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We apply the dynamically corrected transition state theory to confinements with complex structures. This
method is able to compute self-diffusion coefficients for adsorbate-adsorbent systems far beyond the time
scales accessible to molecular dynamics. Two example cage/window-type confinements are examined: ethane
in ERI- and CHA-type zeolites. In ERI-type zeolites, each hop in thez direction is preceded by a hop inxy
direction and diffusion is anisotropic. The lattice for CHA-type zeolite is a rhombohedral Bravais lattice, and
diffusion can be considered isotropic in practice. The anisotropic behavior of ERI-type cages reverses with
loading, i.e., at low loading the diffusion in thez direction is two times faster than in thexy direction, while
for higher loadings this changes to az diffusivity that is more than two times slower. At low loading the
diffusion is impeded by the eight-ring windows, i.e., the exits out of the cage to the next, but at higher
loadings the barrier is formed by the center of the cages.

I. Introduction

Transport of adsorbates in nanoporous adsorbents such as
zeolites is determined by a complex interplay between adsorbent-
adsorbate and adsorbate-adsorbate interactions. From a scien-
tific point of view, zeolites are ideal systems to study the effect
of confinement on the properties of the adsorbed molecules
because of their regularity and periodicity. Although interesting
effects such as single-file diffusion,1-3 incommensurate dif-
fusion,4-7 and levitation effects8 are well-known, most of the
effects of confinement on diffusion remain poorly understood.
This is particularly true for loading effects in materials with
different channels and/or cages in thex, y, andz direction.

Anisotropic single-component diffusion in nanoporous ma-
terials has been known for a long time. A well-known example
is diffusion in silicalite.9-13 In general, the diffusion coefficients
in the different directions can have different dependencies on
temperature and loading. A limited number of studies deal with
nonzero loading. Bussai et al.14 found little change in anisotropy
for water in silicalite as a function of loading, while Skoulidas
and Sholl found a more irregular loading dependence of
anisotropy.15 Anisotropic behavior is very common in nano-
porous materials. The papers of Skoulidas and Sholl16 (molecular
dynamics simulations), Trinh et al.17 (Monte Carlo simulations),
Su et al.18 (molecular dynamics simulations in clay), Powles et
al.19 (a model for permeable micropores with variable anisotropic
diffusion), Yokoyamaa and Nakashimab20 (diffusion experi-
ments on a rhyolite rock having anisotropic pore structure),
Wingen et al.21 (anisotropic motion of water in zeolites EMT,
L, and ZSM-5 as studied by D- and H NMR line splitting),

Nelson et al.23,22 (modeling permeation through anisotropic
zeolite membranes), Furo and Dvinskikh24 (methodology of
NMR experiments intended to measure anisotropic diffusion),
and Manzel et al.25 (NMR characterization of the pore structure
and anisotropic self-diffusion in saltwater ice) are just a few
examples.

Although molecular dynamics (MD) is a very powerful
technique to study these effects, MD is typically limited to
diffusion rates on the order of 10-12 m2/s. To overcome this,
some studies have used dynamically corrected transition state
theory (dcTST) methods (see refs 26-28 and references therein).
Hitherto, studies were limited to the infinite dilution limit,
whereas many of the processes of practical importance occur
at nonzero loading. Beerdsen et al.29 resolved this problem by
extending the dcTST Bennett-Chandler approach to include
diffusion of molecules at nonzero loading using only assump-
tions already present in TST.

In this work, we report molecular simulations of diffusion in
confinement showing a phenomenon previously denoted as
molecular path control (MPC); depending on loading, molecules
follow a preferred pathway.32 We note that MPC is different
from molecular traffic control,33 which is caused by mutual
correlations in the movement of a multicomponent fluid through
two types of pores. As a specific MPC example, we study the
mechanism behindtunableanisotropy of ethane in ERI-type
zeolite membranes. In ERI-type zeolite, the diffusion is char-
acterized by complex diffusion paths. Each hop in thezdirection
is preceded by a hop in thexy direction. At low loading, the
diffusivity in the z direction is two timesfaster than in thexy
direction for both the self- and collective diffusivity, while for
higher loadings this changes into az diffusivity that is more
than two timesslower. Additionally, we study a closely related
zeolite known as Chabazite (CHA). The cages of CHA-type
zeolites are somewhat smaller than ERI-type cages, and more
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spherical. In literature, a rectangular hopping lattice has been
used for CHA to compute diffusion in simulations.34,35For this
lattice the diffusion “appears” to be anisotropic. However, for
a different lattice properly aligned with the crystal axes we show
that in fact diffusion in CHA-type zeolites is nearly isotropic.
We note that the problem in zeolites is reversed to lattice theory
where the hopping rates and lattice-type are given. Here, we
need to resolve both, and for this we apply the dcTST method.
We use dcTST and MD to study changes in diffusion behavior
in ERI- and CHA-type zeolites over loading.

The remainder of this paper is organized as follows. In section
II we start with a detailed description of the ERI- and CHA-
type zeolites. Next, we describe the dcTST method to compute
the effective hopping rate for these lattices. In the results section
III we derive the correct conversions from hopping rates to
diffusivities, and show results for ethane at 600 K in ERI- and
CHA-type zeolites using dcTST and MD. The free-energy
profiles, the transmission coefficients, the hopping rate, and self-
diffusion coefficients for both zeolites are evaluated. Here, we
explain our choice of the hopping lattice, being closely related
to the computed free-energy profiles. We end with conclusions
on anisotropic behavior in zeolites as a function of loading and
explain why the dcTST method is a suitable method to provide
detailed insight into mechanisms behind it.

II. Methods

A. Zeolite Descriptions. The ERI-type silica structure30

crystallizes in the hexagonal dipyramidal spacegroupP63/mmc
with a ) b ) 1.327 nm,c ) 1.505 nm, andR ) â ) 90°, γ )
120°. The elongated erionite cages approximate the shape of
1.3× 0.63 nm cylinders connected by 0.36× 0.51 nm windows.
Only linear molecules are able to penetrate the eight-membered
ring windows. There are three windows at the top of the cage

rotated 120° with respect to one another. At the bottom of the
cage there are also three windows rotated 120° with respect to
one another. The top three windows are aligned with the
windows at the bottom. Each ERI-type unit cell contains two
erionite cages as shown in Figure 1a.

The CHA-type structure31 has the spacegroupR3hm (a
squashed cube) witha ) b ) c ) 0.9459 nm, andR ) â ) γ
) 94.07°. The framework contains double six-membered rings
joined together through four-membered rings. The resulting
three-dimensional structure has large ellipsoidal chabazite
(CHA) cages. Small guest molecules can enter the cages through
eight-membered 0.38 nm wide ring windows. Only linear
alkanes are able to penetrate the windows. Each CHA-type unit
cell contains a single chabazite cage as shown in Figure 1b.

B. The dcTST Method. Slow diffusion of molecules in
zeolites can be considered an activated process, in which the
particles hop from one free-energy minimum to the next, and
the actual crossing time is negligible compared to the time a
particle spends inside the cage. One can exploit the large
separation in time scales using rare-event simulation tech-
niques.36,37We consider a system that can be in two stable states,
A and B, with a dividing free-energy barrier between them. The
reaction coordinateq indicates the progress of the diffusion event
from cage A to cage B. The location of the dividing barrier is
denoted byq*. We introduce two characteristic functionsnA

andnB that measure whether the system is in state A or B. A
possible and often used definition is

whereθ is the Heaviside functionθ(x), which has value 0 for
x < 0 and value 1 forx g 0.

Figure 1. Unit cell of (a) ERI-type zeolite, and (b) CHA-type zeolite. The ERI-type structure30 crystallizes in the hexagonal dipyramidal space
group P63/mmcwith a ) b ) 1.327 nm,c ) 1.505 nm, andR ) â ) 90°, γ ) 120°. The CHA-type structure31 has the space groupR3hm (a
squashed cube) witha ) b ) c ) 0.9459 nm, andR ) â ) γ ) 94.07°. A unit cell of erionite contains two cages, while a unit cell of chabazite
contains a single cage.

nA ) θ(q* - q) (1)

nB ) θ(q - q*) (2)
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In the Bennett-Chandler approach26,36,37 one computes the
hopping rate over the barrier in two steps

whereδ is the Dirac delta function,q(t) the reaction coordinate
at timet, m is the mass of the segments of the particle involved
in the reaction coordinate,κ the transmission coefficient,kB the
Boltzmann constant,T the temperature,â ) 1/kBT the inverse
temperature, andF the free energy of position related to the
probability P(q) by âF ) -ln〈P(q)〉.

O. Braun and C. Sholl38 developed a technique to calculate
the diffusion tensor for the lattice-gas model at infinite dilution
for any complex elementary cell. Although sometimes lengthy
calculations are involved, in many cases analytical expressions
for the diffusion tensor may be obtained. It is important to note
that the extension to higher loading requires an estimate of the
correlations between the particles, which tends to reduce the
diffusion. Transition state theory methods such as the methods
of Tunca and Ford39-41 neglect the correlations while computing
the hopping rate, but hope to regain these correlations again
during a coarse-grained kinetic Monte Carlo simulation. In
addition, various approximations are made to make the com-
putation tractable using multidimensional TST. Their method
underpredicted the diffusivity at low loading, while significantly
overpredicting the diffusivities at higher loadings, in comparison
to conventional MD (see Figure 6 of Ref 41) for methane in
LTA-type silica.

The newly developed method of Beerdsen et al.29 computes
aneffectiVehopping, i.e., a hopping rate including correlations.
The conversion of the hopping rate at nonzero loading is
therefore the same as for the infinite dilution case. Importantly,
the study of diffusion over long time and space regions can
then be restricted to the analysis of the free energy profiles of
a singleunit cell (the surrounding cages influence this profile
and have to be properly modeled29). For the same system,
methane in LTA-type silica, the dcTST method of Beerdsen et
al. gives exact overlap with MD results (see Figure 3 of ref
29).

For systems with erratic free-energy landscapes, e.g., multiple
of barriers of different heights, the dcTST method can be
generalized using

with a biasing functionw(q) operating on the regions A and B

wherea > 0 is an integer to be chosen freely. A value ofa )
1 would flatten the free-energy landscape, a value ofa ) 2
would reproduce the Ruiz-Montero method (if the approximate
free energy is taken to be the true free energy).42 Starting

configurations at the desired loading are sampled using NVT-
MC (with the biased, tagged particle in theπ-ensemble), and
subsequently a weighted velocity autocorrelation of the tagged
particle is computed using conventional NVE-MD. For more
details on the dcTST-methods see refs 26 and 29, and see ref
43 for another application on MFI-type zeolite.

C. Nonrectangular Unit Cells and Reaction Coordinates.
ERI and CHA-type zeolites can be described both in terms of
rectangular unit cells and in their crystallographic nonrectangular
unit cell definitions. In crystallography, the crystal structure is
defined by the unit cell, and by the fractional coordinates of
the atoms within the unit cell. These coordinates form an
orthonormal dimensionlessS space.S space is often more
convenient for the computation of the free-energy profiles. The
transformation fromS space to realR space can be carried
out by the matrixH :

with

Conversely,H -1 transforms real coordinates into fractional
coordinates. With the chosenH the scaled box has a length of
1. Our potential force field is defined in real space, therefore it
is convenient to store positions inR space, transform them to
S space, apply periodic boundary conditions inS space, and
transform back toR space to compute distances within the
simulation box

where the “rint” function returns the rounded integer value of
its argument. The smallest perpendicular width of the unit cell
has to be larger than twice the spherical cutoff inR space.

For computational reasons, a rectangular unit cell is preferred.
Not only is the matrix conversion expensive, if the unit cell is
severely distorted from cubic, many redundant distance calcula-
tions will be performed for particles lying outside the cutoff in
R space, further reducing the efficiency. However, for com-
putation of free-energy profiles in complex zeolite structures,
the fractional space is often very convenient.

We can chooseq as the position of one of the two beads of
ethane.6,7 This choice of order parameter underestimates the free
energy of the true transition state, but the dynamical correction
κ is theexactcorrection compensating our choice of reaction
coordinate.37

The monoclinic unit cell definition for an ERI-type cage is
shown in Figure 1a. Because two cages are present in the unit
cell definition it is convenient to be able to select a single cage
by using

wheres are the fractional coordinates of a single ERI-type unit
cell in S space. Forxy computations the barrier is located atsxy

) {1/2, 1/2}, and by symmetry all positions in the unit cell can

kAfB )
〈δ(q* - q)〉
〈θ(q* - q)〉

× 〈q̆(0)δ(q* - q(0))θ(q(t) - q*) 〉
〈δ(q* - q(0))〉

(3)

) e-âF(q*)

∫cage A
e-âF(q)dq

× (κ × x kBT

2πm ) (4)

kAfB ) 1
〈nA〉

〈∫0

∞
q̆(t)q̆(0)

w(q(t))

w(q(0))
e-âF(q(t))

e-âF(q(0))
dt〉

π

∫qA

qBeâF(q) dq∫A+B
e-âF(q) dq

(5)

w(q) ) eaâF(q)

π(q) ∝ e(a-1)âF(q) (6)

H ) (a b cos (γ) c cos (â)
0 b sin (γ) cú
0 0 cx1 - cos2 â - ú2) (7)

ú ) cosR - cosγ cosâ
sin γ

(8)

s ) H -1r

s′ ) s - rint(s)

r ′ ) H s′ (9)

q ) {sx + (1 - sy) < 1 for cage A
sx + (1 - sy) > 1 for cage B

(10)
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be mapped on the reaction coordinate. For thez computation
we select only cage A and use

The barrier at the center of the cage is located ats ) {1/3, 2/3,
3/4}, while the free-energy minimaqA andqB are located ats
) {1/3, 2/3, 1/2} ands ) {1/3, 2/3, 1}, respectively. Using the
projection eq 11 and the positions of cage A only,qA is located
at sz ) 1/2, the barrierq* at sz ) 3/4, andqB at sz ) 1.

The unit-cell definition for a CHA-type cage is shown in
Figure 1b (the rhombohedral lattice can be thought of as a cube
slightly pulled along its space diagonal). The reaction coordinate
can now be chosen from the center of the cage (s0 ) {0.5, 0.5,
0.5}) to any of the six exits through the center of the windows
(s1 ) {1, 0.5, 0.5}, s2 ) {0.5, 1, 0.5}, s3 ) {0.5, 0.5, 1},s4 )
{0, 0.5, 0.5}, s5 ) {0.5, 0, 0.5}, s6 ) {0.5, 0.5, 0}), i.e., the
space is simply mapped onto the three orthonormal axes in
scaled space. The other half of the profile, i.e., fromq* to qB

follows by symmetry. For symmetry reasons, the free-energy
profiles are all equivalent, and there is only one hopping ratek
from a cage to any of the neighboring cages in CHA-type
zeolites.

D. Force Field Potentials and Simulation Details.We
neglect cations and study rigid, all-silica versions of the ERI-
and CHA-type zeolites. The positions of the atoms are taken
from refs 30 and 31, respectively. Following the work of Bezus
et al.,44 the zeolites are modeled as a rigid network of oxygen
and silicon atoms. This is a very common approximation
because lattice flexibility is not that important for small alkanes
in all-silica zeolites.45,46 The simulation box sizes we used are
3 × 3 × 3 (perpendicular widths are 3.448× 3.448× 4.515
nm) for ERI-type zeolite, and 3× 3 × 3 (perpendicular widths
are 2.81× 2.81 × 2.81 nm) for CHA-type zeolite. Tests on
larger systems did not show any significant finite-size effects.
Periodic boundary conditions were employed. Adsorption in
cation-free structures takes place at sites with little or no electric
field. For these reasons the united atom model47 seems the most
straightforward choice. We consider the CH3 groups as single,
chargeless interaction centers with their own effective potentials.
The beads of ethane are connected by an harmonic bonding
potentialUbond ) 1/2 k1(r - r0)2 with k1/kB ) 96500 K/Å2 and
r0 ) 1.54 Å. The extramolecular energyUext consists of a
guest-guest intermolecular energyUgg, a host-guest interaction
Uhg, modeled with a Lennard-Jones potential with a cutoff radius
of 12 Å. The parametersσO-CH3 ) 3.17 Å,εO-CH3/kB ) 142 K,
σSi-CH3 ) 2.12 Å, εSi-CH3/kB ) 82 K, andσCH3-CH3 ) 3.78 Å,
εCH3-CH3/kB ) 104 K were taken from ref 48. Although the size
parameters are rather small, for this study we prefer to use these
parameters because then diffusion of ethane in ERI- and CHA-
type zeolite is still feasible using conventional MD.

The simulations were performed using two different meth-
ods: the recently proposed dynamically corrected transition state
theory and conventional molecular dynamics (MD) (dcTST).26,29

We used the velocity Verlet integration scheme with a time step
of 0.5 fs. The relative energy drift was smaller than 10-4. For
temperature control we employed the Nose´-Hoover chain
(NHC) method as formulated by Martyna et al.49 Molecules were
inserted into the framework at random positions as long as no
overlaps occurred with the framework or other particles. During
the initialization period, we performed an NVT Monte Carlo
(MC) simulation to rapidly achieve an equilibrium molecular
arrangement. After the initialization period, we assigned veloci-
ties from the Maxwell-Boltzmann distribution at the desired

average temperature to all the atoms. The total momentum of
the system was set to zero. Next, we equilibrated the system
further by performing an NVT MD simulation using the NHC
thermostat. After the equilibration was completed, during the
production run of more than 20 ns, we collected statistics using
the NVT-ensemble. Simulations using the NVE-ensemble gave
equivalent results. More details can be found in ref 26.

Transmission coefficients are computed from at least 50000
independent configurations. These configurations are obtained
from Monte Carlo simulations, where a configuration is stored
every 500 cycles. A cycle is defined asN steps, whereN is the
number of molecules, and a step is one Monte Carlo move
(translation, rotation, full regrow). On average there is one
Monte Carlo move per particle in a single cycle. The free-energy
profiles are obtained using MD and MC; both give equivalent
results.

III. Results

A. Ethane in ERI-type Zeolite (anisotropic diffusion). In
an ERI-type lattice, diffusion in thexyplane occurs isotropically
on an hexagonal lattice

with λxy the lattice displacement distance andkxy the corre-
sponding hopping rate. Thez diffusion is dependent on the
hopping in thexy plane. In general, the method of Braun and
Sholl38 can be used to compute diffusivity tensors. However,
for such sequential hops we can derive a simple formula for
the combined hopping rate, based on the mean first passage
time. Consider a hop from A to C with an intermediate state B.
We have

and therefore

from which PBfC can be solved:

The hopping rate from A to C is the hopping rate from A to B
times the probabilityPBfC to go from B to C

In general, a serial combination of hops is then described by

Equation 19 proves convenient for finding the relation between

q ) sz (11)

Dxy ) 1
4
kxyλxy

2 (12)

PBfA

PBfC
)

kBfA

kBfC
(13)

PBfA + PBfC ) 1 (14)

PBfC ) PBfA

kBfC

kBfA
(15)

) (1 - PBfC)
kBfC

kBfA
(16)

PBfC )
kBfC

kBfA + kBfC
(17)

kAfC ) kAfBPBfC (18)

kAfC )
kAfBkBfC

kBfA + kBfC
(19)
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hopping rates and diffusion coefficient on non-Bravais lattices.
The relation betweenkAfB andkBfA is given by

where 〈nA〉 ) 1 - 〈nB〉 is the equilibrium mole fraction of
particles in state A. For a symmetric barrier〈nA〉 ) 〈nB〉 and
kAfB ) kBfA, so

The lattice displacement vectorλz is orthogonal toλxy and, using
eq 21 plus the symmetry of the lattice, we derive immediately

Diffusion in ERI-type lattices is strongly anisotropic. In Figure
3 we show the measured mean-squared displacements for ethane
obtained using MD at 600 K and a loading of one molecule
per cage. Mean-squared displacements (MSDs) are equal forx
andy directions and different in thez direction. The units are
convenient for simulation purposes, because distances are often
defined in angstroms, and the relevant time scale is in the

picosecond range. Slopes of MSDs are therefore in units of 1
× 10-8 m2/s. The different regimes of diffusion are clearly
visible, and only after a single cage-crossing the MSD has
become linear (a straight line of slope one in log-log scale).
For interacting particles, particle-particle and particle-zeolite
collisions occur on a different time-scale. The mean-squared
displacement thus bends over to attain a different slope. We
are interested in the long-time diffusion coefficient. The self-
diffusion coefficientsDR in the direction R ) x, y, z are
computed by taking the slope at long times

whereN is the number of molecules,t the time, andriR the
R-component of the center-of-mass of moleculei. The diffusion
coefficients at one molecule per cage 600 K areDxy ) 2.1 ×
10-9 m2/s andDz ) 4.2× 10-9 m2/s. This indicates the diffusion
is a rare event and the windows form obstructions to diffusion.
BecauseDz ≈ 2Dxy there are apparently no significant free-
energy barriers inside an erionite cage at low loading.

The hopping lattice for most cage/window-type zeolites is
formed by the lattice spanned by their cage centers. However,
for elongated cages as in erionite, intracage barriers are formed
at higher loadings. For an analysis we measure the free-energy
profiles along the cage-length (thez direction), and along the
center-to-center line in the hexagonalxy plane. The profiles of
ethane plotted in Figure 4 over various loadings indicate that
indeed there are internal cage barriers, and for thexy plane the
barrier is formed by the eight-ring dividing window. The
diffusion coefficient in thez direction depends on both the
hopping rate in thez direction and thexy direction (eq 22),
because each hop in thez direction has to be preceded by a
hop in thexy plane.

The free-energy barrier in thexy plane is sharply peaked,
and therefore the transmission coefficient is straightforward to
evaluate using the Bennet-Chandler approach. The transmission
coefficientsκ(t) are shown in Figure 5. The starting configura-
tions, with the reaction coordinate constrained to the top of the

Figure 2. Topology of the ERI-type lattice in (a)xy direction the
hopping takes place on a hexagonal lattice, in (b) thez direction a
displacement has to be preceded first by axy hop. The lattice is drawn
in blue dots connected by blue lines of lattice distanceλ ≈ 0.75 nm
for x, y, andz directions.

kAfB

kBfA
)

〈nB〉
〈nA〉

(20)

kAfC )
kAfBkBfC

kAfB + kBfC
(21)

Dz ) 1
2

kxy kz

kxy + kz
λz

2 (22)

Figure 3. Mean-squared displacement of ethane in ERI-type zeolite
at 600 K and a loading of one molecule per cage. The MSD is equal
for x andy directions, and different in thez direction. The horizontal
line is the cage-to-cage hopping distanceλ (approximately 7.5 Å for
both thexy and z directions). The different regimes of diffusion are
clearly visible, and only after a single cage-crossing has the MSD
become linear (a straight line of slope one in log-log scale). The slope
over the linear regime corresponds to the limit of long times and can
then be reliably measured. The diffusion coefficient is the slope at long
times divided by two times the number of spatial dimensions.

DR )
1

2N
lim
tf∞

1

t
〈∑

i)1

N

(riR(t) - riR(0))2〉 (23)
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barrierq*, were sampled using a Monte Carlo scheme. After
approximately 10 picoseconds the time-dependent transmission
coefficientκ(t) reached its plateau valueκ. Using eq 4 and eq

12 the hopping rate and diffusion coefficient in thexy plane
can be computed.

The free energy in thez direction across an erionite cage is
initially rather flat, and with increasing loading a clear free-
energy minimum is formed in the center of the cage. There are
two solutions to this problem. The first would be to use a
different hopping lattice and include the pink points in Figure
2 in the hopping lattice. A hop in thez direction is now a
sequential process of two hops, and the total hopping rate can
be obtained using eq 21. However, when there are several
hopping rates very different in magnitude, it is more complicated
to define a hopping rate for the fast jumping particles, because
kinetic correlations are abundant.

A second method, and the method of our choice here, is to
use biased MD to compute the total hopping rate from the top
of the cage to the bottom of the cagedirectly. The reasons are
two-fold: first the method is applicable to low free-energy
barriers, and second, the method is able to compute hopping
rates over complicated free-energy landscapes such as, in this
case, two barriers. The reaction coordinate is the projection on
thez axis (eq 11), whereqA denotes the top of the cage,qB the
bottom of the cage, andqI the intermediate free-energy
minimum. There are two barriers, one separatingqA andqI, and
another one betweenqI and qB. The biased MD method
computes the total hopping rate fromqA to qB by computing an
effective diffusion coefficient over the entireq domain (qA to
qB), i.e., there is no separate computation of the transmission
coefficient. The results are shown in Figure 6. The plateau value
at long times is the hopping rate of interest.

The self-diffusion coefficients of ethane in ERI-type zeolite
at 600 K using dcTST and conventional MD are shown in Figure
7. Surprisingly, the anisotropical behavior of ERI-type cages
reverses with loading, i.e., at low loading the diffusion in the
z-direction is two times faster than in thexy direction, while
for higher loadings this changes to a diffusion that is more than
two times slower. Although MD and dcTST give equivalent
diffusivity results, the behavior is better understood by analyzing
the free-energy profiles (and transmission coefficients). At low
loading the diffusion is impeded by the eight-ring windows,
i.e., the exits out of the cage to the next, but at higher loadings
the barrier is formed by the center of the cages.

B. Ethane in CHA-type Zeolite. We note that the same
formulas have been derived before, but for CHA-type zeolites
by Schüring et al.35 Examining Figure 8, it appears that CHA-
and ERI-type zeolites are very similar, the difference being the
more elongated shape of ERI-type cages. In such a lattice one

Figure 4. Free energy profilesF(q) at 600 K of ethane in ERI at various
loadings (infinite dilution, 1, 2, 3, 4, 5, 6, and 7 molecules per erionite
cage) in the (a) hexagonalxy plane withqA the center of a cage, and
qB the center of a neighboring cage, (b) in thez direction across a cage
with qA the top of the cage,qI the middle of the cage, andqB the bottom
of the cage, respectively.

Figure 5. Transmission coefficientκ(t) for ethane at 600 K in ERI-
type zeolite as a function of time for various loadings.

Figure 6. Intracage hopping rate in thez direction obtained using
biased MD for ethane in ERI-type cages at 600 K.
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expects the diffusion to be anisotropic, and this is indeed the
case as evidenced by the mean-squared displacements in Figure
10. To convert the hopping rate in CHA-type zeolites to a
diffusion coefficient, we note that the lattice is actually only
slightly distorted from a cubic lattice (Figure 9). The orienta-
tionally averaged diffusion coefficient isnot affected by the
distortion in CHA-type lattices but the individual components

are. However, the distortion effect for the CHA-type lattice is
negligibly small (smaller than 2%). Therefore, diffusion in CHA-
type zeolite can be considered isotropic in practice using this
lattice (see Figure 10). CHA-type zeolites only appear to be
anisotropic when the lattice is not properly aligned with the
crystal axes. We note that, unlike in lattice theory, in our systems
both the lattice and the hopping rates need to be found.

A similar free energy analysis as for ERI-type zeolites can
be performed for CHA-type zeolites. However, for the “squashed
cube”, the free-energy profiles and transmission rates are equal
for a, b, and c directions. Hence, there is only one hopping
rate, and any anisotropy is entirely due to the small distortion
from a perfect cube. In Figure 11 we show the free-energy
profiles for CHA-type zeolites. The barrier is formed by the
eight-membered ring for all loadings, and at higher loadings
some intracage reorganization is observed as more and more
molecules have to be accommodated inside the chabazite cage.

Figure 7. Anisotropic diffusion of ethane in ERI-type zeolite computed
by dcTST and conventional MD at 600 K.

Figure 8. A possible rectangular topology of the CHA-type lattice
used in the literature.34,35In thezydirection (a), the hopping takes place
on a hexagonal lattice; in thex direction (b), a displacement has to be
preceded first by azyhop. The lattice is drawn in blue dots connected
by blue lines.

Figure 9. “Squashed cube” topology of the CHA-type lattice. The
lattice is drawn in blue dots connected by blue lines of lattice distance
λ ≈ 0.9459 nm fora, b, andc directions.

Figure 10. Mean-squared displacements of ethane at 600 K and a
loading of one molecule per cage for the rectangular and “squashed
cube” version of CHA-type zeolites.
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Our simulations indicate no significant anisotropy (less than
2%), and therefore we plot the orientationally averaged self-
diffusivity only for both MD and dcTST in Figure 12. A similar
diffusivity behavior to ERI-type zeolites is observed for CHA-
type cages. Indeed, the increase in diffusivity is a general feature
present due to cage confinement. The maximum in the diffu-
sivity is shifted to lower loading, consistent with the smaller
cage size of chabazite in comparison to erionite.

As mentioned previously, the diffusion in CHA-type zeolite
can be considered isotropic in practice. Indeed, tracer-diffusion
measurements of water in natural chabazite by Raman spec-
troscopy did not indicate any substantial deviation from diffusion
isotropy.50 However, using the pulsed field gradient NMR
technique, Ba¨r et al.34 reported an orientation-dependent diffu-
sivity with a ratio between the maximum and minimum
diffusivity of a factor of two, also for water in natural chabazite.
Such a significant anisotropy could potentially originate from
a significant symmetry breaking in the zeolite sample, caused
for instance by a nonrandom arrangement of cations and/or
imperfections inside the crystal.

IV. Conclusions

The dcTST gives results equivalent to conventional MD, but
is also applicable in the regime of very slow diffusion where
MD cannot be used. Moreover, the method allows for a more
detailed analysis in terms of free-energy profiles and transmis-
sion coefficients. The first is a static term, corresponding to
locations of preferable adsorption sites and estimates of free-
energy barriers in between, the latter (or actually the inverse of
the transmission coefficient: the recrossing) corresponds to
collision frequencies, which generally increase with loading.
Here, we have shown how to apply the dcTST to nontrivial
lattices: (a) ERI-type lattices are non-Bravais, (b) CHA-type
lattices are rhombohedral. Both zeolites are cage/window-type
zeolites, and in both zeolites the diffusion increases with loading
and decreases only close to saturation loading. The diffusion
of CHA-type zeolites is nearly isotropic, the diffusion of ERI-
type zeolites is strongly anisotropic. Surprisingly, the anisotropic
behavior of ERI-type cages reverses with loading, i.e., at low
loading the diffusion in thez direction is two times faster than
in thexy direction, while for higher loadings this changes to a
diffusion that is more than two times slower. The computation
using TST for ERI-type zeolites required the combination of
two methods: dcTST for thexy plane, and biased MD to
compute the much faster intracage hopping rates. Although MD
and dcTST give equivalent diffusivity results, the behavior is
better understood by analyzing the free-energy profiles (and
transmission coefficients). At low loading the diffusion is
impeded by the eight-ring windows, i.e., the exits out of the
cage to the next, but at higher loadings the barrier is formed by
the centers of the cages.
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