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We apply the dynamically corrected transition state theory to confinements with complex structures. This
method is able to compute self-diffusion coefficients for adsorbatisorbent systems far beyond the time
scales accessible to molecular dynamics. Two example cage/window-type confinements are examined: ethane
in ERI- and CHA-type zeolites. In ERI-type zeolites, each hop inzbdeection is preceded by a hop xy

direction and diffusion is anisotropic. The lattice for CHA-type zeolite is a rhombohedral Bravais lattice, and
diffusion can be considered isotropic in practice. The anisotropic behavior of ERI-type cages reverses with
loading, i.e., at low loading the diffusion in ttzedirection is two times faster than in tkg direction, while

for higher loadings this changes tozaliffusivity that is more than two times slower. At low loading the
diffusion is impeded by the eight-ring windows, i.e., the exits out of the cage to the next, but at higher
loadings the barrier is formed by the center of the cages.

I. Introduction Nelson et af322 (modeling permeation through anisotropic
zeolite membranes), Furo and Dvinskiki{methodology of

Transport of adsorbates in nanoporous adsorbents such ag\R experiments intended to measure anisotropic diffusion),
zeolites is determined by a complex interplay between adserbent 54 panzel et a15 (NMR characterization of the pore structure
adsorbate and adsorbatadsorbate interactions. From a scien- 4 anisotropic self-diffusion in saltwater ice) are just a few

tific point of view, zeolites are ideal systems to study the effect examples.

of confinement on the properties of the adsorbed molecules Although molecular dynamics (MD) is a very powerful

because of their re_gularlt_y anq pe_r|0d3|c_|ty. Although Interesting technique to study these effects, MD is typically limited to
effects such as single-file diffusidn® incommensurate dif- diffusion rates on the order of 18 m?/s. To overcome this

Ll:‘fsel(():?sﬁo; iggfilr?\e/:;aéﬁnoﬁﬁ;?fisggi \:V:rilq;rrlovgr:)'rlmos'[ dOf t?e 4 Some studies have used dynamically corrected transition state
o . ) poorly understood. theory (dcTST) methods (see refs28 and references therein).
T.h's is particularly true for Ioadl_ng SHECIS N mate.”als with Hitherto, studies were limited to the infinite dilution limit,
dlffergnt cha'mn(.als and/or cages |n. bkl%(, arlldz direction. whereas many of the processes of practical importance occur
Anisotropic single-component diffusion in nanoporous ma- 4t nonzero loading. Beerdsen e€atesolved this problem by
terials has been known for a long time. A well-known example extending the dcTST BennetChandler approach to include

is diffusion in silicalite? '3 In general, the diffusion coefficients  yifrusion of molecules at nonzero loading using only assump-
in the different directions can have different dependencies on 4jons already present in TST.

temperature and loading. A limited number of studies deal with
nonzero loading. Bussai et ®ifound little change in anisotropy
for water in silicalite as a function of loading, while Skoulidas
and Sholl found a more irregular loading dependence of
anisotropy:® Anisotropic behavior is very common in nano-
porous materials. The papers of Skoulidas and SHatlolecular
dynamics simulations), Trinh et & (Monte Carlo simulations),
Su et al'® (molecular dynamics simulations in clay), Powles et
al1® (a model for permeable micropores with variable anisotropic
diffusion), Yokoyamaa and Nakashintdl{diffusion experi-
ments on a rhyolite rock having anisotropic pore structure),
Wingen et aP! (anisotropic motion of water in zeolites EMT,
L, and ZSM-5 as studied by D- and H NMR line splitting),

In this work, we report molecular simulations of diffusion in
confinement showing a phenomenon previously denoted as
molecular path control (MPC); depending on loading, molecules
follow a preferred pathwa$? We note that MPC is different
from molecular traffic contro¥? which is caused by mutual
correlations in the movement of a multicomponent fluid through
two types of pores. As a specific MPC example, we study the
mechanism behindunable anisotropy of ethane in ERI-type
zeolite membranes. In ERI-type zeolite, the diffusion is char-
acterized by complex diffusion paths. Each hop inzlde@ection
is preceded by a hop in they direction. At low loading, the
diffusivity in the z direction is two timedasterthan in thexy
direction for both the self- and collective diffusivity, while for
higher loadings this changes intozadiffusivity that is more

:Sgir\;gfg?”gif”g rﬁ:tt:%rérﬁ‘ma”: dubbelda@science.uva.nl. than two timesslower Additionally, we study a closely related
*Universig Pablo de Olavide. zeolite known as Chabazite (CHA). The cages of CHA-type
8 Cecam. zeolites are somewhat smaller than ERI-type cages, and more
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Figure 1. Unit cell of (a) ERI-type zeolite, and (b) CHA-type zeolite. The ERI-type struélumgstallizes in the hexagonal dipyramidal space
group P6g/mmcwith a = b = 1.327 nm,c = 1.505 nm, andx = § = 90°, y = 120°. The CHA-type structufd has the space groug3m (a
squashed cube) with=b = ¢ = 0.9459 nm, and. = = y = 94.07. A unit cell of erionite contains two cages, while a unit cell of chabazite
contains a single cage.

spherical. In literature, a rectangular hopping lattice has beenrotated 120 with respect to one another. At the bottom of the
used for CHA to compute diffusion in simulatioffs3® For this cage there are also three windows rotated®Mith respect to
lattice the diffusion “appears” to be anisotropic. However, for one another. The top three windows are aligned with the
a different lattice properly aligned with the crystal axes we show windows at the bottom. Each ERI-type unit cell contains two
that in fact diffusion in CHA-type zeolites is nearly isotropic. erionite cages as shown in Figure la. ~
We note that the problem in zeolites is reversed to lattice theory The CHA-type structuf® has the spacegrou3m (a
where the hopping rates and lattice-type are given. Here, we squashed cube) with= b = ¢ = 0.9459 nm, andv = =y
need to resolve both, and for this we apply the dcTST method. = 94.07. The framework contains double six-membered rings
We use dcTST and MD to study changes in diffusion behavior joined together through four-membered rings. The resulting
in ERI- and CHA-type zeolites over loading. three-dimensional structure has large ellipsoidal chabazite
The remainder of this paper is organized as follows. In section (CHA) cages. Small guest molecules can enter the cages through
Il we start with a detailed description of the ERI- and CHA- €ight-membered 0.38 nm wide ring windows. Only linear
type zeolites. Next, we describe the dcTST method to compute @/kanes are able to penetrate the windows. Each CHA-type unit
the effective hopping rate for these lattices. In the results sectionCell contains a single chabazite cage as shown in Figure 1b.
Il we derive the correct conversions from hopping rates to ~ B. The dcTST Method. Slow diffusion of molecules in
diffusivities, and show results for ethane at 600 K in ERI- and Z€olites can be considered an activated process, in which the
CHA-type zeolites using dcTST and MD. The free-energy Particles hop from one free-energy minimum to the next, and
profiles, the transmission coefficients, the hopping rate, and self- the actual crossing time is negligible compared to the time a
diffusion coefficients for both zeolites are evaluated. Here, we Particle spends inside the cage. One can exploit the large
explain our choice of the hopping lattice, being closely related Separation in time scales using rare-event simulation tech-
to the computed free-energy profiles. We end with conclusions Niques**"We consider a system that can be in two stable states,
on anisotropic behavior in zeolites as a function of loading and A @nd B, with a dividing free-energy barrier between them. The

explain why the dcTST method is a suitable method to provide reaction coordinatg indicates the progress of the diffusion event
detailed insight into mechanisms behind it. from cage A to cage B. The location of the dividing barrier is

denoted byg*. We introduce two characteristic functioms
andng that measure whether the system is in state A or B. A

Il. Methods possible and often used definition is
A. Zeolite Descriptions. The ERI-type silica structufe
crystallizes in the hexagonal dipyramidal spacegrBgmmc = 0(q* — q) 1)
with a=b=1.327 nmc = 1.505 nm, andx = 5 = 90°, y = .
120°. The elongated erionite cages approximate the shape of Ng=6(q— q*) 2

1.3 x 0.63 nm cylinders connected by 0.260.51 nm windows.
Only linear molecules are able to penetrate the eight-memberedwhere@ is the Heaviside functiof(x), which has value 0 for
ring windows. There are three windows at the top of the cage x < 0 and value 1 fox > 0.
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In the Bennett-Chandler appro&ef637one computes the
hopping rate over the barrier in two steps
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whered is the Dirac delta functiorg(t) the reaction coordinate
at timet, mis the mass of the segments of the particle involved
in the reaction coordinate,the transmission coefficierkg the
Boltzmann constanfl the temperaturej = 1/kgT the inverse
temperature, an@ the free energy of position related to the
probability P(q) by gF = —InP(q)]

O. Braun and C. Shd® developed a technique to calculate
the diffusion tensor for the lattice-gas model at infinite dilution
for any complex elementary cell. Although sometimes lengthy

Ka

®)

(4)
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configurations at the desired loading are sampled using NVT-
MC (with the biased, tagged particle in theensemble), and
subsequently a weighted velocity autocorrelation of the tagged
particle is computed using conventional NVE-MD. For more
details on the dcTST-methods see refs 26 and 29, and see ref
43 for another application on MFI-type zeolite.

C. Nonrectangular Unit Cells and Reaction Coordinates.
ERI and CHA-type zeolites can be described both in terms of
rectangular unit cells and in their crystallographic nonrectangular
unit cell definitions. In crystallography, the crystal structure is
defined by the unit cell, and by the fractional coordinates of
the atoms within the unit cell. These coordinates form an
orthonormal dimensionless” space../' space is often more
convenient for the computation of the free-energy profiles. The
transformation from/ space to real” space can be carried
out by the matrix7:

a bcos ) ccos )

calculations are involved, in many cases analytical expressionsyith

for the diffusion tensor may be obtained. It is important to note

that the extension to higher loading requires an estimate of the
correlations between the particles, which tends to reduce the

g7 =10 bsin) c¢ 7)
00 cVl—cosp— 2
= COSOL — COSY COSf )

siny

diffusion. Transition state theory methods such as the methods

of Tunca and For~“1 neglect the correlations while computing

Conversely, 7 transforms real coordinates into fractional

the hopping rate, but hope to regain these correlations againcoordinates. With the chose the scaled box has a length of

during a coarse-grained kinetic Monte Carlo simulation. In

addition, various approximations are made to make the com-

putation tractable using multidimensional TST. Their method
underpredicted the diffusivity at low loading, while significantly
overpredicting the diffusivities at higher loadings, in comparison
to conventional MD (see Figure 6 of Ref 41) for methane in
LTA-type silica.

The newly developed method of Beerdsen eéf@omputes
aneffectve hopping, i.e., a hopping rate including correlations.

The conversion of the hopping rate at nonzero loading is

therefore the same as for the infinite dilution case. Importantly,

the study of diffusion over long time and space regions can
then be restricted to the analysis of the free energy profiles of

a singleunit cell (the surrounding cages influence this profile
and have to be properly modeféd For the same system,

methane in LTA-type silica, the dcTST method of Beerdsen et

al. gives exact overlap with MD results (see Figure 3 of ref
29).

For systems with erratic free-energy landscapes, e.g., multiple

of barriers of different heights, the dcTST method can be
generalized using

o W) e )
1 I 09O q(0) & 770 d‘DT

- m,0 quABe{fF(q) da ., e " dq

Ka—g ®)

with a biasing functiorw(q) operating on the regions A and B

w(q) = @

7(q) O e(a*l)ﬂF(Q) (6)

wherea > 0 is an integer to be chosen freely. A valueaof
1 would flatten the free-energy landscape, a valua of 2
would reproduce the Ruiz-Montero method (if the approximate
free energy is taken to be the true free enefgy$tarting

1. Our potential force field is defined in real space, therefore it
is convenient to store positions it space, transform them to
J'space, apply periodic boundary conditions irspace, and
transform back to/? space to compute distances within the
simulation box

s=7" "
S = s—rint(s)
r'=uas 9)

where the “rint” function returns the rounded integer value of
its argument. The smallest perpendicular width of the unit cell
has to be larger than twice the spherical cutoff/inspace.

For computational reasons, a rectangular unit cell is preferred.
Not only is the matrix conversion expensive, if the unit cell is
severely distorted from cubic, many redundant distance calcula-
tions will be performed for particles lying outside the cutoff in
9 space, further reducing the efficiency. However, for com-
putation of free-energy profiles in complex zeolite structures,
the fractional space is often very convenient.

We can choosg as the position of one of the two beads of
ethané®” This choice of order parameter underestimates the free
energy of the true transition state, but the dynamical correction
K« is the exactcorrection compensating our choice of reaction
coordinate’’

The monoclinic unit cell definition for an ERI-type cage is
shown in Figure la. Because two cages are present in the unit
cell definition it is convenient to be able to select a single cage
by using

_J]sct(@—s) <1 forcage A (10)
s+ (1—s)>1 forcage B
wheres are the fractional coordinates of a single ERI-type unit

cell in./’space. Fory computations the barrier is locatedsat
={1/2, 1/2, and by symmetry all positions in the unit cell can
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be mapped on the reaction coordinate. For zltwmputation average temperature to all the atoms. The total momentum of

we select only cage A and use the system was set to zero. Next, we equilibrated the system
further by performing an NVT MD simulation using the NHC
q=s, (12) thermostat. After the equilibration was completed, during the

production run of more than 20 ns, we collected statistics using
The barrier at the center of the cage is locates=at{ 1/3, 2/3, the NVT-ensemble. Simulations using the NVE-ensemble gave

3/4}, while the free-energy minime® andq? are located as equivalent results. More details can be found in ref 26.
={1/3, 2/3, 1/2 ands = {1/3, 2/3, }, respectively. Using the Transmission coefficients are computed from at least 50000

independent configurations. These configurations are obtained
from Monte Carlo simulations, where a configuration is stored
every 500 cycles. A cycle is defined Bssteps, wherd\ is the
number of molecules, and a step is one Monte Carlo move
(translation, rotation, full regrow). On average there is one
Monte Carlo move per particle in a single cycle. The free-energy
profiles are obtained using MD and MC; both give equivalent
results.

projection eq 11 and the positions of cage A onfyjs located
ats, = 1/2, the barrielg* at s, = 3/4, andqP ats, = 1.

The unit-cell definition for a CHA-type cage is shown in
Figure 1b (the rhnombohedral lattice can be thought of as a cube
slightly pulled along its space diagonal). The reaction coordinate
can now be chosen from the center of the cage=({0.5, 0.5,
0.5) to any of the six exits through the center of the windows
(51={1,05,05,5%={05,1,05,55={05,05, 3=
{0,0.5,0.%, s ={0.5,0,0.%, s ={0.5, 0.5, 9), i.e., the
space is simply mapped onto the three orthonormal axes inlll. Results
scaled space. The other half of the profile, i.e., frafrto of A. Ethane in ERI-type Zeolite (anisotropic diffusion). In

follows by symmetry. For symmetry reasons, the free-energy 4, ERI-type lattice, diffusion in they plane occurs isotropically
profiles are all equivalent, and there is only one hoppingkate 5, an hexagonal lattice

from a cage to any of the neighboring cages in CHA-type
zeolites.

_1 .2

D. Force Field Potentials and Simulation Details.We DXY_ZkXYlXV (12)
neglect cations and study rigid, all-silica versions of the ERI-
and CHA-type zeolites. The positions of the atoms are taken with 1,y the lattice displacement distance akg the corre-
from refs 30 and 31, respectively. Following the work of Bezus sponding hopping rate. The diffusion is dependent on the
et al.™ the zeolites are modeled as a rigid network of oxygen hopping in thexy plane. In general, the method of Braun and
and silicon atoms. This is a very common approximation SholP8 can be used to compute diffusivity tensors. However,
because lattice flexibility is not that important for small alkanes for such sequential hops we can derive a simple formula for
in all-silica zeolites*>46 The simulation box sizes we used are the combined hopping rate, based on the mean first passage
3 x 3 x 3 (perpendicular widths are 3.448 3.448 x 4.515 time. Consider a hop from A to C with an intermediate state B.
nm) for ERI-type zeolite, and & 3 x 3 (perpendicular widths ~ We have
are 2.81x 2.81 x 2.81 nm) for CHA-type zeolite. Tests on
larger systems did not show any significant finite-size effects. Pg_a . Kg—a
Periodic boundary conditions were employed. Adsorption in Psc - Kg_.c
cation-free structures takes place at sites with little or no electric
field. For these reasons the united atom m®d&ems the most Pgpt+Pg.c=1 (14)
straightforward choice. We consider the £¢toups as single,
chargeless interaction centers with their own effective potentials. gng therefore
The beads of ethane are connected by an harmonic bonding
potentialubond = 1/2 ky(r — rg)? with ky/kg = 96500 K/A2 and Kg_.c
ro = 1.54 A. The extramolecular enerdy®X consists of a Pg_c= PBﬁAkB_ (15)
guest-guest intermolecular enerdyg9, a host-guest interaction A
UM, modeled with a Lennard-Jones potential with a cutoff radius Kg.c
of 12 A. The parameterso_cy, = 3.17 A, eo-cnl/ks = 142 K, =1 —-Pgoi—
Osi—cH, = 2.12 A, esi—cn/ks = 82 K, andocp,—ch, = 3.78 A, Ke—a
€chy-cH/ks = 104 K were taken from ref 48. Although the size
parameters are rather small, for this study we prefer to use thes
parameters because then diffusion of ethane in ERI- and CHA- ke
type zeolite is still feasible using conventional MD. Pa e - B8C

The simulations were performed using two different meth- Kg—n tkgc
ods: the recently proposed dynamically corrected transition state ) . .
theory and conventional molecular dynamics (MD) (dcTZ#. The hopping rate from A to C is the hopping rate from A to B
We used the velocity Verlet integration scheme with a time step times the probabilitys—.c to go from B to C
of 0.5 fs. The relative energy drift was smaller tharm4.0~or .
temperature control we employed the Nestoover chain Kac = KaPec
(NHC) method as formulated by Martyna et&Molecules were _ o _ _
inserted into the framework at random positions as long as no N general, a serial combination of hops is then described by
overlaps occurred with the framework or other particles. During K
the initialization period, we performed an NVT Monte Carlo Kk — a—sKe—c
(MC) simulation to rapidly achieve an equilibrium molecular AC Kgp T kg
arrangement. After the initialization period, we assigned veloci-
ties from the Maxwel-Boltzmann distribution at the desired Equation 19 proves convenient for finding the relation between

(13)

(16)
Jrom which Pg—.c can be solved:

(17)

(18)

(19)



3168 J. Phys. Chem. B, Vol. 110, No. 7, 2006 Dubbeldam et al.

Mean square displacement [A%]

< OX+y+Z
- Z
e . x -
5 | - X.squared
10_ 1 1 1 1 1 T T
1072 1072 107" 10° 10" 10? 10® 10* 10°

Time t [ps]
Figure 3. Mean-squared displacement of ethane in ERI-type zeolite
at 600 K and a loading of one molecule per cage. The MSD is equal
for x andy directions, and different in thedirection. The horizontal
line is the cage-to-cage hopping distaricéapproximately 7.5 A for
both thexy and z directions). The different regimes of diffusion are
clearly visible, and only after a single cage-crossing has the MSD
become linear (a straight line of slope one intdgg scale). The slope
over the linear regime corresponds to the limit of long times and can
then be reliably measured. The diffusion coefficient is the slope at long
times divided by two times the number of spatial dimensions.

picosecond range. Slopes of MSDs are therefore in units of 1
x 1078 m¥s. The different regimes of diffusion are clearly
visible, and only after a single cage-crossing the MSD has
become linear (a straight line of slope one inddgg scale).

For interacting particles, partictgparticle and particle zeolite
collisions occur on a different time-scale. The mean-squared
displacement thus bends over to attain a different slope. We
are interested in the long-time diffusion coefficient. The self-
Figure 2. Topology of the ERI-type lattice in (aJy direction the diffusion coefficientsD, in the directiono. = X, y, z are

hopping takes place on a hexagonal lattice, in (b) Ztdirection a computed by takina the slope at long times
displacement has to be preceded first bgyaop. The lattice is drawn P y 9 P 9

in blue dots co_nne(_:ted by blue lines of lattice distafice 0.75 nm 1 1N
for x, y, andz directions. D, = ﬁ {[n; (ria(t) _ I’ia(O))ZD (23)
hopping rates and diffusion coefficient on non-Bravais lattices. =
The relation betweeRka—-g andks—a is given by

where N is the number of molecules$,the time, andri, the

K .0 a-component of the center-of-mass of moledul€he diffusion
ATB _ B (20) coefficients at one molecule per cage 600 K Brg= 2.1 x
Kg—n [0 109 m#s andD, = 4.2 x 10-9 m?/s. This indicates the diffusion

. o . is a rare event and the windows form obstructions to diffusion.
where m\0= 1 — [glis the equilibrium mole fraction of  BecauseD, ~ 2Dy, there are apparently no significant free-

particles in state A. For a symmetric barrigi = [hg0and energy barriers inside an erionite cage at low loading.
Ka—p = Kg—a, SO The hopping lattice for most cage/window-type zeolites is
formed by the lattice spanned by their cage centers. However,
Kn—Ke -c 1) for elongated cages as in erionite, intracage barriers are formed

Kac Kag T Kg—c at higher loadings. For an analysis we measure the free-energy
profiles along the cage-length (tladirection), and along the
The lattice displacement vectdyis orthogonal tdly and, using  center-to-center line in the hexagomalplane. The profiles of
eq 21 plus the symmetry of the lattice, we derive immediately ethane plotted in Figure 4 over various loadings indicate that
indeed there are internal cage barriers, and foxthglane the
_1 kxy K, ;2 (22) barrier is formed by the eight-ring dividing window. The
22kt k * diffusion coefficient in thez direction depends on both the
hopping rate in thez direction and thexy direction (eq 22),
Diffusion in ERI-type lattices is strongly anisotropic. In Figure because each hop in tlzedirection has to be preceded by a
3 we show the measured mean-squared displacements for ethanieop in thexy plane.
obtained using MD at 600 K and a loading of one molecule = The free-energy barrier in they plane is sharply peaked,
per cage. Mean-squared displacements (MSDs) are equal for and therefore the transmission coefficient is straightforward to
andy directions and different in the direction. The units are  evaluate using the Bennet-Chandler approach. The transmission
convenient for simulation purposes, because distances are oftercoefficientsk(t) are shown in Figure 5. The starting configura-
defined in angstroms, and the relevant time scale is in the tions, with the reaction coordinate constrained to the top of the

D
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Figure 4. Free energy profileB(q) at 600 K of ethane in ERI at various
loadings (infinite dilution, 1, 2, 3, 4, 5, 6, and 7 molecules per erionite
cage) in the (a) hexagonay plane withga the center of a cage, and

gs the center of a neighboring cage, (b) in théirection across a cage
with ga the top of the cagey the middle of the cage, argd the bottom
of the cage, respectively.
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Figure 5. Transmission coefficient(t) for ethane at 600 K in ERI-
type zeolite as a function of time for various loadings.
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Figure 6. Intracage hopping rate in thedirection obtained using
biased MD for ethane in ERI-type cages at 600 K.

12 the hopping rate and diffusion coefficient in thg plane
can be computed.

The free energy in the direction across an erionite cage is
initially rather flat, and with increasing loading a clear free-
energy minimum is formed in the center of the cage. There are
two solutions to this problem. The first would be to use a
different hopping lattice and include the pink points in Figure
2 in the hopping lattice. A hop in the direction is now a
sequential process of two hops, and the total hopping rate can
be obtained using eq 21. However, when there are several
hopping rates very different in magnitude, it is more complicated
to define a hopping rate for the fast jumping particles, because
kinetic correlations are abundant.

A second method, and the method of our choice here, is to
use biased MD to compute the total hopping rate from the top
of the cage to the bottom of the cadeectly. The reasons are
two-fold: first the method is applicable to low free-energy
barriers, and second, the method is able to compute hopping
rates over complicated free-energy landscapes such as, in this
case, two barriers. The reaction coordinate is the projection on
thez axis (eq 11), wherea denotes the top of the cagg, the
bottom of the cage, andy the intermediate free-energy
minimum. There are two barriers, one separatingndgq,, and
another one between, and gs. The biased MD method
computes the total hopping rate fragn to gg by computing an
effective diffusion coefficient over the entigedomain a to
gs), i-€., there is no separate computation of the transmission
coefficient. The results are shown in Figure 6. The plateau value
at long times is the hopping rate of interest.

The self-diffusion coefficients of ethane in ERI-type zeolite
at 600 K using dcTST and conventional MD are shown in Figure
7. Surprisingly, the anisotropical behavior of ERI-type cages
reverses with loading, i.e., at low loading the diffusion in the
z-direction is two times faster than in the direction, while
for higher loadings this changes to a diffusion that is more than
two times slower. Although MD and dcTST give equivalent
diffusivity results, the behavior is better understood by analyzing
the free-energy profiles (and transmission coefficients). At low
loading the diffusion is impeded by the eight-ring windows,
i.e., the exits out of the cage to the next, but at higher loadings
the barrier is formed by the center of the cages.

B. Ethane in CHA-type Zeolite. We note that the same
formulas have been derived before, but for CHA-type zeolites

barrier g*, were sampled using a Monte Carlo scheme. After by Schiuring et al3®> Examining Figure 8, it appears that CHA-
approximately 10 picoseconds the time-dependent transmissiorand ERI-type zeolites are very similar, the difference being the

coefficient«(t) reached its plateau value Using eq 4 and eq

more elongated shape of ERI-type cages. In such a lattice one
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Figure 7. Anisotropic diffusion of ethane in ERI-type zeolite computed
by dcTST and conventional MD at 600 K.

Figure 9. “Squashed cube” topology of the CHA-type lattice. The
lattice is drawn in blue dots connected by blue lines of lattice distance
A ~ 0.9459 nm fora, b, andc directions.
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Figure 10. Mean-squared displacements of ethane at 600 K and a
loading of one molecule per cage for the rectangular and “squashed
cube” version of CHA-type zeolites.
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are. However, the distortion effect for the CHA-type lattice is
negligibly small (smaller than 2%). Therefore, diffusion in CHA-
type zeolite can be considered isotropic in practice using this
lattice (see Figure 10). CHA-type zeolites only appear to be
Figure 8. A possible rectangular topology of the CHA-type lattice anisotropic when the lattice is not properly aligned with the
used in the literaturé35In the zydirection (a), the hopping takes place  crystal axes. We note that, unlike in lattice theory, in our systems
ona hexagonal lattice; in thedireptiop (b), a d!splacement has to be both the lattice and the hopping rates need to be found.
E;egﬁjcéeﬁnfgsst by ayhop. The lattice is drawn in blue dots connected A similar free energy analysis as for ERI-type zeolites can

' be performed for CHA-type zeolites. However, for the “squashed

cube”, the free-energy profiles and transmission rates are equal

expects the diffusion to be anisotropic, and this is indeed the for a, b, and c directions. Hence, there is only one hopping
case as evidenced by the mean-squared displacements in Figureate, and any anisotropy is entirely due to the small distortion
10. To convert the hopping rate in CHA-type zeolites to a from a perfect cube. In Figure 11 we show the free-energy
diffusion coefficient, we note that the lattice is actually only profiles for CHA-type zeolites. The barrier is formed by the
slightly distorted from a cubic lattice (Figure 9). The orienta- eight-membered ring for all loadings, and at higher loadings
tionally averaged diffusion coefficient isot affected by the some intracage reorganization is observed as more and more
distortion in CHA-type lattices but the individual components molecules have to be accommodated inside the chabazite cage.
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Figure 11. Free energy profile§(q) at 600 K of ethane in CHA at
various loadings (infinite dilution, 1, 2, 3, 4, 5, and 6 molecules per
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IV. Conclusions

The dcTST gives results equivalent to conventional MD, but
is also applicable in the regime of very slow diffusion where
MD cannot be used. Moreover, the method allows for a more
detailed analysis in terms of free-energy profiles and transmis-
sion coefficients. The first is a static term, corresponding to
locations of preferable adsorption sites and estimates of free-
energy barriers in between, the latter (or actually the inverse of
the transmission coefficient: the recrossing) corresponds to
collision frequencies, which generally increase with loading.
Here, we have shown how to apply the dcTST to nontrivial
lattices: (a) ERI-type lattices are non-Bravais, (b) CHA-type
lattices are rhombohedral. Both zeolites are cage/window-type
zeolites, and in both zeolites the diffusion increases with loading
and decreases only close to saturation loading. The diffusion
of CHA-type zeolites is nearly isotropic, the diffusion of ERI-
type zeolites is strongly anisotropic. Surprisingly, the anisotropic
behavior of ERI-type cages reverses with loading, i.e., at low

chabazite cage). The reaction coordinate is the position of the first beadloading the diffusion in the direction is two times faster than
along the centerline connecting the center points of two cages (linesin the xy direction, while for higher loadings this changes to a

from top to bottom in order of the legend).

9 : - r . .
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Diffusion coefficient D [m?/s]
R
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Figure 12. Orientationally averaged diffusion of ethane in CHA-type
zeolite computed by dcTST and conventional MD at 300 K and 600
K.

Our simulations indicate no significant anisotropy (less than
2%), and therefore we plot the orientationally averaged self-
diffusivity only for both MD and dcTST in Figure 12. A similar
diffusivity behavior to ERI-type zeolites is observed for CHA-

type cages. Indeed, the increase in diffusivity is a general feature

present due to cage confinement. The maximum in the diffu-
sivity is shifted to lower loading, consistent with the smaller
cage size of chabazite in comparison to erionite.

As mentioned previously, the diffusion in CHA-type zeolite

can be considered isotropic in practice. Indeed, tracer-diffusion g,

diffusion that is more than two times slower. The computation
using TST for ERI-type zeolites required the combination of
two methods: dcTST for they plane, and biased MD to
compute the much faster intracage hopping rates. Although MD
and dcTST give equivalent diffusivity results, the behavior is
better understood by analyzing the free-energy profiles (and
transmission coefficients). At low loading the diffusion is
impeded by the eight-ring windows, i.e., the exits out of the
cage to the next, but at higher loadings the barrier is formed by
the centers of the cages.
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