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ABSTRACT: The dissipative particle dynamics (DPD) method is used to simulate shear flow between
two flat plates. To test this technique, simulations were conducted of both constant and oscillatory shear
of a simple fluid. The results of these simulations agree well with theoretical predictions. We subsequently
applied our model to study the effect of shear flow on end-tethered polymer layers (“brushes”). When
exposed to a constant shear flow, chains in a polymer brush are stretched in the direction of the flow,
and the overall layer thickness decreases. This result is similar to what was found in previous simulation
studies. However, in the present simulations solvent particles are taken into account explicitly. At low
frequencies, the response of a brush to oscillatory shear is qualitatively similar to its response to constant
shear. As the flow velocity changes during an oscillation cycle, the polymer chains are able to relax their
configurations with respect to the shear rate. At higher frequencies the interpretation of the brush behavior
becomes more difficult due to conflicting time scales of the polymer and solvent dynamics in the present
DPD model.

1. Introduction

Interactions between surfaces can be modified by
adsorbing or grafting polymers to these surfaces. The
fact that the polymers change not only the equilibrium
properties but also the rheological properties is used in
many applications. In simulations it is often much more
difficult to study the dynamics of a system than its
equilibrium state, and the simulation of solvent flow
past and through a polymer layer forms a challenging
problem. In this paper we apply the dissipative particle
dynamics (DPD) method to study such a system. We will
explore the possibilities of this technique by simulating
various forms of shear flow for a simple fluid and study
in detail grafted polymer layers under shear.

Over the past few years many papers have been
published on end-tethered polymer layers. Much atten-
tion has especially been paid to so-called polymer
brushes, high-density end-tethered layers, in which the
polymer chains are strongly stretched away from the
interface. Thanks to these investigations, the equilib-
rium behavior of such systems is now well under-
stood.1-10 However, nonequilibrium aspects of polymer
brushes are, in general, less well understood. In this
paper, we will focus on the effect that solvent flow past
a polymer brush has on the properties of this brush.11

As yet, no fully satisfactory answer to the question what
happens to a polymer brush under shear seems to have
emerged from the literature.

Two different kinds of experiments have been per-
formed to investigate the effect of shear on a polymer
brush immersed in a solvent. Klein et al.12 designed a
modified surface forces apparatus to measure the force
between polymer-bearing surfaces undergoing shear.
Their system consisted of two mica sheets bearing end-
grafted polystyrene chains (which were tethered to the
surface via a zwitterion group) in toluene (which is a
good solvent for polystyrene). They found that as the
surfaces were moved parallel to each other at a given
frequency, a marked change occurred in the normal
force between them. This force became increasingly

repulsive as the velocity was increased. This effect was
only seen above a certain critical shear rate, which was
thought to be related to the relaxation dynamics of the
polymer chains. The authors concluded that an uncom-
pressed end-tethered polymer layer increases its thick-
ness when fluid flows past it.

This conclusion is contradicted by experiments of
polymer brushes under steady laminar shear flow. First,
Nguyen et al.13 used neutron reflectometry to measure
polystyrene brushes. They reported no change in the
brush height when solvent flowed past the brush, but
this can be explained by the relatively low shear rate
in their experiments. More convincing results were
obtained by Baker et al.,14 who constructed a cell in
which fluid was pumped past an adsorbed polymer
layer, giving plane Poisseuille flow. The system they
used consisted of polystyrene-poly(ethylene oxide)
diblock copolymer adsorbed onto a quartz surface from
toluene. As the solvent flow velocity was increased, no
changes occurred in the neutron reflectivity profile of
the brush. The polymer volume fraction profile of the
sheared brush was found to remain identical to that of
the equilibrium brush up to shear rates at which
substantial desorption of the polymer chains was ob-
served. No extension of the tethered chains was found
in these steady shear experiments. In addition, Ivkov
et al.15 published the results of neutron and reflectivity
studies of polystyrene chains that were chemically end-
tethered to a silicon oxide surface. They observed no
change in the polymer brush profile or height even at
the highest flow rates that were applied. A more
extensive overview of the literature than we provide
here can be found in the paper by Ivkov et al.15

On the theoretical side, several publications exist that
consider the effect of shear on the layer thickness of a
polymer brush, but here conclusions are not all in
agreement with each other either. Several authors have
derived analytic predictions for the effect of shear flow
on grafted polymer layers.16-20 The first models16-18

ignored the details of solvent flow inside the brush by
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assuming that the effect of the shear flow can be
described by a shear force applied to the free surface of
the brush. For example, the calculations of Rabin and
Alexander16 predicted no appreciable change of the
brush layer thickness, whereas a similar model of
Barrat17 predicted brush swelling of up to 25%. This
qualitative difference arises from a different contribu-
tion of the osmotic compressibility to the force acting
at the free surface. Kumaran18 calculated an even larger
increase in the brush height from hydrodynamic inter-
actions. Harden and Cates19 took explicit account of both
the solvent flow profile within a brush and the deforma-
tion of the grafted polymer chains within the Alex-
ander-de Gennes brush model. In their calculations the
internal structure of the layer and the solvent flow
profile are determined self-consistently. They predicted
nonuniform deformation of the grafted polymer chains
and appreciable swelling (up to 25%) for shear rates
exceeding the characteristic hydrodynamic relaxation
rate of a blob of the unperturbed brush. This maximum
swelling is even larger in the model developed by
Aubuoy et al.,20 in which some chains are stretched,
whereas others remain unaffected by the shear. On the
other hand, in a very recent theoretical analysis by
Clement et al.,21 it was predicted that the response of a
brush to flow is typically of the same magnitude as
thermal fluctuations.

The (strong) swelling of a polymer brush that is
predicted theoretically is not seen in most molecular
simulations of brushes that are sheared. Several simu-
lation techniques have been used, such as Brownian
dynamics,22-24 stochastic dynamics,25 and dynamic Monte
Carlo.26-28 One would expect the most exact results from
molecular dynamics simulations, and such simulations
have indeed been carried out for symmetric systems
consisting of two layers of short grafted polymer chains
which are sheared against each other.29,30 However,
most simulations of flow past polymer brushes tend to
leave out the solvent molecules and model the solvent
as a continuum to save CPU time. The Brinkman
equation is then used to calculate the solvent flow
through the polymer layer. This is the preferred method
in Brownian dynamics simulations, where the solvent
velocity and polymer concentration profile are calculated
self-consistently. Although different authors use differ-
ent models and also slightly different implementations
of the Brownian dynamics algorithm, as a general trend
it is found that under steady flow the brush thickness
decreases as the shear rate increases.22-24 However,
Parnas and Cohen22 report a maximum in the brush
height as a function of shear rate for long chain lengths.
Furthermore, Doyle et al.23 report that oscillatory shear
flow through a compressed brush leads to large in-
creases in the normal stress. They interpret this result
as a (qualitative) confirmation of the experimental
measurements of Klein et al. However, simulated un-
compressed brushes show only a relatively modest
thickening under shear, and the diffuse tail region of
the brush remains virtually unchanged. Finally, dy-
namic Monte Carlo simulations have been conducted of
brushes under shear by introducing an enhanced tran-
sition probability for a monomer to move in the direction
of the solvent flow.26-28 In these cases very little effect
of the shear was found on the overall polymer density
profile perpendicular to the grafting surface. Of course,
in these simulations hydrodynamic interactions are
accounted for in a very approximate manner, as is also
the case in the Brownian dynamics simulations.

In this paper we use the dissipative particle dynamics
(DPD) method to simulate tethered polymer layers in
shear flow. DPD is a particle-based simulation scheme
that predicts correct hydrodynamic behavior (the overall
movement of the particles obeys the Navier-Stokes
equation). DPD particles do not represent individual
atoms or solvent molecules, but fluid elements or parts
of large molecules. Hoogerbrugge and Koelman31,32

introduced the simulation method to study colloidal
suspensions. Later on, it was, among other things,
applied to study systems containing polymers, surfac-
tant, and lipids.33-39 Malfreyt and Tildesley40 used the
DPD technique to simulate equilibrium properties of
polymer brushes. Español and Warren41 showed that
the DPD model corresponds to a Hamiltonian system.
This created the possibility to conduct coarse-grained
simulations of large equilibrium systems which are very
hard to simulate using conventional microscopic simula-
tion methods, such as surfactant phase diagrams,37 lipid
membranes,36 and polymer-surfactant interactions.39

In certain cases the hydrodynamic interactions are
found to play a critical role in the attainment of
equilibrium. Groot et al.35 showed that this can be the
case for block copolymer microphase separation, where
simulation methods that neglect the hydrodynamics
predict only metastable states.

The DPD method (applied to shear flow in confined
geometries) is described in section 2. In section 3 we
present results for the shear flow of a simple fluid
(without polymer). This sets the scene for the simulation
results of the grafted polymer layers. In section 4 we
subsequently investigate hydrodynamic flow past a
layer of tethered polymer chains.

2. Simulation Method

2.1. The Basic DPD Scheme. DPD is a Langevin
dynamics scheme, in which one has a fluid of particles
interacting through pairwise-additive interactions. These
interactions consist of conservative forces, which deter-
mine the equilibrium behavior of the system, together
with random and dissipative forces. We consider a
system of volume V ) Lx × Ly × Lz with N particles i,
each of which has a mass m, a position vector ri, and
velocity vi. We define the number density as F ) N/V.
The particles obey Newton’s equations of motion. The
force on a particle i is

The conservative force FC is a soft-repulsive interaction
which is linear up to a cutoff distance rc:

where aij is the repulsion parameter for an i-j type
interaction, rij ) ri - rj, rij ) |rij|, and r̂ ) rij/rij. The
random and dissipative forces, FR and FD, are given by
the following equations:

fi ) ∑
j*i

(Fij
C + Fij

R + Fij
D) (1)

Fij
C ) {aij(1 - rij/rc)r̂ (rij < rc)

0 (rij > rc)
(2)

Fij
R ) σωR(rij)

θij

x∆t
r̂ij (3)

Fij
D ) -γωD(rij)(r̂ij‚vij)r̂ij (4)
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where vij ) vi - vj, σ is the noise amplitude, γ is the
friction coefficient, ωR(rij) and ωD(rij) are weight func-
tions which become zero for r g rc, and θij is a random
Gaussian variable with zero mean and a variance of
unity. Espanol and Warren41 showed that the condition
of detailed balance imposes the following constraints on
the weight functions and constants:

We take

and we set σ ) 3.0. It is furthermore convenient to work
with simulation units m ) kBT ) rc ) 1.

The simulation method as described thus far is the
standard DPD scheme. The positions and velocities of
the particles are calculated using a modified Verlet
algorithm.34 All simulations were conducted with a time
step ∆t ) 0.01.

2.2. Tethered Polymer Chains. In our simulation
model a polymer chain is represented as a linear array
of M particles. The total number of particles in the
system is N ) Ns + NpM, with Ns the number of solvent
particles and Np the number of polymer chains. In
addition to the repulsive conservative force and the
random and dissipative forces, bead i + 1 exerts a
bonding force Fi,i+1

b on bead i, which is given by

The precise form of the bonding interaction that we have
used is rather arbitrary and will be justified a posteriori.
The polymer chains are attached to an impenetrable
surface at z ) 0. The same attractive force that exists
between neighboring segments also exists between the
first segment in each polymer chain and a “tethering
position” on the surface. These tethering points form a
regular square grid. At the other end of the simulation
box (z ) Lz) we place a similar surface without any
polymer.

2.3. Shear Flow. In molecular dynamics, the stan-
dard way to model shear flow is by applying the Lees-
Edwards boundary condition.42 In DPD one can actually
shear a liquid by moving a solid wall past the liquid. In
our simulations, the upper surface is given a velocity
in the y-direction vy(Lz) ) v* and the lower surface is
given a velocity vy(0) ) 0. Modeling a liquid-solid
interface in DPD is, however, not a completely trivial
task, and one must be aware not to introduce unwanted
artifacts into the simulation.

Kong et al.33 studied the dynamics of a DPD polymer
in solution between two walls (without shear). Wall
particles were kept in a “frozen” state, so that they could
not move relative to each other. (This is an analogous
procedure to that used to model dispersions.) The
density of the wall had to be chosen 4 times larger than
that of the solution to get an impenetrable wall. This
high density subsequently induces a depletion zone in
the solution adjacent to the wall. Although such a
depletion layer and further ordering phenomena are to

be expected at the atomistic level, they must be seen as
model artifacts in a coarse-grained model. A similar
nondesired effect of the model is seen in the simulation
of Jones et al.,43 who simulated the shearing of a liquid
drop on a solid surface. They used the same density for
the solid and liquid but added a strong repulsive
interaction between both phases to keep them sepa-
rated. Again, this leads to density distortions in the
liquid. Moreover, the flow profile shows the occurrence
of large slip. Jones et al. attempted to solve this problem
by imposing a certain velocity on all particles within a
close distance from the wall. Revenga et al.44 suggested
that slip can be prevented by using a large ratio (of nine)
for the densities of the wall and solution. In their work
no repulsive interactions between particles are taken
into account, and in this case such a high ratio does
indeed solve the problem of slip. However, in general,
ideal particles will not be a good model for a molecular
system. When interactions between particles are added,
such a high-density ratio leads to very large density
distortions in the solution.

The problems mentioned above concerning density
distortions and slip flow only play a role near the
surface. If one is solely interested in the behavior of the
sytem far away from any interfaces, these issues do not
pose a problem. However, in many applications one is
dealing with systems where the effect of surfaces cannot
be neglected, for example, in lubrication. In such
confined geometries the conventional DPD method will
easily give rise to unwanted artifacts. Recently, Willem-
sen et al.45 proposed a scheme to get a no-slip boundary
condition in DPD without using high wall densities,
which we have applied in our simulations. Below we
give a brief description of this algorithm. More details
can be found in ref 45.

The walls are assumed to be made up of “virtual”
particles. The interactions between the real fluid par-
ticles (which can be both solvent particles or polymer
segments) and these wall particles are determined by
the same equations that describe the forces between two
fluid particles. However, the positions and velocities of
the wall particles are not updated using the Verlet or a
similar algorithm. At the beginning of each time step
they are determined in such a way as to ensure a
smooth distribution of fluid particles near the walls
together with no-slip conditions. For each fluid particle
whose distance to the wall is smaller than rc, a wall
particle is placed at the same distance from the bound-
ary layer. The x and y components of the wall particle
are determined by adding a random shift taken from
the interval (-rc, rc) to the position of the original fluid
particle. The normal (z) and the x velocity components
of the wall particle have the same magnitude as those
of the original fluid particle, but the sign of these
components is opposite to that of the fluid particle. The
y velocity component of the wall particle is taken as the
average of the y velocity component of the fluid particle
and the wall velocity. This procedure ensures that there
is a linear velocity profile across the wall boundary. The
random and drag forces exerted by the wall on nearby
fluid particles (those at a distance smaller than rc) are
calculated by summing over all pair interactions be-
tween fluid and wall particles. However, the conserva-
tive forces are calculated from a different set of wall
particle positions, as the interactions between the fluid
particles directly adjacent to the wall and their own
mirror images lead to a too large repulsion. Therefore,

(ωR(rij))
2 ) ωD(rij) (5)

σ2 ) 2kBTγ (6)

ωD(rij) ) {(1 -
rij

rc
)2

(rij < rc)

0 (rij g rc)
(7)

Fi,i+1
b ) {-10 × ri,i+1 for ri,i+1 < rc

-110 × ri,i+1 for ri,i+1 > rc
(8)
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a second set of wall particles is created by shifting all
fluid particles at a distance between rc and 2rc into the
wall layer. These wall particles are then used to
calculate the conservative force exerted by the wall on
the fluid.

A straightforward extension of the above algorithm
also makes it possible to simulate shear flow in a curved
(cylindrical) geometry.46

2.4. Parameters. As standard parameters, we choose
a box size Lx × Ly × Lz ) 8 × 8 × Lz, a particle density
F ) 10, polymer chain length M ) 20, and repulsion
parameter a ) 10. We denote these values as “param-
eter set 1”. The (relatively high) value for the particle
density ensures that the no-slip boundary condition is
well obeyed at the upper wall without any large density
distortions due to the surface interactions.45 The num-
ber of tethered polymer chains ranges from Np ) 1 to
100. The lower surface is always kept at rest, whereas
the upper surface is given a velocity v*, determining the
shear rate γ̆ ) dvy/dz. In addition, we consider an alter-
native system with a fluid density F ) 3 and repulsion
parameter a ) 25. We refer to these values as “param-
eter set 2”. This lower density can be simulated more
quickly, so that we consider longer polymer chains with
M ) 60. Groot and Warren34 devised a mapping proce-
dure to link DPD parameters to molecular systems
using these values for F and a. Several authors have
since used this combination of parameters to model
aqueous polymer and surfactant systems.34,36,38,39

Figure 1a shows the radial distribution function g(r)
of an isotropic DPD fluid with F ) 10 and a ) 10
(parameter set 1) together with the same curve for F )
3 and a ) 25 (parameter set 2). Note that for F ) 10
this function remains finite as the distance r goes to
zero. Furthermore, the distribution function has few

distinctive features, showing only one, very weak,
maximum at r ≈ 0.7-0.8. For a particle density F ) 3
one finds a radial distribution function which becomes
zero at small distances and which has a far more
pronounced maximum (for r < 1) together with less
pronounced maxima for r > 1.34,53 The distribution
function for F ) 10 is characteristic of a more strongly
coarse-grained system, where a DPD particle represents
a larger number of solvent molecules (or polymer
segments). The precise form of the bond force between
neigboring polymer segments given by eq 8 is relative
arbitrary, and different expressions can be found for this
interaction in the literature.34,38,40 For polymers in
equilibrium, eq 8 gives an approximately symmetric
bond length distribution with a maximum at approxi-
mately 0.55rc. This is illustrated for a polymer chain in
an unsheared brush in Figure 1b. The same graph also
gives the distribution for a (very) strongly sheared chain.
In this case this distribution is highly asymmetric, the
maximum occurring for a bond length slightly lower
than rc. Few bond lengths exceed rc because of the
strongly increasing attractive force for bonds that
stretch beyond this distance.

3. Results and Discussion

3.1. Simple Fluids. In this section we consider the
shear behavior of a one-component fluid. Although in
itself this is not an extremely interesting or challenging
system to simulate, it does provide a benchmark to
explore the possibilities and limitations of the DPD
method to model shear. In the next section we will move
on to the more complex system of a polymer brush in a
shear flow.

3.1.1. Constant Shear. Figure 2 shows results for
the steady-state flow profile using the algorithm de-
scribed in the previous section for two different densi-
ties. The lower density of F ) 3.0 clearly leads to slip
flow at both surfaces. However, the velocity profile does
remain a linear function right up to the surface. The
higher density of F ) 10.0 gives rise to virtually no slip.
In this case the shear velocity approaches its ideal value
dvy/dz ) v*/Lz. We found this trend of increasing slip
with decreasing density for a wide range of parameter
values. The repulsion parameter a has little effect on
the occurrence of slip. The qualitative trends are
furthermore similar for a wide range of shear velocity
values. Correlations between the z and y components
of the (average) particle velocities cause the slip. We
conclude that the DPD shear algorithm works well for
high particle densities (F g 10). For low densities one

Figure 1. Solvent radial distribution functions (A) and
polymer bond length distributions (B). In (A) the full curve
shows g(r) for F ) 10 and a ) 10 (parameter set 1), and the
dashed curve shows g(r) for F ) 3 and a ) 25 (parameter set
2). In (B) the polymer bond length distributions are shown for
the same two systems. For F ) 10 the distribution is shown
for polymer chains in an unsheared brush and for a single
chain in a solvent flow field. For F ) 3 the distribution is only
shown in the absence of shear (dashed curve).

Figure 2. Steady-state velocity profiles for two different
densities: F ) 3.0 (dashed line, (parameter set 1)) and F ) 10
(full line, (parameter set 2)). Further parameters: Lx ) Ly )
8, Lz ) 20, vy(0) ) 0; v* ) 5.0; a ) 10 for F ) 10 and a ) 25 for
F ) 3.
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still clearly gets slip. However, in (many) applications
this will not be of great consequence unless one is
specifically interested in the properties of the actual
wall-fluid interface.

The velocity profile of a simple fluid between two
walls as we have simulated can also be calculated
analytically. We have to solve the following differential
equation for v ) vy(z,t):

where ν ) µ/F is the kinematic viscosity of the liquid
(µ is the dynamic viscosity). The reduced units of ν are
rc(kT/m)1/2. If we solve eq 9 with the following boundary
conditions

we find that47,51

For long times eq 11 reduces to the steady-state solution

and for short times only the first term on the right-hand
side for n ) 0 is significant, which reduces eq 11 to

Willemsen et al.45 showed that fitting eq 13 is a
computationally efficient alternative to simulating the
stress tensor to find the viscosity of a system. Using this
method, we find a value of ν ) 0.25 for a system with
a ) 10 and F ) 10. The viscosity is practically constant
as a function of the repulsion parameter a. The viscosity
does depend on F and T, so this offers some scope to fit
an experimental system with a simulation model. As a
first-order approximation, one can use the prediction of
Marsh et al.48 that ν ∼ F/kBT, although numerical
calculations show small deviations from this theory.45,49,50

3.1.2. Oscillatory Shear. We now investigate a fluid
in an oscillatory shear field. The lower wall is again kept
at zero velocity. The upper wall is given a sinusoidal
displacement ∆(t)

so that

The expected fluid flow response vy(z,t) of a fluid with
viscosity ν can again be derived analytically.51,52 The

flow profile consists of a transient and a steady-state
term:

where the transient term T(z,t) becomes zero at large
t.51,52 The oscillatory steady-state term S(z,t) can be
written as

with

and

We are mainly interested in the oscillatory steady-
state solution rather than the transient term. Figure
3 shows simulated velocity profiles from a production
run of eight cycles after two equilibration cycles for a
frequency f ) ω/2π of 0.001 and 0.01, using similar
parameters as in the previous section (Lx ) Ly ) Lz )
8.0; a ) 10.0; F ) 10.0). When fitting the analytical
expression, we again used ν ) 0.25. Rather than plotting
the flow velocity (for different z) as a function of time,
Figure 3 shows vy(z) for t ) λ(π/ω) (mod 2π) for various
values of λ (Of course, vy(z,λ(ω/π)) ) -vy(z, (λ + 1)(ω/
π))). In Figure 3 comparisons are made between the
simulations and the analytical expressions for λ ) 0,
0.25, 0.5, and 0.75. The simulated profiles agree well
with the analytical predictions. Slight deviations are

Figure 3. Velocity profiles for oscillatory flow: vy(z) for t )
λ(π/ω) (mod 2π) with λ ) 0, 0.25, 0.5, and 0.75. The simulated
profiles are compared with the prediction of eq 17 for ν ) 0.25.
Parameters: f ) 0.001 (A) and f ) 0.01 (B); vy(0) ) 0, Vmax )
5.0; Lx ) Ly ) Lz ) 8; a ) 10; F ) 10.

vy(z,t) ) T(z,t) + S(z,t) (16)

S(z,t) ) AVmax sin(ωt + φ) (17)

A ) ( cosh(2(ω/2ν)1/2z) - cos(2(ω/2ν)1/2z)

cosh(2(ω/2ν)1/2Lz) - cos(2(ω/2ν)1/2Lz))
1/2

(18)

φ ) arg( sinh((ω/2ν)1/2z(1 + i))

sinh((ω/2ν)1/2Lz(1 + i))) (19)

∂v
∂t

) ν ∂
2v

∂z2
(9)

vy(0, t) ) 0

vy(Lz,t) ) vy(Lz) ) v*

vy(z,0) ) 0 (10)

vy(z,t) )

vy(Lz)∑
n)0

∞ (erfc((2n+1)Lz - y

2x(νt) ) - erfc(2nLz + y

2x(νt) )) (11)

vy(z) ) v*z
Lz

(12)

vy(z,t) ) v* erfc(Lz - z

2xνt ) (13)

∆(t) )
Vmax

ω
(cos(ωt) - 1) (14)

v* ) vy(z)Lz,t) ) Vmax sin(ωt) (15)
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found, especially at the surfaces, as the effect of slip has
a greater effect due to the continual change of the wall
velocity. However, this has only a very minor effect on
the overall velocity profile.

3.2. Tethered Polymer Layers. In the previous
section we have demonstrated the suitability of the DPD
to simulate shear flow near a solid surface. We will now
apply this method to study the response of end-tethered
polymer layers to shear flow. Most of the results we
report are obtained using parameter set 1. In addition,
some results are reported using parameter set 2. We
conclude this section with a short comparison of the
results found for the two parameter sets.

3.2.1. Density and Flow Velocity Profiles (Pa-
rameter Set 1). Figure 4 shows simulated equilibrium
density profiles (i.e., in the absence of shear flow) for a
number of different grafting densities. The lowest
density (Np ) 1) corresponds to the “mushroom” regime,
where the tethered chain basically forms a random coil
in the available half (z > 0) of the three-dimensional
space. At the highest densities, we are dealing with
strongly stretched chains forming a brush configuration
with a parabolic density profile. Because of the relatively
short chain length, the density profiles have a pro-
nounced exponentially decaying “foot” at their outer
edge. At the grafting surface the profiles show a distinc-
tive dip due to entropic repulsion. Such a depletion zone
is well-known from Monte Carlo simulations,5 numerical
SCF calculations,8 and neutron scattering experiments.7
No spurious oscillatory distortions occur in our simu-
lated density profiles. For each system we define a root-
mean-square (rms) layer thickness as

The values of Hrms for the profiles in Figure 4 are given
in the caption of that figure. For Np g 49 the relation-
ship between the root-mean-square layer thickness and
the grafting density (which is proportional to Np) is in
agreement with the scaling relationship Hrms ∼ Np

1/3,
which is what one expects for a brush in a good solvent.

When the system is sheared by moving the upper
surface, the solvent velocity profile can be determined.
An example of the velocity profile is shown in Figure 5

for a system with Np ) 49, which corresponds to the
brush regime. In this example the velocity of the upper
surface v* ) 10. The applied shear leads to a compres-
sion of the polymer layer in comparison with the
equilibrium situation. The root-mean-square layer thick-
ness of the sheared brush is 8% smaller than that of
the unsheared brush. The shear rate γ̆ is defined by the
solvent profile above the polymer layer, which gives a
value γ̆ ) 0.88. Following Doyle et al.,23 we use the
Weissenberg number (Wi) to represent the shear rate
as a dimensionless number which can be compared with
experimental values. This dimensionless number is
defined by Doyle et al. as the product of the relaxation
time τ of a single chain in solution38 and the shear rate
γ̆: Wi ) τγ̆. We calculated τ from the temporal decay of
the polymer end-to-end vector. In our case, the value of
the Weissenberg number is Wi ) 19, which falls within
the range of values considered by Doyle et al.23 Doyle
et al. chose their parameters to be in the same range

Figure 4. Density profiles of end-tethered polymer layers at
equilibrium (i.e., in the absence of shear) for various grafting
densities. Parameters: Np ) 1, 4, 9, 25, 49, and 100 (as
indicated); Lx ) Ly ) 8; M ) 20; a ) 10; F ) 10. For these five
grafting densities the values of Hrms are 1.68, 1.71, 1.75, 1.98,
2.36, and 2.99, respectively.

Figure 5. Density profiles and solvent velocity profiles of a
sheared brush. The full curves refer to simulations where the
system was sheared by moving the upper surface (v* ) 10),
and the dashed curves are for simulations where the lower
surface (with the polymer layer) was moved. The two density
profiles overlap and can hardly be distinguished from each
other. The number of polymer chains is Np ) 49, and all other
parameters are the same as in Figure 4.

Figure 6. Density profiles of sheared and unsheared grafted
polymer layers. In (A) a high grafting density is used, Np )
49, and in (B) a low grafting density is used, Np ) 1. In both
cases the grafting surface is Lx × Ly ) 8 × 8. In (A) the shear
rates are γ̆ ) 0, 0.88, and 1.7, and in (B) γ̆ ) 0, 0.10, and 0.50.
The arrows indicate the direction in which the shear rate
increases.

Hrms ) (∫0

LzFpol(z)z2 dz

∫0

LzFpol(z) dz )1/2

(20)
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as those in the experiments of Klein et al.12 By linearly
extrapolating this profile to vy ) 0, we find the hydro-
dynamic thickness of the polymer layer, Hhyd. We also
applied shear to this system by conducting the reverse
simulation in which the lower surface with the polymer
layer is moved and the velocity of the upper surface is
kept zero. This gives the same shear rate and polymer
layer thickness. The polymer density profiles in Figure
5 for the two simulation setups can hardly be distin-
guished from each other. Below, in all simulations the
upper surface is moved and the lower, polymer-bearing
surface is kept at rest.

In Figure 6 polymer density profiles are compared for
different shear rates and different grafting densities.
The grafting density in Figure 6A (Np ) 49) corresponds
to a polymer brush, and that in Figure 6B (Np ) 1)
corresponds to a “mushroom” structure. In both cases
the layer thickness decreases as the shear rate in-
creases. The shear rates that were applied in the brush
simulations were γ̆ ) 0.88 and 1.7. The root-mean-
square layer thicknesses of these sheared brushes were
8% and 15% smaller than the thickness of the un-
sheared brush. The low-density grafted layer was
subjected to lower shear rates of γ̆ ) 0.10 and 0.50. The
value of Hrms decreased by 24% and 48%, respectively.

The qualitative picture that emerges from these
simulations agrees well with that of the Brownian
dynamics simulations of Doyle et al.23 A constant shear
compresses the grafted polymer layers, and for a given
shear rate, the compression effect becomes smaller as
the grafting density increases. This effect is most
prominent for polymer chains that are tethered to the
surface at such low densties that they form isolated
coils. Although these “mushroom” conformations are less
interesting from a theoretical point of view, they can
be of great practical importance in many systems where
the polymer density on the surface is too low to form
brush structures.

The DPD simulations are not based on any assump-
tions concerning the form of the velocity profile in the
polymer layer. These simulations can therefore be used
to check the validity of theories that describe the solvent
flow, such as the Brinkman equation for the velocity
v ) vy(z):

where the friction coefficient k is a function of the
polymer concentration only: k ) k(Fpol). The value of k
is mostly set equal to the screening length ê of a polymer
solution at density Fpol. Assuming that eq 21 is correct,
we have derived values for k(Fpol) from simulated flow
profiles.54 Figure 7 shows these functions for various
systems (different polymer densities and shear rates).
For each data set in this figure the values become
unreliable at high F (i.e., deep within the polymer layer),
where the solvent flow has become zero. The same is
true for very low values of F, where the velocity profile
is practically linear. However, we can identify an
intermediate region (roughly for 0.1 < F < 1) where the
data from the different sets collapse nicely onto a master
curve. Here we find the following relationship between
the friction coefficient and the polymer density: k ≈
F-0.55. This exponent (which is indicated by the arrow
in Figure 7) differs significantly (that is, more than can
be explained by numerical inaccuracy in its derivation)

from the relationship ê ∼ φ-3/4, which holds for a
semidilute polymer solution and which was used in the
brush simulations of refs 26 and 27.

3.2.2. Chain Tilting. Besides compressing the grafted
layer, the solvent flow also causes the polymer chains
to become oriented in the y direction. The average y
component of the “end-to-end” vector connecting the
surface tether with the last segment 〈ry〉 is shown in
Figure 8 as a function of the shear rate. For γ̆ ) 0 we
must necessarily have 〈ry〉 ) 0, and all deviations from
this value are due to statistical fluctuations. For low
grafting densities, the polymer chains stretch more
strongly in the flow direction with increasing shear rate.
This is not surprising as the solvent flow penetrates
further into a low-density grafted layer than into a high-
density one. For the lowest grafting density, which
corresponds to one polymer chain in the system, we find
a value 〈ry〉 ) 15 for γ̆ ) 0.5. This is larger than the
simulation box size, indicating that on average the chain
wraps around the system nearly two times. At the same
shear rate the value of 〈ry〉 is more than 3 times smaller
for the higher density layer with Np ) 49.

The data shown in Figure 8 are averages over all
polymer chains in the grafted layer. However, a brush
is made up of chains with different configurations. The
distribution perpendicular to the surface of free end
segments in a sheared brush (with the same parameters
as used in Figure 5) is given by the dashed curve in
Figure 9. This figure also shows the average y compo-
nent of the end-to-end vector of a polymer chain whose
end segment is located at a given distance z from the
tethering surface. Polymer chains that stretch farthest
away from the surface also become most strongly
stretched in the flow direction. This can easily be
understood, as the solvent flow is strongest at the

Figure 7. Friction coefficient k in the Brinkman equation as
a function of the polymer density F. The arrow indicates a slope
of -0.55. The symbols refer to simulations with different
polymer densities and shear rates: (O) Np ) 49 and γ̆ ) 0.092;
(0) Np ) 49 and γ̆ ) 0.88; (]) Np ) 49 and γ̆ ) 1.7; (4) Np )
25 and γ̆ ) 0.29; (tilted 4) Np ) 9 and γ̆ ) 0.54; (3) Np ) 9
and γ̆ ) 1.1. In all cases M ) 20.

Figure 8. Average value of the y component of the end-to-
end vector 〈ry〉 of polymer chains in a tethered layer as a
function of shear rate γ̆: circles, Np ) 49; squares, Np ) 1.

d2v
dz2

) v
k2

(21)
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outside of the brush. However, chains whose free
segment is very near the tethering surface are, on
average, still stretched to a significant extent in the flow
direction. This is slightly unexpected as the solvent flow
is zero so near the surface. The explanation for this
phenomenon lies in the fact that even for these chains
some segments along the chain can stick out farther
away from the surface and thus experience the solvent
flow. The chain length used in Figure 9 (M ) 20) is
relatively small, so that the mean-field description of a
polymer brush, which excludes chains folding back to
the tethering surface,3,6 is not fully valid. For longer
chain lengths we expect the curve in Figure 9 to
decrease more rapidly to zero for small z.

3.2.3. Oscillatory Shear (Parameter Set 1). In
addition to steady shear flow, we have also studied the
response of grafted polymer layers to oscillatory shear
flow. These simulations are especially relevant with
regard to the interpretation of the experiments which
show a swelling of polymer brushes under oscillatory
shear. Rather than moving the upper surface at a
constant velocity, its velocity becomes a sinusoidal
function of time with amplitude Vmax. Again, we focus
on a brush with Np ) 49 in a simulation box of size
Lx × Ly × Lz ) 8 × 8 × 10. Velocity profiles for this
system, similar to those in Figure 3, are shown in Figure
10 for f ) 0.001. The dashed curve is the average
polymer density profile. As the direction and magnitude
of the solvent flow are not constant, the precise form of
the density profile is also a function of time. The

penetration of the solvent flow into the grafted layer is
similar to what we observed in the case of constant
shear.

In Figure 11 the layer thickness is shown for three
different oscillation frequencies in the range f ) 10-4-
0.1. In reduced units τf these frequencies lie in the range
2 × 10-3-2. The value of Hrms is shown as a function of
time t during half on oscillation cycle (from t ) 0 to t )
0.5/f). For two frequencies the results of two indepen-
dent runs are shown, indicating the statistical error in
these results, which is small for the highest two
frequencies that are plotted. For f < 0.01 this statistical
error is larger. The arrow in Figure 11 indicates the
layer thickness of an unsheared brush. At low frequen-
cies (f e 0.001) the layer is compressed, although the
layer thickness is not constant throughout the oscilla-
tion cycle. The thickness oscillates around its average
value of Hrms ) 2.16. The continuous change in the
thickness is due to the continuously varying shear rate
experienced by the polymer brush. The response of the
grafted layer to the change in shear rate is also reflected
in the orientation of the polymer chains. Figure 12
shows the average value of the end-to-end vector 〈ry〉 vs
time during the oscillation cycle. The chain ends clearly
move toward the +y and -y directions as the solvent
flows in that direction. These results indicate that the
polymer layer is able to relax with respect to the change
in shear rate. At any point during the oscillation cycle
the polymer chains respond more or less similarly to
the oscillating shear flow as they would respond to a
constant shear with the same instantaneous shear rate.

In Figure 11 one can further see that as the oscillation
frequency increases, the amplitude of the function

Figure 9. Distribution of free end segments in a sheared
polymer brush (at a shear rate γ̆ ) 1.7; this is exactly the same
system as shown in Figure 5). The full curve shows the average
value of the y component of the end-to-end vector 〈ry〉 of a
polymer chain whose end segment is located at a distance z
from the tethering surface. The dashed curve gives the end
segment density distribution Fend(z) perpendicular to the
surface.

Figure 10. Velocity profiles for oscillatory flow in the presence
of a polymer brush. The solvent flow velocity vy(z) is shown
for t ) λ(π/ω) (mod 2π) with λ ) 0, 0.25, 0.5, and 0.75. These
profiles can be compared with those in Figure 3A, where there
is no polymer present. The dashed curve shows the (time-
averaged) polymer density profile. Parameters: f ) 0.001,
Vmax ) 10, Lx × Ly × Lz ) 8 × 8 × 10, Np ) 49.

Figure 11. Root-mean-square layer thickness Hrms as a
function of time during (half) an oscillation cycle for frequen-
cies f ) 0.0001 (triangles), 0.01 (squares), and 0.1 (diamonds).
All parameters are the same as in the previous figure. The
arrow indicates the layer thickness of an unsheared brush.
The white and gray symbols for f ) 0.1 and 0.01 refer to
independent simulation runs. These can hardly be distin-
guished from each other. Resulst of one simulation run only
are shown for f ) 0.0001.

Figure 12. Average value of the end-to-end vector 〈ry〉 during
the oscillation cycle. All parameters are the same as in Figure
10 (f ) 0.001).
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Hrms(t) becomes smaller, and the average value of Hrms
increases. For f ) 0.1 the layer thickness becomes equal
to that of the equilibrium brush. This may indicate that
at higher frequencies the brush cannot relax to its most
preferred conformation during the oscillation cycle.
However, there is one problem that interferes with a
straightforward comparison of the simulations at dif-
ferent frequencies. The shear rates that are experienced
by the brush are not the same for all frequencies. At
higher frequencies the velocity profiles decay more
quickly as one moves away from the oscillating surface.
The frequency f ) 0.1 is therefore the highest frequency
at which we can simulate, as the solvent flow will
already be zero above the polymer layer at higher
frequencies. Even for f ) 0.1 one might be able to
explain the high value of Hrms by the fact that the
solvent flow hardly penetrates into the polymer layer.
To increase the flow within the polymer layer, we
increased the amplitude of shear oscillation (to Vmax )
80) and simultaneously brought the upper surface closer
to the brush (by setting Lz ) 10). In this case the
polymer density profile still remained virtually indis-
tinguishable from the equilibrium profile.

3.2.4. Results for Parameter Set 2. The values in
parameter set 2 (F ) 3 and a ) 25) are typical ones for
DPD simulations of (aqueous) polymer and surfactant
solutions.34,39 The scaling laws for both static and
dynamic properties of DPD polymers have been derived
using these parameters.38 The lower overall number
density enables us to simulate a larger system for the
same CPU time. We consider chains of length M ) 60,
end-tethered to a surface area Lx × Ly ) 8 × 8, with
Np ) 25.

Under constant shear the response of the polymer
brush is very similar to what we observed for parameter
set 1. We subjected the brush to shear rates correspond-
ing to Weissenberg numbers Wi in the range 0-200. The
layer thickness decreased monotonically with increasing
shear rate. The response of this brush to oscillatory
shear is shown in Figure 13 for reduced oscillation
frequencies (τf) in the range 0-2.5. For f ) 0.001 the
brush is compressed with respect to its equilibrium
conformation. When the oscillation frequency is in-
creased 1 order of magnitude, a slight further decrease
of the layer is observed (this is not shown in the figure).
A further increase of the oscillation frequency causes
the layer to expand again. For f ) 0.025 the root-mean-
square layer thickness is approximately the same as
that of an unsheared brush. At even higher frequencies,

Hrms increases beyond its equilibrium value. As can be
seen from the polymer density profile for f ) 0.05 in
Figure 13, this large value of Hrms is primarily due to
the appearance of a bulge in the density profile near
the upper surface. The reason that the polymer density
profile has this nonmonotonic shape at high frequencies
is not self-evident.

To explain these observations, we have plotted the
total density of the system, solvent plus polymer seg-
ments, in Figure 13 for f ) 0.05. For a steady shear the
total density remains nearly constant throughout the
system (this is not shown in a figure). In that case, we
only observe a deviation from the uniform density very
close to the wall. Such a depletion of approximately one
molecular layer is normally observed for inhomogeneous
systems. In our simulations we further observed that
for low-frequency oscillatory shear the total system
density remains uniform. However, as can be seen in
Figure 13, at high frequencies the total density profile
is not uniform at all. Above a critical frequency, we
observe a long-range depletion. This depletion extends
over 10-15 molecular diameters. Apparently, the oscil-
lating wall causes a long-range repulsive interaction on
the fluid particles. The figure also suggests that the
polymer segments, because of their macromolecular
nature, are less repelled by these effective interactions
and expand into the space left by the solvent molecules.

To investigate whether these long-range depletion
interactions are specific to polymer brushes, we com-
pared the density profile of a pure solvent in a steady
shear field with the same profile in an oscillating shear
field. For a pure fluid we observed similar long-range
interactions at high oscillation frequencies. These re-
sults indicate that the unexpected swelling of the
polymer brush at high oscillation frequencies are caused
by the properties of the solvent rather than those of the
polymer itself. Of course, it remains debatable to what
extent these results reflect the behavior of a real
molecular system at high (but still experimentally
accessible) frequencies and to what extent they are
merely an artifact of the coarse-grainded DPD model.
If the DPD model with this parameter set is realistic,
the simulations imply that the threshold frequency
needed to induce swelling of the polymer brush is not
related directly to the hydrodynamic relaxation time of
a blob of the unperturbed brush, as was suggested on
theoretical grounds.19 This hypothesis can, in principle,
be tested experimentally.

3.2.5. Discussion. All our simulations indicate that
a constant shear flow compresses an end-tethered
polymer layer. Although we focused on parameter set 1
to study the effect of constant shear, the results are
qualitatively very similar for both parameter sets. For
a given shear rate the compression of a grafted polymer
layer becomes larger as its grafting density decreases.
The smaller layer thickness due to shear is in agreement
with previous simulations which treated the solvent flow
at the mean-field level (using the Brinkman equa-
tion).22-24 It contradicts a number of theoretical predic-
tions of brush swelling in a solvent flow field.17-20 In
our simulations we considered polymer layers attached
to a surface which is at rest. This system is sheared by
moving a bare upper surface. In experimental setups
one often has a symmetric system with both surfaces
covered by polymer. The results which we reported in
Figure 5 indicate that moving the lower polymer-
bearing surface has exactly the same effect as moving

Figure 13. Density profiles of a polymer brush using param-
eter set 2. The upper wall performs an oscillatory motion with
amplitude Vmax ) 40 and frequency f ) 0.001 and 0.05. The
profile of an unsheared brush is shown for comparison. For
f ) 0.05 the total density profile (the sum of the polymer and
solvent profiles) is also shown. For f ) 0.001 the total density
profile is practically identical to that of the unsheared system.
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the upper bare surface. From this one can conclude that
our simulations should also give a relevant description
of systems where both surfaces are covered with poly-
mer. (Of course, new effects will occur when the polymer
layers overlap. This situation has not been investigated
in the present paper.)

When exposed to oscillatory shear flow at a not too
high frequency, the polymer brush also shows an overall
compression, but its structure is continuously adapting
to the change in shear flow that it is experiencing. From
Figures 11 and 12 for f ) 10-4-10-3 the picture emerges
of a system that can more or less continuously relax in
response to the changing shear rate. At a higher
frequency (f ) 0.1) the response of the brush to the
oscillating shear becomes much smaller. To a large
extent this is due to the lower absolute values of the
shear rate at higher frequency, which is an artifact of
the simulation model with the present parameter set.
The decay length of the solvent velocity profile near an
oscillating surface is (ν/πf)1/2, where ν is the kinematic
viscosity and f the frequency. For water or most common
organic liquids this decay length is of the order of 10
µm. In our simulations it is of order 10rc for f ) 0.001
(i.e., in this case the solvent flow has the opportunity
to penetrate well into the brush), but for f ) 0.1 it is 1
order of magnitude smaller. One can only partly com-
pensate for this strong decrease of the solvent flow by
increasing the amplitude of the oscillation.

Using parameter set 2, we do find an increase of Hrms
beyond its equilibrium value, whereas we did not
succeed in clearly finding this effect for parameter set
1. This increase in the layer thickness is due to a
depletion force on the solvent near a surface oscillating
at a high frequency. The magnitude of this force depends
strongly on the parameters used to describe the fluid.
For example, increasing the repulsion parameter a, i.e.,
decreasing the compressibility, gives a weaker depletion.
Increasing the particle number density also gives a
weaker depletion. For a fluid with the parameters F )
3 and a ) 10 we do find a clear depletion zone, although
in this case we did not find an increase of the thickness
of the polymer brush when sheared. The effect of high-
frequency oscillatory shear on a polymer brush in the
DPD model seems to depend rather critically on the
precise parameters of both the solvent and the polymer.

The major difficulty with the DPD simulations pre-
sented in this study is formed by the different time
scales that are involved in the systems under consid-
eration. In principle, the most relevant time scale is that
of the polymer chains. As a characteristic time τ, one
can then take the relaxation time of a free polymer chain
in solution. For parameter set 2 (F ) 3, a ) 25) the
dependence of τ on the chain length has been investi-
gated previously.38 The shear rates and oscillation
frequencies which we used in the simulations were
chosen such that the reduced numbers Wi ) γ̆τ and τf
correspond to reasonable experimental values. However,
the response of the fluid to an imposed strain is
determined by its (kinematic) viscosity ν. Groot and
Warren34 pointed out that (when using parameters
similar to those normally used in DPD simulations) the
DPD model gives a far too low Schmidt number (which
is the dimensionless number obtained from the ratio of
the viscosity and the diffusion coefficient). This is the
underlying problem which we encountered in Figure 11,
where the low solvent viscosity means that the polymer

brush can only be sheared at relatively low Wi values.
A similar problem occurs with the high-frequency
simulations using parameter set 2. The increase of Hrms
that we saw for f ) 0.05 in the previous section occurs
for a reduced frequency τf of 2. This is a very reasonable
experimental value for the frequency. However, if a
mapping is made between the simulation and real time
scales based on the solvent only, then the frequency does
not compare well with a reasonable experimental value.
For example, assuming that a solvent particle represent
three water molecules and linking its diffusion coef-
ficient to that of real water, we find extremely high
frequencies. It is therefore difficult to state whether the
effect seen in the simulation model will occur for any
molecular system at a reasonable experimental fre-
quency (in the hertz-kilohertz range). This problem is
again caused by the poor quantitative description of the
fluid dynamics in our present DPD model.

The most straightforward way to improve on the
problems mentioned above is to increase the viscosity
of the DPD fluid. This can be achieved by increasing
both the noise amplitude σ and friction coefficient γ. The
increase in the dissipation will then lead to an increased
viscosity. As this will not affect the equilibrium proper-
ties of the system, it will still be possible to use
parameters based on mapping procedures for those
properties. However, on the computational side, there
will be a penalty associated with a smaller time step.
Alternatively, it is also possible to keep the noise
amplitude constant but decrease the simulation tem-
perature. However, this will affect the equilibrium
properties of the systems that are simulated.

4. Conclusions

The DPD shear simulation approach used in this
paper is based on the boundary conditions introduced
by Willemsen et al.45 We have shown that this method
is well-suited to model oscillatory shear flow in addition
to constant shear flow. Because of its particle-based
nature, the DPD method is far better suited for simula-
tions of complex fluids than, for example, computational
fluid dynamics methods. As a relevant example of such
systems, we have studied the behavior of grafted
polymer layers in a shear flow. The (steady-state)
problem of a polymer brush under constant shear can
be well described with the DPD model. The overall
picture that emerges from these simulations is that
individual chains become stretched in the direction of
flow and that the layer thickness decreases. This agrees
fairly well other simulation studies that have been
published. However, as solvent particles and hydrody-
namic interactions are explicitly taken into account, a
full description of the solvent flow within (the tip of)
the grafted polymer layer is also acquired from the
simulations. Under oscillatory shear, the response of a
polymer brush is qualitatively similar to that under
constant shear for low oscillation frequencies. In this
case the polymer chains are able to follow the continu-
ous change in the flow velocity. At higher frequencies
the discrepancy between the time scales of the polymer
and solvent dynamics in our DPD model make it
difficult to draw definite conclusions regarding the
behavior of the systems. Further work is first of all
needed here to get a better comprehensive mapping of
dynamical properties of a polymer chain and solvent
onto the DPD model.
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