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A truly parallel algorithm for the Gibbs-ensemble simulation technique is 
given. The key components of this algorithm are a parallel displacement move 
based on the hybrid Monte Carlo method and a parallel exchange move based 
on a novel algorithm. For the parallel exchange move each processor generates 
additional trial conformations, and a trial conformation is selected with the most 
favourable energy. This introduces a bias, which is removed by a modification 
of the acceptance rules. A proof of the correctness of the parallel exchange move 
is given and the algorithm is verified for a Lennard-Jones system. Simulations 
on ten processors of an SP/2 parallel computer give a speedup of eight for large 
systems and a speedup of four for systems of typical size. 

1. Introduction 

In the early days of computer simulations, the determination of the phase diagram 
of a model fluid was already an important application of molecular simulation 
techniques. Before the development of the Gibbs-ensemble technique [1] such a 
calculation used to be an elaborate task which required many simulations [2]. In a 
Gibbs-ensemble simulation vapour-l iquid or liquid-liquid phase coexistence can be 
determined from a single simulation [1, 3]. This technique has already been applied 
to systems containing particles ranging from simple Lennard-Jones [1] to n-alkanes 
as long as C48 [4, 5] (see [6] for an overview of the systems that have been studied). 

At present most, if not all, of the Gibbs-ensemble simulations are performed on 
a sequential computer. At high (liquid) densities or for long chain molecules such a 
calculation may require significant amounts of CPU time. For  these systems one 
would like to take advantage of the use of parallel computers. Because of the 
sequential nature of the Monte Carlo method--one  can only perform the next move 
once the previous one has been accepted or rejected--paralMization of a Gibbs- 
ensemble algorithm is not as straightforward as, for example, a molecular dynamics 
algorithm. A simple way of performing a parallel Monte Carlo simulation is to 
distribute Q simulations over the Q processors, each with its own sequence of random 
numbers. It is important to note that this simple parallelization is very efficient 
provided that one can start with an equilibrated initial configuration. At high 
densities or for long chain molecules, however, the equilibration may require more 
CPU time than the actual simulation. For  these types of applications it is therefore 
essential to have a ' t ruly '  parallel algorithm. 

In this article, we describe the development of a parallel Gibbs-ensemble 
algorithm. A Gibbs-ensemble algorithm consist of three types of Monte Carlo moves: 
particle displacement, volume changes, and particle exchanges. For  each of these three 
types of moves a parallel algorithm has been developed. For  the particle displacement 
and volume change steps, we have based our algorithm on parallel algorithms 
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available in the literature. For the particle exchange step, we have developed a novel 
type of algorithm based on our parallel Monte Carlo simulation technique [7]. 

2. Sequential algorithm 

In the Gibbs-ensemble scheme simulations of the two coexisting phases (liquid- 
vapour or liquid-liquid) are carried out in parallel in two separate simulation boxes. 
The boxes are kept at a constant temperature T, the total volume of the two boxes 
is fixed at V, and a fixed number of N particles are distributed over the two boxes. 
Monte Carlo rules, which allow for changes in the number of particles and the 
volume, ensure that the two boxes are in thermodynamic equilibrium with each other. 
Since the two boxes are not in 'physical contact', there is no interface and the bulk 
properties of the two coexisting phases can be obtained directly from a single 
simulation. 

The probability of finding a particular configuration in the Gibbs ensemble is 
given by I-3, 6, 8]: 

,/V'(N, V, fl; hi, V1, ~N) dV 1 d~N (1) 

v~(v_ ~)N-.~ 
~: exp [-flUx(nt) ] exp [ - - f l U 2 ( N  - -  nl)] dV1 d~ u 

( N  - nx)lnxl 

= exp ( - fl WR) d V1 d~ N. (2) 

Here, fl = 1/kBT, n 1 denotes the number of particles in box 1, Vx the volume of box 
1, ~N denotes the positions of the particles scaled with respect to the box length, 
and U~(ni) is the intermolecular potential in box i with ni particles. 

The exponent in equation (2) is called the pseudo-Boltzmann factor, and an 
inspection of it shows that a new configuration n can be generated by applying one 
of the following three moves to the old configuration o: 

(a) displacement; displace a randomly selected particle in one of the boxes, 
(b) volume change; change the volume of one of the boxes while keeping the total 

volume constant, 
(c) particle exchange; exchange particles between the two boxes. 

The transition of configuration o to configuration n is accepted with probability: 

acc (o --} n) = min [1, exp (-f lAWs)],  (3) 

where A Ws = Ws(n) - Ws(o). A simulation is set up by selecting one type of move 
at random with a specified frequency. 

3. Parallel algorithm 

An efficient parallel Gibbs-ensemble simulation requires the parallelization of 
each type of move. We discuss the parallelization of each move here. 

3.1. Parallel displacement 

In a sequential Gibbs-ensemble simulation one usually displaces only one particle 
at the time. This clearly is a bottleneck in a parallel Gibbs-ensemble simulation. 
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There are several methods to circumvent this bottleneck. The first one is to displace 
two or more particles at the time and the second one is based on the molecular 
dynamics technique. 

If the range of the interactions is very short, the system can be divided in 
independent regions. In such a region the displacement of a particle does not affect 
the energy of the particles in another region. In each of these regions one particle 
can be displaced simultaneously, and the calculation is distributed over the processors. 
Such a scheme, however, fails for systems with long range interactions or chain 
molecules. 

Another method is to displace simultaneously all of the particles as is done in 
molecular dynamics [2]. For a Gibbs-ensemble simulation we need to maintain a 
constant temperature by, for example, using a Nosr-Hoover  thermostat [9, 10], 
Recently, Mehlig et al. [11] applied the hybrid Monte Carlo scheme of Duane et al 
[12] to condensed-matter systems consisting of Lennard-Jones particles. In the hybrid 
Monte Carlo method random initial momenta are drawn from a Gaussian distribution 
and molecular dynamics is used to obtain trial configurations. The acceptance rules 
are chosen such that the simulations are performed at constant temperature. Mehlig 
et al [11] argue that the time step that can be used in the hybrid Monte Carlo scheme 
is larger than the one used in an ordinary molecular dynamics scheme. 

More specifically, a hybrid Monte Carlo move from configuration o to configura- 
tion n in a randomly selected box, say box 1, consists of the following steps: 

(1) For each particle in configuration o a random velocity is drawn from a 
Gaussian distribution with mean 0 and width (1/[3) 1/2. Here, we assume that 
all particles have the same unit mass. 

(2) A trajectory of the particles is generated during 6t = NMDAt by taking NMo 
molecular dynamics time steps, each with integration step At, ending in 
configuration n. 

(3) The pseudo-Boltzmann factor 

exp ( -  flA WB) = exp (-- flAU) = exp { -- fl[U(n) - U(o)]} (4) 

is computed, where in the hybrid Monte Carlo scheme AU is called the 
discretization error. The new configuration is accepted with a probability 
given in equation (3). 

Clearly, step (1) is independent for each particle; the velocities can be drawn from 
a Gaussian distribution in parallel. Step (2) and the energy calculation in step (3) 
can also be done in parallel by using a parallel molecular dynamics algorithm. Only 
the acceptance/rejection criterion will involve a serial step. We note that the 
discretization scheme used within molecular dynamics, for example the leap-frog 
scheme, should satisfy detailed balance. 

We use the parallel hybrid Monte Carlo as the parallel displacement move within 
the Gibbs-ensemble simulations. The parallel molecular dynamics algorithm is based 
on geometric decomposition of the simulation universe [13]. In this scheme we 
decompose each box in the x and y direction. Each processor is responsible for an 
x - y column of a box along the z direction. These columns all have the same size, 
and the particles inside a column reside on the processor to which the column is 
assigned. Neighbouring columns are assigned to neighbouring processors, so that 
logically the processors are connected in a two-dimensional torus. This method is very 
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well suited for short-range potentials; for results obtained with this method in the 
context of ordinary molecular dynamics we refer the reader to [13]. 

3.2. Parallel volume change 

A volume change A V of box 1 goes together with a corresponding volume change 
- A  V in box 2. For a parallel volume change move this means that we have to adapt 
the size of each column in each box accordingly, and the particle positions inside a 
column are scaled. Since there is a one-to-one correspondence between columns and 
processors, all of these computations can be computed in parallel. The calculation 
of the energy can be done as for parallel molecular dynamics. 

3.3. Particle exchange 

In a sequential Gibbs-ensemble simulation the acceptance ratio of an exchange, 
i.e., the number of successful moves divided by the number of trial moves, may become 
prohibitively low in the case of high fluid densities and/or for chain molecules. In 
particular, for this move one would like to take advantage of parallel computing. 
The conventional algorithm has only limited possibilities for parallelization; in fact 
the only possibility is to distribute the calculation of the energy of the particle that 
is exchanged. The parallelization of the energy calculation for a single particle, 
however, scales very poorly and therefore does not result in a significant speedup. A 
more attractive route has been explored [7] where the parallel insertion of chain 
molecules in a single box is discussed. Several trial conformations are generated in 
parallel and the most favourable is selected with the highest probability. This 
procedure, however, generates a bias that should be removed by an appropriate 
acceptance rule. For a parallel Gibbs-ensemble simulation this implies that one still 
tries only one particle exchange at a time, using the parallel algorithm to increase 
the acceptance ratio of the exchange. 

We now describe the parallel algorithm of the exchange move. Assuming that we 
are moving a particle from box 1 to box 2, the old configuration with nl particles 
in box 1 with volume V1 is denoted by o and the new configuration (nl - 1 particles 
in box 1 with volume V~) by n (see figure 1). Furthermore, we assume that we have 
a total of Q processors. 

(1) One particle to be moved from box 1 to box 2 is picked randomly and its 
potential energy u(o) is computed. 

(2) Ntry positions ~j, q(n), j = 1, 2 . . . . .  Ntry are picked randomly in box 2 for each 
processor q -- 1, 2 . . . . .  Q. For all of these trial positions the potential energies 
u~,q(n) are computed and the factor Z(n) defined by 

Q x Ntry 

Z(n) = ~ exp [- f luj ,  q(n)], (5) 
J,q 

is then computed globally. A trial position, say ~(n), is picked with a 
probability 

P(n) - exp [-f lu(n)]  (6) 
Z(n) 

Note that this selection criterion favours a trial position with a low energy. 
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nl, V1 

o (o) 

N - n 1 ,  V - V 1  

n 1 - 1 ,  V1 

N - n l  + I, V -  V1 

Figure l. A schematic representation of the parallel exchange move in which the boxes of 
the old configuration o (on the left) and the new configuration n (on the right) are 
depicted. The particle to be removed from box 1 has a position ~(o), and the particle to be 
inserted in box 2 has a position ~(n). 

(3) In box 1, the box of the old configuration, Ntry positions ~i,q(o) are picked 
randomly by each processor q, but for one processor Ntry - 1 positions are 
picked, so that the total number of positions chosen is Q • N~ry - 1. The 
potential energies uj, q(o) for these positions are computed and the quantity 
Z(o) defined by 

Z(o) =- exp [ - f lu (o ) ]  + Q • ~ , - 1  exp [-fluj,~(o)] (7) 
J,q 

is determined globally. 
(4) The step o --* n is accepted with a probability 

aC%xcn (o ~ n) = min (1, Pexch), (8) 

Pexch = exp (-- flAWs) exp [ - flu(o)] Z(n) 
exp [ - • (n)]  Z(o)" 

(9) 

In Appendix A we prove that this algorithm indeed samples the desired distribution. 
Note that in the case of Ntry = 1 and one processor Q = 1, the acceptance rule given 
by equation (9) is the same as the acceptance rule used in a sequential Gibbs- 
ensemble simulation. For  large systems and a large number of processors Pexch ~ 1. 
This is shown in Appendix B. 

The parallel Gibbs-ensemble algorithm was implemented on an IBM 9076 
scalable POWER-parallel system 2 (SP/2) comprising 30 powerful workstations 
(processors). Each processor is connected to a fast switch used for communication. 
Only ten processors were available for  parallel processing. 
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4. Results and discussion 

To test the performance of our algorithm we have calculated the vapour-liquid 
coexistence curve of the Lennard-Jones fluid. The phase diagrams of the Lennard- 
Jones fluid is well characterised from sequential Gibbs-ensemble simulations [1, 14, 
15, 16]. The Lennard-Jones potential is an example of a typical short-range 
interaction potential of the form 

l  10, 
where r is the distance between two particles. This potential is usually truncated at 
distance R c, and for the molecular dynamics it is convenient to shift the potential as 
well, i.e., 

fro(r) -- c~(R~), if r ~< R ~ 
q)(r) (1 1) 

(0, otherwise. 

The cut-off radius was set to R c = 2"5a. The phase diagram depends on the way the 
potential is truncated [16], and therefore we cannot compare our results with the data 
for the full Lennard-Jones potential (see [16] for details). 

4.1. Verification 

To test whether the parallel algorithm indeed gives identical results to the usual 
sequential method, we have compared the results obtained from a sequential 
simulation with those obtained from a parallel simulation. These simulations were 
done with 432 (2 • 6 x 6 x 6) Lennard-Jones particles distributed evenly over two 
boxes with initial dimensions (8.82o-) 3 . The particle positions were initialized on the 
corner points of a cubic lattice. The simulations were done in cycles, and in each 
cycle we performed 30 Monte Carlo moves that were selected with a prescribed 
probability: 80~o particle exchanges, 16~ hybrid Monte Carlo moves, and 4~  volume 
changes. In a hybrid Monte Carlo move the equations of motion were integrated 
for ten time steps, the time step is selected such that 50~ of the moves are accepted. 
The maximal volume change was set to such a value that 50~ of the attempts were 
accepted. For this test, the parallel simulations were performed on an SP/2 using 
four processors (Q = 4, N, ry = 1). During the exchange step each processor generated 
one trial position, which increases the number of attempts to exchange a particle by 
a factor of four. A total simulation consisted of 11 000 cycles and the averaging was 
done over the last 5000 cycles. 

In figure 2 we compare the results obtained from a sequential simulation with 
those obtained from a parallel simulation. Figure 2 shows that indeed the parallel 
simulations and sequential simulations yield identical results. 

4.2. Performance of the hybrid Monte Carlo move 

Here, we report on the use of the hybrid Monte Carlo scheme as the displacement 
move in the parallel Gibbs-ensemble algorithm. During the equilibration period we 
adjusted the time step used in the hybrid Monte Carlo moves to give a 50~o 
acceptance of the attempts. This time step depends on the density as shown in table 
1; for comparison we have added the time step that is used in a conventional 
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Figure 2. Phase diagram of the three-dimensional Lennard-Jones fluid obtained from parallel 
simulations. The circles are the reduced densities of the vapour and liquid phases 
obtained from the parallel simulations for various reduced temperatures. The full lines 
represent fits to the scaling law and rectilinear law (middle line) [17]. The triangle is 
the estimate of the critical point for the pa,'allel simulations, Te*ri t ~ 1-1. As a reference, 
the full dots represent some results of the sequential simulations. 

Table 1. Average molecular dynamics time steps used in the hybrid Monte Carlo scheme for 
each phase. After each run these time steps were dynamically changed in order to obtain 
a 50% acceptance probability for the parallel displacement move. For comparison we 
have included the time step that is used in a conventional molecular dynamics simulation 
[2]. For T* = 0"7 we performed a simulation of a larger system on Q = 10 processors. 
All other (reduced) temperatures are for simulations performed on Q = 4 processors. 

T* N At~apou~ Atliquid 

0.700 14 364 0.017 0-000 31 
0.870 432 0-0210 0-002 24 
0.909 432 0-0182 0.002 23 
0-952 432 0.0139 0.002 35 
1.053 432 0-0084 0.002 87 

MD 432 0.002 0.002 

molecular dynamics simulation using the leap-frog scheme. We found that the time 
step is significantly larger compared to molecular dynamics only for the very dilute 
vapour phase. For the liquid phase we found a time step that is about the same as 
the one used in molecular dynamics. We should remark that we did not optimize 
the number of time steps (NMo) before the acceptance test was performed; instead, 
we used NuD = 10 as is suggested in [11]. The findings of Glaser [18], however, 
indicate that for efficient sampling a much larger value of NMo of at least 100 is 
necessary. 
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In another test, we scaled up the two simulation boxes containing 432 Lennard- 
Jones particles by a factor of three in each dimension while keeping the  density 
constant. This gives a system of 14 364 Lennard-Jones particles in a (682"13a) 3 box. 
This system was followed for 75 000 cycles at a low reduced temperature of 0.7, just 
above the triple point. In each cycle we performed 105 Monte Carlo moves that were 
selected with a prescribed probability: 95~o particle exchanges, 4~o hybrid Monte 
Carlo moves, and 1~o volume changes. The time steps used in hybrid Monte Carlo 
and the maximal volume displacement were adjusted dynamically as described before. 
For this test, the parallel simulations were performed on an SP/2 using ten processors 
(Q = 10, Ntry = 1). Averaging was performed over the last 15000 cycles. For this 
system, the number of successful exchanges per 1000 cycles was on average 224 out 
of 100 026 attempts. The results are also given in table 1. 

These observations suggest that, at least for a Gibbs-ensemble simulation, it is 
advantageous to use hybrid Monte Carlo for the vapour phase. For large systems 
and/or for the liquid phase, hybrid Monte Carlo exhibits a poor performance, and 
it is more efficient to use an ordinary constant temperature molecular dynamics 
algorithm. Our results are in contrast with the results of Brodz and de Pablo [19] for 
a simulation of silica who conclude that the time step in a hybrid Monte Carlo 
simulation is twice as large as that for a comparable molecular dynamics simulation. 

4.3. Scalability 

From the point of view of parallel computing it is interesting to investigate the 
efficiency of our algorithm. The hybrid Monte Carlo scheme and the total energy 
calculation in the volume step scale very well with the number of processors. The 
novel aspect of this work is the particle exchange step. In order to address the 
scalability, we benchmarked our parallel Gibbs-ensemble algorithm for different 
numbers of processors under as similar conditions as possible. We followed the large 
14 364 particles Lennard-Jones system for 3000 cycles on Q = l, 2, 4, 6, 8, 10 processors 
while keeping the total number of exchange attempts per cycle constant at 1000. For 
example, on one processor we tried 1000 exchange attempts, on four processors we 
tried 250 exchange attempts per processor, etc. 

For these benchmarks we measured the wall-clock time required to complete the 
simulation. This may lead to small deviations in the timing results, but this way the 
results we present are of more practical interest. 

The statistics are gathered in table 2. From this table, we see that the scaling 
behaviour for the parallel Gibbs-ensemble algorithm is roughly linear with the 
number of processors, although for Q = l0 processors the decrease in run-time is 
less than expected. On the basis of the timing results, the highest speedup obtained 
is 7-8 for a system containing 14 364 particles. In practice Lennard-Jones simulations 
are usually performed for much smaller systems. For such a system containing 1024 
particles we obtained a speedup of 4-2 on Q = 10 processors and a speedup of 3-1 
on Q = 4 processors. It is instructive to see how the acceptance probabilities (in 
percent) of the parallel exchange move depend on the number of processors (see table 
2). Clearly, a linear scaling behaviour of the exchange probability with the number of 
processors is observed (0"71~o on one processor, 2"63~o on four processors, and 6.3 l~o 
on ten processors). This means that one can effectively use our parallel exchange 
algorithm when the acceptance probability for the exchange move in a sequential 
simulation becomes too low. 
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Table 2. Statistics of the exchange move for various numbers of processors and system sizes. 
The column with the heading 'Accepted' gives the number of exchange moves accepted. 
The column with the heading (Pexch) gives the percentage acceptance probability of the 
exchange move. The measured wall-clock time reported is the total simulation time in 
hours. The first six entries give the statistics of a large 14 364 particle simulation. The 
last four entries give the statistics of a smaller 1024 particle simulation. 

N Q Nexcha,g e Accepted (Pexch) Time (h) 

14 364 1 3 000008 21425 0.71 62-7 
14 364 2 1 500 070 20 450 1.36 28-8 
14 364 4 750033 19 750 2.63 13-7 
14 364 6 497 962 18 375 3.69 9.9 
14 364 8 371992 17 575 4-72 8.2 
14 364 10 300047 18 925 6.31 8.0 
1024 l 2 999 981 23 478 0.78 5-2 
1024 4 750006 15 518 2.07 1.7 
1024 10 299 806 16152 5-39 1~2 

5. Concluding remarks 

In this work we have presented a (truly) parallel Gibbs-ensemble algorithm. We 
call this algorithm truly parallel because it has the proper scaling behaviour with 
respect to number of particles and CPU time. Whereas the volume and displacement 
steps in a Gibbs-ensemble simulation can be parallelized using available algorithms, 
the exchange step required the development of a novel algorithm. In this algorithm 
attempts to insert a particle are performed in parallel, and the trial conformation 
with the most favourable energy is selected with the highest probability for insertion. 
The bias that is introduced by this selection step is removed exactly by a modification 
of the acceptance rules. 

We have implemented a parallel Gibbs-ensemble algorithm on an SP/2 parallel 
computer to calculate the vapour-l iquid equilibrium curve of the Lennard-Jones 
fluid. Close to the triple point for a large system of 14 364 particles we obtained a 
speedup of eight in the case of ten processors. 

At this point we want to emphasize that our parallel Gibbs-ensemble algorithm 
is by no means limited to Lennard-Jones particles. On the contrary, we expect the 
method to be more advantageous for Gibbs-ensemble simulation of systems contain- 
ing chain molecules which have much lower acceptance probabilities for the exchange 
move compared to atomic systems. In addition, these simulations of chain molecules 
are usually performed for a significantly larger number of particles compared to the 
usual simulations of Lennard-Jones systems [5]. For  these large systems, the use of 
a parallel Gibbs-ensemble algorithm of the type presented here is particularly 
advantageous. 

We thank Matt  Glaser for illuminating discussions about the performance of the 
hybrid Monte Carlo method. 

(8) 

Appendix A 

Here we prove that the use of the parallel exchange rule defined in equations 
and (9) generates configurations that are distributed according to a 
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pseudo-Boltzmann distribution, i.e., the probability of finding a configuration is given 
according to equation (2). 

The standard technique is based on demonstrating that detailed balance is obeyed, 
i.e., the flow of configurations going from o to n should be equal to the reverse: 

K(o  ~ n) = K(n  ~ o). (A 1) 

For simplicity we discuss the case Ntry = 1, and we drop the first subscript of ~,q, 
which denotes the scaled coordinates of a trial position. More notational conventions 
are given in figure 1. 

The flow from o to n is equal to the product of the probability of being in state 
o, the probability of generating state n, and the probability of acceptance (of the 
parallel exchange move): 

K(o  ~ n) = Jff(o) x P(n) x aCCexch (O --~ n). (A 2) 

Configuration n can be generated in an infinite number of ways from configuration 
o. For this transition, the parallel exchange algorithm specifies that Q trial positions 
are generated in box 2, and the selected trial insertion position is g(n). A set of trial 
positions is denoted by 

b(Q, n) = {gq { 1 <~ q <~ Q, ~qg(n) = ~q}. (A 3) 

The probability of generating this trial set is 

Pgen(b) = dgl  . . .  dgQ, (A 4) 

because the positions are drawn independently from a uniform distribution. The set 
of all sets b(Q, n) which include ~(n) is denoted by b(Q, n), i.e., 

b(Q, n) = {b(Q, n)}. (A 5) 

Note that this superset contains all possible ways of generating Q trial positions 
containing configuration n. 

Now the flow from o to n has to be taken over all trial sets z e b(Q, n): 

K(o  ~ n) = Jff(o) ~_~ Pge,(Z)P(nlz)  acc~xch (O ~ n lz).  (A6) 
~b(Q,n) 

From 

P I n  I z(n)] - exp [ -  f lu(n)],  (A 7) 
z[-c(n)] 

P[o { z(o)] - exp [-flu(o)] , (A 8) 
z[~(o)] 

Pgen['~(O)] - - - -  Pge.[Z(n)], (A 9) 

where trial set z(n) means z 6 b(Q, n), and from equations (A 1) and (A 2) it follows 
that 

exp [ -  fl WB(o)] exp [ -  flu(n)] ~ aCCexch [O --+ n [ "c(n)] 
. .)  Z[~(n)] 

= exp [ - fl WB(n)] exp [ -  flu(o)] ~ accexch [n -~ o I z(o)] 
, (o )  Z[~(o)] 

(A lO) 
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This simplifies to 

accr [o ~ n 13(n)] 

:(n~ Z[r(n)] 
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exp [ - flu(o)] ~ acc~h I n  Z o[ r(o)] 
= exp (-flA WB) exp [--flu(n)] , ( o )  Z[3(o)] ' 

(A 11) 

where A W B = WR(n ) - WB(O ). 
The detailed balance condition is contained in this equation. On the left-hand 

side of this equation the term aCGxCh [0 ~ n I~(n)] is present, which stands for the 
acceptance probability of going from configuration o to configuration n given a 
generated trial set 3(n). From the parallel exchange algorithm it follows that for each 
transition from o to n two trial sets are generated, i.e., one containing position {(o) 
and one containing {(n). Hence, 

aCCexCh [O ~ n IT(n)] = ~ Pge.[Z(O)] aCCexch [O ---} niT(n), "fro)]. (A 12) 
r(o) 

Therefore equation (A 1 l) can be rewritten as 

~ acc,xch [O ~ niT(n), 3(0)] = ~ ~ if(n,  o) aCCexr [n ~ o l z(o), z(n)] (A 13) 
,~.~ ~o~ z [~(n)]  ,~o~ ..~ Z [3(0)]  ' 

where 

,~(n, o) = exp ( - flA W~) exp [ -  flu(o)] 
exp [ -  flu(n)] 

(A 14) 

For each term on the left-hand side there is a corresponding term on the right-hand 
side. By imposing the condition 

aCCexcn [o ---} n l 3(n), T(o)] 

aCCex~h [n ~ o l "c(o), "c(n)] 

z[T(n)] 
= o~(n, o) z [ z (o ) ] '  (A 15) 

for each pair of trial sets z(n) and r(o) one easily fulfils equation (A 13). Our parallel 
exchange move satisfies this condition, thereby proving that detailed balance is 
satisfied. 

Appendix B 

Here we demonstrate that at equilibrium the acceptance probability P, xch as given 
by the rule in equation (9) approaches one for a large number of processors Q and 
for large systems. 

As before we assume that we are moving a particle from box 1 to box 2, and we 
introduce the notation n 2 = N - n 1 and V2 = V -  II1. 

From 

exp ( -  flA WB) exp [--flu(o)] _ n 1 W 2 (B 1) 
exp [ - f lu(n)]  Vt n 2 - k  1' 
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( Z(n)~ = ( ~ie; N'r~' exp [-flu./,q(n)] ~ (B2) 
Z(o)/ exp [-flu(o)] + ~sQff N'r:'- 1 exp [-flu~,q(o)]/ 

(Q exp [ - f lu  +(n)]) 
(B 3) 

(exp [-flu(o)] + (Q - 1) exp [-f lu+(o)])  

(exp [ -  flu + (n)]) (B 4) 
(exp [ -  flu + (o)]) '  

where u § gives the test particle energy of a (ghost) particle in box 2 and u § 
gives the test particle energy of a (ghost) particle in box 1 (we assume that Q is large), 
it follows that for large systems 

(Pexch) ~ (n~ Vz ) (exp[-flu+(n)]) (B5) 
n 2 + 1 (exp [--flu+(o)]) 

..~ (p~)(exp [--flu+(n)]) (B 6) 
(P2) (exp [ - flu + (o)]) 

(we can neglect the density fluctuations). 
Now, the chemical potential #2 in box 2 (see [151, p. 43) is given by 

l l n ~ l  ( V2 exp[--flu+(n)])} (B7) 
/~2 ~ --~ ( ~  n 2 + l 

or alternatively 

(exp [-f lu+(n)])  = A3(p2) exp ( -  flPz) (B 8) 

where A is the de Broglie wavelength. At equilibrium Px = P2 holds, and by 
substituting equation (B 8) (and a similar expression for #x) in equation (B 5) one 
obtains 

< Pexch> ~ 1. (B 9) 
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