Supporting information for: On the Equivalence of Schemes for Simulating Bilayers at Constant Surface Tension

Jocelyn M. Rodgers^{*,†} and Berend Smit^{*,‡,¶,§}

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA, Department of Chemical Engineering, University of California, Berkeley, 101B Gilman
Hall, Berkeley, CA 94720-1462, USA, Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA, and Department of Chemistry, University of California,
Berkeley, 101B Gilman Hall, Berkeley, CA 94720-1462, USA

E-mail: jrodgers78@gmail.com; berend-smit@berkeley.edu

1 Full Histogram Data for *N*_{lip}=256

Figures S1 to S3 display both the probability density profiles as well as the deviations from the best estimate for V_{lip} , A_{lip} , and L_{\perp} with $N_{\text{lip}} = 256$ and $\gamma = 0.0$. Figures S4 to S6 display the same data for $N_{\text{lip}} = 256$ and $\gamma = 2.0$.

As discussed in Section 5 of the main paper,¹ the variation between all sampled histograms are reasonably within the calculated error bars.

^{*}To whom correspondence should be addressed

[†]Lawrence Berkeley National Laboratory, Physical Biosciences

[‡]UC Berkeley, Chemical Engineering

[¶]Lawrence Berkeley National Laboratory, Materials Science

[§]UC Berkeley, Chemistry

Figure S1: V_{lip} probability density and deviations for $N_{\text{lip}} = 256$ and $\gamma = 0.0$. Displayed data symbols are staggered across MC move sets and only shown every 12 points for readability.

Figure S2: A_{lip} probability density and deviations for $N_{\text{lip}} = 256$ and $\gamma = 0.0$. Displayed data symbols are staggered across MC move sets and only shown every 12 points for readability.

Figure S3: L_{\perp} probability density and deviations for $N_{\text{lip}} = 256$ and $\gamma = 0.0$. Displayed data symbols are staggered across MC move sets and only shown every 12 points for readability.

Figure S4: V_{lip} probability density and deviations for $N_{\text{lip}} = 256$ and $\gamma = 2.0$. Displayed data symbols are staggered across MC move sets and only shown every 12 points for readability.

Figure S5: A_{lip} probability density and deviations for $N_{\text{lip}} = 256$ and $\gamma = 2.0$. Displayed data symbols are staggered across MC move sets and only shown every 12 points for readability.

Figure S6: L_{\perp} probability density and deviations for $N_{\text{lip}} = 256$ and $\gamma = 2.0$. Displayed data symbols are staggered across MC move sets and only shown every 12 points for readability.

References

(1) Rodgers, J. M.; Smit, B. J. Chem. Theory Comput. 2011, submitted.