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Cubic latticemodels ofdimerizingandpolymerizing fluidshavebeenstudiedwithinWertheim’sOrnstein-
Zernike (OZ)matrix formalism to assess the adsorption behavior of such fluids at impenetrable, interacting
walls. The OZ matrix formalism is relatively easy-to-handle for these cubic lattice models, due to the
absence of liquid-like packing effects. The calculated concentration profiles have been compared to NVT-
Monte Carlo simulations. The simulation of the polymerizing fluid employed a biased cluster move, based
on the configurational bias scheme of Siepmann and Frenkel. The dimerizing fluid profiles are in nearly
quantitative agreement with the simulation results, even for a fully associated, i.e., dimeric fluid. This
is in contrast with the polymerizing fluid profiles that show important deviations from the simulation
results, especially near interacting walls. It is therefore concluded that better approximations are needed
in solving Wertheim’s OZ matrix for the polymerizing fluid.

1. Introduction

An associating fluid is characterized by short-ranged
directional attractions between its particles. Studies of
the bulk properties of associating fluids include the
classical chemical theory of solutions1 in which the
associative interactionsaremodeledas chemical reactions,
lattice theories in which the free energy is minimalized
within the quasi-chemical approximation,2,3 computer
simulation, and integral equation approaches (see ref 4
and references cited therein). The integral equation
approaches attempt to accurately calculate the structural
correlations between the fluid particles. Themacroscopic
thermodynamic properties can then be calculated from
these correlations.5
In thispaperWertheim’sOrnstein-Zernike (OZ)matrix

integral equation for associating fluids with one6,7 and
two8,9 directional attractive sites per particle is adapted
to study the adsorption of associating cubic lattice fluids
at an impenetrable interacting wall. As far as we are
aware, it is the first application of Wertheim’s OZmatrix
integral equations to obtain the adsorption profiles of
associating lattice fluids. Recently, work that uses a
different integral equation approach for continuum ad-
sorbing fluids has also been reported.10
We study the adsorption of lattice fluids, instead of the

more realistic continuum fluids, because the OZ matrix

formalism is very easy to handle in the case of lattice
fluids. This is due to the absence of liquid-like ordering
effects in such fluids. Also, it is very easy to introduce a
flatwall into a cubic lattice fluid.11 Despite the simplicity
of the cubic latticemodel, it retains themain characteristic
of an associating fluid: the formation of orientation-
dependent bonds between the fluid particles. In thework
reportedhere,wemainly consider the adsorption of fluids
forwhich theassociative interactionbetween theparticles
forms semipermanent (covalent) bonds that arenot easily
broken by the thermalmotion of the particles. The fluids
of particles with one (section 2) and two (section 3)
directional attractive sites then serve to model the
adsorption of molecular lattice fluids. Especially the
doubly associating fluid is interesting to us, polymer
chemists, for it models the adsorption of a polydisperse
polymeric lattice fluid. Such polymeric lattice fluids are
very commonly studied in polymer science12-16 and are
technologically relevant in, e.g., thecompositeandcoatings
industries.
The adsorption profiles that were obtainedwith theOZ

matrix formalism have been compared to Monte Carlo
simulations. For the fluidwith one directional attractive
force per particle, the profiles were simulated by the
standard brute force method.17 The doubly associating
fluid was simulated with a biased cluster move18 which
combines the configurational bias scheme19 and a cluster
move of Wu, Chandler, and Smit.20

The outline of the rest of this paper is as follows. In
section 2 we delineate the equations for the calculation
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of the adsorption/depletion profiles of particles with one
directional attractive force. Some attention is paid to the
limit of infinitely strong attractions between the fluid
particles. In this limit full associationof the fluidparticles
into dimers occurs. In section 3 the formalism for fluids
consistingofparticleswith twodirectionalattractive forces
is presented. For the case of strong associations between
the particles, a polydisperse lattice fluid of polymeric
chains near an impenetrable wall is formed.
Themethod that is used in sections 2 and 3 to introduce

awall into the fluidwasdevelopedbyHenderson,Abraham
andBarker11 to study the adsorption of a continuum fluid
at a structureless surface. It was used by Yethiraj and
Hall21 to obtain the static adsorption characteristics of a
polymeric fluidatahardwallwithin theRISMapproach.22
The method consists of mixing a simple fluid particle5
into theassociating fluid, afterwhich thisparticle is "blown
up" in two directions to form a flat wall. It is shown in
sections 2 and 3 that it is particularly easy to employ this
method on the cubic lattice. In section 4webriefly outline
the Monte Carlo simulation methods used for the singly
and doubly associating lattice fluids. In section 5, the
calculated adsorption profiles for the dimerizing and
polymerizing fluids near hard and interacting walls are
compared to the simulation data and the results are
discussed. Conclusions are collected in section 6.

2. Adsorption of Particles with One Directional
Attractive Force

In this section Wertheim’s two-density formalism6,7 is
adopted for the calculation of the adsorption profiles of a
3D cubic lattice fluid of singly associating particles at an
impenetrablewall. Theparticlesoccupyexactlyone lattice
site and can bind into dimers due to an off-center
associative particle-particle interaction. The walls are
allowed to have a nonassociative interaction with the
particles in the layer closest to the wall. The method11
used to introduce the wall into the fluid was developed to
study the static adsorption behavior of continuum hard
sphere fluids near an impenetrable structureless wall.
For our case, its basic steps are as follows.
First, the Ornstein-Zernike matrix equation for a

mixture of associating and simple (nonassociating) par-
ticles is written down. Then, the packing fraction of the
simple fluid particles is reduced to zero. This assures
that encounters of nonassociating simple particles are
absent. After this, the simple particles are “blown up”
along the m- and n-axis of the (l,m,n)-coordinate system
by removing them- and n-dependence of the correlations
betweenthesimpleandassociatingparticles. Theaverage
correlation between the wall and an associating particle
can then directly be related to the concentration of the
associating particles near the wall.
The potential model used to describe the interactions

between the associating particles is6,23

where (1,2) symbolically denotes the coordinates and
orientations of particles 1 and 2. In eq 1, the repulsive
part is only dependent on the distance (l, m, n) between
particles 1 and 2:

Note that uR(l,m,n) regulates that the particles occupy
exactly one lattice site. Theattractivepart of thepotential
us1,s2(1,2) is a function of the interparticle distance (l, m,
n) and of the orientationsΩ1 andΩ2 of the attractive sites
s1 and s2 on the particles:

where an attractive site can point in the directions+l (Ωi
) 1), -l (Ωi ) -1), +m (Ωi ) +2), -m (Ωi ) -2), +n (Ωi
) +3), and -n (Ωi ) -3). The conditions Ω1 ) -Ω2, l2 +
m2 + n2 ) 1, and sgn(l + m + n)(l2 + 2n2 + 3m2) ) Ω1
assure that bond formation only occurs between nearest
neighborparticles thathave their attractive sites oriented
toward each other (see Figure 1). The interactions that
involve thenonassociating simpleparticles are considered
further on.
In the two-density formalism, the packing fraction η of

theassociatingparticles,which is the fractionof the lattice
volume filled with associating particles, is split into the
fractionsofparticles thathave (η1) andhavenot (η0) formed
a bond with another associating particle6

The simple fluid particles do not have a directional
attractive potential. Therefore, they are not involved in
associative bonding and their packing fraction is not
divided into parts as in eq 4. The Ornstein-Zernike
matrix equation for a mixture of associating particles at
packing fraction η and simple fluid particles at ηM is then
given by6

where the argument (1,2) denotes the dependence of H
andC on the coordinates, i.e., position and orientation of
the associating site, of particles 1 and 2. For the mixture
of associating and simple particles, the matrix H(1,2) is
given by

(21) Yethiraj, A.; Hall, C. K. J. Chem. Phys. 1991, 95, 3749.
(22) Chandler, D.; Andersen, H. C. J. Chem. Phys. 1972, 57, 1930.
(23) Janssen, R. H. C.; Nies, E.; Smit, B. Mol. Phys., submitted.

u(1,2) ) uR(1,2) + us1,s2(1,2) (1)

uR(0,0,0) f ∞

Figure 1. Fraction of an associating lattice fluid inwhich four
nearest neighbor bonds are visible.

uR(l,m,n) ) 0 otherwise (2)

us1,s2(0,0,0,Ω1,Ω2) ) 0

us1,s2(l,m,n,Ω1,Ω2) ) uattr

if Ω1 ) -Ω2 and l2 + m2 + n2 ) 1 and

sgn(l + m + n)(l2 + 2m2 + 3n2) ) Ω1

us1,s2(l,m,n,Ω1,Ω2) ) 0 otherwise (3)

η ) η0 + η1 (4)

H(1,2) ) C(1,2) +
1

6
∑
r3,Ω3

C(1,3) σH(3,2) (5)
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and the density matrix is given by

The (1,2) on the right hand side of eq 6 denotes that all
elements ofH depend on (1,2). ThematrixC(1,2) is of the
same form asH(1,2). The hij(1,2) in eq 6 denote a part of
the total correlation between two associating particles,
the hi(1,2) denote a part of the total correlation between
an associating and a simple particle, and h(1,2) denotes
the total correlation between two simple particles. The
cij(1,2), ci(1,2), and c(1,2) denote respectively the partial
direct correlations between two associating particles, an
associating and a simple particle, and two simple par-
ticles.6 The elements ofH(1,2) and C(1,2) depend on the
orientation Ωs of the attractive site s of each associating
particle that is considered

We write hi(l,m,n,Ωi) ) hi(l,m,n) because explicit orien-
tational dependence only arises in case of an interaction
between two associating particles. If the third particle in
eq 5 is a simple nonassociating particle, there is only a
formal dependence on the orientation of this particle, and
∑Ω3 can simply be replaced by the factor 6.
Before the closure equations necessary to calculate the

adsorptionprofiles are introduced,weperform thematrix
multiplications in eq5and take the limit ηMf0 to exclude
encounters of simple fluid particles. The result is nine
equations distributed over four sets. The four sets are
given by

with {i, j} ∈ {0, 1}. The set for hij(1,2) in eq 9 is identical
to the equations that were solved previously in ref 23 to
obtain the bulk correlations in the dimerizing fluid. The
first set in eq 9 can thus be solved independently from the
other sets in eq 9. The method to obtain the hij(1,2) for
fixed values of η and η0 is outlined in detail in ref 23. Note
that, with η0, the degree of association η1/η is set via eq

4. Fixation of (η, η0) is therefore analogous to the setting
of η and the strength of the associative interaction, uattr.
The last set in eq 9 consists of a single equation for the
total correlation h(1,2) between two simple particles. It is
of no concern to us due to the limit ηM f 0 that we have
taken.11 Further, we only need to consider one of the two
sets, the second or third in eq 9, for the wall-associating
particle correlations hi(1,2). Both these sets can be
employed, but we choose to use the third. This set, which
consists of two equations, can bewritten in an orientation
independent formwithout approximation, becauseweare
considering parts of the orientation independent distribu-
tion (see eq 8) of an associating and a simple particle.
Therefore, we can write

with i ∈ {0, 1}.
The next step is the creation of a wall from the simple

fluid particles. Removing m- and n-coordinates of the
hi(l,m,n) and the ci(l,m,n) effectively extends the simple
particle in the m- and n-directions. Only the l-distance
of theassociatingparticle to the simpleparticle is retained,
and thus, the simple fluid particle behaves as a wall:

Equation 11 is the central result of this section. Note
that the hij(l,m,n), which are the parts of the correlation
between two associating particles, are still dependent on
three coordinates.
The hi(l), that are found from eq 11 upon combination

withanappropriate closure equation, are thepartialwall-
associating particle correlations that can be used to
construct the concentrationprofile of the associating fluid
at the wall.
We have complemented eq 11 with a Percus-Yevick

type closure relation, given by

and the exact relations

in which uW(l) is the symmetric (uW(+l) ) uW(-l)) wall-
associative particle potential. It is given by

Note thatuW(l) is orientation independent; theorientations
of the associating fluid particles are of no influence on the
wall-particle interaction uW(l). The relations between
the partial wall-fluid distribution, gi(l), and the partial
wall-fluid correlation, hi(l), are6

Equation 15 (and eqs 12 and 13) deals with only one
associating particle, which explains the single index.

H(1,2) ) |h00 h01 h0
h10 h11 h1
h0 h1 h |(1,2) (6)

σ ) |h η0 0
η0 0 0
0 0 ηM

| (7)

hij(1,2) ) hij(l,m,n,Ω1,Ω2)

hi(1,2) ) hi(l,m,n,Ω1) ) hi(l,m,n,Ω2) ) hi(l,m,n)

h(1,2) ) h(l,m,n) (8)

hij(1,2) ) cij(1,2) +
1

6
∑
r3,Ω3

[ci0(1,3)ηh0j(3,2) +

ci0(1,3)η0h1j(3,2) + ci1(1,3)η0h0j(3,2)]

hi(1,2) ) ci(1,2) +
1

6
∑
r3,Ω3

[ci0(1,3)ηh0(3,2) +

ci0(1,3)η0h1(3,2) + ci1(1,3)η0h1(3,2)]

hi(1,2) ) ci(1,2) +
1

6
∑
r3,Ω3

[c0(1,3)ηh0i(3,2) +

c0(1,3)η0h1i(3,2) + c1(1,3)η0h0i(3,2)]

h(1,2) ) c(1,2) +
1

6
∑
r3,Ω3

[c0(1,3)ηh0(3,2) +

c0(1,3)η0h1(3,2) + c1(1,3)η0h1(3,2)] (9)

hi(l,m,n) ) ci(l,m,n) + ∑
l′,m′,n′

((ηh0i(l′,m′,n′) +

η0h1i(l′,m′,n′))c0(l-l′,n-n′,m-m′) +
η0h0i(l′,m′,n′) c1(l-l′,m-m′,n-n′)) (10)

hi(l) ) ci(l) + ∑
l′,m′,n′

((ηh0i(l′,m′,n′) +

η0h1i(l′,m′,n′))c0(l-l′) + η0h0i(l′,m′,n′) c1(l-l′)) (11)

yi(l) ) gi(l) - ci(l) (12)

gi(l) ) e-âuW(l)yi(l) (13)

uW(0) ) +∞

uW((1) ) uW

uW((l) ) 0 otherwise (14)

hi(l) ) gi(l) - δi0 (15)
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Equations 11-15 form a complete set of equations that
can be solved for the hi(l), if we have obtained hij(l,m,n)
and cij(l,m,n) from the first set in eq 9 with the methods
outlined in ref 23. The solution method for obtaining the
hi(l) is outlined in theAppendix. Once thehi(l) areknown,
the partial wall-fluid distributions gi(l) are found from
eq 15. The concentration profile can then be constructed
from

From the concentration profile ηg(l), an excess adsorbed
amount Γ is defined by

where g(l) - 1 denotes the deviation of the associating
fluid distribution at the wall from the bulk value 1. The
lbulk should be chosen large enough for the summation to
reach into the bulk of the adsorbing fluid. An adsorption
isotherm is constructed by plotting Γ(η) versus η.
Note that the theory outlined in this section does not

provide the correlations between the associatingparticles
in the interfacial layers. It only considers wall-fluid
correlations. Themethod outlined in this section canalso
be used to study the adsorption of associating particles on
an attracting “rod” if only one coordinate is removed in
going fromeq10 to eq11. Results for the static adsorption
behavior of the singly associating fluid near an attracting
wall are presented in section 5.

3. Adsorption of a Polymerizing Cubic Lattice
Fluid

In this section the three-density formalism8,9 is adapted
to calculate the concentration profiles of a cubic lattice
fluid consisting of particleswith twodirectional attractive
forces at an impenetrablewall. Thewall is again allowed
to have a nonspecific nearest neighbor interaction with
theparticles that occupyone lattice site each. Themethod
itself is completely analogous to the method described in
theprevious section. If theattractionsbetween thedoubly
associatingparticlesare relatively strong, chainmolecules
will be formed. The density profiles are therefore the
result of the adsorption of a polydisperse polymeric lattice
fluid at an impenetrable wall.
The potential model that is used involves a summation

over the two attractive sites of each particle:8

The potentials uR and us1,s2 are defined by eqs 2 and 3,
respectively. We have chosen the sites on a particle to be
indistinguishable. Kalyuzhnyi and Stell24 have general-
izedWertheim’s approach8,9 to such systems, and herewe
rely on their graphical analysis.
TheOZmatrix equation for a systemof simple particles

at packing fraction ηM and doubly associating particles at
packing fraction η is still given by eq 5 with the modified
matrices

and

in which

with {i, j} ∈ {0, 1, 2} and η ) η0 + η1 + η2 ) σ2. The ηj
in eq 21 denote the packing fractions of the associating
particles that have formed j ∈ {0, 1, 2} specific bonds. The
matrix forC(1,2) is of the same formas theH(1,2)matrix.
The hij(1,2) in eq 19 denote parts of the total two-particle
correlation between two associating particles; the hi(1,2)
concern an associating and a simple particle, and h(1,2)
is the total correlation between two simple particles.
Matrix multiplication of eq 5 and taking the limit ηM

f 0 results in sixteen equations distributed over four
sets:

The first set in eq 22 comprises nine equations, and the
second and third set each contain three equations. The
fourth set contains only one equation. The set for the
hij(1,2) in eq 22 contains the equations that determine the
parts of the total two-particle correlations in the bulk
associating fluid. It was solved in ref 18 by combining it
with PY-type closures and mass balance equations. In
obtaining the hij(l,m,n) of the bulk fluid, it was neces-
sary18,25 to assume the independence of the two interaction
sites on the associating fluid particles and to preaverage
the site-site potential us1,s2 over the orientations of the

(24) Kalyuzhnyi, Yu. V.; Stell, G. Mol. Phys. 1993, 78, 1247. (25) Chang, J.; Sandler, S. I. J. Chem. Phys. 1995, 102, 437.

ηg(l) ) ηg0(l) + η0g1(l) (16)

Γ(η) ) ∑
l)1

lbulk

η(g(l) - 1) (17)

u(1,2) ) uR(1,2) + ∑
s1)1

2

∑
s2)1

2

us1,s2(1,2) (18)

H(1,2) ) |h00 h01 h02 h0
h10 h11 h12 h1
h20 h21 h22 h2
h0 h1 h2 h

|(1,2) (19)

σ ) |σ2 σ1 σ0 0
σ1 σ0 0 0
σ0 0 0 0
0 0 0 ηM

| (20)

σi ) ∑
j)0

i

ηj (21)

hij(1,2) ) cij(1,2) +
1

6
∑
r3,Ω3

[ci0(1,3)σ2h0j(3,2) +

ci1(1,3)σ1h0j(3,2) + ci2(1,3)σ0h0j(3,2) +
ci0(1,3)σ1h1j(3,2) + ci1(1,3)σ0h1j(3,2) +

ci0(1,3)σ0h2j(3,2)]

hi(1,2) ) ci(1,2) +
1

6
∑
r3,Ω3

[ci0(1,3)σ2h0(3,2) +

ci1(1,3)σ1h0(3,2) + ci2(1,3)σ0h0(3,2) +
ci0(1,3)σ1h1(3,2) + ci1(1,3)σ0h1(3,2) + ci0(1,3)σ0h2(3,2)]

hi(1,2) ) ci(1,2) +
1

6
∑
r3,Ω3

[c0(1,3)σ2h0i(3,2) +

c1(1,3)σ1h0i(3,2) + c2(1,3)σ0h0i(3,2) +
c0(1,3)σ1h1i(3,2) + c1(1,3)σ0h1i(3,2) + c0(1,3)σ0h2i(3,2)]

h(1,2) ) c(1,2) +
1

6
∑
r3,Ω3

[c0(1,3)σ2h0(3,2) +

c1(1,3)σ1h0(3,2) + c2(1,3)σ0h0(3,2) + c0(1,3)σ1h1(3,2) +
c1(1,3)σ0h1(3,2) + c0(1,3)σ0h2(3,2)] (22)
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sites. The preaveraging is given by18,25

which results in

with a) e-âuattr. The fA, which is the attractive part of the
Mayer function,8 appears in the closure andmass balance
equations of the bulk fluid. Thehij(l,m,n) of the bulk fluid
are needed in this section as an input for the calculation
of the adsorption profiles. In this section, we therefore
also assume the independence of interaction sites on an
associating particle and employ the preaveraging of eq
24. The last set of eq 22 is a single equation for the total
correlation of two simple particles. It is of no importance
tous becauseηM f0guarantees that encounters of simple
fluid particles do not occur. The concentration profiles of
the associating fluid near the impenetrable wall can be
calculated from the second or third set in eq 22. We will
only consider the third set. The simple particle can be
extended in the m- and n-directions in the same way as
outlined in the previous section. The result is

Equation 25 is the central equation of this section. The
hij(l,m,n) and σi that appear in eq 25 are determined from
the solution of thebulkproperties of theassociating lattice
fluid.18 The partial wall-associating fluid distributions
hi(l) can now be found from eq 25 by combining it with a
closure equation. We again employ the Percus-Yevick-
like closure eqs 12 and 13. The wall-associating particle
interaction potential is nonspecific and still given by eq
14. The relation of hi(l) to the partial wall-particle
distributions gi(l) is given by eq 15. The index i that
appears in eqs 12-15 and 25 now runs over {0, 1, 2}.
Equations12-15and25constitutea set of six equations

in the six unknowns c0(0), c0(1), c1(0), c1(1), c2(0), and c2(1)
that is solved along the lines outlined in the Appendix.
Once the unknowns are found, the hi(l) can directly be
constructed (see theAppendix). The concentrationprofile
of the fluid at the impenetrable wall is finally obtained
from

in which g(l) is the total wall-associating particle distri-
bution function. An adsorption isotherm can be con-
structed from eq 26 via eq 17.

4. Adsorption of Associating Fluids: Monte Carlo
Simulations

The concentration profiles of the dimerizing fluid
(section 2) and the polymerizing fluid (section 3) were
alsodeterminedbyNVT-MCsimulation. The simulations
used a box that was bounded by impenetrable walls on
both sides along the l-axis. The box had periodic bound-
aries in them- and n-directions. Layers were defined as
mn-planes parallel to the impenetrable walls. Particles

in the layer closest to the wall experience a wall-particle
interaction. Systems with zero or an attractive wall-
particle energy uW were considered. The concentration
profiles were determined by counting the numbers of
particles in each layer.
Equilibration was assured by monitoring the internal

energy,E, of the fluid in the box and by checking that the
obtained concentration profileswere symmetric along the
l-axis. A blocking method26 was used to calculate the
standard deviations of the monitored averages and to
assure that the simulation recipe is able to produce
uncorrelated data. Thus far, we have only determined
the concentration profiles from the simulations, but in
the case of the polydisperse chain fluid it might also be
interesting to study ordering, reorientation,27,28 and chain
length segregation effects that are induced by the im-
penetrable wall.
Both types of fluids thatwehave consideredwere tested

at two box filling fractions: η′ ) 0.5 with 1000 particles
in a 20× 10× 10 lmn-box and η′ ) 0.3with 1536 particles
in a 20× 16× 16 lmn-box (the overall box filling fractions
are denoted as η′ to distinguish them from the packing
fraction η of the bulk region). The walls were non-
interacting or had a favorable attractive energy of uW )
-0.25kBT oruW ) -0.5kBTwith the particles in the layers
closest to the wall. Different runs were performed with
associating particle-particle interactions varying from
uattr ) -1.0kBT to uattr ) -7.0kBT (in steps of -0.5kBT or
-1.0kBT).
The simulation recipe that was used is different for

both fluid types. For the simulation of the singly as-
sociating fluid, we have used a combination of brute force
moves and moves in which a particle was taken from a
dimer and bonded to a free nonbonded monomer. The
latter move is included in the recipe because there is
generally no energy difference associated with it, leading
toautomatic acceptanceandenhancedequilibration.Only
when a particle is moved from or to a layer next to the
wall do we have to take the wall-associating particle
interaction energy into account in theacceptance criterion
of this move. It samples the distribution of the particles
over the latticebutdoesnot sample thenumberofparticles
bonded into a dimer. Therefore, we also need to include
a sufficient amount of brute force moves in the recipe.
A recipe was employed in which 70% brute force and

30% othermoveswere attempted. The average energy in
the box and the concentration profiles were tested to be
independent of the exact constitution of the recipe.
Thesimulation recipeof thepolymerizing fluidwasused

previously to obtain the structural properties of the bulk
region of the fluid.18 It includes brute force moves (10%),
bond flips (10%), double bond flips (15%), generalized
reptation moves (15%), and biased cluster moves (50%).
Indicated between the parentheses are the percentage of
attempts for the type ofmove. Thepolymerizingparticles
interact via the model potential of 2, 3, and 18. It is
forbidden for the two sites on a particle to point in the
same direction, and the chains that are formed thus show
the full excluded volume. Note that this is not the case
in the theory of section3, because in solving theOZmatrix
one has to assume an independence of the orientations of
the attractive sites on the particles, as outlined above eq
24.
All moves used in the recipe were discussed in detail

in ref 18. The only difference is that in this work the

(26) Flyvbjerg, H.; Petersen, H. G. J. Chem. Phys. 1989, 91, 461.
(27) Mansfield, K. F.; Theodorou, D. N. Macromolecules 1990, 23,

4430.
(28) Yethiraj, A. J. Chem. Phys. 1994, 101, 2489.

fA(l,m,n) )
1

36
∑

Ωs1,Ωs2

(e-âus1,s2(l,m,n,Ωs1,Ωs2) - 1) (23)

fA(l,m,n) ) 1
36
(a - 1) if l2 + m2 + n2 ) 1

fA(l,m,n) ) 0 otherwise
(24)

hi(l) ) ci(l) + ∑
l′,m′,n′

((σ2h0i(l′,m′,n′) + σ1h1i(l′,m′,n′) +

σ0h2i(l′,m′,n′))c0(l-l′) + (σ1h0i(l′,m′,n′) +
σ0h1i(l′,m′,n′))c1(l-l′) + σ0h0i(l′,m′,n′)c2(l-l′)) (25)

ηg(l) ) ∑
i)0

2

σig2-i(l) (26)
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wall-particle interaction needs to be accounted for in the
acceptance criterion of the moves.
The brute force move consists of randomly choosing a

new particle position and two orientations for the attrac-
tive sites of a randomly chosen particle. Acceptance of
the move is determined by the conventional Metropolis
acceptance criterion.17 The bond flip attempts to change
the orientation of one of the attractive sites of a particle
without moving the particle. It is meant to sample the
creation/destructionof chainends in thepolymerized fluid.
The third move, the double bond flip, samples the chain
lengthdistributionby imitatingametathesis reaction (see
Figure 2).
This move was introduced by Olaj and Lantschbauer29

and by Mansfield30 in the simulation of a polydisperse
polymeric lattice fluid at full packing. The fourth move,
the generalized reptation move, consists of randomly
choosing two chain ends and flipping the end segment of
one chain to the other chain. This move helps to sample
the particle distribution on the lattice. Acceptance of the
bond flips and the generalized reptation moves is again
governed by the Metropolis acceptance criterion. Note
that there is generally no energy difference associated
with the double bond flips and generalized reptation
moves. The last move, the biased cluster move, was first
presented in ref 18. It consists of two parts. The first
part, the cluster part,20 is concerned with the selection of
a part of a polymeric chain molecule: the cluster. The
clustermay consist ofmanyparticles; therefore, inmoving
the cluster we need to alter the form of the cluster in such
a way that it fits into the voids present between the other
particles in the box. This is what the second part, the
configurational bias scheme,19 is concernedwith. Thebias
that is introduced by adjusting the form of the cluster is
corrected for in the acceptance criterion.19 The final
scheme,18 the bias cluster scheme, has the additional
feature that it samples chain lengths. This property is
mostwelcome in our study of polymerizing fluids inwhich
the chains do not have fixed lengths. In ref 18 it was
shown for apolymerizingbulk fluid that thebiased cluster
move ismore efficient than simple brute forcemoves.Note
that, in the simulationof thepolymerizing fluidadsorption
profiles, we need to include the wall-fluid interaction uW
in the Rosenbluth factors.18,19
All simulations were performed in nonparallel runs on

a 14 MIPS R8000 processor Silicon Graphics Power
challenge XL with an IRIX 6.0 operating system. Simu-
lations for the dimerizing fluid took up to 2 CPU hours
for the strongly interacting fluids (uattr ) -7.0kBT). The
polymerizing fluid simulations took up to 10 CPU hours
for uattr ) -7.0kBT and 5 hours for uattr ) -3.0kBT. The
results are available on request via e-mail at tgpken@
urc.tue.nl.

5. Results and Discussion
5.1. Dimerizing Fluid. In Figure 3 some concentra-

tion profiles of the singly associating lattice fluid are

presented. Walls are located at layer l ) 0 and layer l )
21. Symmetric profiles along the l-axis are obtained, but
here only layers1-8are shown. Threewall-fluidnearest
neighbor energies were considered in Figure 3: uW )
0.0kBT (b), uW ) -0.25kBT (9), and uW ) -0.5kBT (2). In
the simulations (symbols), we have set the strength of the
particle-particleassociative interactionatuattr) -7.0kBT.
This corresponds to roughly 90% of the particles being
bonded into dimers.23 It is seen from the simulations that
the influence of thewall only reaches two layers deep into
the fluid, even forarelatively strongwall-fluid interaction
uW ) -0.5kBT that causes a large accumulation of fluid
particles in the layer closest to the wall. The depth of the
profile is obviously related to the length of the main axis
of the dimers: a dimer with its main axis oriented
perpendicular to the wall only reaches into the second
layer. In Figure 3 it is seen that the fluid tends to
accumulate near the walls if the wall-fluid interaction is
favorable (9 and 2). If the wall is non-interacting, a
depletion is observed. Such a depletion is absent for
nonassociating particles (uattr f 0) and can be fully
attributed to the entropic restrictions that the impen-
etrable wall imposes on the dimeric molecules that are
formed if |uattr| > 0. The results of the theory of section
2 are depicted by the lines. We have drawn connecting
lines through the calculated packing fractions ηg(l), to
make thedistinctionbetweenthecalculatedandsimulated
points as clear as possible. It does not mean that the
theory predicts a continuous profile.
Comparisons with the theory are made at fixed bulk

packing fractionηand fixedpacking fractionofnonbonded
particles η0. The values of η and η0 in the bulk region of
the fluid (layers 4-16) are in general slightly different
from the overall box values η′ and η′0. The η and η0 that
areused for comparisonwith the theory are obtained from
the simulations and are indicated in the caption of the
figure. We have not monitored the concentration profile
of η0, but its bulk value was estimated from thewhole box
value as η0 ) η′0‚η/η′. This procedure is not fully correct
because it can be expected that the degree of association
1- η0/η is a function of the layernumber l. Theagreement
between theory and simulation is nevertheless excellent,
which indicates that the wall only has a minor influence
on the overall degree of association in the box.

(29) Olaj,O.F.;Lantschbauer,W.Makromol.Chem.,RapidCommun.
1982, 3, 847.

(30) Mansfield, M. L. J. Chem. Phys. 1982, 77, 1554.

Figure 2. Illustration of a metathesis reaction.

Figure 3. Concentration profiles of a singly associating fluid
near a wall with uW ) -0.5kBT (2), uW ) -0.25kBT (9), and uW
) 0.0kBT (b). The symbols are the results of simulations. The
simulations were performed for a box filling fraction η′ ) 0.3
anduattr ) -7.0kBT. From the simulationswe have found η and
η0 to be 0.2852 and 0.03127 (2), 0.2939 and 0.0320 (9), and
0.3019 and 0.0320 (b). With these values of η and η0 we have
calculated the lines in the figure according to theOZ formalism
of section 2.
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Note that the most appropriate comparison between
the theory and the simulations would have been at fixed
ηanduattr because it is these twoquantities thatdetermine
η0. It was found previously23 that it is fully justified to
make the comparison at fixed η and η0 if |uattr| > 3kBT.
Comparisons between the theory and simulations for

other bulk packing fractions and degrees of association
have beenmade and show the same excellent agreement.
Therefore, we have not depicted the full concentration
profiles for such situations. Anoverviewof theadsorption
behavior at box filling fraction η′ ) 0.5 and uW ) 0.0kBT
(b), uW ) -0.25kBT (9), and uW ) -0.5 (2) is given in
Figure 4, where the amount of adsorbed material in the
layer closest to the wall is plotted versus the associative
interaction strength uattr (g(1) in Figure 4 is the packing
fraction of the layer closest to thewall divided by the bulk
packing fraction). The comparison between simulation
and theory is for the η and η0 observed from the
simulations. Therefore, the (very small ≈ (0.001) nu-
merical inaccuracies in the η and η0 obtained from the
simulations also show up in the calculated curves, which
explains why the curves in Figure 4 are not completely
smooth.
Several interestingaspects canbe observed fromFigure

4. First of all it is seen that theagreement between theory
and simulation is excellent for the uW values that have
been considered. Second, comparing the g(1) values of
Figure 3 (g(1) ) 1.460) and Figure 4 (g(1) ) 1.2715) for
uW ) -0.5kBT and uattr ) -7.0kBT shows that in the case
of the higher bulk packing fraction (η ) 0.2852 in Figure
3 and η ) 0.4854 in Figure 4) the tendency of the fluid to
accumulate at the wall is less strong: there is a diminish-
ing of the wall-particle correlations for higher bulk
packing fractions, simply because the packing fraction at
the wall can never exceed unity.
It is also seen in Figure 4 that g(1) is almost fully

determined by uW and that uattr is only ofminor influence.
This means that the favorable energetic wall-particle
interaction ismore important than the entropic depletion,
which occurs due to ordering of the dimeric molecules at
thewall. It is shown in the next subsection that the effect
of uattr on the concentration of the fluid near the wall is
muchmore influential for polymerizing fluids, because in
that caseuattr has a large effect on the size of themolecules
that are formed.
A last aspect of Figure 4 is observed by looking at the

dependency of g(1) on uattr for the three lines in the figure.
The lower curve for which uW ) 0 shows a decrease of g(1)

for higher |uattr|: a somewhat deeper depletion hole is
observed for a more highly dimerized fluid. Thus, the
entropic depletion, which is the only determining factor
near a non-interacting wall, is more important for more
highly dimerized systems. For theupper curve, forwhich
uW ) -0.5kBT, the situation is reversed. Not only do the
fluid particles tend to accumulate (g(1) > 1) at the wall,
the accumulation also increases for a stronger associative
interaction uattr: the dimers have a stronger tendency to
accumulate at the wall than the nonbonded particles, in
spite of the entropic restrictions that the wall imposes on
the dimers. This is because the gain in energy that
accompanies the adsorption of a dimer is larger than the
entropy loss. For uW ) -0.25kBT this is not the case.
Although an accumulation of particles at the wall is
observed fromFigure 4 foruW ) -0.25kBT, we see a slight
decrease of g(1) for a stronger associating fluid: thewall-
particle interaction isnot strongenough to counterbalance
the entropic restriction thewall imposes on the adsorbing
dimers. A decrease of g(1) is therefore observed for
increasing |uattr|.
In Figure 5, the adsorption profile in the limit of

infinitely strong association, uattr f -∞, for which a fully
dimerized lattice fluid is obtained, is drawn (full line).
The symbols in Figure 5 denote points obtained with a
previously outlined NpT simulation method.31 The simu-
lation method does not attempt to break bonds between
particles. This would lead to immediate rejection of the
move for the fully associated fluid (uattr f -∞). Therefore,
we have only sampled the distribution of the dimers over
the lattice by moving them in a reptation-like fashion32
throughthesimulationbox. Figure5clearlydemonstrates
the accurateness of the associating fluid theory for uattr f
-∞. Identical results have been found at other packing
fractions (up to η ) 0.7).
We conclude from the results presented in this section

that the general performance of Wertheim’s formalism6,7

is excellent when applied to study the adsorption profiles
of singly associating cubic lattice fluids at hard and
interacting impenetrable walls.
5.2. Polymerizing Fluid. In Figure 6, some adsorp-

tion profiles of a polymerizing fluid with uattr ) -7.0kBT
at overall box filling fraction η′ ) 0.3 are depicted. The
symbols indicate the simulation results. The lines depict
the results obtained from the theory. The bulk packing
fractions that were monitored are summarized in Table
1, together with the number average chain length LhN and

(31) Nies, E.; Cifra, P. Macromolecules 1994, 27, 6033.
(32) Wall, F. T.; Mandel, F. J. Chem. Phys. 1975, 63, 4592.

Figure 4. Simulated (symbols) and calculated (lines) adsorp-
tion in the layer closest to thewall forη′ )0.5 anduW ) -0.5kBT
(2), uW ) -0.25kBT (9), and uW ) 0.0kBT (b) as a function of
the associative interaction strength.

Figure5. Adsorption profile of a dimeric lattice fluid at a hard
non-interactingwall forη )0.1470.Symbols areMCsimulation
results. The line is obtained with the method of section 2 for
uattr f -∞.
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width of the chain length distributionLhW/LhN. Thesewere
obtained from the simulations with Flory’s formulas33

with the extent of reaction p defined by18

in which η′ is the average packing fraction in the
simulation box and η′i are the whole box average packing
fractions of particleswith i bonds. In eq 27, the formation
of rings is neglected.33 This results in an overestimation
of the actual chain length of up to 10% for the systems
considered here.18 Although it is very possible to obtain
the actual LhN and LhW/LhN from the simulations by moni-
toring the full chain lengthdistribution,18 it is not possible
to obtain the full chain lengthdistribution fromthe theory
of section 3. Therefore, to compare identical quantities,
we also use eq 27 to analyze the simulation results.
The LhN and LhW/LhN monitored from the simulations are

a function of the layer number, but thus far we have not
monitored the ηi for each layer separately. Therefore, we
have only calculated whole box averages, although it is
expected that there is a preference close to the wall for
shorter chains when compared to longer chains: the

entropic restrictions that thewall imposesonthemolecules
(restrictions on molecule conformation and surface-
induced ordering of themolecules) are smaller for shorter
chains. Monitoring of the fractions of free, singly bonded,
and doubly bonded particles for each layer separately
would allow us to study this surface-induced segregation
effect. In Figure 6, we are dealing with relatively short
chains,LhN≈ 12, forwhichwe expect the effect to be small.
Although we have no direct proof of this, we can never-
theless see from Table 1, by comparing the whole box
averages obtained in thisworkwith theaverages obtained
previously for the bulk region,18 that the surface segrega-
tion is not strong enough to cause strong deviations of the
overall 20× 10× 10 box values of LhN and LhW/LhN from the
values for the bulk region. This does not imply, however,
that the influence of thewalls is unimportant in the layers
close to the wall.
Figure 7 is identical to Figure 6 but for η′ ) 0.5. Bulk

packing fractions, number average chain lengths, and
widths of the distribution are again given in Table 1. The
bulk values taken from ref 18 are also reported in Table
1. Comparisonwith the bulk values again shows that the
walls donot have a large influence on the overall averages
obtained from the box.
The agreement between the calculated and simulated

adsorption profiles in Figures 6 and 7 is not overall good.
In the case of non-interacting walls (dashed lines) the
theory seems to be qualitatively correct. It does predict
a depletion hole, although the hole is not deep enough
when compared to the simulation results. The origin of
the depletion hole is the entropic penalty that the wall
imposesonthe fluid. It isnot compensatedbyanattractive
wall-fluid interaction, and therefore, a depletion of the
fluid near the wall is observed.
For the interacting walls, uW ) -0.25kBT (full lines),

both the theoryand the simulations showanaccumulation
of particles at the wall. This accumulation is due to an
energetically favorable wall-fluid interaction uW that
compensates the entropic depletion. For uW ) -0.25kBT
(full curve) in Figure 6, the theory and the simulations
both show an accumulation of particles near the wall, but
we find that the theory underestimates the total amount
of adsorbed material, especially in the second layer from
the wall. For uW ) -0.25kBT (full curve) in Figure 7, the
theory predicts an almost flat profile: the entropic
depletionandenergetic accumulationarenearly balanced
in the theory. The simulations, on the other hand, show
a net accumulation of particles near the wall.
In both figures, the simulations for uW ) -0.25kBT (9)

show the formation of a block profile near the wall.
Especially in Figure 6, the two layers closest to the wall
are rather densely packed,while there is a sharpdecrease

(33) Flory, P. J.Principles of Polymer Chemistry; Cornell University
Press: Ithaca, NY, 1953.

Figure6. Adsorption profiles of a polymerizing fluid. Symbols
are simulation results; lines correspond to the solution of the
equations of section 3 with uV ) 0.0kBT (dashed line, b) and
uW ) -0.25kBT (full line,9). In both cases,uattr ) -0.70kBT and
η′ ) 0.3.

Table 1. Overview of Number Average Chain Lengths
and Widths of Distributiona

symbols/lines η LhN LhW/LhN

Figure 6 b 0.3156 11.7 1.92
9 0.2959 11.6 1.91
- - - 0.3156 12.021 1.917
s 0.2959 11.605 1.938

ref 18 bulk values 0.3015 11.8 1.92
Figure 7 b 0.5113 15.6 1.94

9 0.4956 15.5 1.94
- - - 0.5113 15.764 1.937
s 0.4956 15.483 1.935

ref 18 bulk values 0.5 15.5 1.94
a In all cases: uattr ) -7.0kBT.

LhN ) 1
1 - p

LhW
LhN

) 1 + p (27)

p )
η′1 + 2η′2
2η′ (28)

Figure 7. Caption as in Figure 6 but for η′ ) 0.5.
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of the packing fraction in going from the second to the
third layer. In Figure 7, this effect is also observed,
although it is less pronounced. The block formation near
the wall is obviously due to chain connectivity effects.
Note that theblock formationdoesnot seemtobe captured
by the theoretical predictions.
To obtain a clearer view on the adsorption behavior of

the polymerizing lattice fluid, we have depicted an
overview for box filling fraction η′ ) 0.5 in Figures 8 and
9, where respectively the normalized packing fractions in
the first and second layer are plotted versus the strength
of the interactionbetween theassociatingparticles. From
Figure 8 it is seen that the theory and the simulations
roughly have the same dependence of g(1) on uattr. Note
that although there is an accumulation (g(1) > 1) of
associating particles at the wall for uW ) -0.25kBT (9),
there is a decrease of the adsorption for increasing |uattr|.
This was also observed in Figure 4 for the adsorption of
the dimerizing fluid at a wall with uW ) -0.25kBT. The
decrease of g(1) with increasing uattr can be attributed to
a higher entropic penalty that the wall imposes on a fluid
of longer chains. It is seen from Figures 4 and 8 that the
decreaseofg(1)withuattr ismorepronounced for thedoubly
associating fluid, which was to be expected because
association ismuchmore important inpolymerizing fluids.
From Figure 9 it is seen that the theory is also

qualitatively correct for g(2) if the wall is non-interacting
(b), although the dependence of g(2) on uattr predicted by
the theory is too strong. For the interacting wall (9) the
theory and the simulations appear to behave differently.

The simulations showan increase of the adsorbedamount
in the second layer,whereas the theory showsamaximum.
Note that the decrease of g(1) (9 in Figure 8) and the
increase of g(2) (9 in Figure 9) for uW ) -0.25kBT lead to
the block profiles observed in Figures 6 and 7. It is seen
in Figures 8 and 9 that, in the simulations for uW )
-0.25kBT (9), the decrease in g(1) and the increase in g(2)
flatten for higher uattr. It is most likely that for a certain
uattr they will reach respectively a maximum and a
minimum value, simply because it is improbable that the
packing fraction in the second layer will surpass the
packing fraction in the first layer. For higher |uattr| we
can certainly expect to monitor an increase of g(3) with
increasing |uattr|, although this increase will be shifted
toward higher |uattr| when compared to that of g(2). The
increaseofg(3) corresponds to the formationofanadsorbed
layer that extends deeper into the fluid if the average
length of the molecules is increased.
The theory for the adsorption of a polymerizing fluid,

for which some results have been presented in this
subsection, is based on aprecise diagrammatical analysis
of the wall-fluid and fluid-fluid correlations.8,9 Despite
this fact, the results are at most qualitatively correct.
Reasons must lie in the approximations that were made
to obtain a solvable set of equations for the bulk correla-
tions of the polymerizing fluid. These approximations
are the assumed independence of the interaction sites on
each particle and the preaveraging of the site-site
potential us1,s2(1,2) over the orientations of s1 and s2 in the
closure and mass balance equations for the bulk correla-
tions.18,25 Another reason could in principle be the
approximate nature of the closure equations, but this is
less likely because the closures have proven to function
very well in the calculation of the adsorption profiles of
dimerizing fluids, aswasshown in theprevioussubsection.

6. Conclusions

Cubic lattice models of singly and doubly associating
fluidshavebeen studied to assess the adsorptionbehavior
of dimerizing and polymerizing fluids at impenetrable
interactingwalls. Themethod thatwasemployed isbased
on Wertheim’s OZ formalism6-9 and offers an elegant,
relatively simple approach to study the adsorption be-
havior of associating lattice fluids.
The concentrationprofiles thatwereobtainedhavebeen

tested with Monte Carlo simulations. The simulation of
the doubly associating lattice fluid employed a biased
cluster move.18

The overall agreement between the theory and the
simulations is quantitative for the singlyassociating fluid.
Theseresults thereforesuggest thatWertheim’sOZmatrix
formalismisalso suitable toaccurately studypolymerizing
fluids. Unfortunately, the results obtained for polymer-
izing fluids indicate that better approximations have to
be adopted in solving the equations that result from
Wertheim’s formalism: we do not find quantitative but
only qualitative agreement for the adsorption profiles at
anon-interactingwall. Theadsorptionof thepolymerizing
fluid at an interacting wall seems to be incorrectly
described by the theory. The simulations show the
formation of a block profile, whereas the theory shows a
smoothly decreasing adsorption profile.
Finally, themethodpresentedhere formsanalternative

to the (polymer)RISM21andotherapproaches12-16 to study
polymer adsorption. The method does, contrary to the
polymer RISM approach, not use the concept of an
intramolecular distribution function to capture the con-
formations of the molecules near the interface, and
incorporates polydispersity in an elegant way.

Figure8. Normalizedpacking fraction,g(1), in the layer closest
to the wall, versus associative interaction strength. Symbols
are simulation results, and lines are calculated results: (9) uW
) -0.25kBT; (b) uW ) 0.0kBT.

Figure 9. Caption as in Figure 8, but for the next nearest
neighbor layer to the wall.
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Appendix: Solution Scheme
Here,we outline themethod for obtaining thehi(l) from

eqs 11-15 for known hij(l,m,n) and cij(l,m,n). Solution of
eq 11 is conveniently performed in Fourier space. There-
fore, we apply the 1D Fourier transform

with inverse

If it is assumed that the concentration profile is the same
on both sides of the wall, i.e., hi(+l)) hi(-l), we can write
eq 11 as

where the ĥij(u,0,0) are given by 3D Fourier transform

and

for v ) 0 and w ) 0.
The ĥij(u,0,0) in eq 31 can be obtained separately from

the solution of the bulk equations.23 Once the ĥij(u,0,0)
are known, a numerically simple problem in four un-

knowns (c0(0), c0(1), c1(0), and c1(1)) results. Theunknowns
are found as follows.
From eq 15 and the closures, eqs 12 and 13, we obtain

the nonoverlap conditions

and the contact relations

Note that the partial direct correlation functions ci(l) are
only nonzero for le 1. This is a direct consequence of the
use of the Percus-Yevick-like closure, eq 12, and limits
the number of unknowns to four.
The unknowns are now directly found from equations

that result from combining eqs 30, 31, 34, and 35

with c̃i(u) ) ci(0) + 2ci(1) cos u, according to eq 29. The
ci(0) and ci(1) are obtained from eq 36 with a Newton-
Raphson procedure combined with a 1D quadrature
routine. Once the unknowns are found, we obtain the
hi(l) from eqs 30 and 31 for f ) hi.

LA9605910

f̃(u) ) ∑
l

f(l) cos lu (29)

f(l) ) 1
2π∫-π

π
f̃(u) cos lu du (30)

h̃i(u) ) c̃i(u) + (ηĥ0i(u,0,0) + η0ĥ1i(u,0,0))c̃0(u) +
η0ĥ0i(u,0,0) c̃1(u) (31)

f̂(u,v,w) ) ∑
l,m,n

f(l,m,n) cos lu cos mv cos nw (32)

f(l,m,n) ) ( 12π)
3∫-π

π∫-π

π∫-π

π
f̂(u,v,w) cos lu cos mv ×

cos nw du dv dw (33)

hi(0) ) -δi0 (34)

ci(1) ) (hi(1) + δi0)(1 - eâuW) (35)

-δi0 ) 1
2π∫-π

π
h̃i(u) du

ci(1)

1 - eâuW
- δi0 ) 1

2π∫-π

π
h̃i(u) cos u du (36)
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