effective for finding compact binary codes, they rely on pre-defined distance or

similarity measures and in many cases are limited to the accuracy of the original input

space.

Supervised learning approaches can learn feature spaces tailored to specific tasks [47,

60, 86, 111, 127]. They exploit labeled example pairs or triplets that encode the desired

proximity relationships of the learned metric. In [47], a Mahalanobis distance metric

is learned and optimized with respect to labeled distance constraints. Linear Dis-

criminant Analysis is applied in [38, 111] to learn discriminative feature embeddings.

Semi-supervised sequential learning algorithms are proposed in [60, 127] for finding

discriminative projections. Similar to these approaches, most methods define a linear

transformation of the data in either the original or a kernelized feature space and rely

on a pre-specified kernel function to capture non-linearities. While they are well-suited

for image categorization and indexing tasks for which task-specific kernels have been
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proposed, such as in [39], they are less applicable to local descriptor matching where

the appropriate choice of kernel function is less well understood.

Recent descriptor learning methods have emphasized the importance of learning

not only the optimal weighting, but also the optimal shape or pooling configuration

of the underlying representation [17, 103, 104]. In [17], the authors optimize over

different feature selection and pooling strategies of gradient-based features, however,

the criterion considered—the area below the ROC—is not analytical making it difficult

to optimize. A convex optimization strategy was developed in [103]. To make learning

tractable, however, a limited set of pooling configurations was considered and restricted

to circular, symmetrically arranged pooling regions centered about the patch. As shown

in our experiments, our binary descriptor achieves a similar accuracy to these methods

at a fraction of the matching cost. Although the method of [103] was further extended

to the binary case [104] by using the quantization technique of [49], our framework still

yields similar performance while requiring a much simpler optimization.

Jointly optimizing over descriptor weighting and shape poses a difficult problem due

to the potentially large number of pooling configurations one might encounter. This

is especially true for learning generic shapes where the number of pooling regions can

easily be in the millions, even for small patch sizes. Fortunately, this is a problem

for which AdaBoost [33] and other boosting methods [31, 126] are particularly well-

suited. Although greedy, boosting is an effective method for constructing a highly

accurate predictor from a large (potentially infinite) collection of constituent parts.

The resulting boosting-trick, like the kernel-trick, maps the input to a high-dimensional

feature space, however, the mapping it defines is explicit, with the learned embedding

assumed to be sparse [25, 89]. As a result and unlike kernel methods, boosting appears

to be an efficient way to find a non-linear transformation of the input that is naturally

parameterized over both the descriptor shape and weighting. In Chapter 4, we will

show how to use the boosting trick to learn compact and robust binary local feature

descriptors.
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Part I

Learning Binary Descriptors

27





CHAPTER

THREE

EFFICIENT DISCRIMINATIVE PROJECTIONS FOR BINARY

DESCRIPTORS

In this chapter, we aim to bridge the performance gap between the recently proposed

binary descriptors, such as BRIEF, BRISK and ORB and a more robust floating-point

descriptors such as SIFT or SURF. In order to improve the recognition performances

without increasing the computational cost, we adopt a discriminative approach as in [17,

18, 111]: We use training data to learn linear projections that map image patches to

a more discriminative subspace, and to obtain a binary descriptor, we threshold the

projected patches. This way we avoid the intermediate step of computing complex

floating-point descriptors, which is common for many binary descriptors [111, 116] but

exceeds the capabilities of many mobile platforms.

Nevertheless, projecting image patches is computationally expensive and negates

the efficiency of binary descriptors, especially when they have to be computed in real

time. Thus, in our approach, and this is our main contribution, we train the projections

not only to be discriminative but also to be computed as a linear combination of a small

number of simple filters from a given dictionary, as shown in Fig. 3.1. We design the

dictionaries in such a way that the filter responses can be computed fast, with box or

Gaussian filtering or using integral images. Our key idea is that this can be done by

imposing sparsity constraints and using efficient optimization techniques.

To summarize, we build our binary descriptor, which we refer to as D-Brief for Dis-

criminative BRIEF, by first projecting image patches to a more discriminant subspace

and then concatenating the results of a thresholding operation applied on the projected
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= + + + ...+ 

w

Figure 3.1: To compute our binary descriptor, we learn from a training set of correspond-

ing image patches several discriminative linear projections that can be computed from a

linear combination of a few simple filters. For the example of this figure, we used rect-

angular filters that can be computed efficiently with integral images, but we also consider

box and Gaussian filters which are also efficient to compute. This approach enables us to

build our binary descriptor fast while leveraging on training data.

coordinates. When we use box or Gaussian filters to construct the projections, we can

speed up the computation of projected patches by first convolving the entire image

with a given filter and then combining only a few values read from the convolved im-

age. With rectangular filters, we use integral images to compute the responses fast.

As a result, D-Brief provides better recognition performances than its direct competi-

tors [21, 54, 92], while being significantly shorter—only 32 bits to be compared with

several hundreds—and less time consuming. D-Brief can also be seen as a much more

efficient binary alternative to the short floating-point descriptors of [17], which require

more time to be computed, and hence target different applications than binary de-

scriptors. Although our approach uses LDA, as done in [111], we also show that the

linear projections can be optimized for very fast computation using recent optimization

theory, and hence prove that our method is not limited to LDA and can encompass

other projection-based techniques.

The rest of this chapter is organized as follows. In Section 3.1, we introduce our

method to construct a binary descriptor from a set of discriminant projections learnt

from a training dataset. We explain in details how we optimize on the projections so

that they can be computed using small number of simple filter banks which enables

efficient computation of projected patches. We compare the performance of our D-Brief

binary descriptor with the state of the art in Chapter 5.
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3.1 Method

Our binary descriptor is computed by applying a set of projections to a real-valued

vector made of the intensities of an image patch and then thresholding the results:

∀i∈1,...,N bi = sign(w>i x + τi) , (3.1)

where the bi are the N bits of our descriptor, the wi the projections, the τi the thresh-

olds, and x the image patch in vector form. We first show how to optimize over the

{wi, τi} to obtain our efficient and discriminative descriptor, and then we explain how

it can be computed fast. Finally, we evaluate how our descriptor is influenced by its

parameters.

In principal, our approach seeks to minimize the expected Hamming distance be-

tween binary descriptors that describe similar keypoints while maximizing it for the

descriptors that describe different keypoints. To that end, we learn a set of discrimi-

native orthogonal linear projections and the corresponding thresholds from a set P of

pairs of corresponding image patches and another set N of pairs of different patches.

Nevertheless, applying general projections directly on the image patches is computa-

tionally expensive. Hence, our key idea is to train the projections wi to be a linear

combination of a few elements from a predefined set or dictionary D, which is designed

to contain elements for which the responses can be computed fast, for example using

box filters.

More formally, we express the projections as wi = Dsi, where the dictionary D is

defined as a matrix with its columns being the elements of the dictionary. We want

most of the coefficients of the si vectors to be equal to zero, that is, the si should be

sparse. Our goal can then be formalized as solving the following minimization problem:

min
{(si,τi)}

∑
i∈1,...,N

∑
(x,x′)∈N

sign((Dsi)
>x + τi) sign((Dsi)

>x′ + τi)−∑
(x,x′)∈P

sign((Dsi)
>x + τi) sign((Dsi)

>x′ + τi) + λ|si|1

subject to (Dsi)
>(Dsj) = δij , (3.2)

where the last term encourages sparsity of the si with λ determining its sparsity level,

and |.|1 denotes the `1 norm. The products of sign functions promote the desired
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Hamming distances between the patch pairs (x,x′) from the P and N sets. The

constraint, with δij = 1 if i = j and 0 otherwise, makes sure that the projections are

orthogonal, which reduces the redundancy across different dimensions.

Unfortunately, direct minimization of this objective function is difficult as it involves

the non-differentiable sign function. In our case, typical solutions of this problem, such

as smooth approximation with the hinge function [13], would lead to a quadratic non-

convex problem which is challenging to solve, as it involves thousands of unknowns.

Thus, we drop the sign function and minimize the related objective function as it

is done in [111]:

min
{si}

∑
i

∑
(x,x′)∈P ((Dsi)

>(x− x′))2∑
(x,x′)∈N ((Dsi)>(x− x′))2

+ λ|si|1 (3.3)

subject to (Dsi)
>(Dsj) = δij

The above objective is independent of the thresholds τi. Hence, after finding the pro-

jections wi = Dsi, the optimal thresholds are obtained by minimizing the original

objective of Eq. (3.2) using the training sets P and N . With the projections wi being

fixed, this requires simple one-dimensional search, as explained in [111].

A possible method to solve the minimization problem of Eq. (3.3) is by using

Stochastic Gradient Descent, with soft-thresholding as the proximal operator of the

`1 norm [9]. However, even after dropping the sign function, Eq. (3.3) remains non-

convex and the optimization is likely to get stuck in a local minimum. Therefore, it

becomes essential to initialize the optimization properly, because random initialization

may not give satisfactory results, as we show below.

We propose to set the initialization point of the optimization using the following

approach: We start by minimizing the first term of Eq. (3.3) and we obtain an initial

set of discriminant projections {w0
i } using Linear Discriminant Embedding (LDE) [17]:

{w0
i } = arg min

{wi}

∑
i

∑
(x,x′)∈P (wi

>(x− x′))2∑
(x,x′)∈N (w>i (x− x′))2

(3.4)

subject to (wi)
>(wj) = δij .

As one can see, the LDE includes the orthogonality constraint from Eq. (3.3), as the

resulting projections are based on the orthogonal eigenvectors. We then address the
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sparsity constraint of Eq. (3.3) and approximate each w0
i projection with a sparse linear

combination of elements from dictionary D by minimizing the following objective:

{s0
i } = arg min

si
‖w0

i −Dsi‖22 + λ|si|1 , (3.5)

where the first term corresponds to the quality of approximation, and the second one

to the sparsity of the filter representation. To simplify our optimization, we do not

constrain our approximated projections to be orthogonal, although this could certainly

lead to an interesting extension of our approach.

The advantage of the stepwise approach discussed above is that Eq. (3.5) can be

solved in closed-form as shown in [17], while Eq. (3.5) is convex and can be solved

with efficient recent techniques [9]. In practice, we use the MATLAB lasso function

which implements [113] and lets the user define |s|max
0 , the maximal number of non-

zero coefficients in the representation, which is a more convenient way of controlling

the sparsity of the approximation compared to tuning λ.

To evaluate the quality of our approach, we performed the following experiments.

We took two sets of projections: Random ones {wR
i } and those obtained using our step-

wise approach {wS
i = Ds0

i }. We then minimized Eq. (3.3) with Stochastic Gradient

Descent on a set of datasets presented in Section 5.1 using first {wR
i } and then {wS

i } as

initializers. As a result we obtained two optimized sets of projections, {wR−Opt
i } and

{wS−Opt
i } respectively. To make the comparison fair, we set the number of projections

to 32 and tuned the parameters so that each projection was a linear combination of

64 columns of the BOX dictionary D, which we discuss in details in the next section.

We then found the corresponding optimal thresholds and evaluated the resulting de-

scriptors on all the test sets, using the setup of Section 3.3. In Fig. 3.2 we present two

representative ROC curves and in Table 3.1 summary of the other results.

Optimizing over the random projections significantly improves the results. Never-

theless, the projections obtained using the stepwise initialization scheme we propose

perform better even without optimization. Moreover, our evaluation shows that apply-

ing a global optimization on the {wS
i } does not lead to any significant improvement

and, hence, in the remainder of this chapter we use our stepwise approach without

further optimizing it.
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Figure 3.2: Results obtained using Stochastic Gradient Descent applied to Eq. (3.3) and

initialized with random projections or projections found with our stepwise approach. We

used 32 projections and tuned the parameters so that each projection is a linear com-

bination of 64 columns of BOX dictionary. We then found the corresponding optimal

thresholds. Initializing gradient descent with the stepwise approach instead of random

projections boosts the results significantly. Interestingly, optimization improves the qual-

ity of the projections only slightly while requiring additional processing time. Thus, to

build D-Brief we use projections computed with the stepwise approach without further

optimization.

Train Test {wR
i } {wR−Opt

i } {wS
i } {wS−Opt

i }
Yosemite Notre Dame 69.28 54.97 44.52 41.96

Yosemite Liberty 71.54 63.08 52.01 48.81

Notre Dame Yosemite 76.31 62.22 46.72 47.06

Notre Dame Liberty 70.48 60.33 48.86 46.72

Liberty Notre Dame 75.07 52.63 43.35 38.81

Liberty Yosemite 77.59 66.14 49.08 50.26

Table 3.1: 95% error rates for different training and testing configurations obtained with

different sets of projections: random projections {wR
i }, projections computed using our

stepwise approach {wS
i }, random projections optimized using Stochastic Gradient Descent

{wR−Opt
i } and projections obtained with our stepwise approach optimized using Stochastic

Gradient Descent. After learning the projections, we computed the optimal thresholds. To

make the comparison fair, all the sets contain 32 projections and each projection is a linear

combination of 64 columns of the BOX dictionary.
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3.2 Dictionaries

After finding a set of projections {wi = Dsi}, they can be applied on an image patch

x as:

w>i x = (Dsi)
>x =

∑
j such that sij 6=0

sijD
>
j x , (3.6)

where the Dj are the columns of matrix D and contain the dictionary elements. The

dictionary in D is designed so that the dot product D>j x can be computed efficiently.

In our experiments we use three different dictionaries that contain:

a) Box filters (BOX): To create this dictionary we generate a set of box filters of size

5×5 that are centered at each coordinate of the image patch. Since our subsampled

patches are of size 32× 32, there are 1,024 elements in this dictionary.

b) Gaussian filters (GAUSS): Similarly, we generate a set of Gaussian filters with

σ = 3 centered at each coordinate of the image patch. The size of this dictionary is

also 1,024.

c) Rectangular filters (RECT): We create this dictionary by generating a set of

rectangular filters of different sizes centered at each coordinate. We subsample the

space of all possible rectangular filters by considering those whose horizontal or

vertical edge is equal to 1, 4, 7, 10, . . . . The resulting dictionary size is 34,596.

At run-time, to compute the D>j x values, we first convolve the image patch with a

box filter or a Gaussian filter, or compute the integral image for the patch. All these

operations can be done very efficiently. Then, the D>j x can be obtained by reading a

single value in the result of the convolution, or four values in the integral image in the

case of the RECT dictionary. An extensive comparison of different types of dictionaries

and their influence on the quality of the final descriptor is presented in the next section.

Although scale- and rotation-invariance is not embedded in the above formulation

of our descriptor, it can be achieved by rectifying the patch according to the detection

results. To still benefit from the pre-computation of the filter responses, a Gaussian

scale pyramid can be generated and the dictionaries can be applied to the images at

each level of the pyramid.
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3.3 Experiments

To train our projections, we use three publicly available datasets: Liberty, Notre Dame

and Yosemite [17] presented in Section 5.1. To avoid overfitting when training the LDE

projections we apply a regularization method proposed in [17] with clipping parameter

α = 0.01. We tried different combinations of training and testing datasets, but as

in [17], we found that choosing a specific combination does not have a strong influence

on the final results. A set of sample projections learned using Liberty,Notre Dame and

Yosemite datasets datasets can be seen in Fig. 3.3.

As shown in Fig. 3.4 the best performances are obtained when using the first 32

projections. When a larger number of projections is used, the performances start

deteriorating. This performance peak can be explained by the fact that the binarization

step gives equal importance to all the projections, while the projections computed

with LDE are ranked by decreasing discriminative power. Furthermore, the results

show that the binarization step improves the overall quality of the final descriptor.

This can be explained by the importance of highly non-linear sign function applied

on the projected coordinates and a strong classification decision it entails. Moreover,

using the least ranked projections, which correspond to the dimensions of lower energy,

introduces classification noise and deteriorates performance. We therefore keep the top

32 projections in the rest of the chapter, and our descriptor is made of 32 bits.

We performed a set of experiments to qualitatively and quantitatively assess the in-

fluence of different parameters on Eq. (3.5). Fig. 3.5 shows how the number of elements

used to reconstruct the Gaussian and Difference-of-Gaussian projections influences the

final approximation results. Fig. 3.6 shows how the dictionary type and the number of

elements used influences the results on two sample LDE projections.

Fig. 3.7 shows the recognition rates for projections obtained by optimizing Eq. (3.5),

from the top 32 LDE projections obtained with Eq. (3.5) with different dictionaries and

various numbers of dictionary elements used. Before binarization, the RECT dictio-

nary provides the best results, followed by the GAUSS and BOX dictionaries. While

optimizing the projections with Eq. (3.5) hurts the recognition performances before

binarization, it is not true anymore after binarization. There is actually a minor im-

provement, which may come from the fact that the LDE projections are typically noisy
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(a) Liberty

(b) Notre Dame

(c) Yosemite

Figure 3.3: The top 32 projections learnt from 200k pairs of non-normalized patches from

the Liberty, Notre Dame and Yosemite datasets using Local Discriminant Embedding.

and the optimization introduces some regularization which makes the thresholds gener-

alize better. Surprisingly, the GAUSS dictionary performs better than the others after

binarization for small numbers of elements, but then gets outperformed again by the

RECT dictionary for large numbers of elements.

As explained in Section 3.1, to build the descriptors efficiently at run-time we first
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Figure 3.4: 95% error rates for different numbers of LDE projections obtained from

Eq. (3.5) and used for dimensionality reduction before and after applying the thresholds

(the 95% error rate is the percent of incorrect matches obtained when 95% of the true

matches are found). Without binarization, the error rates do not change significantly

for different dimensionalities. After binarization, however, the dimensionality has much

greater influence, likely because the projections are ranked by decreasing discriminative

power, while the binarization gives them equal importance. The minimum of the plotted

curve corresponding to the best performance is obtained for 32 dimensions.

preprocess the image patch either by convolving it with a box or Gaussian filter or by

computing the integral image. Then, the D>j x values of Eq. (3.6) are obtained by read-

ing either one or four values from the output of this preprocessing stage. Convolution

with a box filter is faster than convolution with a Gaussian filter, and when using the

RECT dictionary, we need to read four values for each D>j x instead of only one as with

the BOX and GAUSS dictionaries. The computation times are therefore different for

each dictionary and Table 5.4 presents the times required for computing our descriptors

using different dictionaries. With our approach, we can speed up the description time

with respect to regular projections by over an order of magnitude.

Moreover, there is a trade-off between the accuracy and efficiency of the dictionaries:

The slower one yields the best recognition performance, and vice versa. In practice,

this means that we can adapt our method to the need of the final application.

As reported in [17], pre-normalizing the patches by subtracting the intensity mean

value and dividing by the standard deviation and post-normalizing the descriptor to

unit length improves the performance, in case of a real-valued descriptor. Inspired by
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Figure 3.5: Approximations of Gaussian and Difference-of-Gaussian kernels. We used

RECT dictionary and varied the maximal numbers of dictionary elements per projection.

The columns on the right show the first 8 elements of the sparse representation s

these findings, we tried normalizing our patches and descriptors as in [17]. Fig. 3.8

confirms the observed performance improvement for real-valued coordinates. However,

these steps do not have much influence on the results after binarization. This is because

we train the thresholds to be discriminative after applying the projections and, hence,

they adapt well to the light variations. Hence, we skip the normalization, as it entails

additional computational overhead.

3.4 Conclusion

In this chapter, we presented a new method to learn discriminative projections which

can be computed efficiently as a linear combination of a few simple filters from a given
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Figure 3.6: Projections obtained by optimizing Eq. (3.5), from two LDE projections

obtained with Eq. (3.5). We varied the dictionaries and the maximal numbers of dictionary

elements per projection. The columns on the right show the first 8 elements of the sparse

representation s.

dictionary. This approach enables us to learn a compact and discriminative binary

descriptor we call D-Brief. The method proposed in this chapter is not only limited

to LDA projections, as one can imagine enabling efficient computation of many filter

responses or projections, such as wavelets or PCA-generated projections, by approxi-

mating them with our approach. We compare the performances of D-Brief with respect

to the state-of-the-art descriptors in Chapter 5.
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Figure 3.7: Performances of the projections obtained by optimizing Eq. (3.5), from the top

32 LDE projections obtained with Eq. (3.5). We varied the dictionaries and the maximal

numbers of dictionary elements per projection. We also give the results for the projections

directly obtained with Eq. (3.5), referred to as LDE. In parentheses: Number of floating

point (f) or binary (b) coordinates, and number of elements. Before binarization, the

RECT dictionary provides the best approximation, followed by the GAUSS and BOX dic-

tionary. While the approximation hurts the recognition performances before binarization,

it is not true anymore after binarization. The minor improvement can be explained by the

smoothing effect of the approximation applied on typically noisy LDE projections which

makes the thresholds generalize better.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Train: Yosemite (200k) Test: Notre Dame (100k)

w/o normalization (32f)
w/ normalization (32f)

w/o normalization, binary (32b)
w/ normalization, binary (32b)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

Train: Yosemite (200k) Test: Liberty (100k)

w/o normalization (32f)
w/ normalization (32f)

w/o normalization, binary (32b)
w/ normalization, binary (32b)

Figure 3.8: Influence of normalization applied on the D-Brief descriptors before (left)

and after (right) binarization. In parentheses: Number of floating point (f) or binary (b)

coordinates. Normalization improves the performance only for the real-valued coordinates.

The thresholds applied in the binarization step adapt to the discriminative subspace and,

we can hence skip the normalization steps with no loss of accuracy.
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CHAPTER

FOUR

LEARNING DESCRIPTORS WITH BOOSTING

In this chapter, we propose another method to learn a compact binary local feature

descriptor using machine learning technique called boosting. Although the binary de-

scriptor presented in the previous chapter can be computed fastly with extremely low

memory footprint, its performance can still be improved. Hence, we investigate here a

more powerful boosting-inspired method of learning feature descriptors that is capable

of modeling the non-linear nature of many unwanted image transformations.

Learning an invariant feature representation can be seen as finding an appropriate

similarity measure which remains invariant to unwanted image transformations. Al-

though several learning methods have been proposed in the literature [47, 98, 99], they

have largely focused on finding a linear feature mapping in either the original input or

a kernelized feature space. As a result, modeling non-linearities requires choosing an

appropriate kernel function that maps the input features to a high-dimensional feature

space where the transformations are assumed to be linear. However, selecting the right

kernel, which is a crucial element of the algorithm, is often non-intuitive and gener-

ally constitutes a complex and challenging problem. Recent works introduce non-linear

mappings by the means on sigmoidal activation functions in multi-layer neural network

architectures [66, 67], however, they typically rely on existing representations such as

pre-computed descriptors.

In this chapter, we propose a novel supervised learning framework that finds low-

dimensional but highly discriminative descriptors. With our approach, image patch

appearance is modeled using local non-linear filters that are selected with boosting.
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Our work is inspired by Boosted Similarity Sensitive Coding (SSC) [98] which is the

first application of boosting to learn an image similarity measure and was later extended

in [116] to be used with a Hamming distance. We show how we can use Boosted SCC as

a way to efficiently select features, from which we compute a compact representation.

Analogous to the kernel-trick, our approach can be seen as applying a boosting-trick [25]

to obtain a non-linear mapping of the input to a high-dimensional feature space. Unlike

kernel methods, boosting allows for the definition of intuitive non-linear feature map-

pings that can share a close connection with existing, prevalent feature descriptors.

Our learning approach is not limited to any pre-defined sampling pattern and provides

a more general framework than previous training-based methods [17, 92, 103]. It also

scales linearly with the number of training examples, making it more amenable to large

scale problems, and results in highly accurate descriptor matching.

Nevertheless, as image databases grow in size, modern solutions to local feature-

based image indexing and matching must not only be accurate but also highly efficient

to remain viable. Binary descriptors are of particular interest as they require far less

storage capacity and offer much faster matching times than conventional floating-point

descriptors [21, 38, 54, 92, 111], or even quantized descriptors [17]. In addition, they can

be used directly in hash table techniques for efficient Nearest Neighbor search [64, 80],

and their similarity can be computed very quickly on modern CPUs based on the

Hamming distance.

However, as our experiments show, state-of-the-art binary descriptors often perform

worse than their floating-point competitors: some are built on top of existing represen-

tations such as SIFT or GIST by relying on training data [38, 111], and are therefore

limited by the performance of the intermediate representation. Others start from raw

image intensity patches, but focus on computation speed and rely on fast-to-compute

image features [21, 54, 92], which limit their accuracy.

To address these shortcomings, we extend our learning framework to the binary

case and we train a highly discriminative yet compact binary descriptor. This ex-

tension demonstrates the real advantage of our approach as it enables us to not only

compress the descriptor, but also significantly decrease the processing cost and memory

footprint. For each dimension of the resulting binary representation, we learn a hash

function of the same form as an AdaBoost strong classifier, that is the sign of a linear

combination of non-linear weak learners. The resulting binary descriptor, which we
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refer to as BinBoost, significantly outperforms its binary competitors and exhibits a

similar accuracy to state-of-the-art floating-point or quantized descriptors at a fraction

of the storage and matching cost. Furthermore, it is more complex to optimize, and we

show how to efficiently optimize our hash functions using boosting.

Our method provides a general descriptor learning framework that encompasses,

among many others, the state-of-the-art intensity-based [21, 54, 92] and gradient-based

descriptors [10, 62, 111]. Our results show that the ability to effectively optimize over

the descriptor filter configuration leads to a significant performance boost at no ad-

ditional computational cost compared with the original hand-designed representation.

Moreover, our approach is not restricted to local feature descriptors and we show that

it can be applied to other types of image data, such as face images.

The rest of this chapter is organized as follows. In Section 4.1 we describe our

method: we first show how to efficiently construct our set of weak learners, from which

we compute a compact floating-point representation. We then explain how to extend

this approach to build a binary local feature descriptor. In Section 4.2 we discuss

different weak learner types and in Section 4.3 we describe the experimental setup of

our method and its parameters. Finally, in Section 4.4, we showcase the application of

our learning method on a set of face images.

4.1 Method

In this section we describe methods for learning local feature descriptors with boosting.

We first formulate our problem by defining the exponential loss objective function we

use to learn a similarity embedding between image patches. We then present different

similarity measures which, when plugged into our boosting framework, can be used to

train floating-point and binary descriptors.

4.1.1 Problem formulation

Given an image intensity patch x, we look for a descriptor C(x) = [C1(x), . . . , CD(x)]

which maps the patch to aD-dimensional vector. This descriptor can be learned by min-

imizing the exponential loss with respect to a desired similarity function f (C(x), C(y)) =
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fC(x,y) defined over image patch pairs:

L =
N∑
i=1

exp(−lifC(xi,yi)) (4.1)

where xi,yi ∈ Rp are training intensity patches and li ∈ {−1, 1} is a label indicating

whether it is a similar (+1) or dissimilar (−1) pair. Minimizing Equation (4.1) finds

an embedding which maximizes the similarity between pairs of similar patches, while

minimizing it for pairs of different patches.

This formulation allows for numerous similarity functions fC . We consider similarity

functions of the form

fC(x,y) = C(x)T AC(y) (4.2)

where A ∈ RD×D is a symmetric matrix. This defines a general class of symmetric sim-

ilarity measures that can be factorized to compute a feature descriptor independently

over each input and used to define a wide variety of image descriptors. In what follows,

we consider different choices of A and C(·) ordering them in increasing complexity.

4.1.2 Boosted Similarity Sensitive Coding (SSC)

The Boosted SSC method proposed in [98] considers a similarity function defined by a

simply weighted sum of thresholded response functions {hd(·)}Dd=1:

fSSC(x,y) =

D∑
d=1

αdhd(x)hd(y) . (4.3)

This function is the weighted Hamming distance between x and y and corresponds

to Equation (4.2) where A is restricted to be a diagonal matrix. The importance of

each dimension d given by the αd’s and the resulting D-dimensional descriptor is a

floating-point vector C(x) = [
√
αdhd(x)]Dd=1, where α is constrained to be positive.

Substituting fSSC for fC in Equation (4.1) gives

LSSC =
N∑
i=1

exp

(
−li

D∑
d=1

αdhd(xi)hd(yi)

)
. (4.4)

In practice the space of h’s is prohibitively large, possibly infinite, making the explicit

optimization of LSSC difficult, however, this constitutes a problem for which boosting

is particularly well suited [33]. Although boosting is a greedy optimization scheme, it

46



4.1 Method

is an effective method for constructing a highly accurate predictor from a collection of

weak predictors h. Due to its greedy nature, however, the weak learners found using

Boosted SSC often remain highly redundant and hence inefficient. In what follows, we

modify the similarity function fC(x,y) so that it becomes better suited for learning

low-dimensional, discriminative embeddings with boosting.

4.1.3 FPBoost

To mitigate the potentially redundant embeddings found by boosting we propose an

alternative similarity measure fFP that models the correlation between weak response

functions:

fFP (x,y) =
∑
k,k′

αk,k′hk(x)hk′(y) = h(x)TAh(y), (4.5)

where h(x) = [h1(x), · · · , hK(x)] and A is an K ×K matrix of coefficients αk,k′ . This

similarity measure is a generalization of Equation (4.3). In particular, fFP is equivalent

to the Boosted SSC similarity measure in the restricted case of a diagonal A.

Substituting the above expression into Equation (4.1) gives

LFP =
N∑
i=1

exp

−li∑
k,k′

αk,k′hk(xi)hk′(yi)

 . (4.6)

We optimize LFP using a two step learning strategy whereby we first apply AdaBoost

to find weak learners {hk}Kk=1 by minimizing Equation (4.4) on the training samples.

As shown by our experiments, this provides an effective way to select relevant hk’s. We

then apply stochastic gradient descent to find an optimal weighting over the selected

features that minimizes LFP . To guarantee that the similarity function fFP remains

symmetric, we restrict A to be symmetric.

The similarity function of Equation (4.5) defines an implicit feature mapping over

example pairs. In order to compute the feature descriptors independently over each

input, we need to factorize A. As we constrain A to be symmetric, we can factorize it

into the following form:

A = BWBT =
K∑
k=1

wkbkb
T
k (4.7)

where W = diag([w1, · · · , wK ]), wk ∈ {−1, 1}, B = [b1, · · · ,bk], b ∈ RK . This fac-

torization can be obtained after the eigendecomposition of A by simply premultiplying
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the eigenvectors by the squared root of the corresponding eigenvalues while storing the

signs of the eigenvalues in W.

Equation (4.5) can then be re-expressed as

fFP (x,y) =

D∑
d=1

wd

(
K∑
k=1

bd,khk(x)

)(
K∑
k=1

bd,khk(y)

)
. (4.8)

For D < K (i.e., the effective rank of A is D < K) the factorization represents a

smoothed version of A discarding the low-energy dimensions that typically correlate

with noise, and in practice leading to further performance improvements. The factor-

ization of Equation (4.8) defines a signed inner product between the embedded feature

vectors and provides increased efficiency with respect to the original similarity mea-

sure1. Moreover, given that the first D eigenvalues of the A matrix are typically

positive, we can drop the W matrix during the inner product computation and use

the simple inner product instead. Under the assumption that the descriptors have

comparable magnitudes, it is easy to show that the inner product is equivalent to the

Euclidean distance. As shown in Fig. 4.1, this is the case in practice and, hence, we

can leverage the existing methods for fast approximate nearest neighbor search which

rely on Euclidean distances.

The final embedding C(x) = BTh(x) results in a D-dimensional floating-point de-

scriptor based on K weak learners that we call FPBoostK-D. The projection matrix B

defines a discriminative dimensionality reduction optimized with respect to the expo-

nential loss objective of Equation (4.6). As seen in our experiments, in the case of re-

dundant weak learners this results in a considerable feature compression, and therefore

offering a more compact description than the original input patch. Although compact

and highly discriminant, the descriptors learned using FPBoost are real-valued and,

hence, can be slow to match and costly to store. Next, we consider a modification to

FPBoost that as we show can be used to learn a highly accurate and efficient binary

descriptor.

1Matching two sets of descriptors each of size N is O(N2K2) under the original measure and

O(2NKD + N2D) provided the factorization, resulting in significant savings for reasonably sized N

and K, and D � K.
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Figure 4.1: Histogram of the L2 norms of 75k FPBoost descriptors extracted from the

images of Mikolajczyk dataset [71]. The L2 norms are upper-bounded by
√∑D

d=1 |bd|21
which equals 4 in this case. A significant portion of the descriptors have a comparable

magnitude and, hence, we can also use Euclidean distance in place of the equivalent inner

product to measure descriptor similarity.

4.1.4 BinBoost

To learn a binary descriptor we propose a modified similarity measure that extends

fFP to operate within a D-dimensional Hamming space:

fB(x,y) =

D∑
d=1

sgn
(
bTd hd(x)

)
sgn

(
bTd hd(y)

)
=

D∑
d=1

Cd(x)Cd(y) (4.9)

where Cd(x) = sgn
(
bTd hd(x)

)
and hd(x) = [hd,1(x) . . . hd,K(x)]T are K weak learners

weighted by the vector bd = [bd,1 . . . bd,K ]T . The resulting binary descriptor, which we

call BinBoostK-D, is a D-dimensional binary vector built using K weak learners by

applying C(x) = {Cd(x)}Dd=1.
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Substituting fB for fC in Equation (4.1) gives

LB =
N∑
n=1

exp

(
−γ ln

D∑
d=1

Cd(x)Cd(y)

)
. (4.10)

This optimization problem is closely related to Equation (4.4), but instead of weight-

ing the dimensions with different αd values we use a constant weighting factor γ. This

enables us to compute the similarity more efficiently as it is now equivalent to the

Hamming distance. More importantly, the {Cd(·)} functions are much more complex

than the weak learners hd as they are thresholded linear combinations of weak learner

responses. The resulting optimization is discontinuous and non-convex and in practice

the space of all possible weak learners h is discrete and prohibitively large. In what

follows we develop a greedy optimization algorithm to solve this difficult problem and

jointly optimize over the weak classifiers of each bit, hd and their associated weights

bd.

We first proceed as in regular AdaBoost. We optimize the {Cd(·)} functions iter-

atively, and at iteration d, the Cd(·) function that minimizes Equation (4.10) is also

the one that maximizes the weighted correlation of its output and the data labels [96].

Using this fact, at iteration d, the optimal bd and hd can be taken as

arg max
bd,hd

N∑
n=1

lnWd(n)Cd(x)Cd(y) , (4.11)

where

Wd(n) = exp

(
−γln

d−1∑
d′=1

Cd′(x)Cd′(y))

)
(4.12)

is a weighting that is very similar to the one used in regular Adaboost. This means

that pairs that are incorrectly classified by the previous iterations are assigned a higher

weight, whereas the weight of those correctly classified is decreased.

The sign function in Cd(·) is non-differentiable, and Equation (4.11) is thus still hard

to solve. We therefore apply the spectral relaxation trick [60, 127] and approximate

the sign function using its signed magnitude, sgn(x) ≈ x. This yields:
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arg max
bd,hd

N∑
n=1

lnWd(n)Cd(x)Cd(y)

≈ arg max
bd,hd

N∑
n=1

lnWd(n)
(
bTd hd(xn)

) (
bTd hd(yn)

)
= arg max

bd,hd

N∑
n=1

lnWd(n)
(
bTd hd(xn)

) (
hd(yn)Tbd

)
= arg max

bd,hd

bTd

(
N∑
n=1

lnWd(n)hd(xn)hd(yn)T

)
bd .

(4.13)

We first select a vector hd(x) of suitable weak classifiers by minimizing Equation (4.4)

on the training samples initially weighted by the Wd(n) weights. The sign function

in the expression of Cd(·) makes bd defined only up to a scale factor, and given an

estimate for hd(x), we solve for bd by looking for

arg max
bd

bTdMbd, s.t. ‖bd‖2 = 1 (4.14)

where
M =

N∑
n=1

lnWd(n)hd(xn)hd(yn)T . (4.15)

Eq. (4.14) defines a standard eigenvalue problem and the optimal weights bd can there-

fore be found in closed-form as the eigenvector of M associated with its largest eigen-

value.

Although not globally optimal, this solution returns a useful approximation to the

solution to Eq. (4.11). Moreover, thanks to our boosting scheme even a sub-optimal

selection of Cd(·) allows for an effective minimization.

We still have to explain how we choose the γ parameter. Note that its value is needed

for the first time at the end of the first iteration, and we set this parameter after finding

C1 using the formula from regular Adaboost. We use the rule γ = ν · 1
2 log 1+r1

1−r1 where

r1 =
∑N

n=1 W1(n) lnC1(xn)C1(yn) and ν is a shrinkage parameter used to regularize

our optimization as described in [43]. In practice, we use ν = 0.4.

4.2 Weak Learners

The employed weak learner family encodes specific design choices and desired descriptor

properties. In this section we present two weak learner types inspired from existing,
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(a) Intensity-based (b) Gradient-based

Figure 4.2: Overview of the intensity and gradient-based weak learners. To compute the

responses of intensity-based weak learners, we compare the image intensity values after

Gaussian smoothing at two locations i and j. Using boosting, we optimize both the loca-

tions and Gaussian kernel sizes, S. The gradient-based learners consider the orientations

of gradients normalized within a given region. Boosting allows us to find the pooling con-

figuration of the gradient regions and optimize the values of the corresponding thresholds.

prevalent keypoint descriptors. The simpler, yet less discriminative weak learners are

based on pixel intensities. The more complex and computationally expensive weak

learners rely on gradient images. Below we provide a detailed description of each along

with their parameters.

4.2.1 Intensity-based learners

The intensity-based weak learners rely on BRIEF-like comparisons of pre-smoothed

image intensities. More precisely, we define the output of our weak learner as:

h(x̂S ; i, j, S) =

{
1 if x̂S(i) ≤ x̂S(j)

−1 otherwise
(4.16)

where x̂S(i) is the pixel intensity of x pre-smoothed with a Gaussian kernel of size

S ∈ {3, 5, 7, . . . , 15} at position i.

The above formulation allows us to optimize the selection of the sampling points as
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it was done, e.g. in [92], except we minimize a loss function with boosting rather than

the responses’ corellation with a stochastic algorithm.

Inspired by the sampling scheme of BRISK [54] and FREAK [2], we also optimize

the value of the Gaussian kernel size S which defines the amount of smoothing applied

to the image before comparing the intensity values, in addition to the positions i and j.

This adds an additional degree of freedom to our optimization framework and, therefore,

encompasses the formulation of many recently proposed binary feature descriptors, such

as BRISK, FREAK and ORB.

4.2.2 Gradient-based learners

The gradient-based weak learners consider the orientations of intensity gradients over

image regions [4]. They are parameterized by a rectangular region R over the image

patch x, an orientation e, and a threshold T , and are defined as

h(x;R, e, T ) =

{
1 if φR,e(x) ≤ T
−1 otherwise

, (4.17)

with

φR,e(x) =
∑
m∈R

ξe(x,m) /
∑

e′∈Φ,m∈R
ξe′(x,m) , (4.18)

and

ξe(x,m) = max(0, cos(e− o(x,m)) , (4.19)

where o(x,m) is the orientation of the image gradient in x at location m. The orienta-

tion e is quantized to take values in Φ = {0, 2π
q ,

4π
q , · · · , (q−1)2π

q } with q is the number

of quantization bins. As noted in [4] this representation can be computed efficiently

using integral images.

4.3 Experiments

In this section, we first show the results obtained for different types of weak learners,

as described in Section 4.2. We then present a set of initial experiments which validate

our approach and allow us to select the correct parameters for our descriptors. Our ap-

proach improves over the state-of-the-art mostly with the binary version of our boosted

descriptors, and we focus here on this version. Nevertheless the optimized parameters

remain valid also for the floating-point descriptor. In all the experiments, we use the

53



4. LEARNING DESCRIPTORS WITH BOOSTING

BRIEF BRISK ORB
BinBoost-Intensity

S = 3 variable S

Figure 4.3: Visualization of the intensity tests (first row) and spatial weight heat maps

(second row) employed by BRIEF, ORB, BRISK and our BinBoost1-256 descriptor trained

with intensity-based weak learners on rectified patches from the Liberty dataset. BRIEF

picks its intensity tests from an isotropic Gaussian distribution around the center of the

patch, while the sampling pattern of BRISK is deterministic. The intensity tests of ORB

are selected to increase the variance of the responses, while reducing their correlation.

This results in a pronounced vertical trend which can also be seen in the case of BinBoost

and can be traced back to the fact that the patches used for training ORB and BinBoost

are orientation rectified. Nevertheless, the heat maps show that the tests for BinBoost-

Intensity are — similarly to BRIEF — more dense around the center of the patch while

the ones used in ORB present a more uniform distribution.

Brown datasets along with the corresponding evaluation protocol, described in details

in Section 5.1.

4.3.1 Weak learner types

To analyze the impact of the weak learner type on descriptor performances, we train

a BinBoost1-256 descriptor where each bit corresponds to one weak learner. Other

configuration of the BinBoost descriptor are tested in the following sections. For our

gradient-based descriptor we use q = 8 orientation bins, as this is equal to the number

of bins proposed for SIFT.

First, we compared the sampling patterns employed in the state-of-the-art binary

intensity-based descriptors, such as BRIEF, BRISK and ORB, with the pooling learned

with our framework when using intensity-based weak learners. Fig. 4.3 shows the
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Figure 4.4: Performance of BinBoost1-256 with different weak learner types compared

with the state-of-the-art binary descriptors and SIFT as a baseline. Out of all descrip-

tors based on intensity tests, BinBoost-Intensity performs the best. This shows that our

framework allows to effectively optimize over the other state-of-the-art binary descrip-

tors and boost their performances at no additional computational cost. Nevertheless,

the performance of BinBoost-Intensity cannot match that of floating-point SIFT which is

outperformed when using the more discriminative gradient-based weak learners (BinBoost-

Gradient).

visualization of intensity tests and heat maps of the spatial weighting employed by each

descriptor. For BRIEF, intensity tests are from an isotropic Gaussian distribution with

the origin of the coordinate system located at the patch center [21]. By contrast, the

sampling pattern of BRISK is deterministic. The intensity tests of ORB are selected to

increase the variance of the responses, while reducing their correlation. This results in a

pronounced vertical trend which can also be seen in the case of BinBoost. Nevertheless,

the heat maps show that the tests for BinBoost-Intensity are more dense around the

center of the patch, similar to BRIEF, while the ones used in ORB present a more

uniform distribution.
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4. LEARNING DESCRIPTORS WITH BOOSTING

To evaluate the influence of the weak learner type on performance, in Fig. 4.4 we

compared the results obtained with BinBoost-Intensity and BinBoost-Gradient with

those of Boosted SSC, BRIEF, ORB, BRISK, D-Brief and SIFT. The performance of

Boosted SSC remains inferior to the other descriptors as the weak learners proposed

in [98] rely on thresholding single pixel intensity values and do not provide enough

discriminative power. Our experiments show that even though BinBoost-Intensity with

variable Gaussian kernel size performs the best out of all the intensity-based descriptors,

it is only slightly better than BinBoost-Intensity with filter size equal to 3. As shown

in Fig. 4.5, our learning framework does not find a clear correlation between the size

of the smoothing kernel and the distance to the patch center, contrary to the sampling

pattern of BRISK. Interestingly, even though the optimized sampling scheme of ORB

resembles this of BinBoost-Intensity, our framework improves the results over BRIEF

much more than ORB. This may be explained when looking at the spatial weighting

employed by BinBoost and ORB, where we can see that certain parts of the patch are

much more densely sampled in the case of BinBoost, whereas the sampling scheme of

ORB is rather uniform.

Nevertheless, BinBoost-Intensity cannot match the performance of SIFT as the

discriminative power of the underlying weak learners is not sufficient. When using

gradient-based weak learners, we are able to outperform 128-dimensional floating-point

SIFT with only 256 bits. Since the performance of gradient-based weak learners remains

superior to the intensity-based learners, we use only the former to compute our final

BinBoost descriptor. However, BinBoost-Intensity remains a highly efficient and more

powerful alternative to the state-of-the-art intensity-based binary descriptors such as

BRIEF or ORB, especially in the case of real-time mobile applications, where computing

image gradients fast enough may not be feasible.

4.3.2 Numerical parameters

Our boosting framework defines a generic optimization strategy that unlike many pre-

vious approaches, such as [17], does not require fine tuning of multiple parameters.

BinBoost has only three main parameters that provide a clear trade-off between the

performance and complexity of the final descriptor: the number of orientation bins used

by the weak learners, the number of weak learners, and the final dimensionality of the
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Figure 4.5: (a) Visualization of the first ten intensity-based weak learners with variable

kernel size S trained on Liberty dataset. When optimizing on both the pixel positions and

the sizes of the Gaussian kernels, our boosting framework does not yield a clear pattern,

in particular there is no clear correlation between the size of the smoothing kernel and

the distance to the patch center, contrary to the sampling pattern proposed for BRISK.

It nevertheless outperforms BRISK in our experiments. (b) Visualization of the distances

between the sampling points and orientations and their orientations.

descriptor. We study below the influence of each of them on the performance of our

descriptor.

Number of orientation bins q defines the granularity of the gradient-based weak

learners. Fig. 4.6(a) shows the results obtained for different values of q and D. For

most values of D, the performance is optimal for q = 8 as finer orientation quantization

does not lead to any performance improvement and we keep q = 8 in the remaining

experiments. Interestingly, this is also the number of orientation bins used in SIFT.

Number of weak learners K determines how many gradient-based features are

evaluated per dimension and in Fig. 4.6(b) we show the 95% error rates for different

values of K. Increasing the value of K results in increased computational cost and since

performance seems to saturate after K = 128, we keep this value for our final descriptor.

Dimensionality D is the number of bits of our final descriptor. Fig. 4.6(c) shows
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Figure 4.6: Influence of (a) the number of orientation bins q and (b) the number of weak

learners K on the descriptor performance for dimensionalities D = 8, 16, 32, 64 bits. The

performances are optimal with q = 8 orientation bins, which is also the number used in

SIFT. Increasing the number of weak learners K from K = 128 to K = 256 provides only

a minor improvement—at greatly increased computational cost—and, hence, we choose

for our final descriptor K = 128. (c) Performance for different dimensionalities D. With

D = 64 bits, BinBoost reaches its optimal performance as increasing the dimensionality

further does not seem to improve the results. In bold red we mark the dimensionality for

which BinBoost starts outperforming SIFT.
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Figure 4.7: Visualization of the selected weak learners for the first 8 bits learned on 200k

pairs of 32×32 patches from the Notre Dame dataset. For each pixel of the figure we show

the average orientation weighted by the weights of the weak learners bd. For different

bits, the weak learners cluster about different regions and orientations illustrating their

complementary nature.

that with D = 64 bits, our descriptor reaches its optimal performance as increasing the

dimensionality further does not seem to improve the results.

Using these parameters we trained our compact BinBoost descriptor on the Notre

Dame dataset. A visualization of the learned weighting and pooling configuration is

shown in Fig. 4.7 for the first 8 bits of the descriptor. The weak learners of similar

orientations tend to cluster about different regions for each bit thus illustrating the

complementary nature of the learned hash functions.

4.3.3 BinBoost and Binarized FPBoost

To verify if learning binary BinBoost proves to be a better approach than simply bina-

rizing the floating-point FPBoost descriptor, we compare the performances of BinBoost

with those of several binarization techniques applied to FPBoost. Results are displayed

in Fig. 4.8. Binarizing the FPBoost coordinates by thresholding them at an optimal

threshold found as in [111] results in large binarization errors significantly decreasing

the accuracy of the resulting binary representation. This error can be reduced using It-

erative Quantization [38], however, the orthogonality constraints used in this approach

largely limit the extent to which it can be minimized. In contrast, sequential projec-

tion learning (S3PLH) [127] can find non-orthogonal projections that more faithfully

mitigate binarization error, however, it requires a fairly large number of bits to re-
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Figure 4.8: Performance of our BinBoost descriptor compared with different binarization

methods applied on FPBoost. Binarizing the discriminative projections found with FP-

Boost either by simple thresholding or with Iterative Quantization (ITQ) results in large

binarization errors significantly reducing its accuracy. On the other hand, the sequential

projection learning of S3PLH requires a fairly large number of bits to recover the original

performance of FPBoost. In contrast, by jointly optimizing over the feature weighting

and pooling strategy of each bit, our BinBoost approach results in a highly compact and

accurate binary descriptor whose performance is similar with FPBoost but at a fraction of

the storage cost.
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cover FPBoost’s original performance. Unlike these methods, by effectively combining

multiple weak learners within each hash function, learning BinBoost results in a more

accurate predictor with far fewer bits.

4.4 Face Descriptors

To show that the boosting-based method proposed in this chapter is generic and can

be easily adapted to new applications, in this section we evaluate it in a significantly

different application, namely for matching face images. This constitutes a rather dif-

ferent problem than modeling the appearance of local features and it proves well that

our method is not limited to learning only the feature descriptors. For our evaluation

we used a dataset of face images [135] that consists of faces imaged under different

viewpoints. We randomly subsampled this dataset to create two sets of 100k and 200k

pairs of images. Similarly to Liberty, Notre Dame and Yosemite datasets, each set is

balanced and contains an equal number of image pairs belonging to the same person

as those of different people. We used the 200k dataset to train our descriptors and the

100k set to test them.

Fig. 4.9 compares the learned spatial weightings obtained with the Brown and Faces

datasets. When we train our BinBoost descriptor on the images extracted around

interest points, the weak learners clearly concentrate around the center of the patch.

In fact, the obtained weighting closely resembles the Gaussian weighting employed by

SIFT. In contrast, for face images the weak learners concentrate about the lower and

upper image regions that correspond to the location of the eyes and mouth, and as also

observed in [1] constitute discriminative facial features. This further demonstrates the

flexibility of our approach and its ability to adapt to new types of image data.

Fig. 4.11 shows the qualitative results obtained using BinBoost1-256. BinBoost

remains largely invariant to the significant viewpoint and intensity changes present in

this dataset, while still being able to discriminate between different people. Most of

the mis-classifications are due to occlusions and extreme viewpoint variation such as

side views.

In Fig. 4.10 we plot the quantitative results of BinBoost1-256, FPBoost256-64 and

BinBoost128-64 descriptors compared with LBP, a widely used face descriptor [1]. Our
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Figure 4.9: Learned spatial weighting obtained with BinBoost1-256 trained on the (a)

Liberty, (b) Notre Dame, (c) Yosemite and (d) Faces datasets. For the first three datasets,

the learned weighting closely resembles the Gaussian weighting employed by SIFT (white

circles indicate σ/2 and σ used by SIFT). However, the learned spatial weighting on the

Faces dataset is focused about the eyes and mouth that constitute discriminative facial

features.
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Figure 4.10: The performance of our boosted descriptors on the Faces dataset compared

with the commonly used LBP face descriptor [1]. BinBoost1-256 significantly outper-

forms LBP. Similarly to the results obtained for local feature descriptors, we can see that

BinBoost128-64 performs equally to BinBoost1-256, but with only 64 bits per descriptor.

FPBoost performs even better with the 95% error rate reduced by more than twice com-

pared with the LBP baseline.
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boosted descriptors result in a significant improvement over the baseline. Furthermore,

compared with LBP our FPBoost descriptor achieves a reduction in 95% error rate by

more than a factor of 2. Similar to [22, 130] this demonstrates the potential advantages

of exploiting image data to learn a face descriptor. More importantly, it illustrates the

flexibility of our approach beyond local keypoint descriptors.

4.5 Conclusion

In this chapter we presented an efficient framework to train highly discriminative and

compact local feature descriptors that leverages the boosting-trick to simultaneously

optimize both the weighting and sampling strategy of a set of non-linear feature re-

sponses. We first showed how boosting can be used to result in an accurate yet compact

floating-point descriptor. We then considered a binary extension of our approach that

shares a similar accuracy but operates at a fraction of the matching and storage cost.

We explored the use of both intensity- and gradient-based features within our learning

framework and performed an evaluation across a variety of descriptor matching tasks.

Finally, we tested our method on a new application domain, such as faces.

As BinBoost is the second binary descriptor we proposed, in the next chapter we

show the performance analysis of both approaches and their comparison with the state

of the art.
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true positives true negatives false positives false negatives

Figure 4.11: Matching results on the Faces dataset using our 256-bit BinBoost1-256 at

the 95% error rate, i.e. when 95% of the positive image pairs are correctly classified.

BinBoost remains robust to significant viewpoint changes and motion blur. The mis-

classified examples are mostly due to occlusion and extreme variations in viewpoint such

as side views.
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CHAPTER

FIVE

DESCRIPTOR EVALUATION

In this chapter we provide an extensive comparison of our methods against the state-of-

the-art descriptors on the Brown [17] and Mikolajczyk [71] datasets. We also show the

performance our descriptors when performing visual search on the UKBench dataset [78].

Finally, we show two examples of real-life applications that use D-Brief and BinBoost

descriptors.

To provide an exhaustive evaluation of the descriptor performances, we compare

our approach against SIFT [62], SURF [10], the binary LDAHash descriptor [111],

Boosted SSC [98], the binary ITQ descriptor applied to SIFT [38], and the fast binary

BRIEF [21], ORB [92], FREAK [3] and BRISK [54] descriptors.

For SIFT, we use the publicly available implementation of A. Vedaldi [125]. For

LDAHash, and ITQ we use the implementation available from their authors. As a

result, we do not re-learn the discriminative projections used by LDAHash to binarize

SIFT descriptors and we rely on the pre-trained ones available in the authors’ imple-

mentation. For SURF, BRIEF, BRISK, ORB and FREAK we use the implementation

available with OpenCV1. For the other methods, we use our own implementation or

we report the results from the literature. For Boosted SSC, we use 128 dimensions

as this obtained the best performance. When matching the descriptors we use a fast

popcount-based implementation for computing Hamming distances between binary de-

scriptors and matched floating-point descriptors using their Euclidean distance, unless

stated otherwise.

1http://opencv.org/
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5.1 Datasets and Evaluation Protocol

We compare the descriptors using three datasets along with the corresponding evalua-

tion protocol.

5.1.1 Brown datasets

We evaluate the performance of our methods using three publicly available datasets:

Liberty, Notre Dame, and Yosemite [17]. Each of them contains over 400k scale- and

rotation-normalized 64×64 patches. These patches are sampled around interest points

detected using Difference of Gaussians and the correspondences between patches are

found using a multi-view stereo algorithm. The resulting datasets exhibit substantial

perspective distortion and changing lighting conditions. Fig. 5.1 shows a selected set of

patches from the Brown datasets. The ground truth available for each of these datasets

describes 100k, 200k and 500k pairs of patches, where 50% correspond to match pairs,

and 50% to non-match pairs. In our experiments, we use sub-sampled patches of size

32 × 32 and the descriptors are trained on each of the 200k datasets and we use the

held-out 100k dataset for testing. We report the results of the evaluation in terms of

ROC curves and 95% error rate which is the percent of incorrect matches obtained

when 95% of the true matches are found, as in [17].

(a) Liberty (b) Notre Dame (c) Yosemite

Figure 5.1: Selected patches from the Brown datasets.
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(a) graf: Viewpoint Change

(b) wall: Viewpoint Change

(c) bark: Zoom + Rotation Change

(d) bikes: Image Blur

(e) ubc: JPEG compression

(f) leuven: Illumination Change

Figure 5.2: The selected images from the Mikolajczyk Dataset.
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5.1.2 Mikolajczyk dataset

To analyse the generalization of the methods proposed in this thesis we verify the

performance of our descriptors trained on Notre Dame dataset from the Brown datasets

by performing a set of experiments on a significantly different and publicly available

Mikolajczyk dataset [71]. The Mikolajczyk dataset is designed to test the robustness of

the descriptor against a specific type of transformation, such as blurring or viewpoint

change. This dataset consists of eight sets of 5 images with each of the sets providing

a different type of typical image disturbances:

• bark: zoom and rotation change.

• bikes: image blurring.

• boat: zoom and rotation change.

• graf: viewpoint change.

• leuven: illumination change.

• trees: image blurring.

• ubc: JPEG compression artifacts.

• wall: viewpoint change.

Fig. 5.2 shows a subset of images from the Mikolajczyk Dataset.

We followed the evaluation protocol of [71] that compares descriptors using the same

keypoint detector, and used the OpenCV SURF Hessian-based detector. To verify the

performance of our descriptors when coupled with different feature detectors, we also

performed a set of experiments using OpenCV ORB detector. For each image pair

we detect 1000 keypoints per image and match them using exhaustive search. We

then filter outliers using a distance ratio threshold of 0.8 as in [62]. We evaluate each

descriptor in terms of the recognition rate which is the number of correctly matched

keypoints according to the homography matrices provided as the ground truth with the

dataset.
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Figure 5.3: Selected images from the UK-Bench Dataset.

5.1.3 UK-Bench dataset

To evaluate the performance of the descriptors in the real-life scenario, we imple-

mented a visual search engine using the University of Kentucky Benchmark (UK-Bench)

dataset [78] that contains over 10k images of 2600 objects, each object being depicted

in 4 images taken from different viewpoints. Fig. 5.3 shows a set of sample images from

the UK-Bench dataset. As in other approaches, we first build a database of the almost

one million descriptors extracted from all the dataset images. For each query image, we
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then search for the nearest neighbors in the database using their associated keypoint

descriptors to vote for the most similar images in the database. Finally, we sort the

database images according to the number of votes, or so-called hits, they receive and

retrieve those associated with the highest number of votes. Although this approach is

different than the widely used bag-of-words framework [105], it allows us to measure

the influence of the descriptor type on the quality of search without the visual word

quantization step, which might introduce other effects.

5.2 Results

In this section we present the results obtained for each of the evaluation frameworks

discussed above.

Brown datasets

We first compare our methods using the Brown Datasets: Liberty, Notre Dame and

Yosemite. Fig. 5.4 shows the ROC curves for D-Brief, BinBoost and their binary com-

petitors. The numerical results in terms of 95% error rates are also summarized in

Tab. 5.1. Both show that D-Brief outperforms its intensity-based fast-to-compute bi-

nary descriptors such as BRIEF, BRISK and FREAK, its performance, however, is

inferior to this of ITQ-SIFT. This is not the case for BinBoost1-64 and BinBoost128-64

which outperform all the presented binary descriptors with only 64 bits (8 bytes). Only

the recent work of Simonyan et al. [104] on the binarized version of their previously pro-

posed descriptors [103] present the performances competitive to those of our BinBoost

descriptor.

We also compare our binary descriptors with the state-of-the-art floating point

ones and we show the results in Fig. 5.5 and Tab. 5.2. Although much shorter than

its competitors, BinBoost clearly outperforms its well-known competitors such as SIFT

and SURF. Moreover, it provides similar results to the state-of-the-art floating-point

descriptors of [17] and [103], even though the memory footprint of their descriptors is

almost 4 times greater. The real advantage of BinBoost, however, is its binary nature

which allows for extremely fast similarity computation using the Hamming distance,

whereas the descriptors of [17] and [103] are floating-point and cannot benefit from the
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5.2 Results

same optimization, even when quantized very coarsely. As presented in Fig. 5.6, this

results in a speedup of over 2 orders of magnitude in terms of similarity search.

A similar argument can be made for D-Brief: despite the fact that its performance

is clearly inferior than the performances obtained for its floating-point competitors, its

small memory footprint combined with fast matching is highly advantageous when used

in low-cost mobile platforms.

Since the dimensionality of the binary descriptors can typically be varied depend-

ing on the required performance quality, we show in Fig. 5.7 the 95% error rates of

various descriptors for different numbers of bits used. D-Brief outperforms the other

intensity-based descriptors, i.e. BRIEF and BRISK, when their length is shorter than

64 bits. As discussed in Section 3.3, the additional bits of D-Brief introduce noise

that is related to the low energy dimensions of LDE projections. On the other hand,

BinBoost clearly outperforms all the competitors across all dimensions. However, the

biggest improvement can be seen for lower dimensionality.

Mikolajczyk dataset

We tested the generalization performance of our descriptors when trained on the Brown

datasets and evaluated on the significantly different Mikolajczyk dataset [71].

Figures 5.8, 5.9 and 5.10 show the results obtained for the bark, bikes, boat,

graf, leuven, trees, ubc and wall sequences. The results obtained for D-Brief

show that it can provide a very compact alternative for longer binary descriptors, such

as BRIEF or BRISK, while often performing similarly to the floating-point SURF. Nev-

ertheless, it is clear that in all the sequences BinBoost1-256 and FPBoost512-64 outper-

form the other descriptors. BinBoost128-64 does not perform as well as when evaluated

on the Brown datasets, which indicates that there is an inherent efficiency tradeoff

when training on a different condition. Nonetheless, the extended BinBoost128-128 and

BinBoost128-256 descriptors outperform the other methods while being shorter or of

the same length.

To verify the performance of the descriptors when coupled with different feature

detector, we also performed a set of experiments on the features extracted using ORB

detector. The results, shown in Figures 5.11, 5.12 and 5.13, confirm that the D-Brief

and BinBoost descriptors perform well even when trained on local patches extracted

using different feature detectors.
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Figure 5.4: Comparison of our BinBoost descriptor to the state-of-the-art binary de-

scriptors. In parentheses: the number of binary (b) dimensions and the 95% error rate.

Our BinBoost descriptor significantly outperforms its binary competitors across all false

positive rates.
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Figure 5.5: Comparison of our BinBoost descriptor to the state-of-the-art floating-point

descriptors. In parentheses: the number of floating-point (f) or binary (b) dimensions and

the 95% error rate. The curves for Simonyan et al. are available only for the subset of

train-test configurations, in the other cases only a single reported 95% error rate is plotted.

Our BinBoost descriptor outperforms SIFT and provides similar performances to the recent

floating-point descriptors, even though it is much faster to match and has a lower memory

footprint.
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times were computed from 100k test pairs (i.e. 100k distance computations were per-

formed) on a Macbook Pro with an Intel i7 2.66 GHz CPU using the popcount instruction

and averaged over 100 runs. To make the comparison fair, we optimized the matching

strategy for floating-point descriptors by representing them with unsigned characters. The

advantage of binary descriptors, out of which BinBoost performs the best in terms of 95%

error rate, is clear.
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Figure 5.8: Recognition rates for the bark, bikes and boat sequences from the Mikola-

jczyk dataset (SURF detector, 1000 features extracted).
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Figure 5.9: Recognition rates for the graf, leuven and trees sequences from the Miko-

lajczyk dataset (SURF detector, 1000 features extracted).

77



5. DESCRIPTOR EVALUATION

 0

 20

 40

 60

 80

 100

1|2 1|3 1|4 1|5 1|6

R
e

c
o

g
n

it
io

n
 r

a
te

 [
%

]
ubc

SIFT
SURF
BRIEF

ORB
BRISK

FREAK

DBrief
BinBoost1-256
FPBoost512-64
BinBoost128-64

BinBoost128-128
BinBoost128-256

 0

 20

 40

 60

 80

 100

1|2 1|3 1|4 1|5 1|6

R
e

c
o

g
n

it
io

n
 r

a
te

 [
%

]

wall

SIFT
SURF
BRIEF

ORB
BRISK

FREAK

DBrief
BinBoost1-256
FPBoost512-64
BinBoost128-64

BinBoost128-128
BinBoost128-256

Figure 5.10: Recognition rates for the ubc and wall sequences from the Mikolajczyk

dataset (SURF detector, 1000 features extracted).

UK-Bench dataset

We further evaluate our descriptors in the real-life application of visual search using

the UK-Bench dataset.

Table 5.3 summarizes the results we obtained for different descriptors. To evaluate

the performance we report mean average precision (mAP) and percentage of correct

number of images retrieved at the top of the list (Correct@1). Similarly to the results
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Figure 5.11: Recognition rates for the bark, bikes and boat sequences from the Miko-

lajczyk dataset (ORB detector, 1000 features extracted).
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Figure 5.12: Recognition rates for the graf, leuven and trees sequences from the

Mikolajczyk dataset (ORB detector, 1000 features extracted).
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Figure 5.13: Recognition rates for the ubc and wall sequences from the Mikolajczyk

dataset (ORB detector, 1000 features extracted).

presented in the previous sections, the results obtained for D-Brief are superior to those

of BRISK and FREAK, although in this scenario BRIEF performs well above average,

beating not only D-Brief but also SIFT. Nonetheless, out of all the evaluated descrip-

tors BinBoost128-256 performs the best followed by BinBoost1-256. FPBoost performs

slightly worse than BinBoost, while still outperforming SIFT and other intensity-based

binary descriptors. Overall, the boosted keypoints descriptors provide the best perfor-

mance of all the tested descriptors, even though they were trained on a significantly

different dataset.
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Descriptor mAP ± σ Correct@1 ± σ

BRISK 0.402 ± 0.006 61.830 ± 0.884

ORB 0.418 ± 0.005 64.902 ± 1.931

FREAK 0.429 ± 0.004 66.325 ± 0.843

D-Brief 0.432 ± 0.007 67.365 ± 2.043

SIFT 0.455 ± 0.008 68.235 ± 2.183

BRIEF 0.457 ± 0.014 68.562 ± 0.493

BinBoost128-64 0.463 ± 0.043 68.967 ± 1.317

FPBoost512-64 0.476 ± 0.006 70.000 ± 1.709

BinBoost128-128 0.493 ± 0.017 72.222 ± 2.747

BinBoost1-256 0.533 ± 0.010 76.144 ± 2.467

BinBoost128-256 0.556 ± 0.008 79.216 ± 1.870

Table 5.3: Results of visual search on the UKBench dataset [78]: mean average precision

(mAP) and percentage of correctly retrieved images at the first position (Correct@1) are

reported. Average results are shown across three random train and test splits along with the

standard deviation. BinBoost128-256 outperforms the other descriptors, even though it is

trained on the Notre Dame dataset. The other learned descriptors, namely BinBoost1-256

and FPBoost512-64, achieve worse results, though their performance is still better than

SIFT and the other intensity-based descriptors.

5.3 Time Complexity Evaluation

In this section we evaluate the time performance of our D-Brief and BinBoost descrip-

tors and their state-of-the-art competitors, namely SIFT, SURF, BRIEF, ORB, BRISK

and FREAK. This measurement is crucial to determine the feasibility of the proposed

descriptors as many computer vision applications that use local feature descriptors in

their pipeline assume real-time or almost-real-time processing time. Hence, if the ex-

traction and matching times for the descriptors is too long, their application in many

real-life problems remains highly limited.

To compare the timings of the descriptors we extract 1000 keypoints using ORB

feature detector from the 1000×700 wall1.ppm image from the Mikolajczyk dataset.

We then measure the timings to compute and exhaustively match the above mentioned

descriptors to themselves and average them over 100 runs. The timings were obtained

using single-threaded code on a computer with two Intel Xeon E5620 2.4 GHz CPUs.

Table 5.4 shows the results of this experiment. First of all, the advantage of binary

descriptors with respect to their floating-point competitors is evident, as they provide a
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speedup of over 2 orders of magnitude in terms of total extraction and matching times.

Although slower than the other binary descriptors, FPBoost is still much faster to

extract and match than SIFT or SURF. Out of the binary descriptors, D-Brief proves

to be the fastest to match and it is as fast as BRIEF to compute. Moreover, our

binary descriptors are also able to provide very fast extraction and matching. Since

our implementation of boosted descriptors makes use of integral images and the Single

Instruction on Multiple Data (SIMD) instructions on Intel processors, we are able to

perform gradient-based BinBoost1-256 descriptor construction almost 25% faster than

the intensity-based FREAK and over 20 times faster than SIFT, while reducing the

memory footprint and improving the descriptor performance, as shown in the previous

sections.

Fig. 5.14 visualizes the computation times for the descriptors and clearly show that

binary descriptors significantly speed up feature extraction process. Finally, Fig. 5.15

plots the relative timings and shows that the faster the descriptor computation, the

more important feature detection step becomes. In the case of floating-point descrip-

tors, detection time is negligible, while in the case of D-Brief it accounts for over 20%

of the extraction time.

5.4 Real-life Applications

In this section we present two applications that incorporate binary feature descriptors

proposed in this thesis. We first outline a simple object detection application where

the user is asked to select the object that will be then detected in frames coming from a

webcam. This application aims at real-time performance and hence we use our compact

and efficient D-Brief descriptor to match incoming images with the one selected by the

user. We then describe a more complex, mobile application of a treasure hunt game.

5.4.1 Object Detection with D-Brief

To demonstrate the real-time performance of D-Brief we implemented a simple real-

time application for planar object detection1. The user can select the object of interest

by drawing a rectangle around it in a reference view. The application then extracts

feature points using FAST [91] and builds a database of D-Brief descriptors for these

1This work was based on the framework publicly available at http://cvlab.epfl.ch/research.
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Description Matching Total

[ms] [ms] [ms]

Floating-point descriptors

SIFT128f 1021.789 173.644 1195.433

SURF64f 358.822 85.840 444.662

FPBoost512-6464f 195.637 86.225 281.862

Binary descriptors

FREAK512b 64.771 12.642 77.413

ORB256b 18.708 7.444 26.152

BRISK512b 11.042 13.935 24.977

BRIEF256b 6.928 7.441 14.369

D-Brief32b 7.200 1.837 9.037

BinBoost1-256256b 52.133 7.416 59.549

BinBoost128-6464b 96.911 3.361 100.272

BinBoost128-128128b 137.100 4.163 141.263

BinBoost128-256256b 230.735 7.637 238.372

Table 5.4: Description and matching timings for SIFT, SURF, BRIEF, ORB, BRISK and

FREAK and our D-Brief and BinBoost descriptors. Results computed for 1000 descriptors

extracted from the wall1.ppm image of Mikolajczyk dataset and averaged over 100 runs.

To compare the matching times, we extract another set of 1000 descriptors from wall2.ppm

image of Mikolajczyk dataset and perform exhaustive matching using popcount instruction.

The subscripts of the descriptor names indicate its number of binary or floating-point

coordinates.

feature points in 18 rotated views at 3 scales, totaling up to 54 views. This is a simple

way to make our descriptor invariant to scale and rotation changes, and was used for

BRIEF in [21]. Alternatively, one could estimate the scale and orientation of the feature

points, and compute the descriptors on the rectified patches as was done in ORB for

example.

At run-time, for each input image, the application simply extracts feature points,

computes their D-Brief descriptors, matches them against all the descriptors of the

database, and finally computes the homography between the reference view and the

input image using RANSAC. Some screenshots are shown in Fig. 5.16. One shall note

that the projection matrix and thresholds of D-Brief are learnt on images from Notre

Dame dataset, whose quality differs significantly from the quality of webcam images.

Despite of that, the matching results are very consistent and the correct homography
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Figure 5.14: Visualization of the computation times from Tab. 5.4 for different descrip-

tors. The detection of 1000 feature points was done with ORB detector and it took approx-

imately 3ms. Clearly, the description and matching times for the floating-point descriptors

are orders of magnitude higher than those of binary descriptors. Out of binary descriptors,

D-Brief and BRIEF are the fastest to compute, while BinBoost description time depends

on the number of weak learners and output dimensions. Nevertheless, BinBoost1-256, i.e.

the simplest version of our boosted descriptor, can be computed as fast as the intensity-

based FREAK descriptor, while providing better recognition performances, as shown in

the previous sections.

is easily found.

5.4.2 Treasure Hunt with BinBoost

We demonstrate the potential of compact binary boosted descriptors by integrating

them into a mobile application for treasure hunt game1. It relies on an offline visual

search engine system inspired by the Video Google approach [105]. The application was

developed for the iOS system and tested with both an iPhone 4 (with 512MB RAM,

a 1GHz ARM Cortex-A8 processor underclocked to 800MHz) and an iPad mini (with

1This work was done in collaboration with Aniruddha Loya, a Master student of CVLab, who

merged BinBoost code into a visual search engine.
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Figure 5.15: Relative detection-description-matching times as a percentage of total fea-

ture extraction time. As the descriptor computation time decreases, detection and match-

ing times become more and more significant. This is especially visible for the fastest D-Brief

descriptor whose detection and matching times account for 50% of the extraction time.

512 MB RAM, a 1GHz dual core ARM Cortex-A9 processor).

A sample set of screenshots is shown in Fig. 5.17. The user is presented with a clue

about the next place or object where he should go. Following the clue should lead the

user to a place where he can capture an image of the requested object with the camera

(in the demo version the user can also select an existing image save in the memory of

his phone). Pressing the verify button sends the selected image as a query to our visual

search engine. The top result from visual search is matched against the ground truth

to determine the success or failure. If the user selects the picture of the object that

corresponds to the clue, a next clue is displayed and he continues the game. Otherwise,

he needs to look for another object.

The visual search engine database consists of 1000 images from the UK-Benchmark

dataset, discussed in Sec. 5.1.3, and a set of 10 ”clue images” which correspond to the

clues presented to the user. The maximum resolution of the images is 800 × 600. To

build the database, for each input image we first detect 1000 features using the OpenCV
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SURF detector and then compute a set of corresponding BinBoost128-256 descriptors.

Following the Video Google approach, the database images are then clustered into a tf-

idf structure by quantizing the binary descriptors into 5-byte visual words. To quantize

the descriptor, we simply concatenate the first 5 × 8 bits of the descriptor and use

the resulting value as the index of the quantized descriptor. Selecting the number of

concatenated bytes used to generate visual words allows us to control the granularity

of the visual word vocabulary. Nevertheless, it has the disadvantage of the exponential

growth of the memory needed to store all the generated visual words with respect to

the number of bits used. We therefore use a sparse image representation in the space

of visual words and keep in the memory only those visual words that have at least one

descriptor assigned. In other words, instead of storing in memory the entire histogram

of visual words for each image with most of the fields equal to zero, we only keep the list

of indices of the visual words that have at least one descriptor assigned. Furthermore, a

simple stop-list mechanism was implemented to decrease the number of possible visual

words by discarding the visual words of the weight lower than a pre-defined threshold.

These modifications allowed us to store the entire database of the image descriptors

and the corresponding indexing scheme in less than 30 MB.

When the user queries the database with an image, it is preprocessed in the same

manner as the database images and a set of binary descriptors is computed and quan-

tised. We then rank the database images according to the dot product between the

histograms of the visual words for the query image and the database images. Finally,

we verify the spatial consistency of the matches between the query image and top ten

database images using RANSAC and re-rank the list according to the number of veri-

fied matches. Once the final ranking of the database images is computed, we check the

final score of the top database image retrieved and inform the user about the success

or failure of the query.

During our experiments we observed a surprising performance quality drop when

increasing the vocabulary size through concatenating more bits of our binary descrip-

tors. After careful analysis, we discovered that this problem can be explained by the

harsh quantisation of binary descriptors to visual words, also known as the hard as-

signment. A typical solution of this problem in the case of floating-point descriptors

relies on a hierarchical clustering scheme and on assigning several visual words to one

descriptor with weights corresponding to the distance between the descriptor and the
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nearest clusters’ centers [85]. This approach, however, is not feasible in binary spaces

due to the peculiarities of the binary vectors’ distribution along the Voronoi boundaries

and we will explain it in more details in the following section.
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Figure 5.16: Screenshots of the object detection application. The user first draws a

rectangle around the target. The invariance to large scale changes and rotation is obtained

by computing the feature point descriptors under different scales and orientations. This is

performed on-the-fly and detecting the target runs in real-time with 27 frames per second.
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Figure 5.17: Screenshots from the mobile treasure hunt application based on BinBoost

descriptors showcasing a sample runtime scenario. The user is presented with a clue about

the next place where he should go. If he follows the clue by taking a picture of the correct

object or place and verifying it (scenario on the right), a next clue is displayed. Otherwise,

the user is asked to choose another picture (scenario on the left).
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Matching Binary Descriptors
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CHAPTER

SIX

BINARY APPROXIMATE NEAREST NEIGHBOR SEARCH

The problem of matching high-dimensional descriptors against large databases is per-

vasive in Computer Vision, e.g. in image-retrieval, or pose-estimation. When there are

millions of such descriptors, linear search becomes prohibitively expensive, even after

dimensionality reduction [17, 50].

Approximate Nearest Neighbor (ANN) search constitutes one effective approach to

overcoming this limitation and there are many algorithms that can handle real-valued

descriptors such as the Scale Invariant Feature Transform (SIFT) [62] or Speeded Up

Robust Feature (SURF) [10] descriptors. These algorithms rely on modified kd-trees [8,

12], multiple randomized kd-trees [100], hierarchical k-means (HKM) trees [35, 78],

spill trees [59], vantage-point trees [134], or hashing functions [6]. A different approach

to speeding up nearest-neighbor search is to binarize the real-valued descriptors using

techniques such as Boosting [98], hashing [6, 51], Principal Component Analysis (PCA)

or Linear Discriminant Analysis (LDA) based methods [87, 111], quantization [37] and

Semantic or Spectral Hashing [94, 131]. Because the similarity between the resulting

binary vectors can be evaluated using the Hamming distance, which can be computed

much faster than the Euclidean one on modern CPUs, linear search is more efficient

but remains too slow for large-scale applications. In favorable cases, the binary vectors

can be used as indices to directly access their nearest neighbors [131] which provides

sub-linear complexity of the search. Unfortunately, this stops being possible when the

typical Hamming distance between nearest neighbors is larger than a few units. Only

recently an exact efficient algorithm to find nearest neighbors in binary spaces has been
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proposed [80], but its assumptions about uniform data distribution might not be correct

in practice.

To get the best of both worlds under general conditions and to exploit the po-

tential of binary descriptors, ANN search is necessary. Little attention has been paid

to the performance of ANN algorithms on binary, as opposed to real-valued, vectors.

Some of the algorithms discussed above such as Spectral Hashing are not adapted to

binary vectors because they involve a PCA decomposition. Other methods can be used

by treating binary descriptors as vectors of zeros and ones encoded as floating-point

numbers. Even with the same search-accuracy, this encoding negates the advantages of

binary vectors over real-valued ones: their compactness and the fact that the Hamming

distance can be computed faster than the Euclidean one. Finally, there are algorithms

such as vantage-point trees and HKM that can be modified to only deal with binary

vectors and use the Hamming distance as a similarity measure. However, as we show,

their accuracy is much lower.

In this chapter we first show that this performance loss can be traced to the fact

that in Hamming spaces, unlike in Euclidean ones, the number of points that lie at

the same distance from two random points, i.e. the points lying at the boundary of

a Voronoi diagram, encompass a large proportion of the space. In other words, the

Voronoi diagram has thick boundaries. This breaks the assumption made by many

ANN algorithms that points can be unambiguously clustered with their closest neigh-

bors. This phenomenon is different from the well-known curse of dimensionality which

becomes apparent only for the high dimensional data [45]. In the case of binary spaces,

the thick boundaries of the Voronoi diagram influence the search regardless of the data

dimensionality.

We then present an effective way to overcome the above mentioned problems in-

herent to Hamming spaces by creating multiple randomized data structures. Ran-

domization produces structures that are independent from each other and therefore

complementary. It solves the thick boundary problem and yields results similar to

those obtained by converting the vectors to floating point values, but at a fraction

of the computational cost. We instantiate this idea in two different ways, the first

inspired by HKM trees and the second by the Locality-Sensitive Hashing scheme origi-

nally proposed for integer vectors [36]. In the first case, we replace the cluster centroids

computed at each level of the tree by randomly chosen points and create multiple trees
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in this manner. In the second, we introduce an improved mechanism for selecting

random subsets of coordinates used to index the vectors.

6.1 Related Work

Matching local feature descriptors is a fundamental step in a multitude of Computer

Vision applications. Typical solutions for this problem in the case of floating-point

descriptor rely on approximating the distances between the descriptors using k-means

clustering or tree-based methods [73]. A recent trend focuses on representing the de-

scriptors in the binary spaces and looking for the similarities in terms of the Hamming

distance [77, 111], which is much more efficient to compute than the Euclidean one.

The resulting binary representation can be computed through binarization of the real-

valued descriptors using various forms of hashing, e.g. Locality Sensitive Hashing [6],

Semantic or Spectral Hashing (SH) [94, 131], or LDAHash [111]. In particular, SH was

designed to create binary vectors that can be used as table indices to directly access

their nearest neighbors. However, as shown in Fig. 6.1, applying it to SIFT descriptors

yields too large average Hamming distances between nearest neighbors to be practical.

LDAHash [111] produces average distances that are smaller but still too large.

In short, even when using sophisticated binary descriptors, quickly querying large

databases still requires effective ANN methods. Recently, an interesting approach for

exact binary nearest neighbour search has been proposed [80], but it provides sub-linear

run-time only for uniformly distributed binary vectors, which might not always be the

case. Another approach is to use hashing methods that yield low average Hamming

distances as it leads to higher recall values while providing faster look-up time [40],

for instance by enforcing sparsity [67]. On the other hand, many efficient approximate

algorithms have been proposed for large-scale search. According to a recent comparative

study [73], the best ones for querying large databases are the randomized kd-trees [100]

and hierarchical k-means tree algorithm [35, 78].

The randomized kd-trees [100] are a recent modification of the original kd-trees [34],

which involved building a tree by recursively splitting in half along the dimension in

which it exhibits the greatest variance. This performs well in low-dimensional spaces

but looses its effectiveness as dimensionality increases [5]. To prevent this, sets of

randomized kd-trees can be built by recursively splitting along dimensions randomly
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Figure 6.1: Comparison of the distributions of distances from the descriptor to its first

and second nearest neighbors in the Hamming spaces generated using LDAHash and SH

on our 500k database. The average Hamming distance between descriptors is larger than 1

for both LDAHash and SH-generated 128-bit descriptors. However, because the distances

are spread more widely for LDAHash vectors, all ANN algorithms tend to perform better

on those, which is not all that surprising since SH was designed for a different purpose.

chosen among the first D dimensions of greatest variance. Combining several trees

with different splits mitigates the effects of quantization errors. Unfortunately, as we

show in Section 6.2, this is a brittle technique when applied to binary vectors because

a query vector can be moved to the wrong branch if only one of its bit is flipped, e.g.

due to noise.

The hierarchical k-means tree [35, 78] represents another successful alternative to

brute force search. It recursively uses the k-means algorithm to split the data into k

clusters. At run-time, a query vector follows the branch that corresponds to the closest

centroid and back-tracking can be invoked to explore several leaves. Hierarchical k-
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means rely on means of vectors, which is problematic when dealing with binary vectors

as we also see in Section 6.2.

Vantage-point trees [134] avoid the need to compute means by recursively picking

a single vector among the data that reaches a node and splitting the others into those

that are closer and those that are further. As we will show in Section 6.2, this method

also performs poorly on binary vectors.

In short, state-of-the-art ANN techniques work well on real-valued vectors but not

on binary ones. Furthermore, there is little work in connection to the latter. In [23], an

Additive Binary Tree (ABT) is associated to each binary vector. Each one of its nodes

contains the frequency of 1’s in a sub-part of the vector and this structure is used to

stop the computation of the distance between two vectors early when the match is not

promising. This approach, however, is still linear in the size of the database, and the

speed gain is not clear compared to the full computation of the Hamming distance on

modern hardware. In [72], the database is represented by a 256-ary tree in which each

node corresponds to one byte of the vector. The parts of the tree that contain only

one vector are pruned and replaced by a single leaf. This approach is sensitive to noise

as changing a single bit may change how the branches are explored. In [26], vectors

are represented by a number of random permutations of bits. For each permutation,

the vectors are sorted in a lexicographic order and when the query comes, the binary

search is used to find the closest vectors. Although this method provides a sub-linear

complexity, the memory required to store the sorted lists is a multiple of the dataset

size. Moreover, it is reported to provide identical performance to the original LSH [36]

which is much more memory efficient.

Perhaps the most related to our work is a method of [74] where a tree-based struc-

ture is proposed to solve the binary approximate nearest neighbor problem. Although

it resembles our HKM-inspired solution, it provides a more complex mechanism to

aggregate the results of the search in multiple trees.

6.2 Thick Borders and Performance Loss

In this section, we first demonstrate that state-of-the-art ANN algorithms directly

applied to binary vectors perform worse than when applied to floating-point ones. We
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Precision for first position second position

SIFT binary SIFT binary

descriptors descriptors descriptors descriptors

hierarchical k-means
0.94 0.82 0.93 0.79

with real-valued centroids

kd-trees 0.98 0.78 0.97 0.75

hierarchical k-means
- 0.32 - 0.29

with binary centroids

vantage-point trees 0.35 0.17 0.31 0.15

parc-trees 0.94 0.91 0.91 0.92

Original LSH for binary vec-

tors [36]

- 0.92 - 0.95

Uniform LSH - 0.93 - 0.96

Table 6.1: Precisions when looking for the first and second nearest neighbors for different

methods and comparable query times, approximately 0.2 ms per query, for a dataset of

500k descriptors. The performances of state-of-the-art methods drop when they are applied

on the binary 128-vectors obtained by running LDAHash [111] on SIFT vectors. This is

especially noticeable for the HKM algorithm when the centroids are forced to be binary

vectors. The Parc-trees and Uniform LSH are two methods we introduce in Section 6.3 to

avoid this loss of accuracy.

then show that Voronoi diagrams have thick boundaries in binary spaces, which is what

causes this performance drop.

6.2.1 ANN on Binary Vectors

To perform the comparison, we collected many images of Venice from the Flickr 1

database and created a first dataset containing 500k feature points and their SIFT

descriptors. We then binarized these using the publicly available implementation of

LDAHash into 128-bits vectors [111] whose length was shown to provide a good com-

promise between accuracy of mapping between the original and Hamming space and the

length of the codeword. We used exhaustive linear-search to find the closest neighbors

of each descriptor and we use this information as a ground-truth.

Table 6.1 summarizes our precision results for the first and second positions. The

first simply is the the percentage of correct nearest neighbor that are retrieved. The

second is computed by retrieving two nearest neighbors and checking whether both,

only one, or none are the correct first two nearest neighbors of the query. The average

1http://www.flickr.com
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6.2 Thick Borders and Performance Loss

proportion of correct matches divided by 2 is then taken to be the precision at the

second position.

The results for the kd-trees and HKM algorithms were obtained using the publicly

available code of the FLANN library [73], which automatically optimizes the algorithms

parameters. We used our own implementation of the vantage-point trees.

The kd-trees and vantage-point trees can work on binary vectors without any mod-

ification since they do not involve averaging. By contrast, HKM involve computing

centroids. We therefore tested two different versions of the algorithm, either round-

ing the coordinates of the centroids so that they remain binary vectors or using the

floating-point coordinates.

As a baseline, we plot in the first column the results for matching the SIFT floating-

point vectors. In the second column, we plot the systematically worse equivalent results

using binary vectors. The degradation is noticeable for kd-trees and HKM, even if

we treat binary vectors as floating-point ones. The performance drop is even more

noticeable for the vantage-point trees.

As a sanity check, even though Spectral Hashing [131] is not truly designed to

produce vectors that can be searched by ANN but rather used as indices to directly

access their nearest neighbors, we ran the same series of tests on the vectors it produces.

The ANN precision rates are globally lower but we observed the same behavior.

6.2.2 Interpretation

That kd-trees perform poorly on binary vectors is not that surprising since the splits

are performed one dimension at a time and binary vectors can take only two values per

dimension. Hence this method is sensitive to flip noise.

To understand the performance drops for the HKM and the vantage-point tree, one

must consider that the topology of the Hamming space is different than the Euclidean

one. This is because of the discrete nature of the binary spaces where many vectors

are equidistant to two random points.

This affects the vantage-point trees because many vectors may lie on the splitting

sphere: If the dimensionality of the binary space is L and the sphere radius is D, the

proportion of uniformly distributed vectors that lie on the sphere boundary is 1
2L

(
L
D

)
.
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Figure 6.2: Thick borders of Voronoi diagrams in binary space. (a) A significant propor-

tion of the space is equidistant from two arbitrary points. In this example, four vectors are

equidistant to the vectors u and v which accounts for half of the population. This makes

the HKM algorithm fail on binary vectors. (b) Proportion of the binary vectors w that

belong to the sets Sd defined in Eq. (6.1) as a function of the distance D = dH(u, v) and

d. It is maximal for d = D/2, which corresponds to the set of vectors equidistant to u and

v, and remains large even for large values of D. This phenomenon differs from the curse

of dimensionality as it affects the data regardless of its dimensionality.

For example, for L = 16 and D = 8, this represents 20% of the binary space, an enor-

mous fraction. This is problematic because the algorithm depends on the assumption

that the splits separate the data well.

The same thing happens with the HKM trees, especially when one binarizes the

centroids. As explained below, the boundaries of the Voronoi diagram defined by

such binarized centroids contain a significant proportion of the binary space. This is

detrimental to the algorithm because points in those thick boundaries can be arbitrarily

assigned to one or the other cluster and can fall down the wrong branch of the tree at

run-time.

Let us consider two L-dimensional binary centroids u and v. We would like to

evaluate the number of vectors around the boundary defined by u and v, that is,

around the hyperplane made of w vectors equidistant from u and v. To this end, let us

consider the cardinality of the sets Sd defined by:

Sd = {w such that dH(v, w) = dH(u, w) +D − 2d} , (6.1)
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where dH(·, ·) is the Hamming distance, and D the Hamming distance between u and

v. The Sd family spans the Hamming space, with u ∈ S0, v ∈ SD, and SD/2 the set of

vectors vectors equidistant from u and v.

u and v have L − D bits in common and D bits that are different. Let us first

consider the case when D is even. For a vector w to belong to Sd, d bits among the

D different bits must be changed between u and w. In addition any number n of bits

among the L − D common bits can also be flipped between u and w: We then have

dH(u, w) = n+ d and dH(v, w) = n+D − d, and w indeed belongs to Sd.

The number of possible such w vectors is therefore 2L−D
(
D
d

)
and their proportion

of the full space is 2L−D

2L

(
D
d

)
= 1

2D

(
D
d

)
. Remarkably this expression does not depend on

the dimension L of the space but only on D and d. We plot its values in Fig. 6.2(b).

This expression reaches its maximum for d = D/2, that is, for the set of vectors that

lie at equal distance from vectors u and v. Using Stirling’s approximation [108], this

expression for d = D/2 can be approximated by
√

2
πD when D increases, and therefore

slowly decreases towards 0 (see Fig. 6.2(b)). For example, when D = 2, 50% of the

space lies at equal distance from the 2 centroids! For D = 64, 10% of the space is still

equidistant from the centroids. As a result, the borders of the Voronoi diagram defined

by u and v contain a significant proportion of the binary space which leads to a severe

performance drop of the HKM algorithm.

When D is odd, no vector is equidistant from u and v. However, we can derive a

similar expression for the number of points for which the distances to u and v differ by 1.

The number of such points remains large. The borders of the Voronoi diagram defined

by the centroids in the HKM algorithm therefore contain a significant proportion of

the binary space.

6.3 Randomized Data Partitioning

In this section, we address the above-mentioned shortcoming of state-of-the-art ANN

search algorithms in Hamming spaces, and describe two simple yet effective ANN search

methods that work by randomizing data partitioning.
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6.3.1 Parc-Trees

This first algorithm relies on multiple trees. Like the nodes of a hierarchical k-means

(HKM) [35, 78] tree, the parc-tree nodes split the data into k parts by storing k vectors

we call centroids, and associating the data with the closest centroid. Each non-terminal

node has k children, corresponding to the different parts. By contrast with HKM, we

do not optimize on the centroids but randomly select them among the data vectors

that reach the node, except those which have previously been used. The recursion

stops when the number of data vectors is less than k. Because of the randomization,

the trees are independent from each other.

At run-time, a query vector recursively follows the branch associated to the closest

node vector until it reaches a leaf, as in HKM. In HKM however, the leaves have to

store all the data that reach them, and a linear search over this data is required to

find the vector closest to the query vector as the candidate nearest neighbor. In parc-

trees, the centroids belong to the dataset and when the query vector reaches a leaf,

we already computed its distances to the centroids of the nodes it visited. Hence, a

candidate nearest neighbor is chosen to be the closest vector among those in the leaf

and the centroids of the visited nodes.

The query operation is repeated over all T trees and the best match is retained.

This allows the parc-trees to mitigate the quantization error introduced by the thick

Voronoi boundary: We can find the correct nearest neighbor even if it is present in only

one visited node among all the trees.

The influence of parameters T and k on the obtained precision and computational

time can be seen in Fig. 6.3. The performance increases with the number of trees T ,

until it saturates, linearly with T . Increasing the branching factor k also improves the

performance. The average tree depth then decreases, but the computation time still

increases: A tree of depth d contains k+k2 +k3 + . . . kd ≈ kd vectors, so a tree of S data

vectors is approximatively of depth logS/ log k. The number of distance computations

required when dropping a query vector into the tree is therefore k logS/ log k, which

increases with k sublinearly.

Most of the operations involved by this approach are Hamming distance computa-

tions. They amount to an xor operation followed by a popcount instruction present
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Figure 6.3: Comparison of precision for first position with different parameters for the

parc-trees and Uniform LSH on the 500k binary vectors dataset. For PARC trees (left)

we plot the results for T = 8, 16, 24, 32, 36, 40 trees and different branching factors. For

Uniform LSH (right) we plot the results for 30, 35, 40, 45, 50, 55, 60 hashing tables with

various key lengths.

on modern CPUs, and are much faster to evaluate than the Euclidean distance be-

tween floating-point vectors. Moreover, the T trees can be simultaneously queried on

a multi-core machine, which means we incur only a limited penalty for using several

trees.

6.3.2 Uniform LSH

We also developed an ANN method inspired by the Hashing-based method of [36],

which involves converting integer vectors into binary ones and randomly selecting and

concatenating bits from them to generate multiple hashing keys. A query vector is

then matched against the vectors in the buckets corresponding to its keys values by

linear search. The smaller the lengths of the keys, the greater the size of the buckets

becomes, which yields higher precision at the cost of increased computational time.

This simple scheme performs well, as our experiments show. As for parc-trees, most of

the operations are Hamming distance evaluations, which can be performed efficiently,

and searches, which can be parallelized.

However, the random selection of coordinates may lead to unnecessary overhead, as

some coordinates may be selected more frequently than others, whereas some of them

may not be picked at all. This problem can be solved by increasing the number of keys,

but to run fast, it is desirable to use as few keys as possible.

To resolve this dilemma, we optimize the keys so that the bits selected to generate
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Figure 6.4: .

Comparison of precision for first (left) and second (right) positions for the original

LSH and Uniform LSH with hashing keys optimized as explained in Section 6.3.2.

We varied the number of keys, their lengths and the sizes of the datasets. While the

improvement is limited, this demonstrates that the hashing keys can be optimized in

Hamming spaces.

the keys are distributed more uniformly. This way, the keys generate more various parti-

tioning of the database. More formally, we can define the keys Ki as sets containing the

selected bits coordinates: Ki = {cij ∈ [1;L] | j ∈ [1;n]} where L is the dimensionality

of the binary vectors, n is the number of bits in a key. We also define Nk as the number

of times a given coordinate is used in a key: Nk = |{cij = k | i ∈ [1;m] and j ∈ [1;n]}|,
where m is the number of keys. Then we optimize the keys to minimize

min
{Ki}

∑
k

(Nk −N)2 (6.2)

with N = n · m/L, the ideal number of times a coordinate should be picked. To do

this, we use a simple greedy algorithm that generates the keys one by one, by randomly

selecting the bits among those which were used less often for the previous keys. We

call this modification Uniform LSH as the distribution of the bits used in the keys is

optimized to be more uniform and hence partition the dataset better.

We experimented with different numbers of keys and numbers of bits per key used.

The results of those experiments are shown in Fig. 6.3. Computation times increase

linearly with the number of keys, but the precision of the search also increases. Sim-

ilarly, the lower the number of bits per key used, the bigger the data partitions and

hence the longer the search time. However, since we perform a linear search within the
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selected data partition, shorter keys (and bigger data partitions) lead to performance

improvement.

Overall, as it can be seen in Fig. 6.4, the resulting Uniform LSH algorithm improves

performances over those of the original LSH.

6.4 Results

In this section, we first compare parc-trees and uniform LSH against the state-of-the-art

ANN methods, namely kd-trees and HKM trees. To that end we use datasets of binary

local feature descriptors created using LDAHash and BinBoost methods. We conclude

this section by applying our algorithms to real-life application of aerial triangulation.

6.4.1 Evaluation Protocol

To evaluate our approach to solving the thick Voronoi boundary, we first create several

datasets using two binary descriptors. We generate 128-bit binary LDAHash by bina-

rizing the SIFT descriptors extracted from a set of additional Flickr images of Venice.

Together with the dataset described in Section 6.2.1 we then have three datasets that

contain 500k, 900k and 1.5M descriptors. Moreover, we use BinBoost1-128t descriptor

proposed in this thesis to obtain two other datasets of sizes 500k and 1M. The Bin-

Boost descriptors are created from Liberty dataset using a set of weak learners trained

on the Notre Dame dataset. One should note that those test datasets are larger than

the ones used to evaluate the recent FLANN library [73] which mostly contained only

100k vectors. Furthermore, datasets of comparable sizes are frequently used for real-life

applications, such as image-based 3D reconstruction.

To analyze the performances of various methods, we plot precision vs query time

curves by setting the parameters of all algorithms so that the query time is approxi-

mately the same. To produce the different points in the plots, the number of hashing

tables of LSH varied from 30 to 60, the number of parc-trees varied from 8 to 32, while

for kd-trees and HKM we limited number of visited leaves. The results presented here

are the average over three runs. The computation times were evaluated on a computer

with two Intel Xeon E5620 2.4 GHz CPUs and 48 Gb RAM.
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Figure 6.5: Comparison of precision for first and second positions for different ANN search

algorithms on 500k, 900k and 1.5M binary LDAHash descriptors. Uniform LSH outper-

forms the parc-trees, which themselves outperform all the other state-of-the-art methods

for all configurations.

6.4.2 Results for LDAHash descriptors

Fig. 6.5 presents the comparison of different ANN search algorithms applied to binary

LDAHash descriptors. LSH outperforms all tree-based methods. Out of those, parc-
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trees remain the best. The speed-up of LSH and parc-trees over the other algorithms

is especially visible for higher precision levels. For instance, for 500k dataset KD-trees

needs approximately 300µs to reach the precision at second position equal to 0.85,

whereas it takes parc-trees and Uniform LSH less than 100µs and 50µs, respectively.

As the dataset size grows, it takes more time to find the nearest neighbors, but

the relative ordering of the performances remains the same for all the methods: LSH

performs the best, followed by the parc-trees. For the 1.5M dataset, LSH achieves a

precision of 0.7 at first position about an order of magnitude faster than KD-trees and

HKM.

6.4.3 Results for BinBoost Descriptors

Using the same evaluation protocol, as in the previous section, we then perform an

additional set of experiments on 500k and 1M datasets of BinBoost1-128 created from

Liberty dataset. The results of the evaluation are shown in Fig. 6.6. Similarly to the

case of LDAHash descriptors, also in this case parc-trees and Uniform-LSH outperform

the other methods. Contrary to the results obtained using LDAHash descriptors, HKM

performs worse than KD-trees on BinBoost descriptors, which may be explained by

different distribution of the bits of BinBoost and LDAHash. As shown in Fig. 6.7, mean

values of binary dimensions are much closer to 0.5 for LDAHash, than for BinBoost.

6.4.4 Memory Requirements

Finally, we perform a set of experiments to analyze the memory consumption of the

ANN algorithms. To that end, we measure the memory allocated when searching

through BinBoost descriptor datasets of size 500k and 1M. We report here the memory

reserved for the structures and the stored data.

As we show in this chapter, randomization solves the thick Voronoi boundary, al-

though it comes at a price of generating redundant data partitions. Fig. 6.8 shows the

impact of this overhead on memory consumption. Not surprisingly, increasing number

of parc-trees and LSH hashing tables leads to better search quality, but also higher

memory allocation. As a matter of fact our unoptimized implementation quickly ex-

ceeds the memory reserved by FLANN implementation of both kd-trees and HKM.
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Figure 6.6: Comparison of precision for first and second positions for different ANN search

algorithms on 500k and 1M binary BinBoost1-128 descriptors. Uniform LSH outperforms

the parc-trees, which themselves outperform all the other state-of-the-art methods for all

configurations.

This problem has been addressed in the literature and an extension of LSH scheme

was proposed under the name of Multiprobe LSH [63]. In short, Multiprobe LSH repli-

cates query vectors, perturbs them with random noise and uses this newly created

expanded set of queries to look for the approximate nearest neighbors. This allows us

to reduce the number of generated hashing tables as we effectively increase the chances

of finding the correct database vector by visiting more buckets. Fig. 6.8 shows that

extending our Uniform-LSH algorithm with multi-probing leads to significant memory

savings, while Fig. 6.9 proves that this comes at virtually no cost in terms of perfor-

mance.
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Figure 6.7: Histograms of means for binary dimensions of BinBoost1-128 and LDAHash

descriptors.
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Figure 6.8: Comparison of memory used for different ANN search algorithms on 500k

and 1M binary BinBoost1-128 descriptors.

6.4.5 Aerial Triangulation

To verify our approach, we applied it to Aerial Triangulation. We extracted feature

points from aerial images, and match them using the same binary descriptors as before.

Matched points correspond to the same 3D points, and we use these matches to jointly

optimize the 3D points and the camera parameters by bundle block adjustment [42].

We tested our binary search strategy on two datasets of large aerial images. The

first dataset contains 25 high resolution (13824×7680) images of Marseilles1, two of

1The images are available at http://eurosdrbenchmarkofimagematching.ign.fr/ under “Bench-
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Figure 6.9: Comparison of speedup with respect to the linear search for different ANN

search algorithms on 500k and 1M binary BinBoost1-128 descriptors.

Figure 6.10: Top: Two out of the 25 13824×7680 pixels images from the Marseilles

dataset. Bottom: Two out of the 68 11500×7500 pixels images from the Zwolle dataset.

which are shown in Fig. 6.10. The second dataset consists of 68 11500×7500 aerial

images of the Dutch city of Zwolle.

Each image contains approximately 400k binary keypoints which makes exhaustive

marking of Image Matching Approaches for DSM computation” project.
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Figure 6.11: Top left: The aerial triangulation of 1.1M 3D points and top right: the

generated ortho-image for the Marseilles dataset. Bottom left: The aerial triangulation

of 2.1M 3D points and bottom right: the ortho-image made of 68 individual images

(right) for the Zwolle dataset.

feature matching, even on binary vectors, excessively slow. Our approach reduces the

matching time by a factor 20 over linear search with a 95% accuracy, which is consistent

with the results reported in Section 5. The final aerial triangulations and the combined

ortho-images for the Marseilles and Zwolle datasets are shown in Fig. 6.11.

6.5 Conclusion

In this chapter we showed that Voronoi diagrams in Hamming spaces have thick bor-

ders, which reduces the precision of many state-of-the-art ANN algorithms. We then

proposed two techniques that rely on randomized data partitioning to overcome this

problem and yield precisions that are comparable to those obtained using floating-point

vectors at a fraction of the computational cost.
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CHAPTER

SEVEN

CONLUDING REMARKS

In this thesis, we presented two methods to construct robust binary local feature de-

scriptors. We proposed to use machine learning techniques and learn the necessary

descriptor invariance towards various image transformations directly from the data.

We focused our efforts on binary descriptors, as they enable faster processing at lower

memory footprint. The performances of previous binary descriptors, such as BRIEF or

BRISK, tend to be inferior to those of the competing floating-point descriptors, such

as SIFT or SURF. We showed that this performance loss can be mitigated by using

data-driven approaches while preserving all the benefits of binary representations.

We first proposed an extremely compact and quick to compute binary descriptor, D-

Brief, that is built by projecting an image patch to a more discriminative subspace and

thresholding the resulting coordinates. Applying complex projections directly to the

image patch can be computationally demanding, and hence we introduced an efficient

method for learning discriminative projections so that they can be decomposed into a

small number of simple filters, such as box or Gaussian filters. Our approach allows for

the selection of the dictionary of filters that are used to construct the projections and

number of elements, thus controlling the trade-off between computational complexity

and the projection quality. The resulting 32-bit D-Brief descriptor outperforms its

binary intensity-based competitors such as BRIEF, ORB or BRISK, while reducing

the memory footprint over 8 times and decreasing the description-matching cycle time.

It is therefore mainly designed for low-cost mobile platforms and real-time application

with a significant emphasis on fast processing.
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Although compact and very fast to compute and match, D-Brief does not provide

the discriminative power and robustness that is required for multiple large-scale appli-

cations, such as 3D reconstruction or visual search. Hence, we extended our work on

learning binary feature descriptors by proposing a more complex and powerful binary

descriptor called BinBoost. We leveraged the boosting-trick to efficiently train a com-

pact binary descriptor that is extremely robust to image transformations and viewpoint

changes. Each bit of BinBoost is computed with a boosted binary hash function and

we showed how to efficiently optimize different hash functions so that they complement

each other, which is key to compactness and robustness. As we do not put any con-

straints on the weak learner configuration underlying each hash function, our general

framework allows us to optimize the sampling patterns and encompasses the formula-

tion of various hand-crafted descriptors. Hence, the resulting descriptor significantly

outperforms the state-of-the-art binary and floating-point descriptors at a fraction of

the matching time and memory footprint.

Since feature descriptors are typically used in a more complex systems where they

have to be matched, we also investigated various approximate nearest neighbor search

(ANN) methods and checked their applicability to binary vectors. Our findings showed

that the state-of-the-art methods for approximate nearest neighbor search do not per-

form well and we attributed this behavior to the specificity of binary spaces, namely

to the high concentration of the binary vectors along the Voronoi borders. This phe-

nomenon turns to have a tremendous impact on the performance of the widely used

ANN methods, such as hierarchical k-means or kd-trees. We therefore discussed the

consequences of the thick Voronoi boundaries and gave a simple recipe to alleviate

the above mentioned problems. More precisely, we introduced two algorithms which

postulate to build the ANN search structures by randomizing data partitioning. The

first one, called parc-trees, constructs a set of complimentary search trees by randomly

selecting cluster centers from within the data points. The second method, improves the

performance of the Local Sensitive Hashing (LSH) scheme by greedily optimizing over

the selection of dimensions used to create hashing tables. In both cases, we showed that

the performances of the proposed methods are similar to those based on floating-point

number computations, but exploiting the characteristics of binary spaces allows us to

significantly reduce the computational cost.
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Future Research

The binary feature descriptors proposed in this thesis, although providing state-of-the-

art performances, do not benefit from all the recent advances in machine learning and,

therefore, it is expected that new algorithms to learn robust local feature descriptors will

emerge. This becomes even more probable, when one takes into account the immense

growth in the visual data that is being gathered by professionals, academics and regular

people around the world. The massive amount of visual content is also prone to inspire

more research on the topic of fast similarity computation and approximate nearest

neighbor algorithms. We believe that the research presented in this thesis provides

only the introduction to the topic of data-driven methods to learn and match binary

feature descriptors and below we outline three paths that could extend this work.

Neural networks have been recently rediscovered and today they are considered

one of the most well-known machine learning algorithms, mainly due to their general

framework and impressive results [52, 53]. Moreover, Convolutional Neural Networks,

a particular instance of Neural Networks, have successfully been used to train local

feature descriptors [46, 83]. Nevertheless, the complexity of the learning framework

limits the feasibility of the resulting descriptors, as the extraction time remains several

orders of magnitude higher than those of the state-of-the-art descriptors available on

the market. As a matter of fact, the initial learning objective of D-Brief, Eq. 3.2, was

recently cast as a neural-network problem [66] which resulted in a significant perfor-

mance improvement with respect to the LDA-type relaxed version of this objective.

This leads to a conclusion that neural networks might help to re-learn image patch rep-

resentations without referring to approximated and sub-optimal solutions. Moreover,

the learning framework proposed for the BinBoost descriptor yields a close connection

to a two-layer neural network and, hence, investigating the relation between neural

networks and our boosting algorithm can potentially become an interesting research

outlook.

Learning the feature detector can be seen as a natural extension of our work,

as it complements the extraction pipeline of our learned descriptors. Nevertheless, the

problem of training a repeatable detector remains very challenging due to the ambiguity

of the keypoint concept as well as due to the differences between the appearances of the
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keypoints. Although several attempts to address this problem have been made, they

typically focus on post-processing of the results of the initial detection for task-specific

keypoint detection [110] or to decrease the computational burden [90, 91]. On the

other hand, our research shows that feature descriptor can be learned directly from the

intensity patches, without any intermediate step. A similar approach could potentially

lead to a truly data-driven feature detection mechanism, although the variance in the

training samples for this problem is significantly higher.

Quantizing binary feature descriptors constitutes yet another interesting re-

search topic, as quantization of feature descriptors into visual words remains one of the

most crucial elements of a typical visual search engine [105]. In the case of floating-point

descriptors, hierarchical k-means has been successfully employed for feature quantisa-

tion [78]. As we showed in Chapter 6, however, hierarchical k-means does not perform

well when clustering binary vectors. It is therefore necessary to develop other meth-

ods for binary descriptor quantization. A straight forward approach is by using only

a subset of the dimensions to generate the indices of the quantization buckets. This

approach resembles the locality sensitive hashing (LSH) framework discussed in Chap-

ter 6, although with only one hashing table. Nonetheless, quantizing the descriptor into

a single bucket can lead to significant performance losses as a single bit flip. e.g. due

to noise, would result in an erroneous assignment. Hence, multiple assignment, also

known as soft assignment [85], may present a good starting point to resolve this issue

and can potentially lead to much faster visual search that is based on binary descriptors

such as BinBoost.
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Contact
Information

EPFL / IC / ISIM / CVLab E-mail: tomasz.piotr.trzcinski@gmail.com
Station 14 WWW: http://people.epfl.ch/tomasz.trzcinski
CH-1015 Lausanne
SWITZERLAND

Research
Interests

Computer Vision: local feature descriptors, visual content search, augmented reality, large-
scale vision-based localization, real-time image processing.
Machine Learning: boosting, neural networks, supervised dimensionality reduction.
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