Molecular simulation study of the competitive adsorption of H$_2$O and CO$_2$ in zeolite 13X

Lennart Joos,†,‡,§ Joseph A. Swisher,†,¶,§ and Berend Smit$^{∗,†,¶}$

Dept. of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, Center for Molecular Modeling, Ghent University, Zwijnaarde, B-9052 Belgium, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

E-mail: berend-smit@berkeley.edu

$^{∗}$To whom correspondence should be addressed
†University of California, Berkeley
‡Ghent University
¶Lawrence Berkeley National Lab
§Contributed equally to this work
Pure component isotherms

Figure 1: Comparison of the H$_2$O isotherms obtained from our GCMC simulations and the experimental isotherm at 310 K measured by Ferreira et al.1

Figure 2: Comparison of the CO$_2$ isotherms obtained from our GCMC simulations and the experimental isotherms at 290 K, 310 K and 330 K measured by Ferreira et al.1
Figure 3: Comparison of the CO$_2$ isotherms obtained from our GCMC simulations and the experimental isotherm at 328 K measured by Bae et al.2

Figure 4: Comparison of the CO$_2$ isotherms obtained from our GCMC simulations and the experimental isotherm at 323 K measured by Ko et al.3
Isotherms on a linear scale

Figure 5: H$_2$O isotherms on a linear scale and comparison with experimental data. Red data points from Wang et al.,4 blue data points from Ferreira et al.1

Figure 6: CO$_2$ isotherms on a linear scale and comparison with experimental data. Red data points from Wang et al.,4 blue data points from Ko et al.3 and green from Bae et al.2
Mixture isotherms

Figure 7: Comparison of the H$_2$O/CO$_2$ isotherms obtained from our GCMC simulations and the experimental isotherms at 323 K measured by Wang et al.5

References

