
Computational Aspects of Optimization-Based
Path Following of an Unmanned Helicopter

Johann C. Dauer and Timm Faulwasser and Sven Lorenz

Abstract This paper considers the path following of unmanned helicopters based on
dynamic optimization. We assume that the helicopter is equipped with a flight con-
trol system which provides an approximation of its closed-loop dynamics. The task
at hand is to derive inputs for this flight control system in order to track a geometri-
cally specified path. A concise problem formulation and a discussion of an efficient
implementation is presented. This implementation achieves computation times be-
low the flight duration of the path by exploiting differential flatness of components
of the dynamics. Finally, we present quantitative results in respect to convergence
and required iterations for a challenging nonlinear path. We show that the proposed
optimization based approach is capable of tackling nonlinear path following for he-
licopters in an efficient manner.

1 Introduction

In this contribution the problem of path following of small unmanned helicopters
such as the one shown in Figure 1 is considered. Path following is defined here as
the task to fly along a geometrically specified space curve. The time-wise progress
on the path is not a priori known or specified. Rather, we allow mission based re-
quirements such as, for instance, a desired velocity along the path. It is assumed that

Johann C. Dauer
German Aerospace Center (DLR e.V.), Institute of Flight Systems, Braunschweig, Germany, e-
mail: johann.dauer@dlr.de

Timm Faulwasser
Laboratoire d’Automatique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: timm.faulwasser@epfl.ch

Sven Lorenz
German Aerospace Center (DLR e.V.), Institute of Flight Systems, Braunschweig, Germany, e-
mail: sven.lorenz@dlr.de

1



2 Johann C. Dauer and Timm Faulwasser and Sven Lorenz

a path has been provided, either by the mission specification or by means of a path
planner, as presented e. g. in [1]. Furthermore, we assume that there exists a flight
control system handling the stabilization of the helicopter, which allows deriving an
approximation of the closed-loop dynamics, see e. g. [11].

Fig. 1 Automated helicopter midiARTIS of the German Aerospace Center,maximum-take-off-
weight 14 kg, rotor-diameter 1.8 m

Our task is to find suitable inputs for the flight control system offline, which
steers the helicopter along the desired path. These inputs have to satisfy dynamic
constraints of the vehicle as well as limitations of the control system implemen-
tation which would otherwise cause path deviations. A simplified block diagram
is presented in Figure 2, where the block considered here is called ”Optimization
Based Input Generation”. As shown in [3], a problem formulation like this can be
tackled by dynamic optimization using a receding horizon approach. The closed-
loop dynamics is not known exactly. However, the control concept presented in [11]
is based on a reference model, which can then be considered to be an approxima-
tion of the closed-loop. A good starting point for a literature review of alternative
approaches can be found in the surveys [2, 9].

In this paper, the results of [3] are extended by details of the numerical im-
plementation of the problem. We present an implementation capable to solve this
kind of problem. The implementation is based on the open-source project ACADO
Toolkit [8]. A nonlinear representation of the closed-loop behavior of the helicopter
is considered as well as nonlinear paths that do not correspond to paths created by
trimmed trajectories.

.Flight Control

System

Helicopter

Actuator Commandsu(t) y(t)Optimization Based

Input generation

Path

Closed-Loop Dynamics

Fig. 2 Simplified block diagram of the optimization based generation of inputs for the flight con-
trol system



Computational Aspects of Path Following of an Unmanned Helicopter 3

2 Problem Formulation

This section gives an overview on the problem formulation of path following for an
unmanned helicopter. A space curve is defined, which the helicopter is supposed to
track. An optimal control problem (OCP) will be formulated.

The closed-loop approximation of the flight control system can be represented in
state space by

ẋ(t) = f(x(t),u(t)), x(0) = x0 (1a)
y(t) = h(x(t)), (1b)

where the state vector x contains position and velocity of the helicopter, as well
as rotational and engine states. The inputs u are the input channels of the flight
control system. They contain a velocity command uv and a command for a desired
scalar azimuth uψ . The azimuth is the third component of an Euler representation
of the helicopter’s attitude corresponding to ISO 1151. The outputs are defined by
the position of the helicopter (r) in Cartesian north-east-down (NED) frame and the
azimuth (ψ), thus

u(t) = (uv(t)T ,uψ(t))T ∈ R4, (2a)

y(t) = (r(t)T ,ψ(t))T ∈ R4. (2b)

This representation results in a consistent problem formulation for missions in
obstacle occupied environments for short distance missions. Alternatives can also
be considered, for example velocity in respect to wind as well as the side slip an-
gle, which partly defines the attitude of the helicopter with respect to aerodynamic
inflow.

In this paper we focus on the structure of the problem. The information needed to
reconstruct the complete set of equations can be found in in [3]. For brevity, the fol-
lowing paragraphs limit to the general idea and the needed links to [3] by providing
the physical meaning of some of the variables. The state vector can be subdivided
into four sub-vectors: the translation dynamics xt ∈R6, states of the engine xe ∈R2,
states for the rotational rates xr ∈ R6 and states of the quaternion based representa-
tion of the attitude xq ∈R4. The closed-loop dynamics can be represented under the
following structure

ẋ =


ẋe(t)
ẋr(t)
ẋq(t)
ẋt(t)

=


Aexe(t)+ge(x(t),uv(t))

Arxr(t)+gr(x(t),uv(t),uψ(t))
fq(xq(t),xr(t))

ft(x(t))

 , x(0) = x0 ∈ R18. (3)

Note that there are two components (xe and xr) with linear state map and nonlin-
ear input functions as well as two components (xq and xt ) with nonlinear dynamics
but not directly influenced by the inputs. The optimization problem can be simpli-
fied by exploiting the fact that the engine dynamics xe are differentially flat with



4 Johann C. Dauer and Timm Faulwasser and Sven Lorenz

the thrust of the main rotor as flat output if the remaining states are considered as
parameters; see [7] for details on differential flatness. Thus it is possible to calculate
the input uv if a time-wise evolution of the thrust and a sufficient number of suc-
cessive derivatives are given. An equivalent argumentation holds for the dynamics
of xr considering the remaining states and uv as parameters. The flat outputs in this
case are the body-fixed rotation rates.

These flat subsystems allow to define simple integrator chains of sufficient order
with new inputs for the thrust uT and rotation rates uω , in the following represented
using the sparse system matrices A1,2 and input matrices B1,2 containing only a
small number of ones. It is thus possible to derive the state trajectories for xe and
xr only by integration of the new inputs and using the algebraic relations of the
flat outputs, which results in modifications of fq and ft . The original inputs can be
calculated in the same way. The modified structure can then be represented by

ẋm =


ẋe,m(t)
ẋr,m(t)
ẋq(t)
ẋt(t)

=


A1xe,m(t)+B1ut(t))
A2xr,m(t)+B2uω(t)
fq,m(xq(t),xr,m(t))

ft,m(xm(t))

 , xm(0) = xm,0 ∈ R18. (4)

The control system also imposes constraints on the optimization problem. These
constraints are defined by the so-called envelope protection. We omit details here
and represent the constraint sets of the states as X and of the inputs as U . Details
can be found in [3], where constraints for accelerations, velocities, in both body-
fixed as well as in NED frame, and actuator deflections are introduced.

The path that has to be tracked with the helicopter is a four dimensional paramet-
ric curve depending on a parameter θ . It is defined in the output space of the flight
control system

P =
{

p(θ) ∈ R4 | θ ∈ [θ0,θ1] 7→
(
rT (θ),ψ(θ)

)T
}
. (5)

For the time-wise evolution of the position on the path, we introduce artificial
dynamics with an input v which augment the dynamics of the system [5], which
was chosen to be a double integrator

ż =
(

ż1
ż2

)
=

(
0 1
0 0

)
z+
(

0
1

)
v, z(0) = z0, (6a)

θ = z1. (6b)

Higher degrees of the path-dynamics would increase the smoothness of the evolu-
tion along the path. It would, however, increase the computational burden as well.
The second order integrator allows us to specify a desired velocity along the path
later on.

Now, the optimization problem can be defined: Given the closed-loop approxi-
mation according to (1) and a path of the form (5), calculate the time-wise progress
θ : [θ0,θ1] 7→ [t0, t1] and the inputs u, such that (a) the constraints are satisfied, (b)
the progress on the path is positive (θ̇ > 0) and (c) the cost function is minimized:



Computational Aspects of Path Following of an Unmanned Helicopter 5

minimize
uω (·),ut (·),v(·)

∫
τ

0

∥∥(eT (t), ėT (t))
∥∥2

Qe︸ ︷︷ ︸
path deviation

+‖z(t)− zr(t)‖2
Qz︸ ︷︷ ︸

reference behavior

+
∥∥(uT (t),v(t))

∥∥2
R︸ ︷︷ ︸

regularization

dt,

(7a)
subject to the dynamics and constraints

ẋm(t) = fm(xm(t),uT (t),uω(t)), x(0) = x0 ∈ R18 (7b)

ż(t) = l(z(t),v(t)), z(0) = z0 ∈ R2 (7c)

ė(t) =
∂h

∂xm
fm(xm(t),uT (t),uω(t))−

∂p
∂θ

θ̇ , e(0) = e0 ∈ R4 (7d)

x(t) ∈ X ,u(t) ∈U. (7e)

The path error e leads to tracking of the reference path and its derivative avoids
solutions oscillating around it. The reference behavior term in (7a) allows us to
specify dynamic requirements like a desired velocity along the path and finally the
regulation enforces certain smoothness on the derived state trajectories.

3 Implementation and Computational Results

The path optimization described in the previous section has been carried out with the
help of the open-source project ACADO Toolkit [8]. An advantage of this project
is what the authors refer to as code generation. A piece of self-contained code is
generated based on the mathematical problem formulation. This code contains an
efficient implementation of the optimization problem based on a tailored discretiza-
tion. This code can then either be used separately, interfacing with MATLAB or
directly integrated into piece of software for the desired application.

The optimization is performed using a direct multiple shooting approach [12].
We use the receding horizon technique with a prediction horizon T to reduce the
computational burden in contrast to optimize over the complete path. The length of
the prediction horizon is chosen taking the computation time and a minimal stopping
distance into account. The minimal stopping distance can be transferred into a min-
imal prediction horizon using the velocity maximally allowed and the deceleration
limits which are implemented in the flight control system.

The prediction horizon is subdivided into equal shooting intervals. The solution
of the differential equations over these multiple-shooting intervals is normally per-
formed using adaptive step size integration algorithms. Using adaptive integrators
has the advantage that the integration grid does not have to be specified a priori.
However, it comes at the cost of non-deterministic discretization. This is why in [8]
the use of fixed-step size integrators is proposed. The integration algorithm and its
step-size has to be determined a priori, e. g. heuristically. By doing so, it is possi-
ble to tailor a discretization that is deterministic in calculation time and allows the
generation of efficient code exploiting aspects like static memory allocation.



6 Johann C. Dauer and Timm Faulwasser and Sven Lorenz

By these means, a nonlinear program (NLP) is formulated for each shift of the
prediction horizon that, if feasible, directly solves the optimization problem. The
NLP is solved in an iterative process known as sequential quadratic programming
(SQP). In each sequential step a quadratic approximation of the cost function is
created as well as affine approximations of the constraints thus creating a quadratic
program (QP). There exist powerful methods to solve QP. Here, the qpOASES Pack-
age [6] is used for that purpose. Using the solution of the QP, the original NLP is
approximated again and this process is repeated until a certain residual of the KKT-
conditions is sufficiently small. A comprehensive tutorial on this process can be
found in [4].

At the beginning of the path an initial guess is used, which corresponds to the
hover states of the helicopter. These conditions can be determined by trim calcula-
tions [10] or simulation experiments. Using this initial guess, the first NLP is solved
over the prediction horizon T = 2.5s. Each prediction horizon is subdivided into 25
shooting intervals, of which each is solved using an implicit Runge-Kutta integra-
tor of second order with three discretization steps. The number of SQP formulations
that are required to achieve residuals of the KKT-conditions that we define to be less
than 10−4 and is referred to as SQP iterations in the following. Each SQP iteration
requires the solution of a QP that again is solved iteratively and is referred to as
QP iterations in the following. After converging the result of the first shooting inter-
val is used for the final solution trajectory. The remaining intervals serve as initial
guess after shifting the prediction horizon by one shooting interval thus forming the
receding horizon approach.

The path shown in Figure 3 shall serve as an example. The clover leaf with a
height profile is generated using

rp =

r̂ cos
(
3θ − 3

2 π
)

cos(θ)
r̂ cos

(
3θ − 3

2 π
)

sin(θ)
ĥsin(4θ)

 . (8)

Where r̂ is the clover leaf’s radius of 25 m and ĥ the amplitude of the height profile
of 3 m. The fourth component of the path, the azimuth, has been defined such that the
helicopter is always oriented tangential to the movement resulting in flight without
sideslip angle in the wind-free case.

Figure 4 shows the computation characteristics of the optimization. The upper
left figure presents the required computation time over the timeline of the solution
trajectory. The figure shows how long it takes to compute one NLP that is to op-
timize once over the prediction horizon. Additionally, the computation time of the
preparation is shown, which contains the discretization and the setup of the QP
Problem. The feedback time refers to the time needed to solve the QP. The lower
left plot depicts how many QP approximations are necessary in total to solve each
NLP. The last figure shows the number of iterations necessary to solve a certain QP,
which is the only graph not having the trajectory time as abscissa. As for each NLP
multiple QP have to be solved the number of iterations for each SQP step are shown.



Computational Aspects of Path Following of an Unmanned Helicopter 7

From the achieved KKT values it is apparent that the formulated problem is fea-
sible as the maximum value allowed is never exceeded. The desired velocity was
set to be 8 m/s resulting in a duration of less than 40 s to complete the flight. The
overall computation on a standard desktop computer without parallelization takes
around 10 s. This alone is a good result, as it means that the optimization over the
complete path takes less than a third of the time it takes to fly it.

There are in total five regions of higher computational burden. It can be seen that
four of these regions are significantly influenced by the number of SQP iteration.
However, the fourth region is created by the QP iteration alone. The discretization
of the problem thus gives a lower bound on the needed computation time, which is in
this case around 0.02 s for an prediction horizon of 2.5 s. Nevertheless, the solution
of the QP problems has significant impact on the overall computational burden as
well and lies around the same order of magnitude.

−20 10 0 10 20
−30

−20

−10

0

10

20

30

x
−
x
0
in

m

y − y0 in m
−20 −10 0 10 20

−4

−3

−2

−1

0

1

2

3

4

h
−
h
0
in

m

x−x0 in m

Fig. 3 Example path: clover leaf with sinusoidal height profile. The arrows indicate the start and
direction of flight, while the left shows the top-view and right the height over north direction.

0 10 20 30
0

0.05

0.1

C
o
m
p
.
ti
m
e
in

s

 

 

Trajectory time in s

Sum
Preparation
Feedback

0 10 20 30
0

0.5

1x 10
−4

K
K
T

v
a
lu
e

Trajectory time in s

0 10 20 30
0

2

4

6

S
Q
P

it
er
a
ti
o
n
s

Trajectory time in s
0 200 400 600 800

0

10

20

30

Q
P

it
er
a
ti
o
n
s

SQP iteration

Fig. 4 Calculation characteristics of the example path



8 Johann C. Dauer and Timm Faulwasser and Sven Lorenz

4 Conclusion

The proposed approach is well capable to tackle the problem of path following for
unmanned helicopters where an approximation of the closed-loop dynamics is avail-
able. It is shown that trajectories can be generated faster than it would take to fly
them. This fact makes the presented approach very powerful as a great variety of
paths and reference variations can be solved in reasonable time. Applications can
be mission planning purposes or generation of controller inputs that can be stored
in a maneuver database. However, an upper bound for prediction is not guaranteed.
Future work will thus investigate possibilities to enable any-time capability which
would render the approach also applicable for online purposes. The results of this
paper show that an adaption has to consider both, the SQP iterations and QP itera-
tions as both have significant impact on the computation time.

References

1. Adolf, F.M., Andert, F.: Rapid multi-query path planning for a vertical take-off and landing
unmanned aerial vehicle. Journal of Aerospace Computing Information and Communication
8(11), 310–327 (2011)

2. Dadkhah, N., Mettler, B.: Survey of motion planning literature in the presence of uncertainty:
Considerations for UAV guidance. Journal of Intelligent & Robotic Systems 65(1-4), 233–246
(2012). DOI 10.1007/s10846-011-9642-9

3. Dauer, J.C., Faulwasser, T., Lorenz, S., Findeisen, R.: Optimization-based feedforward path
following for model reference adaptive control of an unmanned helicopter. In: Proceed-
ings of the AIAA Guidance, Navigation, and Control Conference 2013, AIAA 2013–5002.
Boston,MA (2013). DOI 10.2514/6.2013-5002

4. Diehl, M., Bock, H., Diedam, H., Wieber, P.B.: Fast direct multiple shooting algorithms for
optimal robot control. In: M. Diehl, K. Mombaur (eds.) Fast Motions in Biomechanics and
Robotics, Lecture Notes in Control and Information Sciences, vol. 340, pp. 65–93. Springer
Berlin Heidelberg (2006)

5. Faulwasser, T.: Optimization-based solutions to constrained trajectory-tracking and path-
following problems. Shaker, Aachen, Germany (2013). DOI 10.2370/9783844015942

6. Ferreau, H., Bock, H., Diehl, M.: An online active set strategy to overcome the limitations of
explicit mpc. International Journal of Robust and Nonlinear Control 18(8), 816–830 (2008)

7. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems:
introductory theory and examples. Int. J. Contr. 61(6), 1327–1361 (1995)

8. Houska, B., Ferreau, H., Diehl, M.: ACADO toolkit – an open-source framework for automatic
control and dynamic optimization. Optimal Control Applications and Methods 32(3), 298–312
(2011)

9. Huang, G.Q., Lu, Y.P., Nan, Y.: A survey of numerical algorithms for trajectory optimization
of flight vehicles. Science China Technological Sciences 55(9), 2538–2560 (2012). DOI
10.1007/s11431-012-4946-y

10. Leishmann, J.G.: Principles of Helicopter Aerodynamics, second edn. Cambridge University
Press, Cambridge (2006)

11. Lorenz, S.: Open-Loop Reference System for Nonlinear Control Applied to Unmanned He-
licopters. Journal of Guidance, Control, and Dynamics 35(1), 259–269 (2012). DOI
10.2514/1.52033

12. Nocedal, J., Wright, S.: Numerical optimization, 2nd edn. Springer series in operations re-
search and financial engineering. Springer, New York (2000)


