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ABSTRACT: We have developed a high-throughput graphics processing unit (GPU) code that can characterize a large database
of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations, where the grid values
represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH4 and CO2) and materials’
framework atoms. Using a parallel flood fill central processing unit (CPU) algorithm, inaccessible regions inside the framework
structures are identified and blocked, based on their energy profiles. Finally, we compute the Henry coefficients and heats of
adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code
offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of
magnitude larger than those considered in earlier studies. For structures selected from such a prescreening algorithm, full
adsorption isotherms can be calculated by conducting multiple Grand Canonical Monte Carlo (GCMC) simulations
concurrently within the GPU.

1. INTRODUCTION
Porous materials, such as zeolites and metal-organic frame-
works (MOFs), have been exploited in many current
technologies and are considered to be a very important class
of materials for many new industrial applications. For example,
zeolites are commonly used as chemical catalysts, in particular
as cracking catalysts in oil refinement, membranes for
separations, and water softeners.1−4 In addition, there is an
increasing interest in utilizing zeolites as membranes or
adsorbents for CO2 capture applications.5−8 Other materials,
such as MOFs9,10 and their subfamily of zeolitic imidazolate
frameworks (ZIFs),11 have enormous potential for gas
separations and storage as well.12,13

A key factor that determines the utility of any nanoporous
material is its optimal pore topology along with the chemical
composition for given conditions in a particular application.
There are ∼190 known unique zeolite frameworks14 in more
than 1400 zeolite crystals of various chemical composition and
geometry.15 However, these experimentally known zeolites
constitute only a very small fraction of more than 2.7 million
structures that are feasible on theoretical grounds.16,17 Of these,
between 300 000 and 600 000 are predicted to be thermody-
namically accessible as aluminosilicates, with the remainder also
potentially accessible via elemental substitution.18,19 All of the
zeolite structures in this research work are comprised of silicon
and oxygen atoms, making these materials much more simple in
terms of their chemical composition than ZIFs or MOFs. The
chemical composition of zeolite structures can be altered by
replacing some of the silicon atoms with aluminum (or other)
atoms, and then adding cations (e.g., Na+) to impose charge
neutrality. Changing the chemical makeup of zeolite materials
in this way further increases the number of possible structures.
Structure sets of similar or even greater size are expected for

other nanoporous materials such as ZIFs,7 which offer greater
flexibility in the choice of building blocks.
In an attempt to identify optimal materials for various

applications, such as gas separations,5−7 researchers have
started to screen large databases of porous materials. Molecular
simulation techniques, such as the Grand Canonical Monte
Carlo (GCMC) method, are often used in numerical
simulations to accurately predict properties of materials and
their guest-adsorption characteristics are expressed as an
experimentally verified adsorption isotherm.20−22 However,
the computational cost of molecular simulations is high,
significantly limiting the number of structures that can be
analyzed. To avoid the high computational costs, most of the
screening strategies rely on a thorough prescreening of
materials, which filters out structures based on easily obtainable
structural properties, such as pore diameters and framework
energy. As an example, Haldouplis et al. screened 250 000
zeolites, while only about 8000 were characterized using
molecular simulations.6 Nonetheless, it is important to note
developments in algorithms that allow high-throughput
characterization of porous materials via generation of structural
parameters used for prescreening5,23−25 or database sampling
approaches.26

The importance of these screening strategies motivated us to
approach this task from a high-performance computing point of
view and utilize fast molecular simulation techniques that allow
us to characterize a very large set of porous materialsmore
than an order of magnitude larger than what has been reported
previously by other researchers. In addition, we addressed a
practical complication limiting the characterization of large sets
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of materials, which is the determination of whether pores in a
material are accessible. This step typically involves visual
inspection,35 which becomes cumbersome with large numbers
of structures. Our approach integrates an automatic analysis of
topology of the materials’ void space, and accordingly, the
simulation domain can be defined within the accessible void
space of a material and this domain reflects the space available
to molecules in experiments.
In order to process large sets of materials within a reasonable

time, our molecular simulation tool utilizes graphical processing
units (GPUs) to efficiently conduct parallel calculations. GPUs
are hardware accelerators that were initially developed to
accelerate graphics-related tasks. With the advent of NVIDIA’s
CUDA (compute unified device architecture) and subsequent
development of the CUDA software interface, general purpose
GPU (GPGPU) programming has become more prevalent and
commonplace in the scientific community.27 Unlike conven-
tional CPUs, GPUs have many more transistors devoted to data
processing and, as such, can provide significant performance
improvement in computational problems that can be easily
mapped onto its multithreaded hardware. In the context of
molecular simulations, GPGPU computing has been mainly
used to accelerate molecular dynamics (MD) and Monte Carlo
(MC) simulations.28−31 Our molecular simulation GPU code
takes advantage of the fact that the computationally intensive
bottleneck routines can easily be mapped into a SIMD (same
instruction multiple data) format, making it ideal to port the
code from the CPU to the GPU. Although this article focuses
on GPU simulation results of the zeolite structures, the code
can be easily extended to process other important classes of
porous materials, such as MOFs or ZIFs, and can accelerate
characterization in those materials as well. As such, the
techniques described in this work can be generalized well to
many other systems.
The manuscript is organized as follows. In Section 2, we

discuss the algorithmic details of our hybrid GPU + CPU
characterization/screening code. In Section 3, we analyze the
performance of our implementation and present results
obtained using our GPU code. In Section 4, we summarize
the important findings in our work and discuss avenues for
future work.

2. ALGORITHM FOR CHARACTERIZING POROUS
MATERIALS

In this work, we focus on CO2 and CH4 gas molecules, because
they comprise representative examples for the behavior of
molecules with, respectively, partial atomic charges and no
charges. However, the techniques described in this work can
readily extend to other gas molecules such as N2, He, and H2O
as well. The zeolite framework is assumed to be rigid, which is a
reasonable approximation3 and, as such, only the gas−
framework and the gas−gas interactions are considered. As a
means to characterize the zeolite structures, we compute the
Henry coefficient (KH) and the heat of adsorption (Δhi) values
of CO2 and CH4. These quantities characterize adsorption of
the gas molecules in porous materials. KH is a basic constant
that relates the equilibrium between the gas and the adsorbed
phase (ρ = KHP) and, hence, describes adsorption in the very-
low-pressure regime. In the context of CO2 capture, an ideal
material would exhibit a large CO2 KH value, compared to the
KH values of other flue gases, resulting in high selectivity for
CO2. For carbon capture of flue gases, the pressure values are
relatively low and for most systems, KH serves as an important

quantity to characterize large material databases. KH and Δhi
can be computed from Monte Carlo simulations:
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with β = 1/(kBT) with kB representing the Boltzmann constant
and T indicating the temperature of the system. T is fixed at
300 K in all simulations reported in this work. Uins represents
the test particle energy of the gas molecule at a random
position in the material. ⟨·⟩test indicates that, in the ensemble
average, the test particle does contribute to the energy of the
system. Upon taking a sufficiently large number of Monte Carlo
Widom insertions, which consist of randomized insertions of
the gas molecules in the simulated volume, the KH and Δhi
values of the gas molecules can be computed with a great deal
of accuracy.
The KH and Δhi computational algorithms for a given porous

material consist of the following three important steps:

(1) Construct an energy grid that stores the energy values of
the test gas molecule at discrete positions of the
structure’s unit cell (to be discussed in Section 2.1),

(2) Automatically identify inaccessible regions within the
structure, utilizing the energy grid values from the
previous calculation (to be discussed in Section 2.2), and

(3) Conduct Widom insertion Monte Carlo moves to
compute the Henry coefficient KH and the heats of
adsorption Δhi of the gas molecule (to be discussed in
Section 2.3).

This algorithm is utilized to characterize all materials in the
theoretical zeolite database. We describe the algorithm outlined
above in detail in the subsequent subsections. In Section 2.4, we
briefly describe the GCMC algorithm used to compute the
adsorption isotherms inside the GPU, which can provide
adsorption properties of the materials in higher-pressure
regimes.

2.1. Energy Grid Construction. All of the zeolite materials
in our simulations are crystalline structures, and, accordingly,
the adsorption properties of each of these materials can be
accurately characterized by examining a small number of unit
cells and imposing a periodic boundary condition. Inside the
numerical domain of a single unit cell, we construct a three-
dimensional energy grid for each of the zeolite structures. The
grid points of the energy grid each represent the sum of the
Lennard-Jones and the Coulomb potentials between the gas
molecule and all of the framework atoms that make relevant
contribution to the interaction. The spacing of the energy grid
is fixed to be 0.1 Å along all three spatial dimensions. The
Lennard-Jones potential and the Coulomb potentials are
defined as follows:
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Here, r represents the distance between two particles, ε
indicates the depth of the potential well, σ represents the
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effective core size of the particles with the potential well located
at 21/6σ, qi and qj indicate the charges of the two particles, and
ε0 represents the material permittivity. For all pairwise
interactions, a Lennard-Jones cutoff radius RC = 12.0 Å is
imposed, such that the interaction is shifted to zero for r > RC
by subtraction of ULJ(RC) from ULJ(r) for all r ≤ RC. In our
code, the long-range Coulomb interactions between the
charged particles are approximated by the Ewald summation
method. The work to compute the periodic Coulomb
potentials is divided into summations in both real and Fourier
components to accelerate convergence. All of the force fields
used in this work come from the research of Garcia-Perez et
al.32 and Dubbeldam et al.,33 which have been shown to
reproduce the experimental adsorption for various zeolite
structures.
Given that a very large number of energy grid points must be

computed (over 108 for most zeolite structures), GPU
hardware architecture can be efficiently utilized by employing
thousands of CUDA threads to concurrently compute the
energy values at these points in parallel. In our algorithm, the
total number of CUDA threads is set to be equal to the total
number of energy grid points, creating a one-to-one mapping
between threads and grid points. Accordingly, each CUDA
thread computes the interaction between the gas molecule at
the specified grid point and all the framework atoms. The
number of framework atoms (Ntot) is, in most zeolites, small
enough (Ntot < 2000 atoms) such that all data required fits into
the 64kB constant memory of the Tesla C2050 Fermi cards
used, minimizing the number of GPU DRAM transactions. For
Ntot > 2000, the data containing the framework atom positions
is stored in the slower GPU DRAM, which leads to a decrease
in performance. In practice, this performance deterioration is
small and has no major impact on our experiments. Also, in the
hypothetical zeolite database, the number of structures with
Ntot > 2000 is relatively small and, thus, the overall wall time to
process an entire database is not affected significantly by the
reduced memory bandwidth. Since the constant memory
bandwidth is greater than the shared/L1 cache memory and
given that we only require read operations from the framework
atoms, the decision was made to choose constant memory over
other fast memory available in the GPU. For a linear molecule
such as CO2, we compute separate carbon and oxygen grids for
the Lennard-Jones interaction while computing only one
Coulomb grid (e.g., carbon atom Coulomb grid). The
Coulomb interaction values for the second atom (i.e., oxygen)
can be obtained by multiplying the grid point values of the
carbon Coulomb grid by a prefactor corresponding to the ratio
of the charges of the two atoms. This strategy does not only
reduce computation time, but it also reduces the amount of
GPU DRAM required; this is important given the 3GB DRAM
constraint of the Tesla C2050 cards.
In order to determine inaccessible regions within the unit cell

of the structure (described in Section 2.2), an additional energy
grid is required. This additional grid is constructed to encode
the total energy of the gas molecule at each of the grid points,
and accordingly approximately maps to the occupation
probability of the gas molecule at that position (i.e., a higher
total energy corresponds to a lower probability of occupancy).
For molecules such as CH4, which are modeled as point
particles, this total energy grid is equivalent to the individual
energy grid computed in the energy grid construction routine.
However, for linear molecules, such as CO2 and N2, or
nonlinear molecules, such as H2O, the total energy values must

be obtained separately from the individual energy grids
computed by the grid construction routine. We obtain
approximate values of energies of these molecules and store
the result in a single grid point by conducting a large number of
test rotation moves about the grid point and computing its
average energy. In CO2, for example, the carbon atom is
positioned to coincide with each grid point in turn, and Nrot =
100 random rotations are conducted on the two oxygen atoms
about that point. Because rotations can be conducted
independently and in parallel, the test rotation routine maps
well to the GPU. We utilize the CUDA CURAND library to
generate the random numbers that determine the gas molecule
orientations. The energy value for the carbon atom is sampled
directly from the Lennard-Jones and the Coulomb energy grids,
whereas the energy values for the two randomized oxygen
atoms are obtained using linear interpolation functions from
the energy grid values. The trilinear interpolation function
samples eight nearest-neighbor points in the energy grid from
the rectangular voxel that encompasses the sampled point. In
cases where the identification of inaccessible regions within a
structure is unnecessary, the test rotation routine can be
skipped in order to improve computational performance.

2.2. Pocket Blocking Algorithm. In some materials, the
arrangement of atoms in the structure is such that there exist
regions of space that a guest molecule could occupy, but which
it cannot access, because of the positions of the surrounding
atoms. These regions constitute “inaccessible pockets” of void
space, and they are contrasted with accessible regions of space
(i.e., “channels”). In computer calculations, it is critical to
account for these positions such that they are not considered in,
for example, the calculation of guest-accessible volumes or
surface areas, or the prediction of adsorption properties using
molecular simulation techniques.34,35 It is typical to detect
inaccessible pockets through visual inspection of the so-called
pore landscapes, and subsequently to block them with exclusion
spheres.36 However, it is not practical to perform a visual-
ization-based analysis on the very large quantity of materials
with which we are concerned. Accordingly, we have recently
developed algorithms for the automatic segmentation of void
space (into accessible and inaccessible regions) and the
exclusion of pockets.37

The original algorithms37 relied on partial differential
equation (PDE)-based front propagation techniques, by
which the grid representing the guest-accessible positions (or,
in the case of complex nonspherical probes, guest accessible
orientations at each position38) can be segmented. There are
numerous advantages to a PDE-based segmentation algorithm,
including the approximation of paths of least resistance
between certain positions within the structure, which can give
insights regarding diffusion. However, for the purposes of high-
throughput characterizationon the order of hundreds of
thousands of structures or morethe additional information
obtained by solving the PDE is generally not of critical
importance. Therefore, in order to accelerate this process, we
perform a more simplistic segmentation using a parallel flood
fill (also known as seed fill, boundary fill, or bucket fill)
algorithm described in ref 39. Flood fill is a recursive algorithm
to determine the bounds of a connected region, and therefore,
similar to PDE-based methods, can segment a grid into distinct,
connected regions of guest-accessible space. Following this
process, regions that connect across the periodic boundary are
detected and merged. In our parallel implementation, each
CPU thread is assigned a separate subdomain of the unit cell,
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upon which it performs segmentation using flood fill.
Connections across subdomain boundaries are considered in
the same manner as those that cross the periodic boundary of
the cell. We then proceed to identify and block inaccessible
regions, as discussed in the following paragraphs.
In this study, we represent the material with a three-

dimensional energy grid. The energy terms calculated at each
discrete grid point can be interpreted as conveying the
probability of the guest molecule occupying that position in
the form of the Boltzmann factor, exp(−βEi) with Ei
representing the energy of the ith grid point. We interpret
this grid in a binary fashion, as containing grid points that can
or cannot be occupied by the guest molecule in the time frame
of our application. We set the following:

< → →E pTif ( ( )) accessible; else inaccessiblei (5)

where T is the temperature, and p relates to the probability of
the position being occupied. At long time scales (for instance,
in geologic applications), high barriers can be overcome, and so
p can take a high value; however, for our carbon capture gas
separation application, we set p = 15, such that a point is
accessible if exp(−Ei) < exp(−15T). This number was chosen
to be large enough such that, in a typical zeolite crystal
structure, these forbidden regions are considered to be
diffusively inaccessible on an experimental time scale. From
this binary interpretation of the energy grid, the material’s unit
cell is segmented into disconnected, nonperiodic regions of
void space using parallel flood fill. Each of these distinct regions
is then analyzed to determine whether it forms a channel or an
inaccessible pocket. We examine the positions where each
region reaches a face of the unit cell, and inspect their periodic
neighbors for accessibility, connecting these regions; the
boundaries between each CPU thread’s flood fill domain are
inspected in the same manner. Using this method, we classify
regions as “channels” if they constitute a loop through the void
space; otherwise, we classify them as “pockets” (see Figure 1).
As discussed previously, it is important to exclude

inaccessible pockets prior to performing techniques such as
MC sampling in order to avoid false contributions of the energy
term within inaccessible regions to the measured behavior of
the overall system. We have devised two techniques for the

exclusion of these inaccessible regions. The first approach is to
generate a set of exclusion spheres that span each pocket,
without interfering with other regions. The algorithm for
generating these spheres is described in ref 37. In the
subsequent MC step, moves that are within an exclusion
sphere are rejected. The obtained set of blocking spheres can be
visualized or used in other molecular simulation packages. The
second approach, which is utilized in our high-throughput
analysis, is simply to mark grid points that are within
inaccessible space by setting their energy-grid values to be
prohibitively large. This saves time, by bypassing the generation
of blocking spheres, and in the Widom insertion step the high
values at these points are sufficient to identify the inaccessible
space. This constitutes a further performance improvement,
with respect to our earlier approaches.37,39 Both of these
techniques are implemented in our tool as multicore CPU
functions, wherein each thread works independently to exclude
an individual pocket.

2.3. Widom Insertion Monte Carlo. Utilizing the energy
grids, the KH and the Δhi of gas molecules inside porous
materials can be calculated via Widom insertion Monte Carlo
(MC) moves. Similar to the test rotation routine, Widom
insertion is conducted inside the GPU, again utilizing the
CUDA CURAND library for random number generation. For
CH4, the insertion algorithm entails choosing random particle
positions uniformly sampled from the entire simulation box and
repeating this process while sampling the Lennard-Jones
potential values via interpolation using values from the energy
grid. For CO2, the carbon atom is randomly placed uniformly
sampled from the entire simulation volume, similar to the case
of CH4, while both the Lennard-Jones and the Coulomb
interaction energies of the carbon atom are sampled from the
energy grids via linear interpolation functions. In zeolite
structures that have nonorthogonal unit cells, the randomly
generated position value might fall outside of the unit cell,
which causes the point to be rejected without making
contribution to the MC statistics. Also, if the position of the
carbon atom falls inside the inaccessible region, the sampled
energy value would be very high due to the high energy values
set in the CPU pocket blocking routine. The energy value is set
high enough (i.e., 1 million kBT) such that the entire CO2
molecule would possess large energy, regardless of the values
sampled from the other two oxygen atoms. The same holds
true in case that any of the atoms falls inside the inaccessible
region. Once the insertion of the carbon atom is finished, the
algorithm proceeds to insert the first oxygen atom by randomly
sampling from a surface of a sphere with a radius equal to the
bond length of CO2 (i.e., 1.16 Å). If the oxygen atom falls
outside of the unit cell, then the periodic boundary condition is
used to move the position of the atom back inside the unit cell
via appropriate displacements. Finally, the second oxygen atom
is placed in a position such that all three atomic positions are
collinear to each other. The placement of the final atom in the
linear molecule does not require generation of random
numbers, due to the fact that there are zero degrees of
freedom. Inside the code, variables that store the total energy
and the Boltzmann factors are updated at each iteration of the
Widom insertion MC cycles. For the GPU thread config-
urations, 16 × 14 = 224 CUDA blocks are generated with a
block size of 64 in the CUDA kernel for the Widom insertions.
Each of the CUDA threads conduct 1000 independent Widom
MC cycles, resulting in a total of ∼14 million insertion moves.
Unless the CUDA occupancy is set to be too low, the block size

Figure 1. Two-dimensional illustration of the pocket blocking
technique. Having segmented the energy grid into distinct regions of
occupiable space, we examine the positions where regions touch the
periodic boundary. Hence, we merge regions 1 and 4 and find that
they form a channel; regions 2 and 3 are pockets, since they do not
reach the boundary; and regions 5 and 6 are merged to form a pocket
which crosses the periodic boundary.
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and the number of blocks can be changed easily without
disrupting the code’s functionality or performance.
Rather than computing the adsorption properties for the

entire structure, the code can also calculate the local KH and
Δhi values of the gas molecule within a specified subset region
of our simulation volume. This capability allows us to focus on
different regions within the porous material to obtain a better
understanding on the local adsorption properties of the regions
of interest. In the simulation code, the subset region is
described by the union of several spheres at different positions
and various radii. In the local KH and Δhi calculations, the
Widom insertion algorithm first checks to see whether the CO2
molecule is inside any of the spheres that describe the local
region and rejects any other insertion moves. Accordingly, in
the limiting case where the spheres cover the entire simulation
volume, the problem simply reduces back to the original
Widom insertion algorithm. If the total volume of the spheres is
much smaller than the volume of the unit cell, most of the
Widom insertion moves will be rejected, because the
probability of sampling the location regions will be small.
Having a large number of rejected moves can slow the code
significantly, because of (i) the warp divergence that occurs
within the GPU threads and (ii) the high cost of generating
random numbers inside the GPU. However, because the local
structural properties analysis is something with which we are
interested for only a small number of structures at this point,
we have yet to optimize this part of the code. In the Results
section, we elaborate on some of the findings that come from
sampling local regions of the zeolite structures.
2.4. Adsorption Isotherm Calculations. Grand Canon-

ical Monte Carlo (GCMC) simulations are utilized to compute
adsorption isotherms. Given the relatively small number of gas
particles found within zeolite structures, there exists an
insufficient amount of work that can be efficiently parallelized
via thousands of threads within the GPU. In order to
circumvent this issue, we propose a parallelization strategy in
which multiple Monte Carlo (MC) simulations are conducted
in parallel inside the GPU.28 Specifically, the number of
different pressure values for the GCMC simulation is set to be
14, which is equal to the number of streaming multiprocessors
(SMs) found in the Tesla C2050 card, and each SM is
responsible for conducting a single GCMC simulation. The
threads within the CUDA blocks can work together to
parallelize the different pairwise interaction contributions and
a reduction kernel can be used to sum up the contributions
from each of the individual threads. The energy grids computed
in the previous steps are still utilized to remove the need to
explicitly compute the gas−host interactions at each step of the
MC cycles. Furthermore, there can be an additional speedup by
tabulating the Fourier components of the gas−gas Ewald
summation interactions in another energy grid to circumvent
the need to iterate over all of the k vectors for each of the
pairwise interactions during the MC cycles.40 Similar to the
gas−host energy grid, the linear interpolation functions are
utilized to estimate the gas−gas interaction. Within the periodic
boundary conditions, the Fourier components are only a
function of the vector distance between two particles and thus
we do not lose much accuracy upon utilizing the tabular grid.

3. RESULTS
In the simulation results, we initially focus our attention on the
experimentally verified 187 IZA zeolite structures and later
extend our analysis to a much larger hypothetical zeolite

database. All of the numerical simulations were performed on
the Dirac and Carver clusters, located at the National Energy
Research Scientific Computing Center (NERSC). Dirac is a
testbed GPU cluster consisting of 48 nodes (44 Tesla C2050
Fermi GPU cards and 4 Tesla 1060 GPU cards). Each node
contains two Quad core Intel Nehalem 5530 2.4 GHz
processors with an 8 MB cache, 5.86 GT/s QPI. The Fermi
GPUs have 448 CUDA cores, a PCIe x16 Gen2 system
interface, and 3 GB of GDDR5 memorywhere a portion of
the memory (12.5%) is dedicated to error correction code
(ECC) bitsyielding 2.625 GB of user available memory.
According to the NVidia’s Tesla C2050 specifications, the
double (single)-precision floating point performance number
peaks at 515 GFLOPS (1.03 TFLOPS), while the memory
bandwidth is indicated to be 144 GB/s. In order to utilize as
many GPUs as possible on the Dirac cluster, we use a simple
MPI+CUDA multi-GPU version of the code, which supports
static as well as dynamic scheduling of the material structures
onto the MPI tasks for processing. The CPU simulations were
performed on the Carver cluster, which consists of 800 Intel
Nehalem 2.67 GHz quad-core processors with 24 GB DDR3
1333 MHz memory. Finally, we used the CUDA Toolkit 3.2,
the CURAND Library for random number generations, and gcc
4.4.2 compiler with full optimizations in all of our simulations.

3.1. Performance Analysis. 3.1.1. Overall Performance.
Figure 2 shows the timing results for the CH4 and CO2 KH and

Δhi calculations for the IZA structures. Given that the two
quantities are computed simultaneously in the Widom insertion
routine, we focus only on the KH results in our performance
analysis.
The total computational wall time for all of the 187 IZA CH4

and CO2 simulations are measured to be 327.59 and 2016.28 s,
respectively. Accordingly, the GPU code requires ∼1.74 s
(CH4) and ∼10.72 s (CO2) to compute a single value of KH
and Δhi, making the CH4 calculations ∼6.2 times faster than
the CO2 calculations. In general, the CO2 calculations require
longer wall time, largely due to (a) the presence of charge in
the carbon and the oxygen atoms of the CO2 molecules,
necessitating the expensive Ewald summation computations,
and (b) invoking calls to the test rotation routine. Breaking

Figure 2. Distribution of wall time for 187 IZA structures with
methane and carbon dioxide gas molecules. The energy grid size is set
to be 0.1 Å, and the number of test rotations about the grid points is
set at 100, and roughly 10 million Widom insertion Monte Carlo
moves. The total computational time is divided by the major routines
that comprise the simulation code: (1) GPU energy grid construction,
(2) GPU test rotation, (3) CPU pocket blocking, and (4) GPU
Widom insertion moves.
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down the performance of individual routines in further detail,
we see that the CH4 (CO2) energy grid construction routine
takes 212.52 (813.15) s, making the CO2 calculations 3.83
times more expensive, because of the presence of Coulomb
interaction terms. The number of terms in the Fourier space
calculations for the Ewald summation scales with O(kmax

3), with
kmax representing the maximum number of k-vectors. We can
accelerate the Fourier space calculations inside the GPU by
nearly 2-fold by replacing the sine and cosine terms with the
sincos function for terms located in the innermost loop of the
nested k-vector. In the CO2 calculations, 47.9% of the wall time
is spent in the test rotation routine, as opposed to 0% for CH4,
since the rotations are only required for multiatom, linear, and
nonlinear molecules. Later in the paper, we explore the
performance impact of varying the number of test rotations in
this routine. The amount of time spent in pocket blocking for
CH4 (CO2) is 97.11 (139.93) s, making the performance for
the different guest molecules comparable. The additional
Coulomb interaction term in the CO2 calculations often
produce more-complicated energy profiles in the simulation
box, which can increase the time spent in the flood fill step.
Finally, the wall time spent in the Widom insertions is
proportionally small, compared to the overall wall time in both
CH4 (12.51 s) and CO2 (87.91 s) calculations. This is not
surprising, given that computational intensity is low in the
Widom insertion moves, because the routine involves mostly
reading precomputed energy grid values from an array stored
inside the GPU. The performance numbers for the Widom
insertions indicate that the wall time is 7.02 times larger in the
case of CO2 compared to CH4, which can be explained by the
following. CO2 calculations require two random and one
nonrandom insertion, as well as interpolation of values from
both the Lennard-Jones and the Coulomb grid, to obtain an
energy value for a single configuration. On the other hand, the
CH4 molecule entails one random insertion and one
interpolation from the Lennard-Jones grid for a single
configuration. The number of MC cycles for the Widom
insertion routine can be changed depending on the level of
accuracy desired for the KH and Δhi results, which can affect the
proportional wall time spent in this routine as its wall time
scales linearly, with respect to the number of cycles.
3.1.2. Numerical Accuracy: Energy Grid Size. Next, we

analyze the relationship between the energy grid size and code
performance. In general, the computational wall time for the KH
and Δhi calculations can be reduced by increasing the mesh size
of the energy grid. In practice, the grid size should be chosen to
be small enough to ensure numerical accuracy of the KH and
Δhi calculations performed using the energy grid. In earlier
work on GPU waste recycling MC,28 we have demonstrated
that, in the zeolite MFI structure for CH4 molecules, utilizing
the energy grid provides average energy values within 0.05% of
those obtained from direct Lennard-Jones potentials without
the grid, providing good justification of using the grid.
In Figure 3, the mean values of CO2 KH of five IZA structures

(i.e., MAR, FAR, LTA, FAU, and MTN) are plotted for
different mesh sizes (dm = 0.075, 0.10, 0.15, 0.20, 0.25, and 0.30
Å). These 5 structures are part of a blocking set of 20 IZA,
which includes zeolite structures that possess inaccessible
regions for the CO2 molecules; this set comprises ∼11% (20/
187) of the entire IZA database. It is not necessary to plot the
curves for all the structures in the blocking set, because these 5
are sufficient to show the general trends for all blocking
structures, with respect to changes in the grid size. As can be

seen from Figure 3, the KH values decrease overall upon
increasing dm. Most of the KH contributions in the porous
materials come from small regions with relatively low energy
values due to the exponential Boltzmann term found in the
formulation of the Henry coefficient in eq 1. Because we use
linear interpolation functions, it is not possible for the
interpolated values to have energy values lower than the
sampled grid points (as opposed to another form of
interpolating functions, such as cubic splines, where it is
possible for interpolated values to be lower). Thus, for smaller
dm, the likelihood of sampling lower energy points increases
due to general positive concavity of the energy profile around
the local energy minimum regions. The choice of the linear
interpolation functions was largely made to reduce the time
spent in reading and interpolating the energy grid values. As
can be seen from Figure 3, for small grid size, the KH values do
not change much as the percentage difference between KH at dm
= 0.075 Å and at 0.1 Å is <1%. For grid sizes smaller than dm =
0.075 Å, many of the IZA structures suffer from GPU memory
allocation errors, since the device is bounded by the 3GB
DRAM. For zeolites MAR and FAR, the mesh size makes a
significant difference, because, at lower grid resolutions of dm =
0.25 Å, these structures are errorneously considered to be
entirely inaccessible, reducing their KH values to nearly zero.
The sudden increase in the deviation for these structures
demonstrates the importance of setting dm sufficiently small to
avoid inaccurate results. For experimentally known structures,
the simulation KH values can be compared to values derived
from the experimental adsorption isotherm data at very low
pressure values.

3.1.3. Performance: Energy Grid Size. Figure 4 summarizes
the computational wall times for 20 CO2 KH and Δhi
calculations for different values of dm. As can be seen from
Figure 4, the total wall time (Ttot) decreases significantly upon
changing the grid size. At dm = 0.10, 0.15, 0.20, 0.25, and 0.30
Å, Ttot = 396.82, 117.93, 55.37, 32.67, and 22.4 s, respectively.
There is a wall time improvement by a factor of 7.17 upon
increasing dm by 2-fold, going from 0.10 Å to 0.20 Å, which is a
reasonable number, given that the number of grid points
reduces by 8-fold, affecting the energy grid, test rotation, and
the pocket blocking routine. For the most part, the wall time for
the Widom insertion routine is independent of the grid size,

Figure 3. CO2 KH values for five IZA blocking set structures for mesh
sizes of dm = 0.075, 0.10, 0.15, 0.20, 0.25, and 0.30 Å. The sudden
jump in the Henry coefficient values for zeolites MAR and FAR at dm
= 0.25 and 0.30 Å signify the effect of erroneous results due to
insufficient accuracy of the energy grid.
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which is reflected in Figure 5, which shows the proportional
wall time spent in each of the routines for different dm.

According to Figure 5, the proportional wall time spent in the
Widom insertion routine increases for larger dm values, while its
absolute time remains relatively the same (11.4, 10.7, 9.59, 8.44,
and 7.55 s for dm = 0.10, 0.15, 0.20, 0.25, and 0.30 Å). From
Figure 5, it can also be seen that the proportional wall time for
the test rotation and the pocket blocking each reduce much
more significantly (by factors of 42.4 and 39.2, respectively)
when going from dm = 0.10 Å to dm = 0.30 Å, compared to the

energy grid routine (decrease by a factor of 22.3), despite the
same reduction in the number of energy grid points in all three
routines. It turns out that, in the energy grid construction
routine, there exists separate computational terms within the
Ewald summation that do not scale with the number of grid
points and, therefore, the speedup improvement is smaller here,
compared to the other two routines. Not shown in this work
are the performance results for CH4, where similar speedup
numbers are obtained by increasing dm. However, given that the
test rotation routine is not called in the CH4 calculations, the
proportional time spent in the Widom insertions is much larger
for CH4, compared to the CO2 calculations for all dm (but
especially at large dm).

3.1.4. Performance: Number of Test Rotations (Nrot). Next,
we analyze the effect of changing the number of test rotations
(Nrot). As mentioned earlier, point particles such as CH4 do not
require rotation moves and, therefore, are omitted in this
analysis. We separately analyze the CO2 KH performance for
the 20-member blocking set and the remaining 167-member
nonblocking set (i.e., zeolites in which all regions are
inaccessible) for IZA structures at dm = 0.10 Å. Figures 6a
and 6b show the computational wall times as a function of Nrot
for the two sets, respectively. In both sets, the qualitative
behavior of the curves remains the same: the wall time starts
high at small Nrot, decreases for larger Nrot until a minimum wall
time (Ttot = 328.96 s for the blocking set and Ttot = 1270.43 s
for the nonblocking set) is reached, and then increases
monotonically for even larger Nrot. The minimum wall times,
located at Nrot = 40 in both sets, constitute a reduction of 17.1%
and 26.6% from the default value of Nrot = 100 rotations. The
general behavior of the two curves can be explained by
observing the changes in the two routines affected by the
number of test rotations: (a) pocket blocking and (b) test
rotation routines. For small Nrot, because of the small number
of terms that inaccurately captures the true total energy
landscape, the energy profile becomes less smooth and results
in more disconnected regions inside the simulation box and
more pockets. Accordingly, the pocket blocking routine spends
more time in the flood fill algorithm and blocking pockets,
resulting in longer wall time for the routine at small Nrot. For
larger Nrot, the energy profile becomes smoother and less time
is spent in the flood fill algorithm. Accordingly, the overall
pocket blocking routine decreases monotonically with respect
to Nrot. By contrast, the wall time for test rotation predictably
scales linearly, with respect to Nrot, and the different behaviors

Figure 4. CO2 KH computational wall time for 20 IZA zeolite
structures, as a function of energy grid mesh size. The computational
intensity scales O(n3) for all routines except for the Widom insertion,
where n is the number of energy grid points (inversely related to mesh
size).

Figure 5. Proportional wall time spent in each of the main simulation
routines for 20 CO2 KH calculations at different grid size. From top to
bottom are Widom insertion routine, pocket blocking routine, test
rotation routine, and energy grid construction routine.

Figure 6. Computational wall time as a function of number of test rotations (Nrot) for the CO2 KH calculations for the (a) 20-IZA blocking set and
(b) the 167-IZA nonblocking set. The optimal number of test rotations that minimizes wall time occurs at Nrot = 40.
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of these two routines contribute to the overall shape of the total
wall time curves depicted in Figures 6a and 6b. In addition,
there are small differences between the performance of the
blocking set and that of the nonblocking set. In general, the
proportional wall time spent in finding and detecting pockets is
smaller in the nonblocking set compared to the blocking set;
while the flood fill step is performed in both cases, only the
blocking set is found to have regions that require blocking.
Subsequently, one observes a steeper descent in the wall time
curve at smaller numbers of test rotations in Figure 6a,
compared to Figure 6b, because pocket blocking contributes
relatively little to the proportional wall time for the non-
blocking set.
At the optimal value of Nrot = 40, the KH results agree very

well (within 0.1%) from results obtained at Nrot = 100 for both
blocking and nonblocking sets that have relatively high KH. For
zeolite structures that can be characterized by very low KH
values (i.e., KH < 10−18), the relative KH difference between Nrot
= 40 and Nrot = 100 becomes large, but the difference here is
uninteresting and ultimately meaningless in practice, because
very small values of KH all indicate poor adsorption properties
of CO2, regardless of the exact number. Thus, there can be a
performance gain by setting Nrot = 40, from the default value of
100, without having to sacrifice meaningful accuracy in the KH
results.
3.1.5. Performance: Pocket Blocking. Next, we discuss the

performance details of the pocket blocking routine as a function
of the number of CPU cores. Because the pocket blocking is
the only routine of this algorithm that takes place entirely in the
CPU, we utilize Pthreads to generate multiple CPU threads
that work in parallel to accelerate the routine. Based on the
profiling reported in ref 39, larger numbers of CPU threads are
found to be generally advantageous for larger or more-complex
zeolite structures, but there exists performance degradation in
smaller or more-simplistic structures. The relationship between
the number of CPU threads and the pocket blocking wall time
is illustrated in Figure 7. As expected, the wall time decreases

monotonically, with respect to the number of CPU threads, for
both the CH4 and the CO2 simulations and the saturation point
is reached near 4−8 CPU threads. For CO2 simulations, the
performance scales almost linearly; going from 1 to 2 CPU
threads a speedup by a factor of 1.96 is observed (in CH4, a
speedup by a factor of 1.53 is observed).
3.1.6. Performance: GPU vs CPU. Finally, we assess

performance differences between the CPU and the GPU. For

the CH4 energy grid routine, we observe speedups by factors of
∼50, compared to an optimized single CPU core simulation
without SSE from simulation results from the Carver cluster at
NERSC. The number is reasonable, given that the energy grid
construction is compute-bound, because of its high computa-
tional intensity and most of the memory transactions are
handled inside the fast constant memory of the GPU. We have
not written a CPU version of the code for the CO2 energy grid
routine, but we expect the speedup numbers to be similar, given
the similar computational flop intensity and similar memory
references and coalescing patterns. Moreover, the inclusion of a
fast pocket blocking routine accelerates the detection of
inaccessible regions, compared to slow methods that are
based on molecular dynamics.

3.2. Characterization of Zeolites. Utilizing the total
energy grid, we can create another grid (i.e., local KH grid) that
contains the Boltzmann factors at each of the points. The local
KH grid can be used to attain information about the locations
likely to be occupied by the gas molecules, providing another
means to characterize the structures in the post-processing
stage after the simulation. In Figure 8, we include an example
illustration that displays the effect of pocket blocking in the
zeolite LTA structure. A heat mapping represents the local CO2
KH regions, with warmer colors denoting larger KH
contributions, and as can be seen, the distribution of the
local KH changes upon enabling/disabling the pocket blocking
routine. Specifically in the case of LTA, the corner regions in
the unit cell become inaccessible as CO2 cannot enter into this
region within a reasonable experimental time scale. Accord-
ingly, the CO2 KH values inside LTA with or without pocket
blocking are 9.59 × 10−6 and 6.85 × 10−6 mol kg−1 Pa−1, as the
KH value decreases upon setting the energy grid values inside
the inaccessible region to be very high. In general, structures
that contain inaccessible regions always show a reduction in KH
values as proper inclusion of the pocket blocking raises the
energy values in these regions. We illustrate by this example the
importance of pocket blocking in avoiding the overestimation
of the level of adsorption in a given porous material.
Until now, the analysis has been focused on the

experimentally verified IZA structures, which comprise a very
small subset of the entire database of zeolite structures. The
algorithm explained earlier can be utilized unchanged to easily
extend our simulation code to process 135 224 hypothetical
zeolites in the database. Figure 9 plots the histogram of both
the CO2 and CH4 KH values for all of the zeolite structures.
Given that zeolites are seen as one of the ideal candidates for
carbon capture, it is not surprising that the KH values for CO2
are generally higher than that of CH4. The broader distributions
of the CO2 KH values also indicate that the range of possible
structures with different CO2 adsorption properties remains
large, compared to CH4. Extrapolating from the simulation
times obtained from the IZA structures, we can obtain the CO2
KH values of the entire hypothetical zeolite structures in ∼50 h
of total wall time, utilizing 8 Tesla C2050 GPUs in the Dirac
cluster. At the end of the KH calculations, selected structures
from a large database that are deemed to have shown good
adsorption properties can be analyzed in-depth by utilizing the
GPU GCMC simulations whose algorithm is described in
Section 2.4. The predicted adsorption properties obtained from
the simulation code can provide valuable insights to
experimentalists interested in synthesizing materials inside a
large porous materials database.

Figure 7. CH4 and CO2 pocket block routine wall time, as a function
of the number of CPU threads, for the 187 IZA zeolite structures. The
performance gain begins to saturate when going from 4 CPU threads
to 8 CPU threads.
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4. SUMMARY AND FUTURE WORK
We have developed a graphics processing unit (GPU)-based
simulation code that can characterize and prescreen a large
database of porous materials. Our code has the capability to
quickly compute the Henry coefficient and the heats of
adsorption values for many different gas molecules immersed
inside a porous material. We can further analyze individual
structures in the simulations by visualizing local Henry
coefficient values to determine local adsorption properties of
a given material. Although the simulation results presented in
this work pertain to zeolites, the code can be easily extended to
process other classes of microporous materials. For future work,
we plan to (a) analyze the effect of adding cations to zeolites
and (b) characterize a large database of other porous materials,
such as MOF and ZIF structures.
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Lefohn, A. E.; Purcell, T. Comput. Graph. Forum 2007, 26 (1), 80−
113.
(28) Kim, J.; Rodgers, J.; Atheǹes, M.; Smit, B. J. Chem. Theory
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