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Dedicated molecular simulation techniques afford the study of the abnormal adsorption and diffusion of linear
alkanes in ERI-, CHA-, and LTA-type zeolites. The exceptionally slow diffusion rates required the development
of a combination of rare-event transition-state theory techniques and the configurational-bias Monte Carlo
algorithm. The diffusion coefficients computed by this novel method agree well with the nondisputed rates
determined experimentally for LTA-type sieves. The computed rates corroborate the nonmonotonic variation
of the diffusion rate with alkane chain length published by Gorring, that is, the rate increases by orders of
magnitude when the molecular and cage shape are no longer commensurate, so a molecule ends up stretched
across a cage tethered at opposite windows. The simulations corroborate this “window effect” for both ERI-
and CHA-type sieves and suggest that it is characteristic for all sieves with windows approximately 0.4 nm
across. They predict that it also occurs for LTA-type sieves provided that then-alkane is long enough to
exceed the diameter of the LTA-type supercage.

I. Introduction

With the potential substitution of methyltertiarybutyl ether
(MTBE) by ethanol in gasoline, it will be difficult to maintain
gasoline volatility without removing a substantial amount of
the volatile pentanes together with the MTBE. In the 1960s,
the selective hydrocracking of pentanes and hexanes under
reforming conditions was commercialized using a catalyst based
on an ERI-type zeolite.1 One could envisage a resurgence of
such a process if the catalyst could somehow be reformulated
so as to exhibit a higher selectivity for pentane removal than
the ERI-type zeolite. An impediment to such a development is
that the fundamental operating principles of the ERI-type zeolite
have never been fully understood at a molecular level. This
paper attempts to remedy this situation by applying state of the
art molecular simulation techniques to assess the catalytically
relevant diffusion and adsorption phenomena.

In 1973, Gorring reported an experimental study of diffusion
of severaln-alkanes over zeolite T.2 Zeolite T is a disordered
intergrowth of OFF- and ERI-type zeolites: the OFF-type
structure consists of channels 0.67 nm across; the ERI-type
structure of cages is linked by a highly tortuous diffusion path
through 0.4 nm windows. Surprisingly, the diffusion and reaction
rates in ERI-type zeolites reportedly increase significantly going
from n-C8 to n-C12 before the usual monotonic decrease with
alkane chain lengths sets in. According to Gorring2 and Chen,3,4

the diffusion rate exhibits a maximum forn-C12 because the
shape is incommensurate with that of an ERI-type cage, so that
n-C12 is always inside an ERI-type window. Smaller molecules
are commensurate with the ERI-type cage and remain trapped
in its potential well. Larger molecules also gain stability from
the interactions with the cage. Gorring argued that the occur-
rence of the window effect might be a general phenomenon
common to diffusion of long molecules in many zeolites, the
position of minima and maxima being determined by identifiable
crystal parameters.

The origin of the window effect is a relatively unfavorable
adsorption for the chain lengths close to the cage size combined
with a low orientational freedom as the chains are stretched
across a cage tethered at opposite windows.5,6 As the movement
of the incommensurated chain is less impeded by the higher
free energy barriers a commensurated chain would feel, it has
an enhanced mobility around integer values of the ratio of the
chain length to the period of a lattice. Perhaps the simplest model
for molecules that are either commensurate or incommensurate
with the framework structure is the 1938 Frenkel-Kontorowa
(FK) model7,8 for adsorbed atoms on a periodic substrate. The
model, consisting of a string of atoms connected by springs
and subjected to a periodic potential, contains for a vanishing
potential a “floating phase” that is incommensurate for almost
all values of the ratioa/b, wherea is the equilibrium lattice
spacing of the harmonic chain andb is the lattice period. Similar
models have been proposed by Ruckenstein and Lee,9 Derouane
et al.,10 and Nitsche and Wei.11 However, we are aware neither
of theoretical studies closer to reality nor of additional experi-
mental confirmation of the nonmonotonic variation of diffusion
with alkane chain length. On the contrary, recent attempts12,13

failed to corroborate Gorring’s diffusion data.
An intensive research effort on measuring diffusion rates in

zeolites augmented the number of techniques to measure the
diffusion rates, and the discrepancies between the rates obtained
by the various methods. Thus, agreement among microscopic
(pulsed field gradient NMR, quasi-elastic neutron scattering),
mesoscopic (micro-FTIR), and macroscopic (membrane per-
meation, uptake methods, zero-length column, frequency re-
sponse) techniques is rare. As compared to Cavalcante et al.12

and Magalha˜es et al.,13 Gorring used too much sample in his
mass uptake measurements and changed his sorbate concentra-
tion too drastically, so his data were prone to the intrusion of
heat transfer and extracrystalline mass-transfer phenomena. The
discrepancy between the experiments motivated us to develop
a molecular simulation method that would allow us to study
the adsorption and diffusion and shed some light on the* Corresponding author. E-mail: dubbelda@science.uva.nl.
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experimental dispute. Furthermore, we hope to contribute
valuable new insights to the theory of diffusion in zeolites.

In this paper, we use configurational-bias Monte Carlo
(CBMC) to obtain the Henry coefficients and heats of adsorption
in OFF-, ERI-, CHA-, and LTA-type silica. We apply the
transition-state theory (TST) Bennet-Chandler approach14,15and
the techniques developed by Ruiz-Montero et al.,16 combined
with CBMC, to calculate diffusion coefficients in ERI-type,
CHA-type, and LTA-type silica. Both Henry coefficients and
diffusion coefficients are calculated over a wide range of chain
lengths and temperatures. The diffusion data are fitted with an
Arrhenius law producing activation energies and frequency
factors. For ERI- and CHA-type sieves, we confirm the existence
of the window effect. The physical origin of the window effect
and the conditions under which the phenomenon occurs are
studied in detail.

The remainder of this paper is organized as follows. First,
we introduce our simulation model in section II and review the
relevant theoretical foundations in section III. Next we discuss
the choice of the reaction coordinate needed in the transition-
state theory in section IV. A detailed description of the zeolites
is presented in section V. In section VI, simulation results on
adsorption, diffusion, activation energies, and frequency factors
are reported, and we discuss the comparison with the scattered
experimental results. We discuss the comparison with some
theoretical and experimental results in section VII and end in
section VIII with some concluding remarks.

II. Simulation Model

We use the united atom model17 and consider the CH3 and
CH2 groups as single interaction centers with their own effective
potentials. The pseudoatoms in the chain are connected by
harmonic bonding potentials. Bond bending among neighboring
pseudoatomsi, j, andk is modeled by a harmonic cosine bending
potential, and changes in the torsional angle are controlled by
a Ryckaert-Bellemans potential.18 The pseudoatoms in different
molecules, or belonging to the same molecule but separated by
more than three bonds, interact with each other through a shifted
Lennard-Jones potential.

In the CBMC scheme, it is convenient to split the total
potential energy of a trial site into two parts. The first part is
the internal, bonded potential,Uint, which is used for the
generation of trial orientations. The second part of the potential,
the external potential (Uext), is used to bias the selection of a
site from the set of trial sites. Note that the split can be made
completely arbitrarily. The internal energyUint is given by

with

wherek1/kB ) 96 500 K/Å2 is the bond force constant,r0 )
1.54 Å is the reference bond length,k2/kB ) 62 500 K/rad2 is

the bend force constant,θ0 ) 114° is the reference bend angle,
andφ is the dihedral angle (defined asφtrans ) 0) and where
the torsion parameters are given byC1 ) 1204.654,C2 )
1947.740,C3 ) -357.845,C4 ) -1944.666,C5 ) 715.690,
andC6 ) -1565.572 withCn/kB in K. The external energyUext

consists of a guest-guest intermolecular energy, a guest-zeolite
interaction, and an intramolecular Lennard-Jones interaction

with

whererij is the distance between sitei and sitej, rcut ) 13.8 Å
is the cutoff radius, andEcut is the energy at the cutoff radius.
Jorgensen mixing rules,σij ) xσiσj andεij ) xεiεj, are used
for the cross terms of the Lennard-Jones parameters,σ ) 3.75
Å, ε/kB ) 98.0 K for CH3 andσ ) 3.95 Å, ε/kB ) 46.0 K for
CH2. The interactions between the zeolite and the guest
molecules are assumed to be dominated by the oxygens atoms.19

The interactions with the Si atoms are implicitly taken into
account in this effective potential. The dispersive interactions
with the oxygens are described with the Lennard-Jones potential
with parametersσ ) 3.6 Å andε/kB ) 80 K for O-CH2 and
ε/kB ) 58 K for O-CH3. Further details are given by Vlugt et
al.20 and Maesen et al.,21 who have shown that with these
parameters one can reproduce the adsorption isotherms, heats
of adsorption, and Henry coefficients of various linear and
branched alkanes in several zeolites accurately.

Instead of the experimentally studied cation-exchanged alu-
minosilicates, we use OFF-, ERI-, CHA-, and LTA-type silica
devoid of cations. In all-silica sieves, the electric field does not
vary much across the channels and cages and Coulomb forces
can be neglected. The positions of the atoms are taken from ref
22. The zeolite is considered to be rigid19 because this allows
for the use of efficient grid interpolation techniques to compute
interactions and forces. In cation-free all-silica sieves, there is
evidence that adsorption and diffusivities are virtually unchanged
for small alkanes when lattice vibrations are included.23-25

Although with a fixed framework a flexible molecule cannot
dissipate its energy, there is still some thermalization through
the transfer of translational energy into the internal degrees of
freedom of the molecule.

Conventional Monte Carlo (MC) is time-consuming for long
chain molecules. The fraction of successful insertions into the
sieve is too low. To increase the number of successfully inserted
molecules, we apply the CBMC technique.26,27 In the CBMC
technique, a molecule is grown segment-by-segment. For each
segment, we generate a set ofk trial orientations according to
the internal energyUint and compute the external energy
Ui

ext(j) of each trial positionj of segmenti. We select one of
these trial positions with a probability

whereâ ) 1/(kBT), kB being the Boltzmann constant andT the
temperature. The selected trial orientation is added to the chain
and the procedure is repeated until the entire molecule has been
grown. For this newly grown molecule, we compute the so-

Uint ) Ubond+ Ubend+ Utorsion (1)

Ubond) ∑
bonds

1

2
k1(r - r0)

2 (2)
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1

2
k2(cosθ - cosθ0)
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∑
n)1

6

Cn cosnφ (4)

Uext ) Uij
gg + Uij

gz + Uij
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rij
)6] - Ecut (6)

Pi(j) )
e-âUi

ext(j)

∑
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called Rosenbluth factor28

The Rosenbluth factor of the new configuration is related to
the free energy,F

where〈Wid〉 is the Rosenbluth factor of an ideal chain (defined
as a chain having only internal interactions), which can be
calculated from a simulation of a single chain. In addition, the
Rosenbluth factor is related to the Henry coefficient,KH,

In the limit of zero coverage, the Henry coefficient is related to
the heat of adsorption,Qst, via a thermodynamic relation27

Although this formula can be used to check the consistency, in
practice, it is more convenient to obtain the heat of adsorption
in the infinite dilution limit from

where〈Ugz〉 and〈Ug〉 are the ensemble average of the potential
energy of the zeolite-guest system and the energy of an isolated
ideal chain, respectively and where the average zeolite energy,
〈Uz〉, is zero for a rigid zeolite. The CBMC algorithm greatly
improves the conformational sampling of molecules and in-
creases the efficiency of chain insertions, required for the
calculation of the free energy and Henry coefficients, by many
orders of magnitude.

III. Transition-State Theory

ERI-, CHA-, and LTA-type zeolites consist of cages separated
by 0.4 nm wide windows. These windows form large free energy
barriers to diffusion. If the barrier is much higher thankBT,
diffusion is an activated process. Once in a while a particle hops
from one cage to the next, but the actual crossing time is
negligible compared to the time a particle spends inside the cage.
To compute the hopping rate from one cage to the next, the
rare-event simulation techniques of Bennet and Chandler14,15

can be readily applied. We give a brief overview of the main
results of the Bennet-Chandler approach.

We consider a system that can be in two stable states,A and
B. The reaction coordinate, a value that indicates the progress
of the diffusion event from adsorption siteA to siteB, is denoted
by q. Here,q is a function of the Cartesian coordinates,q̆ denotes
the derivative in time,q* is the location of the dividing surface,
andqA andqB are the minima of the free energy corresponding
to statesA andB, respectively. We introduce two characteristic
functions,nA and nB, that measure whether the system is in
stateA or B. A possible and often used definition is

whereθ is the Heaviside functionθ(x), which has value zero

for x < 0 and value 1 forx g 0. With these definitions, the
transition rate,kAfB, is given by16

whereP(q) is the equilibrium probability density of finding the
system at the top of the barrier divided by the equilibrium
probability of finding it at state A and whereR(t) is the averaged
flux at the top of the barrier multiplied by the probability that
the system ends up in state B at timet. The expression is
rigorously correct for arbitrary crossings provided that the barrier
is much larger thankBT. P(q) is atime-independentequilibrium
quantity and can be computed explicitly

whereF(q) is the free energy as a function of the diffusion path
q. R(t) is a conditional average, namely, the productq̆(0)θ(q(t)
- q*), given thatq(0) ) q*.

Using the assumption that the velocities of the atoms within
the molecules follow a Maxwell-Boltzmann distribution, we
can estimate from kinetic theory the long time value ofR(t) by
1/2|q̆| ) xkBT/(2πm), wherem is the mass of the segments of
the particle involved in the reaction coordinate (the total mass
of the particle if the center of mass is used or the mass of only
one segment if the reaction coordinate is a single segment like
the middle bead in a molecule). Transition-state theory (TST)
predicts a crossing ratekAfB

TST given by

Calculating TST rate constants is therefore equivalent to
calculating free energy differences. In the Bennet-Chandler
approach, it is sufficient to assign the barrier positionq* inside
the barrier region. The result of the scheme does not depend on
the specific location, although the statistical accuracy does. If
the dividing surface is not at the top of the barrier, the probability
of finding a particle will be higher than that atq*, but the
fraction of the particles that actually cross the barrier will be
less than predicted by transition-state theory. It is convenient
to introduce the time-dependent transmission coefficient,κ(t),
defined as the ratio

The correctionκ(t) is the fraction of particles coming from the
initial state that successfully reaches the final state out of those
that cross the dividing surface att ) 0. It corrects for trajectories
that cross the transition state from A but fail to equilibrate in
B. It can be shown thatκ(0) ) 1 andkAfB(0) ) kAfB

TST . There is
a large separation of time scales. The recrossings are completed
in a time much less than the time to react, and eq 18 will reach
a plateau valueκ. For classical systems, 0< κ e 1, and eq 17
is corrected as

W ) ∏
i

w(i) (8)

âF ) -ln
〈W〉

〈Wid〉
(9)

KH ) â
〈W〉

〈Wid〉
(10)

Qst ) -
∂ ln(KH)

∂â
(11)

Qst ) 〈Ugz〉 - 〈Uz〉 - 〈Ug〉 - kBT (12)

nA ) θ(q* - q) (13)

nB ) θ(q - q*) (14)

P(q) )
〈δ(q* - q)〉
〈θ(q* - q)〉

) e-âF(q*)

∫-∞

q*
e-âF(q) dq

(16)

kAfB
TST ) x kBT

2πm
e-âF(q*)

∫-∞

q*
e-âF(q) dq

(17)

κ(t) ≡ kAfB(t)

kAfB
TST

)
〈q̆(0)δ(q(0) - q*)θ(q(t) - q*) 〉

〈12|q̆(0)|〉 (18)

kAfB ) κkAfB
TST (19)
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Standard molecular dynamics (MD) yields the transmission
coefficients; a separate MC simulation yields the starting
configurations. The reaction coordinate is restricted to the
dividing surfaceq*. The MC moves involved are translations
of the reaction bead in the plane of the dividing surface and
complete regrowing of the molecule starting from the restricted
bead. Subsequently the transmission coefficient is calculated
by standard MD in the microcanonical ensemble using a velocity
Verlet integrator with a time step of 0.2 fs. The beads are given
independent velocities, corresponding on average to the desired
temperature, by sampling from a Maxwell-Boltzmann distribu-
tion. A molecule sampled at a particular temperature at the top
of the barrier will acquire a huge velocity once it has arrived in
the valley. No thermal equilibration takes place. In fact, the
velocity is so high that it will very likely cross another window
or (as in ERI- and CHA-type structures) bounce back from the
opposite wall and recross the initial window again. For this
reason, it is necessary to terminate a trajectory once a valley
has been reached. Failing to end the trajectory can lead to
spurious, undamped oscillations inκ(t).

The approach ofκ(t) to its plateau value can be quite slow.16

Moreover, in the case of diffusive barrier crossings the transmis-
sion coefficient is quite small andκ cannot be calculated
accurately by using eq 15. The Bennet-Chandler approach
becomes inefficient for systems with low transmission coef-
ficients because the scheme prepares the system in a state that
is not close to the steady-state situation. In addition, the scheme
employs theθ-function to detect what state the system is in.
The scheme can be improved by devising a perturbation that
prepares the system immediately close to the steady state and
by constructing a more continuous detection function.

One of the problems when devising a more sophisticated
scheme is the lack of exact knowledge of the free energy of the
system as a function of the order parameter. It is shown that in
practice we need to approximate onlyF(q).16 We denote our
estimate ofF(q) by Fest(q). Any reasonable guess will lead to
a more rapid convergence than theδ function. Using the free
energy estimate, we can compensate approximately for the effect
of the energy barrier. This leads to a more or less uniform
distribution over the entire range ofq. Only trajectories starting
in the barrier region yield relevant information, and therefore,
a weighting function,w(q), is applied, restricting the sampling
to the barrier region:

The following expression forkAfB can be derived:16

If F(q) is known in advance or, as in our case,Fest(q) is the
best possible measurement in a simulation, thenFest(q) andF(q)
become synonymous. This leads to a simplification of the
expressions

At infinite dilution, the molecules perform a random walk
on a lattice spanned by the cage centers. The transmission rates
are easily converted to diffusion coefficients if the jump distance
and the number of equivalent diffusion paths are known.29 Error
calculations are performed for the measured quantities, including
the free energy profilesF(q), the heats of adsorption, the Henry
coefficients, and the diffusion coefficients. Each insertion of a
chain molecule is statistically independent, and error bars are
easily calculated for each point on the free energy profile and
for the Henry coefficients. Error bars on the diffusion coef-
ficients, obtained from the transmission ratekAB, are less trivial.
The complete free energy profile is regenerated for each point
from their average value and error valueσ, assuming a Gaussian
distribution with widthσ around its average value.30 A smooth
cubic approximation spline is fitted to the regenerated data, and
eq 16 is evaluated using the spline approximation. The procedure
is repeated many times, and the errorP(q) is assumed to be
twice the standard deviation in the resulting dataset (95%
confidence interval). The error in the diffusion coefficient is
then calculated by applying normal error propagation rules.

IV. Reaction Coordinate

To compute the free energy as a function of the position in
the zeolite, one has to relate a position in the channel or cage
to a reaction coordinateq. Such a map should satisfy several
criteria: (i) Every coordinate in the simulated volume should
uniquely designate a position in a single cage. (ii) All Cartesian
space should be used and partitioned into equivalent regions to
have a correct entropic contribution. Not only all pore volume
but also the zeolite volume should be used. The space group of
the zeolite indicates how to exploit the inherent symmetry. (iii)
The mapping should achieve the highest free energy barrier. If
not, the transmission coefficient can become very small, making
the computation extremely inefficient or even impossible. In
addition, a linear mapping is preferred from a computational
point of view to avoid correcting the density distribution for
the use of constraints.16

We stress that choosing an appropriate reaction coordinate
is vital. By trial and error, we concluded that using the second
bead of the alkane chain gave near optimal results for all alkane
chains and zeolites discussed here. Chains are always newly
grown starting from this bead. The mapping is depicted in Figure
1, where a part of the ERI-type silica is shown with cages A
and B (connected to other cages) sliced half open. Two examples
of the mapping are depicted: a C14 chain in cage A and a C10

chain in cage B. Free energy values are mapped onto the one-
dimensional free energy profileF(q) by orthogonal projection
of the position of the second bead onto the line perpendicular
to the window. Only chains that have the smallest distance to
either cage A or cage B (of all of the cages in the zeolite) give
a contribution to the transmission ratekAfB.

There are two ways to obtain a near-optimal mapping: try
all beads, compute the free energy profiles, and then choose
the one that gives the highest free energy difference, or try all
beads, compute the transmission coefficientκ, and then choose
the one that gives the highestκ. Figure 2 shows the free energy
profiles (raw, unsmoothed data) in ERI-type silica at 600 K for
mappings using the various beads of C9 as the order parameter.
The maximum of the free energy is at theq ) 0 position

w(q) ) e2âFest(q)

∫qA

qBe2âFest(q) dq
(20)

kAfB )
∫qA

qBe2âFest dq

[∫qA

qBeâFest dq]2

〈w(q)〉eq

〈nA〉eq

×

∫0

∞
〈q̆(0)q̆(t) eâFest(q(t))-âFest(q(0))〉w dt (21)

κ(t) ) eâF(q*)

∫qA

qBeâF(q) dq

2
〈|q̆|〉∫0

∞
〈q̆(0)q̆(t) eâF(q(t))-âF(q(0))〉w dt

(22)

kAfB )
∫0

∞
〈q̆(0)q̆(t) eâF(q(t))-âF(q(0))〉w dt

∫qA

qBeâF(q) dq∫-∞

q*
e-âF(q) dq

(23)

Simulation of Incommensurate Diffusion in Zeolites J. Phys. Chem. B, Vol. 107, No. 44, 200312141



corresponding to the dividing windowq*; the minimum values
are atq ≈ |4| corresponding to values deep inside cages A and
B. We note that thex-axis corresponds to the line perpendicular
to the window in Figure 1. The second-bead mapping gives the
highest free energy barrier, and in addition, the shape of the
free energy profile indicates that molecules will fall off the
barrier most rapidly. With the second bead on top of the barrier,
the tail of the chain is bent and close to the wall. It has already
one bead through the window, and combined with the asym-
metry of the molecule, it is dynamically most balanced. With
use of the middle-bead mapping (bead 5), it is nearly impossible
to obtainκ. The chain tends to sit comfortably in a (small) local
free energy minimum and diffuses on top of the barrier without

actually falling off the barrier. For other chain lengths, similar
results have been obtained.

In Figure 3, we show the transmission coefficientκ(t) for
C1-C5 and C9 for ERI-type silica at 600 K with a second-bead
mapping. For comparison, we show the result for C9 with a
middle-bead mapping. The position of the middle bead cannot
be used becauseκ(t) does not reach a clear positive plateau
value. Note that a change in the barrier height results in an
exponential change of the transmission coefficient. Computing
the transmission coefficient for the various mappings is therefore
more sensitive. Figure 4 shows the transmission coefficientκ

as a function of chain length at 600 K for the zeolites ERI-,
CHA-, and LTA-type silica. The second-bead mapping works
well, and the transmission coefficients are for chain lengths of
C3 or greater of approximately equal magnitude (κ ) 0.1-0.3).
This facilitates the interpretation and comparison of the free
energy profiles as a function of chain length.

The free energy profiles (in combination with the transmission
coefficients) can be used to calculatekAfB. The Ruiz-Montero
et al. method uses the free energy profile to define a weighting
function,w(q), for sampling initial configurations. In Figure 5,
we show the histogram of the position of the second bead of
propane chains aroundq* in ERI-type silica. The shape of the
distribution is proportional to eâFest(q) with Fest(q) being the free
energy profile of propane. The sampled configurations are then
used to measure the diffusion coefficient on top of the barrier
by calculating the velocity autocorrelation function taking the
weighting function into account. In Table 1, we compare the

Figure 1. The reaction coordinateq, indicating the progress of the
diffusion event from adsorption site A to adsorption site B, is defined
as the position of the second bead of a chain mapped orthogonal to the
axis of projection (the line perpendicular to the window). The resulting
free energy profileF(q) indicates a high free energy barrier at the
position of the windowq* separating cage A and B. Shown here are
two examples in ERI-type silica: C14 in cage A and C10 in cage B.
Also shown is a C8 molecule, but it would contribute to the diffusion
between cage B and the C8 cage (these contributions can be converted
into akAfB contribution due to symmetry reasons). The C8 molecules
fit snugly inside the erionite cages, C10 adapts high-energy configura-
tions, while the C14 stretches energetically more favorably across two
cages.

Figure 2. Free energy profilesF(q) (raw, unsmoothed data) in ERI-
type silica at 600 K for C9 using bead 1, 2, 3, 4, and 5 as the mapping
bead (lines from top to bottom atq ) 0 in order of the legend).

Figure 3. Transmission coefficientsκ(t) in ERI-type silica at 600 K
plotted against simulation time for C1-C5 and C9 using the second-
bead mapping and C9

/ using the middle -bead mapping (lines from top
to bottom in order of the legend).

Figure 4. Transmission coefficients in ERI-, CHA-, and LTA-type
silica plotted as function of carbon number of then-alkane. Error bars
are only shown when larger than the symbol size.
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diffusion results for both methods for C1-C9 in ERI-type silica
at 600 K. The Bennet-Chandler method is performed using
the second-bead mapping, while the Ruiz-Montero et al. method
is performed with the middle-bead mapping. Note that the
methods are equal for C1-C4. The results are consistent, and
although the statistics is rather poor, the Ruiz-Montero et al.
method worked for this poor choice of reaction coordinate where
the Bennet-Chandler method completely failed. It provides
much more freedom and worked for several mappings, including
the ones that have inherent diffusive behavior on top of the
barrier. The validity of the diffusion results was checked by
using both methods.

V. Zeolite Description

Small differences in the crystal structure of silica cause large
differences in the diffusion rates of an alkane as a function of
chain length. The OFF-type silica structure31 crystallizes in the
hexagonal-ditrigonal dipyramidal space groupP6hm2 with a )
1.31 nm,b ) 1.31 nm, andc ) 0.76 nm andR ) â ) 90° and
γ ) 120°. In the absence of stacking faults, OFF-type silica
would consist of channels 0.67 nm across. The perpendicular
0.36-0.49 nm wide windows have a significantly slower
diffusion rate and are only accessible to small molecules. The
pores are girthed at 0.76 nm intervals by 12T-membered ring
structures of approximately 0.67 nm× 0.68 nm. The ERI-type
silica structure32 crystallizes in the hexagonal dipyramidal space
groupP63/mmcwith a ) b ) 1.31 nm andc ) 1.52 nm andR
) â ) 90° and γ ) 120°. The elongated erionite cages are
approximately the shape of 1.3 nm× 0.63 nm cylinders
connected by 0.36 nm× 0.51 nm windows. Only linear

molecules are able to penetrate the windows. There are three
windows at the top of the cage rotated 120° with respect to
each other. At the bottom of the cage, there are also three
windows rotated 120° with respect to each other. The top three
windows are aligned with the windows at the bottom. Zeolite
T is an intergrowth of OFF- and ERI-type zeolites.33 It consists
primarily of OFF-type zeolite interspersed by thin layers of ERI-
type zeolite. Each ERI-type cage blocks an OFF-type channel
and forces diffusion through the ERI-type window. The CHA-
type structure34 has the spacegroupR3m (a squashed cube) with
a ) b ) c ) 0.942 nm andR ) â ) γ ) 94.47°. The CHA-
type cage is an ellipsoidal cavity of about 1.0 nm× 0.67 nm
across, accessible through 0.38 nm wide windows. Only linear
alkanes are able to penetrate the windows. There are three
windows at the top of the cage rotated 120° with respect to
each other. At the bottom of the cage, there are also three win-
dows rotated 120° with respect to each other. The bottom three
are at a 120° angle relative to the top ones. The LTA-type
structure35 has a cubic spacegroupFm3hc with a ) b ) c )
2.4555 nm andR ) â ) γ ) 90°. The crystallographic unit
cell consists of 8 large spherical cages (namedR-cages) of
approximately 1.12 nm interconnected via windows of about
0.41 nm diameter.

In Figure 6a-d, we show the volume-rendered pictures of
the OFF-, ERI-, CHA-, and LTA-type silica, respectively. The
unit cell is divided into 150× 150 × 150 voxels (constant
valued volume elements). At millions of random positions in
the unit cell, the free energy of a test particle (methane molecule)
is calculated and assigned to the appropriate voxel. To visualize
this energy landscape, the three-dimensional dataset is volume-
rendered,36,37 removing the parts that generate overlap (the
zeolite itself) by making it completely transparent. Low-energy
values are rendered with medium transparency, allowing the
inside of the cages to be viewed as voids. Higher energy values
are rendered less and less transparent until the energy approaches
a cutoff energy and is regarded as part of the zeolite wall. For
simulation efficiency, all structures are converted to ortho-
rhombic periodic unit cells with dimensionsa ) 2.3021 nm,b
) 1.3291 nm, andc ) 0.7582 nm for OFF,a ) 2.2953 nm,b
) 1.3252 nm, andc ) 1.481 nm for ERI, anda ) 1.5075 nm,
b ) 2.3907 nm, andc ) 1.3803 nm for CHA. In addition to
the relevant cages and channels, there are also topologically
disconnected pockets. A methane molecule does fit at that
position, but it is not accessible from the main cages and
channels. An example is the visibly disconnected SOD-type
sodalite cage (â-cage) in LTA. To obtain correct results, it is
necessary to artificially block the inaccessible pockets for
adsorbing molecules.

Figure 5. Histogram of the sampled positions of the second bead of
propane in ERI-type silica. Theq ) 0 position corresponds to the
position of the dividing window. The solid curve denotes the curve
eâF(q), F(q) being the spline fit through the free energy profile of propane.

TABLE 1: Comparison of Two Transition-State Theory Methods for Computing Diffusion Constants in the Zeolite Erionite for
C1-C9

a

n DTST [m2/s] κ DBC [m2/s] DRM [m2/s]

1 1.31× 10-12 ( 1.33× 10-14 0.983( 0.002 1.3× 10-12 ( 1.3× 10-14 1.3× 10-12 ( 2.4× 10-14

2 1.85× 10-13 ( 3.06× 10-15 0.179( 0.002 3.3× 10-14 ( 6.5× 10-16 4.4× 10-14 ( 2.0× 10-14

3 1.71× 10-16 ( 1.92× 10-17 0.606( 0.003 1.0× 10-16 ( 1.2× 10-17 1.0× 10-16 ( 8.5× 10-18

4 7.46× 10-16 ( 1.03× 10-16 0.378( 0.007 2.8× 10-16 ( 3.9× 10-17 2.8× 10-16 ( 2.6× 10-17

5 1.48× 10-15 ( 2.59× 10-16 0.249( 0.009 3.7× 10-16 ( 6.6× 10-17 4.3× 10-16 ( 5.0× 10-17

6 3.86× 10-15 ( 8.14× 10-16 0.192( 0.009 7.4× 10-16 ( 1.6× 10-16 5.1× 10-16 ( 9.4× 10-17

7 1.53× 10-15 ( 3.94× 10-16 0.222( 0.012 3.4× 10-16 ( 8.9× 10-17 2.6× 10-16 ( 2.2× 10-16

8 8.95× 10-16 ( 3.00× 10-16 0.217( 0.012 1.9× 10-16 ( 6.6× 10-17 4.6× 10-16 ( 4.4× 10-16

9 2.93× 10-15 ( 1.25× 10-15 0.182( 0.011 5.3× 10-16 ( 2.3× 10-16 4.1× 10-16 ( 3.8× 10-16

a The Bennet-Chandler method uses the second-bead mapping and dynamically corrects the transition-state estimate,kTST, with the transmission
coefficient, κ. The diffusion coefficient,DBC, is computed asκDTST. The diffusion coefficientsDRM in the last column are obtained using the
Ruiz-Montero et al. method. Here, the mapping used was the middle-bead mapping, which did not work for the second-bead mapping because of
the extremely low transmission coefficients.
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To examine the critical molecular length at which molecules
are forced to stretch into two cages, the silica structures are
probed with molecules of various lengths. The simulation
snapshots are visually inspected and end-to-end distance his-
tograms (data not shown) are studied. The OFF-type channels
can host all chain lengths. The largest molecule that fits in a
single ERI-type cage isn-C13. It assumes a serpentine-like

configuration extending tethered between opposite windows,
which makes it about 1.6 nm long. Similarly, 1.35 nm long
n-C11 is the longest molecule that can be tethered between two
opposing windows in a CHA-type cage. An LTA-type cage can
harbor molecules as long asn-C22-n-C24 in a conformation
coiled like a snake in a basket. Pictures of these snapshots are
published in ref 6.

Figure 6. The structure of a single periodic unit cell of (a) OFF-type silica, (b) ERI-type silica, (c) CHA-type silica, and (d) LTA-type silica.
Distance labels are plotted in units of Å.
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VI. Results and Discussion
A. Henry Coefficients and Isosteric Heats of Adsorption.

Molecular sieves have the ability to trap molecules that can
access their intracrystalline void volume. For low pressures, the
amount of adsorbed molecules is linearly related to the pressure,
the Henry coefficient being the proportionality constant. If the
external pressures are sufficiently low, the Henry coefficient
provides a good estimation of the extent of adsorption isotherms.
In Figure 7a, the Henry coefficients at various temperatures as
a function of chain length for OFF-type silica are shown. The
Henry coefficients increases exponentially with alkane chain
length because the enthalpy gained by molecule-wall inter-
action outweighs the loss in entropy. Other channel structures
such as MFI- and TON-type silica exhibit a similar pattern.

ERI- and CHA-type zeolites show a markedly different
behavior (Figure 7b,c). A clear cage effect of many orders of
magnitude is present: a periodic, nonmonotonic dependence
of the Henry coefficient on chain length. The local maximum
indicates that the shape ofn-C8-n-C9 is commensurate with
the shape of an ERI-type cage, whereas the shape ofn-C5-n-
C6 is commensurate with that of a CHA-type cage. A sharp
decrease in the Henry coefficient is observed when molecules
are forced to curl up so as to fit into a single cage. When they
are even longer, this conformation becomes too unfavorable,
and they stretch across two cages instead. In ERI-type silica,
the first molecule to stretch across two cages isn-C14; in CHA-
type silica, it isn-C12. This neatly reflects the difference in size
between the ERI- and CHA-type cages. Increasing the chain
length improves adsorption again, until the molecule has to curl
up and eventually has to stretch across three cages. As opposed

to the small, elongated ERI- and CHA-type cages, molecules
have more orientational freedom in the spherical, larger LTA-
type cages. As a result, the length ofn-alkane that fits best is
more temperature-dependent than those for ERI- and CHA-type
silica. At 300 K, the molecule that fit most snugly isn-C20; at
500 K, it is n-C14-n-C18, while at 700 K, the plateau stretches
from n-C6 to n-C14. The largest molecules that fit inside a single
cage are C22-C24 and represent the local minimum in the Henry
coefficient.

For all silicas studied here, the adsorption decreases with
increasing temperature because the thermal energy increase
causes a lowering of the physisorption energy. The positions
of the maxima, that is, the best adsorbing molecules, shift toward
lower chain lengths for increasing temperature. The maxima
themselves become broadened and can even become large
plateaus of equally well adsorbing molecules. Also the local
minima shift toward lower chain lengths with increasing
temperatures. The position of these minima indicates a crossover
point. Below this crossover point, the molecules fit into a single
cage; above this point, the chains start to find it energetically
more favorable to stretch across two cages.

The heat of adsorption,Qst, is related to the Henry coefficient.
The isosteric heat of adsorption obtained from simulation is
plotted in Figure 8 as a function of chain length for OFF-, ERI-,
CHA-, and LTA-type silica. The heat of adsorption is obtained
from a singleNVT (600 K) simulation in the gas phase and a
single simulation of one molecule adsorbed in ERI-type silica,
measuring the average energies as needed in eq 12. The result
is consistent with the thermodynamic limit, eq 11, where we
obtained the heat of adsorption as an average over a temperature

Figure 7. Henry coefficients as a function of chain length at various temperatures for (a) OFF-type silica, (b) ERI-type silica, (c) CHA-type silica,
and (d) LTA-type silica. At low pressure, the loading is linear in the pressure with the Henry coefficient as the proportionality constant. Error bars
are only shown when larger than the symbol size.
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range. The heat of adsorption has only a slight temperature
dependence for these silicas. We were unable to find compara-
tive experimental data on ERI-, CHA-, or LTA-type silica or
aluminum phosphates. The heat of adsorption for OFF-type
silica is directly proportional to the alkane length, while that of
ERI- and CHA-type silica shows a nonmonotonic, periodic
behavior with similar periods as those of the Henry coefficient
data. The heat of adsorption,Qst, in LTA-type silica is also
nonmonotonic, although only for alkanes longer than C21 (data
not shown).

Many zeolites show a well-defined linear variation of
adsorption energy with carbon number and a linear relationship
between the entropy and energy of adsorption (compensation
effect). In ref 38, Ruthven and Kaul present such correlations
for sorption of linear alkanes on the Na form of zeolite X, the
Na form of zeolite Y, ultrastable zeolite Y, and silicalite. We
found that pores with constrictions (windows) that approach the
diameter of the adsorbate exhibit a dramatically different
behavior. Instead of attractive adsorbate-adsorbent interactions,
windows exert repulsive adsorbate-adsorbent interactions that
increase the adsorption enthalpy of anyn-alkane partially
adsorbed inside such a window. Accordingly, the usual com-
pensation between adsorption enthalpy and adsorption entropy
ceases as soon asn-alkanes become too long to fit comfortably
inside the wider part of these pores (cages).6 Our simulations
indicate that the compensation theory is true for channel-type
zeolites but for cage/window-type zeolites with windows smaller

than approximately 0.45 nm the results apply only to effective
chain lengths much smaller than the cage size. At higher carbon
numbers, the data deviate and the linear relationship breaks
down.

B. Diffusion. The simulation results of diffusion ofn-alkanes
in ERI-type silica as a function of chain length at several fixed
temperatures are presented in Figure 9a, while the experimental
results found by Gorring on a potassium-exchanged intergrowth
of OFF- and ERI-type zeolites are plotted in Figure 9b. The
order of magnitude and overall trend is well reproduced. The
simulation data clearly support the existence of a diffusional
window effect. The positions of the minima at C8 and the
maxima at C12-C13 are well in agreement with Gorring’s
experimental data. In addition to the C8 minimum, the simulation
data shows a second local minimum at C3.

In Figure 10a, we plot the simulation results for CHA-type
silica, and the experimental curve of Gorring is shown in Figure
10b. Also the simulated data for CHA-type silica corroborate
the existence of a diffusional window effect with the maximum
diffusion rate at C10-C11. The overall shape of the diffusion
curve is satisfactorily reproduced. The simulation data find the
local minima at C3, while the Gorring results indicate a C5

minimum, although the difference is small.
The behavior found for ERI- and CHA-type silica is markedly

different from that of LTA-type silica (Figure 11a). The
experimental results taken from refs 39 and 40 are plotted in
Figure 11b. The activation energies reported in the references
are used to extrapolate the experimental diffusion coefficients
to 600 K. In ref 39, the authors explicitly state that no evidence
for a window effect in LTA-type zeolites has been found. Our
simulation data agree qualitatively well with the experimental
results, and also the order of magnitude is well reproduced for
LTA-type silica. A possible window effect is, however, expected
at higher chain lengths (C23-C24) than have been studied
experimentally. In addition, our simulation data seem to suggest
that the slight decrease in diffusion beyond the C10 region
corresponds to the critical length at which molecules feel the
limitation of the cage and start to fold or coil.

For all silicas studied here, the diffusion coefficient decreases
with decreasing temperature. The positions of the maxima and
minima shift toward lower chain lengths for decreasing tem-
perature. The window effect in ERI- and CHA-type silica is
several orders in magnitude and increases with lower temper-
atures. LTA-type silica does not possess an order of magnitude
window effect in the C1-C20 range but shows complex intracage

Figure 8. Heat of adsorption,-Qst, as a function of chain length of
the alkanes adsorbed in OFF-, ERI-, CHA-, and LTA-type silica at
600 K using eq 12. Error bars are only shown when larger than the
symbol size.

Figure 9. Diffusion coefficients as a function of chain length at various temperatures in ERI-type zeolite: (a) silica simulation results; (b) experimental
results of Gorring on a potassium-exchanged OFF/ERI intergrowth,2 Cavalcante et al.,12 and Magalha˜es et al.13 Error bars on the simulation data
are only shown when larger than the symbol size.
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behavior. The agreement between simulated data on a cation-
free LTA-type sieve and the experimental data on a cation-
loaded LTA-type zeolite is remarkable.

Gorring provided an explanation for the window effect in
terms of a match between the effective length of a molecule
and the size of the zeolite cage (the window-to-window
distance).2 Eic and Ruthven applied similar logic to LTA-type
zeolites.39 They argued that the maximum activation energy
should then occur at C13-C14 in the LTA-type structure. When
they found that the activation energy increased monotonically
with carbon until C16, they dismissed the window effect. Our
simulations indicate that they did not take adequately into effect
that molecules usually curl and fold into energetically more
favorable conformations and thereby reduce their effective
length.6 Simulations predict that a window effect for LTA-type
silica will occur, not at the chain lengths predicted by Eic and
Ruthven, but around chain length C24.

We obtained convincing evidence of a diffusional window
effect for both ERI- and CHA-type silica with positions for the
maxima of diffusion corresponding to the cage size, as suggested
by Gorring. The simulation results agree qualitatively with
Gorring’s experimental results but deviate somewhat for small
chain lengths in ERI-type silica. Discrepancies are not surprising
because we model Gorring’s complicated intergrowth of ERI-
and OFF-type zeolites loaded with potassium cations with ERI-
type silica. Figure 12 depicts two OFF-type channels, one of
which is blocked by an ERI-type intergrowth. ERI-type moieties

only block the OFF-type channels for molecules larger than C4.
A portion of the small molecules can easily “navigate” around
the ERI-type block. They have so much orientational freedom

Figure 10. Diffusion coefficients as a function of chain length at various temperatures in CHA-type zeolite: (a) silica simulation results; (b)
experimental results of Gorring on H-CHA3 (the crystal sizer is unknown). Error bars on the simulation data are only shown when larger than the
symbol size.

Figure 11. Diffusion coefficients as a function of chain length at various temperatures in LTA-type zeolite: (a) silica simulation results; (b)
experimental results of Eic and Ruthven39 on the Ca/Na form of LTA-type zeolite. Error bars on the simulation data are only shown when larger
than the symbol size.

Figure 12. Zeolite T is a disordered intergrowth of OFF- and ERI-
type zeolite and crystallographically not well defined. Although OFF-
type zeolite is dominating, it is believed that ERI-type zeolite is the
controlling bottleneck for diffusion. The top channel is an unobstructed
offretite channel; the bottom channel is blocked by two unit cells ERI-
type zeolite. The exact arrangement of the ERI-type intergrowth inside
OFF-type zeolite is unknown, although ERI-type zeolite is thought to
form thin layers converting OFF-type zeolite into a zeolite that can
only adsorb linear molecules.
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that the diffusion path into the OFF-type side cages is just as
tortuous as the diffusion into the ERI-type moieties. These
diffusional short cuts forn-C4 chain length and lower could
contribute to a change in diffusion rate by orders of magnitude.

C. Activation Energies and Frequency Factors.For the
OFF/ERI intergrowth2,12,13 and both the Ca/Na and Na forms
of LTA-type zeolites,39,40experimental data on diffusion activa-
tion energies are available. There are also some data on
frequency factors in the K form of the OFF/ERI intergrowth2

and the Ca/Na form of the LTA-type zeolite.39 In our simula-
tions, we use all-silica with the equivalent framework structure
but without nonframework cations. Accordingly, the simulation
data show the influences of the structure of the zeolite itself
and exclude loading and cation effects.

To calculate the activation energy and frequency factor in
simulation, we exploit the fact that diffusion in cage zeolites
can be described as an activated process. If the jump distance
is l and we haven equivalent jump sites andd is the
dimensionality, we can use the Einstein equation and relate the
diffusion coefficient to the jump rate,

Here,ν0 can be though of as an attempt frequency (frequency
of oscillation) at the free energy minima,EA is the hopping
activation energy, andEV is the vacancy formation energy. At

infinite dilution, the vacancy formation energy is zero. The self-
diffusion activation energy,ED, is the energy needed to
“activate” the diffusion (e-ED/(kBT) being the probability that the
molecule has enough energy). The preexponential factor or
frequency factor,D∞, is a material property of both the zeolite
and the diffusing molecule. It accounts for directional steric
effects that are difficult to predict.

Figure 13 plots the logarithm of the diffusion coefficient as
a function of inverse temperature for several chain lengths in
the ERI-type silica. Over the complete temperature range (300-
700 K), Arrhenius-type behavior of the formD∞ e-ED/(kBT) is
found. The slope of a fitted line in the figure corresponds to
-ED, and the value at infinite temperature isD∞. The activation
energy is related to the height of the energy barrier arising from
the repulsive forces involved in penetrating the relatively small
windows of the zeolite framework. The nature of the surface
and the precise shape of the pore appear to be of secondary
importance.40 The precise form of the frequency factorD∞ varies
with the shape of the free energy barrier.

The activation energy for diffusion,ED, is plotted in Figure
14a for ERI- and CHA-type silica. The simulation curve is
qualitatively the inverse of the general shape of the diffusion
curves, that is, if a molecule has a high mobility, the activation
energy is small and vice versa. The experimental results for
ERI-type zeolites are more difficult to interpret. The diffusion
path of a C13 is still quite tortuous, and an activation energy of
zero is doubtful. Measuring diffusion of C13 or higher accurately
in ERI-type zeolites or intergrowths between ERI- and OFF-
type zeolites might prove to be beyond current experimental
techniques. The order of magnitude of the C6-C12 range is
however quite well represented by our simulation data. We find
significantly higher activation energies for C3-C5.

In Figure 14b, the frequency factors for ERI- and CHA-type
silica are shown. Gorring found a compensation effect in which
the D∞ increases as the activation energyED increases. The
simulation results show only structural effects, and the curves
are relatively straightforward to interpret. The molecules in the
C2-C5 range have the highest orientational freedom, while for
higher chain lengths, the alkane gets more and more constrained.
This effect continues up to C10 for CHA-type silica and C12-
C13 for ERI-type silica. These molecules represent local maxima.
Longer molecules have to stretch through a window into two
cages, leading again to more orientational freedom. We note
that the maximum in the frequency factor corresponds to the
minimum of the activation energy and the maximum in the
diffusion constant.

Figure 13. The natural logarithm of the diffusion coefficient in ERI-
type silica plotted against the reciprocal temperature for C1-C4 and
C8. The data are fitted with a straight line over the complete simulated
temperature range showing Arrhenius-type behavior of the formD∞
e-ED/(kBT). Error bars are only shown when larger than the symbol size.

Figure 14. Fit to the Arrhenius expression for ERI- and CHA-type silica as a function of chain length: (a) activation energies in units of kJ/mol;
(b) logarithm of the frequency factorsD∞ in units of m2/s. The simulation results are compared to the experimental results obtained by Gorring,2

Cavalcante et al.,12 and Magalha˜es et al.13 Error bars on the simulation data are only shown when larger than the symbol size.

D(T) )
nl2ν0

2d
e-(EV+EA/(kBT)) ) D∞ e-(ED/(kBT)) (24)
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In Figure 15a, the activation energy obtained for LTA-type
silica from simulation is plotted, along with experimental results
for the Na and Ca/Na forms of LTA-type zeolites from refs 39
and 40. For a given chain length, the activation energy for
diffusion in the Na form of LTA-type zeolites is higher than
that for the Ca/Na form, reflecting their difference in the pore
size. We were unable to find data on the all-silica version of
the LTA-type zeolite, but despite this, the qualitative agreement
with the Ca/Na form of the LTA-type zeolite is already
reasonable, and agreement with a cation-free LTA-type sieve
is expected to be quantitatively better. Figure 15b shows the
frequency factors. Both datasets suggest that C4-C5 has the most
orientational freedom and lead to the lowest attempt frequency.
Unlike ERI- and CHA-type silica, LTA-type silica exhibits a
compensation effect, that is, the activation energy increases, and
the frequency factor increases concomitantly. The former
increases because the higher mobility that comes with an
increase in temperature impedes diffusion through a window;
the latter increases because the same mobility results in more
attempts to pass through the window. Apparently these effects
cancel out each other.

We note that the LTA-type cavities are large enough to
contain molecules up to C23. They can bend, fold, or coil like
a spring. In addition to intercage entropic barriers (i.e.,
windows), also intracage entropic energy barriers can be present.
For lower temperatures, the temperature dependence of the
frequency factor becomes important. It has been shown in
simulations on ethane molecules that at low temperatures (150-
300 K) diffusion can even decrease with increasing temperatures
because heating the system moves the molecule away from the
window, increasing the entropic barrier for cage-to-cage mo-
tion.41

D. Free Energy Profiles. The Henry coefficient can be
considered as a spatial average of the free energy over the
complete zeolite space (see eq 10). In simulations, we are able
to extract more detailed information such as the free energy of
a molecule as a function of position. This is not an easily
obtainable quantity in experiments. In addition to the potential
energy, the free energyF(q) also contains an entropy contribu-
tion and is directly related to the probability of the molecule to
be found at positionq (see eq 16). We have plotted the free
energy profiles (spline fits) at 600 K in erionite in units ofkBT
for C1-C5 and C8 in Figure 16. The description as an activated
process is well justified because∆F . kBT.

The free energy difference of ERI- (Figure 17a), CHA-
(Figure 17b), and LTA-type silica (Figure 17c) can be analyzed

in terms of the value inside the cage and the value at the barrier.
The simulations show that the dominating contribution to the
diffusion coefficient is the height of the free energy barrier
associated with the window between the cages. This height is
given by the free energy difference between a molecule
positioned in the cage and a molecule on top of the barrier.
The depth of the free energy is directly related to the Henry
coefficients. For the molecules in the cage, we observe that as
we increase the chain length the minimum of the free energy
decreases until we reach an optimal chain length beyond which
then-alkanes no longer fit comfortably in one cage. For chain
lengths longer than this optimal length, the free energy increases
rapidly until the molecule is so big that additional atoms are
added comfortably in the second cage and the minimum free
energy is decreasing again. For the free energy of a molecule
on top of the barrier, we observe an increase from C1 to C3 as
more atoms are placed on top of the barrier. For C3, all atoms
feel the influence of the window. Any additional atom will be
placed in more favorable positions outside the window, and
therefore, the barrier decreases forn-C4 and continues to
decrease until the molecule is so large that it feels the limitations
of the cage. Beyond this chain length, the maximum of the free
energy increases rapidly. Combining these effects gives the
generic diffusion behavior as a nonmonotonic function of chain
length: first a decrease followed by a possible plateau, an
increase, and finally a decrease again. Key parameters in this
mechanism are the presence of a narrow window combined with

Figure 15. Fit to the Arrhenius expressions for LTA-type silica as a function of chain length: (a) activation energies in units of kJ/mol; (b)
logarithm of the frequency factorsD∞ in units of m2/s. The results are compared to the experimental results obtained by Eic and Ruthven39 and data
published in ref 40. Error bars on the simulation data are only shown when larger than the symbol size.

Figure 16. Free energy profiles for C1-C5 and C8 in ERI-type silica
in units of kBT as a function of the dimensionless reaction coordinate
q (lines from top to bottom atq ) 0 in order of the legend). The 8T-
ring window corresponds toq ) 0, q ≈ -4 corresponds to a location
deep inside cage A, andq ≈ 4 corresponds to a location deep inside
cage B.
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a cage structure. By optimizing the effective cage size, one can
shift the location of the second maximum to a desired value.

VII. The Window Effect Reexamined

The idea of adsorption on a periodic substrate that forms
periodic arrays that are either commensurate or incommensurate
with the substrate originates from the 1938 Frenkel-Kontorowa
(FK) model.7,8,42The adsorbed atoms at positionsxn are treated
as a harmonic chain with equilibrium lattice spacinga. The
substrate is a one-dimensional periodic lattice with periodb.
The interaction between thenth adsorbed atom and the periodic
substrate is described by a potential energy,V(xn). The model
contains a “floating phase” in which the equilibrium lattice
spacinga of the adsorbed lattice can be an arbitrary multiple
of the substrate periodicityb. The diffusion and thermodynamic
characteristics of molecules of which the shape is commensurate
with that of the zeolite pore is very different from those of the
incommensurate ones. It has been demonstrated that molecular
sieves favor the formation of reaction intermediates that have a
shape commensurate with their pore shape.43

The similar models of Nitsche and Wei11 and Ruckenstein
and Lee9 use stiff rods to modeln-alkanes. Due to the
simplifications, the model cannot predict the location of the
maximum, nor can it describe the intracage behavior correctly,
that is, the minima. The entropy effect (there is variety of
conformations depending on the structure of the adsorbate) has
been ignored, and only a one-dimensional diffusion path is taken
into account. Despite these simplifications, they corroborate the
essence of the window effect: a stochastic motion through a
regular array of potential barriers. An earlier proposed model

by Derouane et al.10 analyzed Gorring’s results in terms of
energy and surface curvature effects by applying a segmenta-
tional diffusion principle, that is, a translation occurs by
successive segmental displacements. All segments are affected
by different free energy environments. The model includes two
distinct trapping cases: a portion of the molecule lying in the
cage and the remaining portion lying in the interconnecting
window space or the opposite filling order. For the sake of
simplicity, the probability of the cases is equally weighted. In
contrast to the other models, the authors attribute the changes
in the diffusivity to a variation in the sticking force. Because
of the distinction between a cage and window region, this model
captures the physics of the intracage behavior somewhat better
than the rod models.

Tsekov and Smirniotis44 extended the concept of resonance
diffusion by Ruckenstein and Lee9 to include the effect of the
zeolite structure and the alkane vibrations. Because the mechan-
ics of crossing channels is hard to describe with a theoretical
model, it is again restricted to channel-type zeolites such as
those with LTL-type structure. They demonstrate that the
existence of a sequence of expansions and apertures alone is
not enough. The energy barrier should be sufficiently high to
observe the diffusion peaks. Talu et al.45 found experimental
evidence of a resonance diffusion effect in silicalite. Their results
obtained by steady-state single-crystal membrane technique
agreed well with the MD results of Runnenbaum and Maginn.46

In the latter report, it has been suggested that although resonance
diffusion is a real effect in zeolite, it will only occur under
special conditions: low temperature, rigid sorbate, smooth
channels, and low loadings. The acceleration of the diffusion

Figure 17. The free energy maximum, minimum, and difference between maximum and minimum in units ofkBT for (a) ERI-type silica, (b)
CHA-type silica, and (c) LTA-type silica at 600 K.
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rate due to resonance effects does not exceed a factor of 2.
Therefore, the authors attribute the more dramatic acceleration
reported by Gorring to other effects.

It is important to note that in our approachall possible
configurations (translations, rotations, and internal configura-
tional changes) and as a consequenceall possible diffusion paths
through the zeolite are represented with the proper weight. As
such, the techniques can be straightforwardly applied to other
cage/window-type zeolites. The heats of adsorption and the
Henry coefficients shed light on a possible window effect before
computing the more computationally demanding diffusion
coefficients at interesting chain lengths.

We would like to comment on the positions and total amount
of the cations within the zeolite structure and of their relevance
for the obtained results. The available experimental data on
zeolites with window effects is contradictory and very scattered.
There exists systematic data forn-alkanes up to C14 on
potassium-exchanged OFF/ERI intergrowths,2 for ones up to
C12 on proton-exchanged CHA-type zeolites,3 and for a few
selected alkanes on various types of ERI/OFF intergrowths by
Cavalcante et al.12 and Magalha˜es et al.13 Lattice intergrowths
and defects, cations, and associated aluminum atoms create
strong disorder, increase the hopping activation energy, inhibit
the mobility of sorbates, and slow the diffusion process. Factors
such as the existence of several different energetically favorable
cation sites complicate the diffusion process. In addition, our
Henry coefficients indicate abnormally low adsorption in ERI-
and CHA-type zeolites for chain lengths close to or longer than
the cage size.

The positions of ions are of critical importance if they are
located in the windows obstructing the diffusion. The difference
between the Na form of the LTA-type zeolite and the Ca/Na
form is a striking example.40 The Ca/Na form (zeolite 5A) has
four calcium and four sodium ions per cage. None of the
windows is blocked by an ion, and the free diameter of the
windows is 5 Å. The Na form (zeolite 4A) contains 12 sodiums
per cage, and 100% of the windows are occupied with an ion,
reducing the effective window size to 4 Å. Exchange with
potassium would reduce the window size to 3 Å (zeolite 3A).
The difference in diffusion is large: the coefficients in 4A are
4 orders of magnitude lower than that in 5A. The Ca form of
CHA-type zeolite is another example in which the ions are
located in the windows.47 However, the positions are dependent
on pretreatment of the zeolite sample (the dehydration steaming
process).

Although the locations of protons can potentially be deter-
mined by neutron diffraction in an empty zeolite, they are easily
displaced by diffusing adsorbates, and considering their small
size, the impediment of diffusion is expected to be small. In
accordance with this view, our all-silica CHA-type zeolite results
agree well with the H-CHA experimental results, although a
quantitative comparison is difficult because of the unknown
crystal size in the experiment. We note that the original cracking
data of Chen was performed using H-ERI. The actual samples
used by Gorring2, Cavalcante et al.,12 and Magalha˜es et al. were
rather different in composition of cations and intergrowth ratio.
However, in some forms of the ERI-type zeolite48 and the Ca/
Na form of the LTA-type zeolite,40 the ions are known to be
located in the cages and not in the windows. Hence, they are
expected to have a somewhat better adsorption inside the cage
(Henry coefficients), but the maximum of the free energy at
the windows may be virtually unchanged. Therefore, the order
of magnitude difference in diffusion could possibly also be found
in some of the cation-loaded versions of ERI-type zeolite.

To unambiguously detect the window effect in reality is by
far no trivial task, both in view of the requirements for the
experimental techniques and the quality of the nanoporous
materials. In view of the difficulties, it would be of high interest
to the simulation community to experimentally validate the
diffusion behavior of alkanes as a function of chain length in
ERI-, CHA-, and LTA-type silica or their aluminum phosphate
analogues (viz., AlPO-17,49 AlPO-34, and SAPO-42, respec-
tively). We note that recently an all-silica form of the CHA-
type zeolite has been synthesized.50

VIII. Conclusions

We studied the effect of the zeolite structure on the diffusion
of n-alkanes as a function of carbon number. The ERI-, CHA-,
and LTA-type frameworks consist of cages separated by small
windows but differ in the size and shape of the cages and in
the orientation of the windows with respect to the cage. In
contrast to channel zeolites such as the OFF-type, the cage/
window-type zeolites showed a cage effect for adsorption and
diffusion: a nonmonotonic, periodic dependence of the Henry
coefficients, heats of adsorption, and diffusion coefficients on
the chain length. The simulations corroborate the existence of
the window effect in ERI- and CHA-type silica with the
positions of the minima and maxima determined by size and
orientational crystal parameters. When a molecule is incom-
mensurate with the cage structure, the diffusion rate increases
by orders of magnitude. The corresponding chain length is the
maximum length at which a molecule still fits in a single cage:
C13 for ERI-type silica, C11 for CHA-type silica, and C23 for
LTA-type silica. These crossover points are directly related to
the local minima in the Henry coefficients, the heats of
adsorption, and the activation energies and to the local maxima
in the diffusion coefficients and the frequency factors. In the
controversy about the experimental results, we side with
Gorring, who was the first and only to report experimental data
indicating the “window effect”. This opens the possibility of
length selective cracking, where the length distribution is
controlled by choosing structures with the appropriate cage size.
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Note Added after ASAP Posting

This article was released ASAP on 10/11/2003 with errors
in the y-axis of Figure 7b and in the descriptions of the ERI-
and CHA-type cages. The correct version was posted on 10/
21/2003.
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