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Flexural deformations of URM piers: Comparison of analytical 
models with experiments 
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ABSTRACT: Despite the fact that displacement-based methods are now frequently applied when 

assessing the seismic performance of unreinforced masonry (URM) structures, the displacement 
capacity of in-plane loaded URM piers is still estimated from empirical rather than mechanical 
relationships. One idea for estimating a pier’s force-displacement curve including its displacement 
capacity that has been put forward in the past is based on the double integration of the curvature 
profile. The curvature is derived assuming a bilinear stress-strain relationship in the compression 
domain and neglecting the tensile strength of the masonry. 

We tested several identical URM piers under different constant axial load and shear span ratios 
while applying quasi-static horizontal cyclic in-plane loading. During testing, we tracked with a set of 
cameras the displacement of four LEDs on each full brick of the masonry piers. Therefore, we were 
able to determine the local deformations, e.g. average strains in the bricks and deformations of the 
joints. In this paper we will present experimentally determined local and global deformation quantities 
of one pier dominated by flexural deformations and compare these to the estimates from the 
analytical model. Differences between model and experiment will be discussed and first estimates of 
performance limits describing local deformations will be proposed. 
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NOTATION 
A Section of the pier; 
C Reduction factor for an equivalent rectangular stress bloc; 
E Modulus of elasticity perpendicular to the bottom joint; 
fu Compression strength perpendicular to the bottom joint; 
G Shear modulus of elasticity of the masonry parallel to the bottom joint; 
H Height of the pier; 
H0 Shear span;  
hc Height over which bed joint opening develops; 
hp Height of the plastic zone; 
I Moment of inertia; 
L Length of the pier; 
Lc Length of compressed zone;  
Lc,y Length of compressed zone when the maximum admissible stress is reached;  
Lc,u Length of compressed zone at ultimate stage;  
M Bottom moment; 
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Me  Bottom moment when bottom joint starts opening;  
My  Bottom moment when minimum admissible stress is reached;  
Mu  Bottom moment at ultimate point; 
N Normal force applied to the pier; 
T Width of the pier; 
u Top displacement; 
ue Top displacement when bottom joint starts opening; 
ufl Top displacement caused by flexural deformations;  
ush Top displacement caused by shear deformations; 
V Lateral shear force; 
Ve Lateral shear force when bottom joint starts opening;  
α Shear span ratio; 
Δp Plastic displacement; 
εc Ultimate compression strain; 
θ Rotation of the pier at top of the plastic zone;  
θp Plastic rotation; 
μ Coefficient considering the normal force shear force interaction on the displacement;  
η Coefficient considering the normal force shear force interaction on the displacement; 
ψ Displacement of the pier at top of the plastic zone;  
Χ Curvature in bottom section;  
Χy Curvature in bottom section when minimum admissible stress is reached; 
Χu Curvature in bottom section at ultimate point; 

1 INTRODUCTION  

Despite the fact that displacement-based methods are now frequently applied when assessing the 
seismic performance of unreinforced masonry (URM) structures, the displacement capacity of in-
plane loaded URM piers is still estimated from empirical rather than mechanical relationships. Already 
some decades ago first models were developed which describe the force-displacement relationship of 
unreinforced masonry (URM) structures that are mainly subjected to flexural deformations. Some of 
these models are of analytical nature and derive a direct relationship between horizontal force and top 
displacement; examples are the force-displacement relationship for leaning towers [1] or the force-
displacement relationship developed in [2]. Others obtain the force-displacement relationship with the 
help of computer software based on macro-elements, for instance the model used in [3]. All these 
models have in common that they assume a no-tension material with a linear-elastic behaviour in 
compression. Hence, for small lateral loads the pier behaves linear-elastically until the maximum 
stress in the bottom section is equal to zero and the base section starts opening (see Figure 1, V ≤ 
Ve). In the following, the effective section reduces and the flexibility of the pier increases. However, for 
small bottom joint openings, the URM pier remains undamaged and the residual displacement after 
unloading is negligible. Hence, the deformations are reversible and thus, until the onset of crushing at 
the toe, the pier’s behaviour is almost non-linear elastic. 

Ongoing from the basic assumption of a no-tension material and the linear-elastic and non-linear 
domain, Benedetti and Steli [2] developed analytically a model which relates the top displacement 
directly to the shear force of a URM pier. The model is developed for piers subjected to a constant 
normal force without rotational restraint at the top, hence, for piers tested under cantilever conditions. 
For piers subjected to fixed-fixed boundary conditions, Benedetti and Steli [2] propose calculating the 
displacement at half height of the pier and then, to double this displacement in order to obtain the 
displacement at the top of the pier. However, in [4] we show that in real structures, the boundary 
conditions which apply to a pier diverge from a cantilever or fixed-fixed boundary conditions. In order 
to extend the applicability of the model proposed by Benedetti and Steli [2], we review the basic ideas 
and extend the model for piers tested with variable boundary conditions. Furthermore, we compare 
the performance limits as described in [2] with the model developed by Priestley et al. [5] and 
compare the estimates with the experimental results we obtained from own tests [4].  



Comparison of estimates of flexural deformations of URM piers with experimental results 

 

 

9
th

 International Masonry Conference, Guimarães 2014 3 

 

2 MODELS FOR THE FORCE-DISPLACEMENT RELATIONSHIP OF MASONRY PIERS 

2.1. Analytical model for the elastic shear force-displacement relationship of URM 
piers under cantilever conditions 

The elastic domain of the model described by Benedetti and Steli [2] can be divided into two parts: 
First, the linear-elastic domain without opening of the bottom joint and second, the non-linear elastic 
domain with opening of the bottom joint. In the first domain (V ≤ Ve) the displacement u at the top of 
the pier is given as follows [2]: 

3

3 1.2 

H H
u V V

EI GA
     (1)                .  

The first term of Eq. (1) accounts for the flexural deformations and the second part accounts for the 
shear deformation. E and G are the elastic and shear modulus of the masonry and I = L3T/12 and A = 
LT the geometrical properties of the section (L, T and H are the length, width and height of the pier). 

When the moment in the bottom section (M = VH0) exceeds the linear-elastic limit moment (Me = 
NL/6), the bottom joint starts opening up, see Figure 1, and the curvature becomes [2]:  

 
  2

2
 

c

N

E T L
 (2)                .  

where Lc is the length of the compressed zone. In [2], the force-displacement relationship is 
obtained through linear interpolation of the linear and non-linear part: 

   e e
e

V M
u u V V

V V
       (3)                .  

where ue is the linear-elastic displacement for V = Ve. θ(V) and ψ(V) are the rotation and 
displacement at top of the cracked zone (hc, see Figure 1). They are given as follows [2]:  

 

Figure 1. Force-displacement relationship for a no-tension material with linear-elastic behaviour in 
compression 
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Note that in Eq. (3) Benedetti and Steli [2] reduce the elastic displacement ue from Eq. (1) in order 
to account for the reduced section at the bottom of the pier. However, they do not differentiate 
between flexural and shear deformations. While an increase of flexural flexibility due to cracking is 
considered by the second and third term of Eq. (3), this is not the case for the shear deformations. Eq. 
(3) assumes thus a decrease of the shear flexibility with crack propagation. To the authors’ 
understanding this is not correct and Section 3.1 proposes therefore a revised formulation which 
treats flexural and shear deformations separately and which corrects further the flaws of the 
formulation in [2] (i.e. errors in Eqs. (3) to (5)).  

 

2.2. Models for estimating the displacement capacity 

The model by Benedetti and Steli [2] relates the local deformation of the compressed zone to the 
global displacement of the pier. However, in order to use the model for estimating the pier’s 
displacement capacity, global displacement capacities have to be associated to deformation limits at 
the local level. To the authors’ knowledge, two approaches are reported in the literature, which allow 
doing so: first, the so-called “yield” and “ultimate point” described by Benedetti and Steli [2] and 
second, the displacement capacity for flexural rocking given in Priestley et al. [5]. 

Benedetti and Steli [2] compute the displacement capacity by means of the yield and ultimate 
point. The yield point is determined as the point of the non-linear elastic domain (see previous 
section) when the minimum stress in the base section (see Figure 1) reaches the compression 
strength σmin = -fu of the masonry. Hence, the so-called yield moment My is obtained as follows: 

2
, 2

2 3 2 3
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u

LL L N N
M N

T f

  
    

 
 (8)                .  

Lc,y represents the length of the compression zone at the yield point. Once the moment in the 
bottom section exceeds the yield moment, Benedetti and Steli [2] assume an elastic-ideal plastic 
material behaviour and therefore allow for a limited stress redistribution in the compressed zone. They 
proposed the following formula for computing the length of the compression zone Lc,u and the 
admissible moment Mu at ultimate point [2]:  
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 (9)                .  
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2
u c u

L
M N L  (10)                .  

In order to obtain an estimate for the remaining displacement capacity in the non-elastic range (My 
≤ M ≤ Mu) the plastic length hp is computed to be equal to the height of the pier subjected to higher 
moments than the yield moment [2]: 
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while the curvature at ultimate point is estimated as follows [2]: 

 
ò

,

c
u

c uL
 (12)                .  

εc is the maximum admissible compression strain at the external fibre of the masonry. Accordingly, 
the maximum plastic displacement is: 

        
1

Δ
2

p u y p ph H h  (13)                .  

and the total displacement at ultimate point can be obtained by adding the plastic displacement 
from Eq. (13) to the elastic displacement obtained with Eq. (3) [2]. 

 
Another similar mechanical model which estimates the displacement at ultimate point is proposed 

by Priestley et al. [5]. Unlike the previously presented model, they assume the plastic hinge length to 
be equal to the remaining uncompressed length of the bottom section (hp = L – Lc,u ) and estimate thus 
the plastic rotation at the base of the pier as follows: 


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 (14)                .  

This approach is based on the assumption of an equivalent rectangular stress bloc (C = 0.85). 
Hence, the maximum moment and the compressed length at ultimate point are [5, 6]: 
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Priestley et al. [5] refer later to the base rotation as the interstorey drift at the ultimate stage. 
Hence, we assume that the top displacement at ultimate point can be calculated as follows:  

,

, 2
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L
Hu H 


   

ò
 (17)                .  

3 EXTENDED ELASTIC FORCE-DISPLACEMENT RELATIONSHIP FOR MASONRY 
PIERS SUBJECTED TO DIFFERENT BOUNDARY CONDITIONS 

The model presented in [2] was developed for piers loaded as simple cantilever piers. However, in 
order to apply the analytical model proposed by Benedetti and Steli [2] also to a pier which we tested 
with a shear span of H0 = 1.5H, the model is extended in the next section for a variable shear span 
ratio α = H0/H ≥ 1.0. For piers with a shear span ratio 0.5 ≤ α < 1.0 the different limit stages have to be 
considered at the bottom and top of the pier. Hence, we propose a separate approach in Section 3.2 
to deal with these piers. As noted previously, the shear deformations will be treated separately from 
the flexural deformations, since they will be affected differently by the geometrical nonlinearity when 
the bottom joint starts opening. At any point of loading, the total deformations can be computed as the 
sum of the flexural and the shear deformations.  
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3.1. Displacement due to flexural deformations 

Through double integration of the curvature we obtain the following relationship for the force-
displacement relationship: 

3 1
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However, when we evaluate Eqs. (19) to (23) for a simple cantilever beam (α = 1) we obtain results 

that differ from the results reported by Benedetti and Steli [2] (Eqs. (3) to (7)):  
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The differences between our equations (Eqs. (24) to (28)) and the equations given in [2] (Eqs. (3) 
to (7)) for a cantilever pier, considering only the flexural deformations, are shown in Figure 2.  
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Even though both models are based on the same assumptions regarding the moment-curvature 
relationship, the resulting force-displacement relationships diverge at the onset of the non-linear 
elastic domain. The model in [2] predicts at the onset of the non-linearity an abrupt reduction of the 
flexibility, which is also shown in the graphs reported in [2]. The shape of the curve resembles that of 
a moment-curvature relationship of reinforced concrete but does not seem to be physically meaningful 
for URM. To verify our equations, we compared our model with the displacement obtained through 
numerical double integration of the curvature and obtained the same results for our analytical and 
numerical solution. This suggests that the equations in [2] include an error which was introduced in 
the integration process.  

 

3.2. Displacement due to shear deformations 

Since we consider a pier that is mainly subjected to flexural deformations, we assume that damage 
to the pier is only introduced through flexural deformations. Nevertheless, the shear deformations are 
not negligible. It is assumed that only the compressed section contributes to the shear stiffness. 
Hence, in analogy to the flexural deformations, the shear behaviour can be divided into the following 
same two domains: first, the linear domain while the whole section of the pier is in compression and 
the shear stiffness is independent of the flexural solicitation and second, the non-linear domain while 
the flexural deformations impose a crack opening in the bed joints and reduce thus the compressed 
area through which shear can be transferred. 

In the linear-elastic domain (V ≤ Ve) the shear deformations are independent of the moment profile 
of the pier. Hence, the shear displacement is as follows (see Eq. (3)): 

 
5

6
sh

H
u V

GA
 (29)                .  

When the bottom joint starts opening, the effective area through which the shear stress is 
transferred reduces. Thus, the deformability increases and the following force-shear displacement 
relationship is obtained:  
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Figure 2. Force-flexural displacement relationship for a cantilever pier according to [2] and 
according to our corrected proposition 
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From Figure 3 it can be noted that the model proposed in [2] predicts the shear deformation to 
decrease once bed joint opening takes place. As we mention previously, to the authors’ opinion this is 
not realistic. In our model, the non-linear shear displacement is derived separately from the flexural 
displacement while considering the reduction of the effective section and it can be noted that we 
predict actually an increase in shear flexibility once the bottom joint starts opening.  

 

3.3. Extension of the model for shear span ratios of 0.5 ≤ α = H0/H ≤ 1.0 

The model described in the previous section is also applicable for piers with a shear span lower 
than the pier height. For this, the authors propose the following procedure: First, the displacement u1,0 
at the inflection point can be computed using the equations presented in Sections 3.1 and 3.2 by 
replacing the pier height by the shear span and setting the shear span ratio to one, hence, H* = H0 
and α* = 1.0. In a second step, the rotation at the inflection point θ1,0 can be computed using the 
following equations: 
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(34)                .  

Then, the relative displacement developing between inflection point and top u2,0 is obtained using 
again the equations presented in Sections 3.1 and 3.2 by replacing the pier height by the height 

 

Figure 3. Force-displacement relationship for a cantilever pier according to [2] and according to our 
corrected proposition considering the different deformation components  
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remaining above the inflection point and setting the shear span ratio again equal to one, hence, H* = 
H-H0 and α* = 1.0 (Note that the limit V ≤/≥ Ve changes respectively to V ≤/≥ H0/(H-H0) Ve for the part 
of the wall above the inflection point). As next step, the rotation θ2,0 is computed for the part of wall 
above the inflection point using again Eqs. (33) and (34). Finally, the displacement at top of the pier 
can be computed with the following equation: 

                  1,0 2,0 1,0 2,0 0u V u V u V V V H H  (35)                .  

Note that the plastic displacement (see Section 2.2) should be added only once using the full 
height of the pier. 

4 COMPARISON OF THE FORCE-DISPLACEMENT RELATIONSHIP WITH A PIER 
FAILING DUE TO FLEXURAL ROCKING  

In order to evaluate the herein described models, the force-displacement relationship is compared 
to an URM pier which was tested under a cyclic quasi-static lateral force in in-plane direction in the 
structural laboratory of the EPF Lausanne, Switzerland. The experiment itself is presented elsewhere 
[4]. The dimensions of the pier were L x H x T = 2.01 x 2.25 x 0.20 m. The material properties which 
are used for the following discussion were taken from [4] and are summarized in Table 1. The test unit 
PUP3, which is chosen for comparison herein this article, was tested under a constant normal force of 

N = 419 kN (0/fu = 0.18) and with a constant shear span of H0 = 1.5 H. Throughout the test, the 
deformation in the pier were dominated by a flexural behaviour. Even though shear cracks appeared 
just before reaching the peak strength, these did not develop further and did not cause any additional 
damage to the pier. 

 

Table 1. Properties of the masonry 

Masonry properties:    

Compression strength  fu 5.87 MPa 

E-modulus E 3550 MPa 

Poisson ratio ν 0.20 - 

Shear modulus G = E/(2(1+ ν)) 1479 MPa 

 
In Figure 4, the force-top displacement of PUP3 is obtained from the average of the first loading 

envelopes in positive and negative loading direction. For comparison the displacement is estimated 
with our corrected model developed in Chapter 3, once without considering any stress limit and once 
using the stress limit σmin = -fu [2] (= “yield point”). In addition, the ultimate displacement is estimated 
once adapting the criteria from [2] to our corrected model and once using the criteria from [5], (see 
Table 2). For both approaches an admissible compression strain of εc = 4 ‰ is assumed, e.g. [5]. 

In Figure 4, it can be noted that the curve obtained with our corrected proposition (see Chapter 3) 
matches perfectly with the force-displacement response obtained through experiments. However, this 
is not the case when we look at the predicted ultimate displacement. If we assume the ultimate 
displacement to be attained when the maximum force capacity drops by 20%, we can observe that for 
both approaches the ultimate displacement is underestimated. If we consider that the approaches 
base on similar basic ideas, for instance εc = 4 ‰, it is surprising that the estimates diverge so much 
from each other. This difference is mainly due to the choice of the plastic hinge length. In [5], it is 
assumed that the plastic zone propagates at an angle of 45° and therefore, the plastic hinge length is 
assumed to depend only on the section of the pier and the normal stress ratio. Even though the model 
given by Priestley et al. [5] seems to yield a better estimate (see Figure 4), to the authors’ opinion the 
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assumption done for the plastic hinge length is too simplistic and we suggest determining the actual 
plastic hinge length using Eq. (8) as proposed by Benedetti and Steli [2]. 

 

Table 2. Comparison of the ultimate displacement predicted with [2] and [5] 

 Benedetti and Steli [2] Priestley et al. [5] 

Compression length Lc,u Eq. (8) 0.535 m Eq. (16) 0.494 m 

Moment capacity Mu Eq. (9) 340 kNm Eq. (15) 333 kNm 

Ultimate curvature Xu Eq. (12) 0.0075 m
-1

 εc / Lc,u 0.0081 m
-1

 

Plastic hinge height hp Eq. (11) 0.186 m L - Lc,u 1.152 m 

Plastic displacement Δp Eq. (13) 0.99 mm - - 

Ultimate displacement uu Eq. (19) + Δp 4.83 mm Eq. (17) 13.8 mm 

 
 

Nevertheless, when adopting the limits by Benedetti and Steli [2] in our model, displacement and 
force capacity are underestimated. If we consider the yield point to be the point where non-reversible 
damage takes place, we can conclude that the yield point should coincide with the point where first 
cracks propagate through bricks. This idea is confirmed in Figure 4: when we extend our corrected 
model for stresses smaller than the compression strength, experiment and prediction match perfectly 
until the point where first cracking in brick occurs. 

In Figure 5, the admissible compression stress was determined such that the yield point matches 
with first cracking in brick ( σmin ≈ -3.3∙fu). It can be noted that using this limit stress leads also to a 
reasonable estimate for the ultimate displacement capacity when the lateral load of the pier drops to 
80 % of the peak load. 

Considering that vertical and shear stresses have to be transferred through the compressed zone, 
a biaxial stress state can be assumed in the compressed zone. Several researchers report the 
compression strength of masonry to increase when subjected to biaxial in-plane loading, e.g. [7]. 

 

Figure 4. Corrected model with different approaches for estimating the displacement capacity 
versus the experimentally determined first-loading envelope of PUP3 H0 = 1.5 H, N = 419 kN. “First 
cracking in brick” and “Maximum moment” relate to experimental observations. 
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Nevertheless, the admissible minimum stress which we determined to match yield point and first 
cracking in brick is significant lower than the compression strength (|σmin|/fu ≈ 3.3). In comparison the 
ratios between compression strength and minimum admissible stress reported in [7] are significant 
smaller (σmin|/fu << 2). Therefore, we concluded that another phenomenon must take place which 
confines further the masonry and allows therefore for such low minimum stress.  

However, from Figure 5 it can be noted that the choice of the minimum stress has relative little 
impact on the force capacity (Vy,exp / Vy,mod ~ 1.2), while it has a big impact on the displacement 
capacity (uy,exp / uy,mod ~ 4). The maximum moment is limited for small compression length (Lc << L), 
since the effective lever arm cannot increase significantly (M must be smaller than NL/2). On the other 
hand, the curvature which determines the flexibility of the pier is proportional to Lc

-3, hence increases 
significantly for small compression lengths. Therefore, underestimating the admissible stress in the 
compression zone is unreasonable conservative when regarding the displacement capacity. Note, 
that the assumption of the stress distribution – for instance, the assumption of a triangular stress 
distribution in elastic range [2] or the assumption of an equivalent rectangular stress field [5, 6] – is 
not decisive for the minimum compression length and the moment capacity once  Lc << L. 

 

5 CONCLUSION 

In this article we review first the existing model by Benedetti and Steli [2]. We discuss the model 
regarding the assumptions for shear and flexural deformations, we extend its validity to shear span 
ratios different to unity and correct the flaws in the equations in [2].  

We then review two existing models which associate global displacement failure to local 
deformation limits (Benedetti and Steli [2]; Priestley et al. [5]) and compare the results to an 
experiment which we performed at the structural laboratory of the EPF Lausanne. The results showed 
that simplifying the determination of the plastic hinge height to the length of the non-compressed zone 
as proposed by Priestley et al. [5] can be too simplistic and we suggest using the approach given by 
Benedetti and Steli [2]. However, limiting the stress to the compression strength of masonry 
underestimates the strength and deformation capacity of the pier. While the choice of the minimum 
admissible stress has little impact on the force capacity, this is not the case for the displacement 
capacity. The choice of the admissible stress has a large influence on the compression length and 
thus on the deformability of the pier. Hence, we show that if the minimum stress is determined such 
that yield point and first cracking in brick coincide, we can actually predict the force-displacement 
relationship of URM piers dominated by a flexural behaviour.  

 

Figure 5. Corrected proposition while assuming an increased stress capacity versus first-loading 
envelopes of PUP3 H0 = 1.5 H, N = 419 kN 
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We are currently working on the improvement of the local failure criteria in order to obtain a better 
estimate on the minimum admissible stress, such to match the prediction of the performance levels to 
local test observation. In addition, we are working on the validation against a larger set of tests and 
the development of a mechanical model for piers failing in shear.  
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