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Simulations of open systems are performed conveniently in the grand 
canonical ensemble. For chain molecules simulations of this type converge very 
poorly because of the very low probability of a successful insertion in the 
exchange step. Here, it is shown that the recently developed configurational-bias 
Monte Carlo technique can be used in a grand canonical Monte Carlo 
simulation to make the insertion of chain molecules possible. The use of this 
technique is illustrated by calculations of the adsorption isotherms of butane 
and hexane in the zeolite silicate. 

1. Introduction 

Most molecular simulations are performed either in the microcanonical ensemble 
(molecular dynamics) or in the canonical ensemble (Monte Carlo). In the micro- 
canonical ensemble the thermodynamic variables that are kept constant are the 
temperature, volume, and total energy, whereas in the canonical ensemble the 
temperature, volume, and number of particles are fixed [1]. To determine an 
adsorption isotherm (in our case for a zeolite) we have to know the number of 
particles inside the zeolite as a function of the pressure and temperature of the 
reservoir which is in contact with the zeolite. A naive, but theoretically valid approach 
would be to use the molecular dynamics technique (microcanonical ensemble) and 
simulate the experimental situation: an adsorbent in contact with a gas (see figure 
1). Such a simulation is possible only for very simple systems. In real life experiments 
equilibration may take minutes or even several hours, depending on the type of gas 
molecule. These equilibration times would be reflected in a molecular dynamics 
simulation, the difference being that a minute of experimental time takes of the order 
of 109 seconds on a computer. In most cases we are not interested in the properties of 

the gas phase, yet a significant amount of CPU time will be spent on the simulation 
of this phase. Furthermore, in such a simulation there is an interface between the 
gas phase and the zeolite. In this interfacial region the properties of the system are 
different from the bulk properties in which we are interested. Since in a simulation 
the systems are small compared with experiment (hence the interracial region is a 
relatively large part of such a system), we have to simulate an unnecessarily large 
system to minimize the influence of this interfacial region. Such a simulation would, 
of course, be appropriate if the interest lies in just this region. 

Most of these problems can be solved by a careful choice of ensembles. For  
adsorption studies a natural ensemble to use is the grand canonical ensemble (or #, 
V, T emsemble). In this ensemble the temperature, volume, and chemical potential 
are fixed. In the experimental setup the adsorbed gas is in equilibrium with the gas 
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Figure 1. 

. 

A zeolite in direct contact with a gas. 

in the reservoir. The equilibrium conditions are that the temperature and chemical 
potential of the gas inside and outside the zeolite must be equal. (Note that pressure 
is not  defined inside the zeolite, therefore pressure cannot be an equilibrium quantity. 
However, the pressure is related to the chemical potential via an equation of state, 
and it is always possible to calculate the pressure of the gas that corresponds to a 
given chemical potential and vice versa.) The gas that is in contact with the adsorbent 
can be considered as a reservoir that imposes a temperature and chemical potential 
on the adsorbed gas (see figure 2). We therefore have to know only the temperature 
and chemical potential of this reservoir to determine the equilibrium concentration 
inside the adsorbent. This is exactly what is mimicked in the grand canonical 
ensemble; the temperature and chemical potential are imposed and the number of 
particles is allowed to fluctuate during the simulation. This makes these simulations 
different from the conventional ensembles where the number of molecules is fixed. 

The grand canonical Monte Carlo method works best if the acceptance of trial 
moves by which particles are added or removed is not too low. For  atomic fluids 
this condition effectively limits the maximum density at which the method can be 
used to about twice the critical density. Special tricks are needed to extend the grand 
canonical Monte Carlo method to somewhat higher densities [2]. The grand 
canonical Monte Carlo technique is implemented easily for mixtures and inhomo- 
geneous systems, such as fluids near interfaces. In fact, some of the most useful 
applications of the grand canonical Monte Carlo method are precisely in these areas 
of research. For more details of the grand canonical Monte Carlo method, the reader 
is referred to the book by Allen and Tildesley [1] and a review paper by Frenkel 
[3]. Although the grand canonical Monte Carlo method can be applied to simple 

Figure 2. 
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A zeolite in contact with a reservoir that imposes constant chemical potential 
and temperature by exchanging particles and energy. 
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models of non-spherical molecules, special techniques are required since the method 
converges very poorly for all but the smallest polyatomic molecules. 

In order to visualize this, consider, for example, the adsorption of alkanes in a 
zeolite. The bottleneck in the grand canonical Monte Carlo scheme is the particle 
insertion step. The probability that we accept a particle that has been placed at a 
random position depends on its energy. From acceptance rule (4) defined later it 
follows that this probability is high when the energy of the particle is low and the 
probability of success is low when its energy is high. Clearly, if a part of a molecule 
overlaps with one of the zeolite atoms, the probability of acceptance is zero. For  
methane, the probability that we select a position that does not give an overlap is 
of the order of 1 in 103. For  ethane, we have to find two positions that do not overlap, 
and if we assume that these positions are independent, the probability of success will 
be 1 in 10 6. Clearly, for long-chain alkanes the probability of a successful insertion 
is so low that in order to obtain a reasonable acceptance the number of attempts 
needs to be prohibitively large. 

The configurational-bias Monte Carlo technique has been developed to make 
possible the insertion of long-chain molecules in moderately dense liquids. The 
original configurational-bias Monte Carlo technique has been developed for lattice 
models [4, 5] and has been extended to continuous models [6, 7]. Here it is shown 
that the configurational-bias Monte Carlo technique can also be used in the grand 
canonical ensemble. 

2. Grand canonical Monte Carlo 

2.1. Preliminaries 

The grand canonical Monte Carlo method was first developed for classical fluids 
by Norman and Filinov [8], and later extended and improved by a number of other 
groups [2, 9 15]. For  our purpose it is convenient to use the derivation of Frenkel 
E3] to introduce the statistical mechanical basis for the grand canonical Monte Carlo 
technique. Let us consider a system which is a combination of two systems; a system 
with volume V in which the N molecules interact and a system with volume V -  V o 
in which the m = N -  M molecules behave like an ideal gas (see figure 3). The 
partition function of this combined system is 

Q(N, m, V, Vo, T) - A ~ - ~ I  ~T ds '~ ds N exp [ - ~ U ( s N ) ]  (1) 
/1 iv .m. 

V0 -V 

! " 

Figure 3. Ideal gas (m particles, volume V o - V )  that can exchange particles with an 
N-particle system (volume V). 



156 B. Smit 

where A is the thermal de Broglie wavelength, fl = 1/k~T, and s N =  rN/L are the 
coordinates scaled with box length L. Now, let us see what happens when the systems 
exchange particles (see figure 3). To be more precise, we assume that the molecules 
in the two sub-volumes are actually identical particles. The only difference is that 
they interact when they are in volume V but not when they are in volume V o - V. 
If we transfer a molecule i from a reduced coordinate s i in volume V 0 - V to the 
same reduced coordinate in volume V, then the potential energy function U changes 
from U(s N) to U(s N+ 1). The expression for the total partition function of the system, 
including all possible distributions of the M particles over the two sub-volumes, is 

Q(M,V, Vo, T)= VN(Vo--V)M-Nf f N=0 A~ffN!(M ~ N)!  dSM-N dsN exp [--flU(sN)]. (2) 

We now write the probability density to find a system with M -  N particles at 
reduced coordinates s ~t-N in volume V ' _  V o - V and N particles at reduced 
coordinates s N in volume V as 

VNV,~-N 
JV'(sM; N) = Q(M, 11, V', T)A3MN!(M - N )~  xp [--flU(sN)]" (3) 

Let us now consider a trial move in which a particle is transferred from V' t o  V. 
First we should make sure that we construct an underlying Markov.process that is 
symmetric. Symmetry, in this case, implies that the a priori probability of moving a 
particle from V' to V should be equal to the a priori probability of the reverse move. 
The probability of acceptance of a trial move in which we move a particle to or from 
volume V is determined by the ratio of the corresponding probability densities (3): 

P(N ~ N + 1) - V(M - N)  exp { - f l [ U ( s  N+ 1) _ U(sN)]} (4) 
V'(N + 1) 

P(N + 1 ~ N)  - V'(N + 1) exp { - f l [U(s  N) - U(sN+~)]}. (5) 
V(M - N)  

Now let us consider the limit that the ideal gas system is very much larger than the 
interacting system: M ~ ~ ,  Ix' ~ oo, ( M / V ' ) ~  p. Note that for an ideal gas the 
chemical potential # is related to the particle density p by (see appendix A) 

# = kBTln A3p. 

Therefore, in the limit (M/N)  ~ oo, partition function (2) becomes 

Q(#, V, T) = ~ exp ( f l#N)V N fd sU  exp [-/~U(sN)],  (6) 
N=0 A3NN! 

and the corresponding probability density is 

exp (flpN) V N 
JV'(sN; N)  oc exp [ - f l u ( N ) ] .  (7) 

A3NN! 

Equations (6) and (7) are the basic equations for grand canonical Monte Carlo 
simulations. Note that in these equations all explicit references to the ideal-gas system 
have disappeared. 
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2.2. Monte Carlo simulations 

In a grand canonical simulation, we have to sample distribution (7). There are 
acceptable trial moves. 

1. Dispacement of particles: a particle is selected at random to give a new 
conformation (for example, a random displacement in the case of atoms). This 
move is accepted with a probability of 

acc (s --, s') = min (1, exp { -fl[U(s 'N) - U(sN)]}), (8) 

(2) Insertion and removal of particles: a particle is inserted at a random position 
or a randomly selected particle is removed. These moves are performed with 
equal probability. The creation of a particle is accepted with a probability of 

a c c ( N ~ N + l ) = m i n  'A3(N+I)  exp{fl[/~-U(N+I)+U(N)]} , (9) 

and the removal of a particle is accepted with a probability of 

a c c ( N - ~ N - - l ) = m i n [ 1 , ~ - e x p { - - f l [ # + U ( N - 1 ) - - U ( N ) ] } l .  (10) 

2.3. Chain molecules 

In the foregoing section the principles were given of the conventional grand 
canonical Monte Carlo technique. Furthermore, it was argued that for long-chain 
molecules the probability of a successful insertion is too low to make the conventional 
technique feasible. Recently, we have developed the configurational-bias Monte Carlo 
technique [5, 6] in which particles are not inserted at random but grown atom by 
atom. This growing process introduces a bias which can be removed by adjusting 
the acceptance rule. The configurational-bias Monte Carlo technique has been 
combined successfully with the Gibbs ensemble technique [16-18]. Here, we 
demonstrate that the configurational-bias Monte Carlo method can be used in the 
grand canonical ensemble to make the insertion of long-chain alkanes possible. 

2.3.1. Preliminaries 
Although the method which is described in this section is applicable to arbitrary 

open systems, we introduce this method in the context of alkanes adsorbed in zeolites 
[19], Zeolites are crystalline structures with well defined micropores in which 
molecules can adsorb. 

If we were to grow an alkane molecule by placing the new atom at a random 
position on a sphere, most configurations would be rejected because of an intra- 
molecular energy which is too high [18]. Therefore, for systems with strong 
intramolecular interactions, it is important to take these interactions into account 
while generating the trial conformation. The potential energy of a given conformation 
of an n-alkane can be divided into two contributions: 

(i) the internal potential energy (Ui"t), which includes the bond bending and 
torsion, and 

(ii) the external potential energy (UeXt), which takes into account the inter- 
molecular interactions which have not been taken into account in the internal 
part (the non-bonded Lennard-Jones interactions). 
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Figure 4. Schematic drawing of the growing of an alkane in a zeolite in a configurational-bias 
Monte Carlo move. The solid black circles represents the atoms of the zeolite and the 
white circles those of the alkane. The set of k trial orientations {bl, b2 . . . . .  bk) is 
indicated by arrows. 

This division is to some extent arbitrary and may be optimized further. In what 
will follow, we refer to a chain without external interactions as an ideal chain. 

2.3.2. Part ic le  insertion 
To insert a particle into the system, we use the following four steps. 

(1) 

(2) 

For the first atom, a random position in the zeolite is selected, and the energy 
of this atom is calculated (this energy is denoted by u~). 
For  the following atoms, a set of k trial positions is generated. We denote 
these positions by {b} = (b l ,  b z , . . . ,  bk) (see figure 4). These positions are 
distributed on the surface of a sphere. The radius of this sphere is equal to 
the bond length and the sphere is centred around the previously inserted atom 
of the alkane. This set of trial orientations is generated using the internal part 
of the potential, which results in the following distribution for t h e / t h  atom: 

pint(b 
x exp [ -- flu 7" int(bi) ] dbi 

i . i) dbi = , (11) 
C 

where fl = 1 / k ~ T  and C is a normalization constant which is not important 
for the simulations (see the appendix in [20]). The probability plnt(bl) depends 
on which type of atom is being inserted. For the second atom, the internal 
potential energy is zero and as a result the trial positions will be randomly 
distributed on a sphere. For  the third atom, the internal potential energy 
includes the bond bending, and for the fourth and higher atoms the internal 
part includes both the bond bending and torsion [20]. 

For  each of these trial positions the external energy is calculated with the 
atoms of the other molecules (of the zeolite and of other alkanes) and with 
those atoms of the molecule that are already grown (note that this is done only 
if l > 4). This energy is denoted by u~ ' ex t (b j ) ,  and one of these positions is 
selected with a probability 

p~t(bj) exp [ -  fluT'~Xt(b~)] 
= w"'e~t(l) , (12) 
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(3) 

in which 
k 

wn'ext(/) = ~ exp [-fluT"eXt(bj)]. (13)  
j = l  

Since we favour conformations with a low energy, we have introduced a bias. 
This bias should be removed in the acceptance rules. 
After repeating step 2 until the entire alkane of length M has been grown, we 
calculate 

W n ~-] w . . . .  t(l  ) 
~U" = kM_X = exp I--flu .... t(1)] l i  (14) 

/=2  k 

(4) The new alkane molecule is accepted with a probability 

( exp (f#")  V ~U"~ 
a c c ( N ~ N + l ) = m i n  1, A 3 ( N + I )  ] '  (15) 

where #B is the chemical potential of a reservoir consisting of ideal chain 
alkanes. In appendix A it is shown how this ideal chemical potential is related 
to the chemical potential of a system containing interacting alkanes. 

2.3.3 Particle deletion 
To remove a particle from the system, we use the following four-stage algorithm. 

(1) A particle is selected at random, the energy of the first atom is calculated and 
is denoted by u . . . .  t(l). 

(2) For  the following atoms, the external energy u . . . .  t(l) is calculated and a set 
of k - 1 trial orientations is generated with a probability given by equation 
(11). Note that also in this case the probability depends on whether the second, 
third, fourth or higher atom is considered. Using this set of orientations and 
the actual position, we calculate for atom I 

k 
w .. . .  t(l) = exp [--flu . . . .  t(1)] + ~ exp [--flu . . . .  t(bj)]. (16) 

j = 2  

(3) After repeating step 2 until all M atoms of the alkane have been considered, 
we calculate 

W ~ ~, w . . . .  t(l ) 
~ro = k ~ -1  = exp [ - f l u  . . . .  t(1)] - - ,  (17) 

/=2 k 

for the entire molecule. 
(4) The selected molecule is removed with a probability of 

acc (N --* N - 1) = min 1, Vexp (B#B) ~ ,  " (18) 

Note that the factor ~ ~  depends on the way the old configuration is 'retraced'. If 
we start with atom 1, the numerical value of ~//~o is different from the value that 
would be obtained if we start with atom M. As a consequence, the probability of 
such a move depends on the way the factor #/'0 has been calculated. Such a 
dependence on the way a move is performed is not uncommon in a Monte Carlo 
simulation [20]. In appendix B it is shown that the above sampling scheme is correct, 
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i.e., a Boltzmann distribution of configurations is generated if we define the chemical 
potential of the reservoir to be 

fl#B = tip + In C. (19) 

In appendix A we demonstrate that this shift in chemical potential corresponds 
to a change in the reference state. In an ordinary Metropolis simulation the 
reference state is an ideal gas, whereas in the configurational-bias scheme this 
reference state is an ideal chain. 

3. Applications 

To illustrate the use of the simulation technique described in this work, 
the adsorption isotherms of butane and hexane in the zeolite silicate have been 
calculated, 

3.1. Models 

The interactions of the butane and hexane molecules are described with a united 
atom model using the OPLS model of Jorgensen et al. [21] for butane and the model 
of Siepmann et al. [22] for hexane. Following the work of Kiselev and co-workers 
[23] the zeolite is modelled as a rigid crystal. The zeolite-alkane interactions are 
described using the model of June et al. [26], which gives good agreement with 
experimental heats of adsorption of the n-alkanes in silicate [24, 19], 

3,2, Computational details 

The simulations were performed in cycles and during each cycle one of the 
following Monte Carlo moves was selected with a prescribed probability. 

(1) Displacement of a particle, A molecule is selected at random and the 
entire molecule is given a random displacement in the x, y, or z direction. 
The maximum displacement was set such that for each of the directions 50~o 
of the attempted moves were accepted. 

(2) Rotation of a particle. A molecule is selected at random, the entire molecule 
is randomly rotated, the centre of the rotation is at the centre of mass of the 
molecule and the axis of rotation parallel to the x, y, or z axis. The maximum 
angle of rotation was set such that 50~o of the attempt were accepted for any 
of the three axes. 

(3) Partly regrowing~ One of the atoms of a randomly selected molecule is shown 
arbitrarily and, using the configurational-bias Monte Carlo scheme, part of 
the molecule is regrown. The number of trial orientations for butane was five 
and for hexane seven, 

(4) Particle exchange, It is decided at random to transfer a molecule from the 
system into the reservoir or to add a molecule to the system. For  this move the 
Monte Carlo scheme outlined in this work is used. 

The relative probabilities of these moves were taken as: Pl :P2:P3 :P4 = 3:1:3:3. 
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Figure 5. Adsorption isotherms: number N of mmol of adsorbed butane molecules per gram 
of silicalite as a function of the pressure P of the reservoir; the closed symbols are the 
experimental data of Thamm et al. [25], Stach et al. [26], Richard and Rees [27], 
Abdul-Rehman et al. [28], and Shen and Rees [29], and the open symbols are the results 
of the simulations. All the results are for T = 298 K. 

3.3. Resul ts  

In figure 5 the calculated adsorption isotherm of butane in silicate is compared 
with the experimental data of T h a m m  et al. [-25], Stach et al. [-26], Richard and Rees 
[-27], Abdul-Rehman [28], and Shen and Rees [29]. At high pressures the data of 
T h a m m  et al. [25] deviate significantly from the majority of the reported data, 
possibly due to pore blocking. Considering the scatter in the experimental data the 
agreement between experiment and simulation is very good. 

For  hexane in silicate the calculated adsorption isotherm is compared in figure 
6 with the experimental data as measured by Stach et al. [26], and Richard and Rees 
[27]. For  hexane, the model of June et al. [24] overestimates the amount  of adsorbed 
material significantly for a given pressure. 

4. Conclusion 

The bottleneck in a grand canonical Monte Carlo simulation of chain molecules 
is the exchange step. If the system of interest contains atoms or small molecules, the 
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Figure 6. Adsorption isotherms of hexane: number N of mmol of adsorbed hexane molecules 
per gram silicalite as a function of the pressure P of the reservoir; the closed symbols are 
experimental data of Stach et al. [-26], and Richard and Rees [27], and the open symbols 
are the results of the simulations. All results are for T = 298 K. 
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conventional grand canonical Monte Carlo method is appropriate provided that the 
density is not too high. For chain molecules, however, almost all attempts will result 
in an overlap with one of the atoms of the molecules in the system and therefore 
such a move has an extremely low probability of acceptance. Consequently, the 
conventional grand canonical Monte Carlo technique cannot be used for this type 
of molecule. To enable grand-canonical simulations of chain molecules, a novel 
Monte Carlo scheme is proposed which combines the conventional grand canonical 
Monte Carlo method with the configurational-bias Monte Carlo technique. In this 
scheme, the molecules are not inserted at random but grown atom by atom. The bias 
which is introduced by this growing procedure is removed subsequently by appropriate 
acceptance rules, which are derived in this article. 

The use of this simulation technique is illustrated by the simulation of the 
adsorption isotherms of butane and hexane in silicalite. For butane the model of 
June et al. [24] yields an adsorption isotherm that is in very good agreement with 
experimental data. For hexane, however, the model of June et al. shows significant 
deviation from the experimental data. 

The author would like to thank Daan Frenkel and Ilja Siepmann for their 
contributions to this work. 

Appendix A 

Reference states 

If we use the configurational-bias Monte Carlo scheme to calculate the chemical 
potential or perform a simulation in the grand canonical ensemble, the reference state 
is not an ideal gas but a system containing ideal chains. In the case of alkanes, for 
chains longer than butane, an ideal gas chain is therefore different from an ideal 
chain. In this appendix, the consequences for the simulations of these differences are 
discussed. 

A.1. Definitions 

(i) Preliminaries. The partition function of a system with N atoms in the 
N, V, T ensemble is given by 

Z(N,  V, T) - A3~N ! ds N exp [-r (A 1) 

where s s are the scaled coordinates of the N particles. The free energy is related to 
the partition function via 

F = --1_ In Z(N,  V, T). 
B 

Using these equations we can derive the Widom expression [30] for the chemical 
potential 

= --~ In (exp (-/~U +)) + ~ In (A'p) ,  (A 2) # 

where U + is the energy of a ghost particle (the energy of a particle that is added to 
the system but that does not interact with the system). For a system consisting of N 
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molecules with each molecule having M atoms, the partition function is 

- ds~ exp [ -  flU(s~)]. (A 3) Z(N,  M, V, T) A3NN! i= 1 

(ii) Ideal gas. In the limit of zero density most systems behave like an ideal gas. 
In this limit only the intramolecular interactions contribute to the total energy, i.e., 

N 
U ~ E Ui~tra(i) �9 

i=1 

For a system consisting of ideal gas atoms, partition function (A 1) reduces to 

V N 
Zm(N, V, T) - - -  (A 4) 

AaNN! 

Using equation (A 2), we can write the chemical potential of an ideal gas of atoms as 

= p o  + ~ l n p ,  (AS) #m 

where the chemical potential of the reference state is defined by 

1 A3" #~ G - - In (A 6) 

In case of an ideal gas of molecules, the partition function (A 3) reduces to 

ZIc(N, M, V, T) - AaNNt i= 1 ds i exp [ -  fluintra(Si)] . (A 7) 

Substitution into equation (A 2) gives for the chemical potential 

= p~~ C + ~ In p, (A 8) 

where in this case the reference is defined as 

fitt~ - In d 3 -k fl#Ontra ---- In A a - In dsi exp [-flUintra(S,)] . (A 9) 

Note that the constants # o  defined by equations (A 6) and (A 9) are not important 
for the thermodynamics and usually can be ignored. 

(iii) Ideal chain. We define an ideal chain as a chain with only internal interactions. 
The partition function of an ideal chain is defined by 

Z l c ( g  , V, ~ - A3NN~T i=1 d s l exp  [-fluint(s~)] , (A10) 

where U int are the internal interactions. From equations (7) and (A 10) we can 
derive the chemical potential of an ideal chain as 

fl/~,c = - I n  ) l a ( ~ +  l i  ~ = fl~'~ - In ~ ,  (A 11) 
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in which the constant cg is defined as 

~e - {,=~ f ds, exp [-flulnt(s,)]}, (AI2) 

where the sum runs over the M atoms of the molecule. 
The normalized Rosenbluth factor of an ideal chain, to which only the external 

interactions contribute, is by definition 

W'~t = 1, (A 13) 
~tr[~' - k M- 1 

where k is the number of trial orientations. 
(iv) Interacting chain. The interacting chain has both 

interactions 
U = u e x t  + u i n t ,  

and is therefore the chain in which we are interested. 

internal and external 

A.2. Rosenbluth sampling 

For  an ideal gas, the normalized Rosenbluth factor can be calculated very 
accurately from a separate simulation. The algorithm that is used to calculate this 
factor is similar to the particle insertion step [31]. At each Monte Carlo step the 
average value of the normalized Rosenbluth factor is determined, but the molecule 
is never inserted. In an ideal gas, the only interactions of the molecule are with its 
own segments; these interactions contribute to its Rosenbluth factor. 

Let us first consider the case where we have only one segment to add (M = 2). 
The probability of generating the set of k trial orientations {b}k is 

p~n'(bl) . . . p~"t(b~) db~ . . .  db~ 

The probability of generating orientation b, viz. equation (1), is 

exp [--fiuintr(b)] db pint(b) db = 
C 

Since we use the algorithm of the particle insertion step, the probability of selecting 
a particular orientation, say b~, is 

exp [ -  flu~Xt(bi)] 
mext  

exp [ - -  flue"t(bi)] 
k 

exp [ -  flu~Xt(bj)] 
j=i 

To compute the avererage value of W ext w e  have to consider all orientations of the 
trial segments. Furthermore, each of the k trial orientations has a contribution to 
W TM, which is the product of the probability being selected and the value of W ext. 
This gives 

~'~/'IC~t) : fdbl "'" dbkpint(bt)'"pint(bk) ~ [e-xP E-flblext(bj)] wext 

;E I 
[ -  flu~ e x p  

~ int - .  (A 14) I I db~p (b3 ~_, 
j=x 3j=a k 
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Since the labelling of the trial orientations is completely arbitrary, all k terms in 
equation (A 14) have the same contribution, and this equation can be simplified as 

ext f (~UlC) = dbpi"t(b) exp [-fluext(b)]. (A 15) 

In case more than one segment has to be added, equation (A 15) becomes a product 
over all these segments [6]: 

ext _ f i  ; (~/U m ) -  db plnt(b) exp [ -  flu~Xt(b)] 
i=1 
M 
IF] S db exp [ -  flulnt(b)] exp [fluTXt(b)] 
i=1 

= M (A 16) 

l-I S db exp [ -  uln'(b)] 
i=1 

Comparison with equation (A 7) shows that the numerator of equation (A 16) is equal 
to the configurational part partition function of one molecule in the ideal gas state, 
and comparison with equation (A 10) shows that the denominator is equal to the 
partition function of an ideal chain. The ensemble average of the Rosenbluth factor 
can therefore be written as 

(~/,//-,~t) _ ZIG( 1, V, T)  (A 17) 
Zlc(1, V, T ) '  

or in the terms of the chemical potentials of the ideal gas and ideal chain molecules 

fl#~G fl#lc - I n  ext - = ( ~ / U m ) .  (A 18) 

Similarly, we can derive a relation between the chemical potential and the normalized 
Rosenbluth factor of an interacting chain: 

f l# -- fi#lC = - I n  (./g-ext). (A 19) 

The excess chemical potential of an interacting chain is defined as 

fll~ex ~_ fl]~ __ fll'/IG" (A 20) 

Note that in this definition we assume the reference state to be/~~ C, which is defined 
by equation (A 6) for a system consisting of atoms, and by equation (A 9) for a system 
of molecules. We can also define the excess chemical potential of an ideal chain 

flfllC ~ flfllC fl#lG = In oxt ~x _ ( ~ , G ) .  (A 21) 

This gives for the excess chemical potential (A 20) 

fl/~SxJ= (fl/~ _ flkt,c) + (flPic - flU,c) = - I n  (OF TM) + fl/fi~. (A22) 

In a configurational-bias Monte Carlo simulation we can calculate the normalized 
Rosenbluth factor (~/g-~xt). Equation (A22) shows we can use this factor to 
calculate an excess chemical potential which is shifted with respect to the 'real '  
chemical potential. To calculate this shift we need to perform a separate simulation 
for one molecule in the ideal gas state. Note that normally such an ideal gas 
simulation has to be performed only once at a given temperature; furthermore, such 
a simulation requires only a fraction of the CPU time of a simulation with an 
interacting chain. 
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A.3. Thermodynamic quantities 

In the previous section we have shown that the use of the ideal chain as a reference 
state results in a shift of the chemical potential. Below we show how this shift should 
be taken into account in the calculation of the Henry coefficient and in a grand 
canonical Monte Carlo simulation. 

A.3.1. Henry coefficient. The Henry coefficient is calculated from the adsorption 
isotherm using 

(U) 
K n -= lim - -  

e-.o PV 

The Henry coefficient can also be related to chemical potential. For an open system 
in contact with a reservoir with chemical potential #B, the average numbcr (N) is 

given by 

(N) _ exp (fl#B) (exp (- flU +)), (A 23) 
V A 3 

whcre U + reprcsents the energy of a ghost particlc. In thc limit P -~ 0, the reservoir 
can be considered as an ideal gas. Substitution of the gas law in equation (A 5) gives 

1 In (fie). (A 24) 

Using the definition of the excess chemical potential (A 20) and equation (A 22) we 
can write 

(exp ( - f lU+))  = exp (_flpcx) = (~Wcx,) exp (-f l / t~) .  (A25) 

Substitution of equations (A 24) and (A 25) into (A 23) gives 

KH _ ( U )  _ fl(~/C/~xt) exp (-f l /h~).  (A 26) 
VP 

A.3.2. Grand canonical calculat'ions 
(a) Simple atomic system. In the grand canonical ensemble the partition function for 
a system consisting of N atoms is given by equation (6) and the distribution that 
has to be sampled is given by equation (7). To sample this distribution, we have used 
the following acceptance rules in the conventional grand canonical Monte Carlo 
scheme: 

a c c ( N - - , g + l ) = m i n  1, A 3 ( N + I )  e x p { f l [ # B - U ( N + I ) + U ( N ) ] }  , 

for the addition of a particle (see equation (9)) and 

ace(N--* N - 1 ) =  m i n [ 1 , ~ N e x p  {--fl[gB + U ( N - - 1 ) - - U ( N ) ] } ]  

for the removal of a particle (see equation (10)). 
These equations are based on the idea that particles are exchanged with a reservoir 

consisting of the same molecules with exactly the same density, the only difference 
being that in the reservoir the particles behave like an ideal gas; hence we are 
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equating the chemical potential pB in this reservoir and the chemical potential of 
the system we are simulating. The chemical potential of the reservoir is related to the 
ideal gas pressure by: 

flpB _ fl/hG = f l#o + In (p) = f l#o + In (flPm). (A 27) 

Substitution of this expression in the acceptance rules gives (for the addition of a 
particle): 

a c c ( N ~ N + l ) = m i n  1 , ( N + I ~ e x p { - - B [ U ( N + I ) - - U ( N ) ] }  . (A28) 

If the density in the 'experimental reservoir' is sufficiently low such that it behaves 
like an ideal gas then the pressure P of the reservoir will be equal to the pressure 
PIG of the reservoir (the chemical potentials are by definition always equal!). 

If the pressure in the reservoir is too high for the ideal gas law to hold, then we 
have to use the equation of state to relate the chemical potential of the reservoir to 
the pressure: 

f lPba th  = t i p  . . . . . . .  ir 

flpO + In (tiPs6) = fl#o + In (flP/q~), (A 29) 

where ~b is the fugacity coefficient of the fluid in the reservoir, which can be calculated 
from the equation of state of the fluid. 

(b) Molecular system. For a system containing molecules we also use equation (A 28) 
for the acceptance rule. However, its relation to the chemical potential is slightly 
different. For such systems the reference chemical potential is defned by equation 
(A6). Comparison with equation (A27) shows that in addition to the term A 3 we 
have a contribution of the internal energy to the chemical potential 0 Pintra o f  the 
molecules in the ideal gas phase. We can absorb this term in the definition of pB, SO 
in this case we have 

#B ~--- WiG - -  pi0ntra �9 (A 30) 

With this equation for the chemical potential of the reservoir, we can also use 
equation (A 29) to calculate the pressure of the reservoir. 

(c) Configurational-bias Monte Carlo. If we use the configurational-bias Monte Carlo 
scheme, the chemical potential of the reservoir is shifted with respect to the chemical 
potential used in the Metropolis algorithm: 

fipBaM c = tips _ In fig). 

Comparison with equation (A 1 l) shows that the constant cd is related to the chemical 
potential of an ideal chain by 

fl#ic - flPm = - I n  (cd) 

Since we suppose that the chemical potential in the ordinary Metropolis case is that 
of an ideal gas, viz. equation (A 27), it follows that 

f l#BBMc = f lP IG - -  In (c6) = flPlc. 

This shows that if we use the configurational-bias Monte Carlo scheme, we couple 
our system to a reservoir consisting of ideal chain molecules. By combining 
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equations (A 21) and (A 8), we can relate the chemical potential of this reservoir to 
the ideal gas pressure by 

fl#~BMC = fl#~ + fl#~ = fl#OG + In (flPm) + fl/q~, (A 31) 

which shows that in this case equation (A 28) could be replaced by 

[ V f l P m  exp{--f l[U(N + 1)-- U(N)]}],  a c c ( N ~ N +  1 ) = m i n  1 , ( N +  1) e x p ( - f l # ~ )  

(A 32) 

and the pressure of the reservoir follows again from equation (A 29). 

Appendix B 

Proof of the algorithm 

B.1. Metropolis Monte Carlo 

It is instructive to prove that in the case of ordinary grand canonical ensemble 
simulations, acceptance rules (8)-(10) indeed lead to a sampling of distribution (7). 
Consider a move in which we start with a configuration with N particles and we 
move to a configuration with N + 1 particles by inserting a particle in the system. 
We have to demonstrate that detailed balance is obeyed: 

K(N ---. U + 1) = K(N + 1 ~ N), (B 1) 

where K(N --* N + 1) is the flow of configurations from a state with N particles to 
a configuration with N + 1 particles. This flow is the product of the probability of 
being in a state with N particles (7), the probability of generating a state with N + 1 
particles, and the probability of accepting move (9): 

K(N --* N + 1) = JV'(N) x p(N --* N + 1) x ace (N --. N + 1). (B 2) 

In the scheme of section 2.1, the probability that an attempt is made to remove a 
particle is equal to the probability of attempting to add one: 

p(U --* N + I )  =p(N + 1 ~ U), (B3) 

Substitution of this equation together with equations (7) and (9) into the condition 
of detailed balance (B 1) gives as condition for the acceptance rules 

ace (N -~ N + 1) exp [fl#(N + 1)IV N+I exp [--flU(s ~+ t)] AaNN! exp [flU(sN)] 

acc (N + 1 ~ N) A~N+~)(N + 1)! exp (flliN)V N 

exp (fl/0V 
exp { - f l [U(s  ~+ 1) _ U(sN)]}. (B 4) 

Aa(N + 1) 

It is straightforward to show that acceptance rules (9) and (10) obey this condition, 
For the other move a similar condition can be derived which proves that the sampling 
scheme is correct. 

B.2 Configurational-bias Monte Carlo 

We now turn to the configurational-bias Monte Carlo scheme. We consider the 
combined system of the reservoir and our system of interacting alkanes in a zeolite. 
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Figure B 1. An example of three sets of four-trial orientations (indicated by arrows) around 
the first atom. Each of these has a probability of resulting in the same configuration 
of the second atom (dotted sphere). Note that an infinite number of these sets exists. 

A particle insertion/removal corresponds to the transfer of a molecule from the 
reservoir/interacting system to the interacting system/reservoir. 

Let us first consider the transfer of a molecule from the reservoir into the zeolite 
with configuration F. We use the algorithm of section 2.3.2 to generate configuration 
F of the molecule. Note that this configuration can be generated in many ways. For 
example, figure B 1 shows three sets of trial orientations each of which may result in 
the selection of the same segment. To simplify the discussion, let us focus on the case 
in which we have to add only a single segment. Suppose that for this addition we 
use a set of k trial orientations, denoted by 

= { b , ,  b2  . . . . .  

Conformation F can be selected only if this orientation, denoted by br, is in {b}k. 
The set of all sets {b}k that includes this conformation is denoted by 

{~r} = {{b}k I br ~ {b}k}. 

Every element of {~r} can be written as (br, b*), where b* is a set of additional 
trial orientations. The probability of generating one of these orientations, say b, is 
given by 

pint(b) db = exp [ -  flui"t(b)] db, (B 5) 
C 

where the normalization constant C is defined as 

= f db exp [-fluint(b)]. (B 6) C 

The probability that we generate the set (br, b*) is 

p(N ~ N + 1 I br, b*) = kpi"t(br) dbr pint(b*) db*, (B 7) 

in which the probability of generating the set of additional trial orientations is 
given by (viz. equation (12)) 

k 

p(b*) db* = ( k -  1)! I~ pint(bj) dbj. (B 8) 
j = 2  

Note that the factors k and (k - 1)! in equations (B 7) and (B 8), respectively, take 
into account that the order of the orientations in a set (br, b*) is not important. 
The probability that we select one of these orientations, say b r, is given by (viz. 
equation (12)) 

exp [ -  flueXt(br)] 
W c x t  
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Let us now demonstrate that detailed balance is obeyed by the proposed sampling 
scheme. Detailed balance implies that the flow of configurations in which one particle 
is added in configuration F is equal to the reverse flow, the removal of a particle in 
this configuration, i.e., 

K(N --. N + 1 IF) = K(N + 1 IF ~ N),  

where 'N  + 1 IF'  denotes that the system is in a state with N + 1 particles in which 
one particle has configuration F, and N particles have the same conformation as in 
the state denoted by N. The flow to state 'N  + 11F' is the product of the probability 
of being in state 'N ' ,  the probability of generating configuration F, and the 
probability of acceptance, considering all sets in {~r}: 

K(N ~ N + 1 I r )  = X ( N )  p(N ~ N + 1, i) x acc (N --* N + 1, i). (B 9) 
i~{~r} 

Note that the probability of generating configuration F and the acceptance depends 
on the particular set of trial orientations i. 

For  the reverse move, the removal of a particle, we also have to sum over the set 

{er}: 

K(N + 1 IF ~ N) = ~A/'(N + 1IF) Z 
J~{,~r} 

p(N + 1 --* N) x acc (N + 1 ~ N,j).  

(B 10) 

Note that in this term the set of trial orientations j appears only in the acceptance 
probability; the probability that we attempt to remove a particle is independent of 
this set. 

The condition of detailed balance implies that equations (B 9) and (B 10) should 
be equal. This condition is certainly obeyed if we impose a much stronger condition: 
'super-detailed balance' [6]. Super-detailed balance states that each term on the LHS, 
corresponding to a particular set of trial orientations (br, b*), must be equal to its 
counterpart on the RHS, which is the term that has the same set of trial orientations: 

K(N ~ N + 1 [br, b*) = K(N + llbr, b* ~ U). (B 11) 

For  the LHS of equation (B 11) we can write 

K(N ~ N + 1 [br, b*) = sV'(N) x p(N ~ N + 1 ]br, b*) 

x acc (N ~ N + 1 I br, b*), (B 12) 

and for the RHS 

K(N + I[br, b * ) ~  N =  ~ ( N  + I[F) x p ( N + l  ~ N) 

x acc (N ~ N + 1 I b r,  b*). (B 13) 

In the condition of super-detailed balance, the set of trial orientations for the addition 
of a particle is by definition equal to the one used for the removal, and therefore the 
normalized Rosenbluth factor calculated during the addition of a particle (equation 
(14)) is equal to the one calculated during the removal (equation (17)), or 

, ~ n  = ,,~o = ,~//-ext(br, b*). (B 14) 
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Let us assume that we have selected a particular set of additional trial orientations 
(br, b*), and assume for this set 

exp (flpB) V ~ox'(t,r, t,*) ~ 1. (B 15) 
A3(N + 1) 

Note that instead of equation (B 15) we also could have assumed 

exp (fl#B) V ~#/eXt(b r, b*) > 1, 
A3(N + 1) 

which would lead to the same results. 
If equation (B 15) holds, then the probability of accepting the addition of a particle 

(equation (15)) is 

acc (N --* N + 11 br, b*) - exp (fl/2 B) V ~,K.ext(br ' b*), 
A3(N + 1) 

and the corresponding term for the removal of a particle (equation (18)) is 

acc (N + 1 I b r, b* --, N )  = 1. 

Substitution of these expressions into equation (B 12) gives 

db*pint(b*) 
K ( N  --, N + 1 ] br, b*) = ./V'(N) x k exp [flueXt(bn)] pi"t(b~) db, W~Xt(br, b*) 

exp (fl/t B) V 
X "ff/'ext(br, b*) 

A3(N + 1) 

= .Ar(N)exp (fl/tB) V exp [--flU(F)] db,pint(b,), (B 16) 
A3(N + 1)C 

and for the reverse move equation (B 13), we find 

K(N + 1 t br, b* --* N) = JU(N + 1 IF) x db*pim(b*) x 1. (B 17) 

Note that in the algorithm for the reverse move the first trial orientation is not 
generated but follows from configuration F. From the condition of super-detailed 
balance (B 11), we derive for the ratio 

JV(N + l IF) exp (fl#B) Vexp [--flU(F)] (B 18) 
JV'(N) A3(N + 1)C 

Comparison with equation (7) shows that our sampling scheme generates the 
desired distribution if we define the chemical potential of the reservoir to be 

fl#R = fl# + In C. (B 19) 

In appendix A we demonstrated that this shift in chemical potential corresponds to 
a change in the reference state. In an ordinary Metropolis simulation the reference 
state is an ideal gas whereas in the configurational-bias scheme this reference state 
is an ideal chain. 
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