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Alcohol solubility in a lipid bilayer: Efficient grand-canonical simulation
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We derive a new density-biased Monte Carlo technique which preserves detailed balance and
improves the convergence of grand-canonical simulations of a species with a strong preference for
an interfacial region as compared to the bulk. This density-biasing technique is applied to the
solubility of “alcohol” molecules in a mesoscopic model of the lipid bilayer, a system which has
anesthetic implications but is poorly understood. © 2010 American Institute of Physics.

[doi:10.1063/1.3314289]

I. INTRODUCTION

Herein, we present the derivation and application of a
novel biased Monte Carlo (MC) approach appropriate for the
adsorption of surface-active solutes at an interface. Under-
standing the adsorption of molecules at interfaces and accu-
rately simulating these adsorbates in an equilibrated fashion
has important consequences for a variety of processes rang-
ing from bilayers to adsorption at solid surfaces. In this pa-
per, we focus on the application of this MC technique to the
uptake of small solutes into a lipid bilayer.

Solute adsorption at the cell membrane is an underlying
biophysical component of the biological impact of alcohols
and anesthetics on organisms. Meyer and Overton hypoth-
esized a strong correlation between the oil-water partition
coefficient and the anesthetic potency a century ago.1 Simu-
lations a decade ago demonstrated an even stronger corre-
spondence between oil-water interfacial partitioning and the
action of various anesthetic molecules.” Such partitioning
into the cell membrane has consequences not only for the
mechanism of general anesthesia but also for the effect of
alcohol on the organisms responsible for fermentation and
for the production of biofuels.”

The determination of interfacial partitioning is not a
straightforward process experimentally. One option, first de-
veloped by Katz and Diamond,* involves radio labeling the
solute, centrifuging the solution of lipid, solute, and water,
and measuring the extent to which the solute partitions into
the supernatant and the pellet. Another method, developed by
Zhang and Rowe,5 involves the use of isothermal titration
calorimetry to determine the bulk alcohol concentration
which is in equilibrium with the alcohol solvated in the lipid
bilayer vesicles. Each of these involves a certain degree of
assumptions in accounting for water molecules which are
directly interacting with the lipid bilayer. Other techniques
shedding light on such partitioning involve drawing analo-
gies between the partitioning coefficient and other measured
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thermodynamic quantities.6 Due to the challenges associated
with these various techniques, many studies of partitioning
of alcohols or anesthetics into the cell membrane assume that
this partitioning is independent of bulk alcohol concentra-
tion. However, alcohol solvation in water is not ideal, and
solvation into the bilayer also likely introduces nonidealities
due to increasingly nonlinear effects on the membrane struc-
ture as more alcohols are inserted; therefore ideality is quite
a poor assumption.

Given these challenges in experimentally measuring the
partitioning of solutes into the bilayer, molecular simulations
could make significant contributions, both in increasing the
understanding of the role of nonideality in this partitioning
and also in gauging the molecular-level impact of solutes on
the lipid bilayer structure. In fact, there is an extensive body
of simulation work seeking to understand the effect of alco-
hols on the structure of the lipid bilayer.7’13

However, typical molecular dynamics simulations are ill
posed for studying partitioning phenomena. To correctly
sample the extent of this adsorption, solutes must make
many transitions between the water and the bilayer, requiring
incredibly long traditional molecular dynamics simulations.

Figure 1 illustrates these difficulties for the coarse-
grained model of lipids, water, and alcohols used;’ only very
few of our model alcohols are present outside the bilayer at a
mole fraction of 25% in the bilayer itself. While the solubil-
ity of actual alcohol in water is substantially higher than in
our model, biophysically relevant concentrations, such as the
legal limit of 0.08% blood alcohol concentration, are still
quite low. Therefore transitions between bilayer and bulk
will be incredibly rare within a typical simulation box. Stan-
dard grand-canonical simulations will be ineffective also be-
cause most methodologies will generate test insertions uni-
formly throughout the entire simulation box, but the region
of likelihood and interest is explicitly at the bilayer
hydrophilic-hydrophobic interface.

In this paper, we develop a density-biasing algorithm for
grand-canonical MC which preserves detailed balance and
correctly focuses attention for insertion in the most likely
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FIG. 1. Snapshot of lipid bilayer. Lipids are indicated by transparent gray,
water is indicated by transparent blue, and alcohols are shown in solid blue
for hydrophilic and solid turquoise for hydrophobic. The mole fraction of
our model alcohol is approximately 0.25, and even at this high mole fraction
in the lipid bilayer very few molecules are in the aqueous phase.

regions of the simulation box. We explore the ability of this
approach to quantitatively characterize nonideality in solute
adsorption in the bilayer, the validity of our coarse-grained
alcohol model in examining the concentration and tempera-
ture dependent partitioning of solutes, and finally the com-
putational performance of this technique relative to standard
grand-canonical simulations.

Il. COMPUTATIONAL DETAILS
A. Model system and simulation techniques

We study the solubility of a short-chain alcohol in a lipid
bilayer using a previously developed coarse-grained model
of lipid bilayers14’15 and alcohols.” The distance scale is set
by the inclusion of three water molecules in one water bead,
the cutoff distance R, is 6.46 A and all distances are given in
reduced units of R.. Shown in Fig. 2 are diagrams of the
three molecules used, including connectivity. There exist
only three types of conservative interactions in the system.
First, there are short-ranged, soft pair repulsions between
bead types characterized by the force

(a) (b) ©

FIG. 2. Shown are the models used for simulation of (a) water, (b) ethanol,
and (c) dimyristoyl phosphatidylcholine (DMPC), with the identification of
the {w} water bead, the hydrophilic {h} head bead, and the hydrophobic {t}
tail bead and their interactions in (d). Bonds are indicated by solid black
lines connecting two bead centers. Bond-bending potentials are indicated by
dashed arcs connecting to bonds.
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firi) = a,»,-(l - ﬂi)f,-j, (1)
RC

for r;;=R,. The values of a,; are given in Fig. 2(d) in reduced
units; for the purposes of this paper, the energy units simply
provide a comparative scale, but they can be qualitatively
mapped back to physical temperatures and energies using
membrane phase transition temperatures if desired.”

There are also two kinds of bonding potentials. Atoms
connected via lines in Fig. 2 experience a bond stretching
potential

Ubond(r) = %kr(r - r0)2’ (2)

with k,=100 and r4=0.7 in reduced units. The bond-bending
terms indicated by an arc connecting two bonds have the
form

Upena(6) = 3ko(6— 6p)?, (3)

with ky=3 Eg/rad® for the single 6,=90° bond angle and
with k,=6 E,/rad” for the remaining 6,=180° bond angles,
with E; defined as the reduced energy unit of the simulation.

This simple model of the fluid bilayer captures a sub-
stantial degree of the expected physical behavior of the true
lipid bilayer, including gel, liquid-crystal, and ripple
phases.16 Furthermore, alcohol models such as the one we
use have been shown to induce interdigitation among the
lipid tails in nonliquid crystal phases.7 We predominantly
simulate the system at 7=0.7 in order to remain in a purely
liquid-crystalline phase regardless of the mole fraction of
alcohol. This choice of temperature allows us to focus on the
validity of our insertion method without concern for the pos-
sibility of phase separation within the bilayer induced by the
addition of alcohol.

The phase space of this model is sampled in the
NyipuaP | yT-ensemble via a hybrid algorithm combining dis-
sipative particle dynamics (DPD) trajectories with MC
moves in lateral area and normal box length as well as par-
ticle insertion and deletion for the alcohol solute. The DPD
trajectories evolve the coordinates of molecules, maintaining
constant temperature and momentum conservation by apply-
ing random and dissipative forces on a pairwise additive ba-
sis that obey the appropriate fluctuation-dissipation relation-
ship. The typical form for these forces is used'* in order to
sample the Boltzmann distribution.'” Each individual DPD
trajectory within the MC simulation had a timestep of 0.03 in
reduced time units and had the number of timesteps chosen
from a uniform distribution with n,,, =100 for membrane
systems and n,,,=50 for bulk water systems. Within the
hybrid MC-DPD simulation, DPD trajectories will compose
12% of the MC cycles, 4% of surface tension MC moves,
4% of normal pressure MC moves, and 80% of grand-
canonical insertions or deletions of the cycles.

The MC moves ensure that we sample at a single ther-
modynamic surface tension, normal pressure, and solute
chemical activity. A tensionless bilayer is maintained via MC
moves. As described in previous papers,14 the constant sur-
face tension MC move alters the lateral surface area of the
lipid bilayer while maintaining a constant volume in order to
do no work against external pressure. The moves are ex-
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ecuted in order to sample from the following partition func-
tion, expressing particle positions in terms of reduced posi-
tions s=(x/L,,y/Ly,z/L,):

HANNN b
AN Ly ),

Vv .
Joko ) wemte
vz

A random step in the box length L, is chosen and L, is
changed identically while L, is changed in order to maintain
a constant volume. The surface tension 7y is set to zero.

We also maintain a constant pressure applied normal to
the lipid bilayer via an additional MC move in order to cap-
ture the presence of a bulk water reservoir. Application of the
constant normal pressure allows for varying degrees of lipid
head group hydration from the water molecules while main-
taining a well-defined bulk water reservoir. In reduced units,
P, =22.28, the pressure of bulk water at p=3.0 and T
=0.32. This temperature was chosen because it corresponds
to the temperature at which the water compressibility is
matched for a,,,=25 and three water molecules per bead
according to the work by Groot and Warren.'® Constant pres-
sure moves were chosen to sample from the partition func-
tion,

Zyyyr= dL, f dL,8(L, - L )ePr"

1 1 ("
- = N ,~BpV
Znp AT= ANV, ), dVVNe PP

Vv
Xf dLA5<Lx - Z)J dsNe_BU(SN;Lx). (5)

A random step in the box volume V is chosen and then solely
the simulation box length L, is varied. This approach ensures
that no work is done relative to the surface tension during the
constant pressure simulation moves. A volume change from
V, to V, is accepted with the standard Metropolis acceptance
ratio,

V N
acc(o — n) = min{ l,e_ﬁAU_B”AV(V") } ) (6)

where N is the total number of particles in the system whose
positions are scaled with the volume change. Since we hold
all relative intramolecular coordinates constant during pres-
sure and surface tensions moves, for our simulations, N cor-
responds to the total number of molecules in the system.

In Sec. II B, we will describe how we sample the solute
chemical activity in the lipid bilayer since this is based on
the new density-biasing methodology. Here we describe the
three different techniques used to sample the solute chemical
activity in bulk water. At high chemical activities and tem-
peratures, the solute number was varied for a set chemical
activity simply via standard grand-canonical MC moves with
configurational bias for the insertion of the first bead and for
the tail bead."® For these configurational bias moves, we gen-
erated 30 test configurations for the first bead and 10 test
configurations for the subsequent bead.

At high temperatures but lower chemical activities, the
equilibrium solute concentrations are too low to be acces-
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sible to such simulations. Therefore, the average solute num-
ber in a set number of solvent particles was determined using
Henry’s law'® written as

B
(Mg = 5 (Ve )

for the NPT ensemble, where (V exp(—BAU™Y)) is determined
for the insertion of a single solute particle and treated as a
constant in Henry’s law. Rather than using simple Widom
insertion to determine AU*, the excess chemical potential
coupled with the volume is found via the histogram overlap
of Rosenbluth factors® for the insertion of and removal of
one alcohol molecule in a bulk water simulation box of 200
beads held at constant pressure and temperature. In this in-
stance, we confirmed that a range of number of test configu-
rations for the Rosenbluth factors led to results identical
within error bars.

Studying the temperature dependence of the solute par-
titioning required an alternate approach to the determination
of the excess chemical potential because the histogram over-
lap for this dense system became progressively poorer as the
temperature decreased. In such cases, we employed thermo-
dynamic integration,19 choosing a path where the soft repul-
sive interactions of the alcohol beads with the solvent were
scaled such that

al\)=\-a, (8)

in order to calculate a free energy difference,

RN LA,
AF gy = fo d)\< P >A, )

where the subscript lambda indicates that the simulation was
conducted with the modified a(\). The \ values used for
thermodynamic integration were determined via the Gauss—
Legendre technique for approximating integrals.21 In particu-
lar, ten-point Gauss—Legendre integration was used. In this
instance, again assuming Henry’s law, we may express the
number of solute particles solvated in 200 water molecules
as

e,BM AP
(Nadaq = F(Woe_ﬁ (10)

where (V), indicates the volume of the water box with no
alcohol solute present.

B. Density-biased Monte Carlo

Our proposed density-biasing scheme relies on having
an ansatz for the probability density p(s) of the particles to
be inserted throughout the simulation cell. We define this
probability density using rescaled coordinates

s=(1,l,i), (11)
L, L_\, LZ

such that this probability density is normalized over the unit
interval as
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FIG. 3. The density-biasing function p(s) as determined by the density
profiles of the three lipid hydrophilic headgroup beads.

1ol
f f f p(s)ds.ds,ds, = 1. (12)
0Jo Jo

For discussion here, we estimate p(s) for the first hydrophilic
bead of the alcohol based on the density profiles of the three
hydrophilic head groups in a pure lipid bilayer. This p(s) is
shown on the same plot as the density profiles associated
with the three head beads in Fig. 3.

By simply choosing the z-position of the first particle in
a chain from the probability distribution p(s) rather than uni-
formly sampling s, detailed balance requires

acc(N —- N+1 VvV exp(— BAU)
acc(N—N+1) = g(T)ePH p-p (13)
acc(N+1—N) N+1  p(s)
for standard GC moves, and
N—N+1 v W
acc(N—N+1) = ¢(T)eP* (14)
acc(N+1—N) N+1p(s))

for GCMC with configurational bias moves. In these equa-
tions, ¢(T) represents the momentum degrees of freedom for
a molecule (replacing A=%) and W is the typical normalized
Rosenbluth factor used for grand-canonical MC of chain
molecules.”” The full derivation of these acceptance rules
based on the principle of detailed balance, both with and
without configurational bias, is given in Sec. III. The func-
tion p(s;) does not have to result from the density profile of
the system provided that there is a sufficient overlap.

The crux of this technique is the use of p(s) in the gen-
eration of trial positions for the first bead and the inclusion of
this probability in the subsequent acceptance or rejection of a
generated trial move. Essentially, trial move generation is
biased toward the likely region of configuration space using
p(s), and this bias in move generation is removed by the
division by p(s) for insertion moves and the multiplication
by p(s) in deletion moves. Crucially, for membrane simula-
tions, since no region of space is ever truly disallowed, p(s)
can never be exactly zero; it is just set to a very small num-
ber in the water phase and in the lipid tail region for our
hydrophilic alcohol head bead as described in the Appendix.
For our configurational bias moves, as in bulk water at high
alcohol activities, we generate 30 test configurations for
Rosenbluth sampling for the first bead and 10 test configu-
rations for Rosenbluth sampling for the second bead.

In the results of this paper, we used two different ap-
proaches to generating the trial configurations for the second
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bead in the alcohol. For all results conducted at 7=0.7 we
generated the trial configurations purely based on the har-
monic bond potential and thus the conservative interaction
between the head and tail bead were included in the Rosen-
bluth factor. For the lower temperatures where acceptance
ratios were correspondingly lower, we found it advantageous
to generate the trial configurations using both the harmonic
bonding potential and the conservative interaction between
the head and tail bead.

lll. DETAILED BALANCE AND DENSITY BIASING

The validity of the density-biased insertion and deletion
algorithm hinges on whether the scheme correctly samples
the probability distribution of the grand-canonical ensemble.
Here we first derive the density-biased algorithm for the
simple insertion and deletion of single-site particles.

The requirement of detailed balance states that the flow
from a given state with N particles to another state with
N+1 particles with one particle in configuration I" should be
equal to the flow in the opposite direction,

K(N—=N+1|)=K(N+ 1|l — N). (15)

These flows are a product of three contributions: the density
of states N associated with the initial configuration as speci-
fied by statistical mechanics, the a priori probability a of
generating a trial move, and the probability acc of accepting
such a trial move. This may be expressed as

NW) - a(N— N+1|I') - acc(N — N+ 1|I')
=NWN+1I)-a(N+ 1T — N)-acc(N+ 1|T — N).
(16)
The only modification in this case to the standard derivation

of the grand-canonical insertion and deletion probabilities19
is that now

a(N — N+ 1|T') = p(sy), (17)

where s indicates the position of the particle that is inserted.

By altering the a priori probability of generating a new
position, we now must unbias the insertion and deletion
probabilities as

ePr vy oAU
acc(N— N+ 1|l =min| 1,—5———— (18)
A’ N+1 p(sy)
. AN au
acc(N|I' — N - 1) = min 1, —a—p(spe pAUY (19)
ePHV

where AU refers to the change in energy for the specified
process. Thus for density-biased insertion or deletion of
single particles, the sole modification lies in canceling out
the a priori probability of generating that bead.

For molecules, this density biasing must be coupled with
configurational bias insertions of the remainder of the mol-
ecule. The crux of such approaches lies in generating k trial
beads at each step of the chain growth and selecting a single
such bead before progressing to the next bead in the chain.
Each step in chain growth has an associated Rosenbluth fac-
tor and the final acceptance probability involves the accumu-
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lated product of the Rosenbluth factor at each step.19 Thus
here we determine the acceptance probability for multiple
test insertions of a single bead and then justify the extension
of this acceptance probability to that of a chain molecule
with the first bead inserted according to a density bias.

Following a derivation of configurational biasing in the
grand-canonical ensemble,”” we employ the more stringent
test of superdetailed balance. This requires a balanced flow
individually for each possible set of k trial configurations
{b}, such that the position of the N+ 1th particle is included
in the set {b};={br,{b};_,}. The state flow condition may
then be represented as

K(N — N+ 1/{b};) = K(N + 1[{b}, — N). (20)

We again write these flows in terms of three basic contribu-
tions:

NMN) - (N — N+ 1|{b};) - acc(N — N + 1|{b},)
=NWN+1|T) - a(N + 1[{b}, — N) - acc(N + 1[{b}, — N).
21)

The important modifications lie in the a priori probabili-
ties of generating a set {b}; which includes by and choosing
br. For the insertion of a particle, this expression is

e‘ﬁ”ext(bNH)

k
j=1

Elee_'gue’“(bj)

e_B”ext(bN+ 1 )

W . (22)

k
j=1

In the formula above, the first term is the probability to gen-
erate a given set of trial configurations. The k! reflects the
number of distinct orderings of configuration-generation that
lead to the same overall set of configurations. The second
term reflects the probability of choosing the by trial configu-
ration with energy u.,, of particle addition, given the set {b},.
In the second equality, we identified the denominator with
the standard Rosenbluth factor W, for multiple test configu-
rations of a single bead.

For the removal of the particle, we need only to generate
the k—1 remaining trial configurations; the by configuration
already exists and we do not need to choose that configura-
tion. Therefore, the a priori probability is

k-1
a(N +1[{b}— N) = (k= D! p(s))ds;. (23)
j=1

Using the definitions of a above and the standard grand-
canonical probability density of configurations, we find

acc(N—N+1)
acc(N+1—N)

74 4
N+1k-p(sy,)

= ¢(T)eP (24)

In this formula ¢(7) replaced A~ and represents the kinetic
contribution of a single molecule to the partition function.

Extending this scheme to allow for the insertion or de-
letion of multibead molecules, we find
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acc(N—N+1)
acc(N+1—N)

; (25)

where we defined a normalized Rosenbluth factor for a chain
of n beads as

n n k
W= H % - H (12 e—ﬁuexl(lJ])> . (26)

=1 ke \ ko

This normalized Rosenbluth factor is simply the typical
Rosenbluth factor used in grand-canonical insertion and de-
letion of chain molecules. Understood in this sense, density-
biased insertion simply weights the possible insertions to-
ward the physically most likely regions and then cancels out
that bias when choosing whether to accept or reject that
move.

IV. RESULTS AND DISCUSSION

We now apply this density-biased insertion technique to
the partitioning of solutes into the lipid bilayer. Ideal parti-
tioning of alcohol molecules assumes that the equilibrium
defined by

A(aq) = A(lip) (27)
maintains a single partitioning coefficient K, defined as
A(li
,,=[ (1p)]’ (28)
[A(aq)]

regardless of the alcohol concentration in the aqueous phase.
To the extent that alcohol-alcohol interactions are important
in either phase or that the alcohol molecules perturb the lipid
bilayer in a nonlinear fashion, such ideality is an incredibly
poor assumption. We demonstrate that careful simulations
able to characterize the extent of partitioning in the aqueous
and lipid bilayer phases provide a natural route to assessing
the extent and ideality of solute adsorption in the lipid bi-
layer.

By following a procedure similar to the determination of
the adsorption isotherm using grand-canonical simulations,
now with density biasing, we have a technique that can ac-
curately probe the extent of adsorption for a range of aque-
ous alcohol concentrations. Such an approach relies on the
grand-canonical simulation of alcohol insertions into the
aqueous phase and corresponding grand-canonical simula-
tions of alcohol insertions into the lipid bilayer. By matching
chemical potentials between each type of grand-canonical
simulation, we know the concentration of A(aq) which is in
equilibrium with A(lip), via the following connection:

A(aq) = A(reservoir) = A(lip). (29)

Nonideality may (and in fact will) be present in either of
these two processes. Unless the driving forces for nonideality
in vapor-aqueous and in vapor-membrane partitioning are
identical, nonideality in either process will lead to a noncon-
stant partition coefficient. In fact, given the very different
nature of the aqueous environment and the membrane-
environment, it is a near certainty that such matching of driv-
ing forces will not occur and shall therefore lead to a
concentration-dependent K,.
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FIG. 4. Mole fraction of alcohol in the lipid phase as a function of activity
q(T)eP. Error bars are included but smaller than the symbols. Values are
displayed for several different choices of p(s) shown in Fig. 5. The dashed
line indicates the relationship dictated by Henry’s law, which is only valid at
low solute activities.

A. Alcohol Insertion into the lipid bilayer

We calculate the extent of alcohol solvation in the mem-
brane as a function of the chemical activity g(7)e”* by ap-
plying a density bias to the trial move generation. This is
achieved by simply calculating (N)y;, over the course of a
DPD-MC trajectory. Shown in Fig. 4 is the plot of the effect
of increasing chemical activity on the mole fraction of alco-
hol in the lipid phase, defined as

(lp) (Nahip _ (30)
(Nahip + Niip

Shown in a dashed line is the result dictated by Henry’s
law. For small ¢(T)eP*, the predicted xihp) will vary linearly
due to the fact that the dominant interactions are between
single alcohol molecules and the surrounding lipid bilayer.
Such a linear relationship corresponds to an ideal solute. As
the data points deviate from Henry’s law, nonideal interac-
tions are becoming important. Physically, we may under-
stand the decrease in xglp) as a consequence of greater per-
turbations in the lipid bilayer. These small alcohols are
interfacially active but do not contribute substantially to the
overall structural integrity of the bilayer nor do their single-
bead head groups contribute substantially to hydrophilic
shielding of the bilayer core. Thus, as the alcohol concentra-
tion increases, the free energy penalty of further alcohol in-
sertion becomes greater.

The mole fractions shown in Fig. 4 are determined using
a variety of density biases and the results are invariant to
choice of p(s). In addition to the p(s) based on the lipid head
group density in a pure bilayer as demonstrated in Fig. 3,
Fig. 5 shows the various p(s) used. The choice of p(s)=1 is
equivalent to standard configurational-bias grand-canonical
MC. A more accurate choice of probability density is based
on the alcohol hydrophilic density profile at an activity of
10'. This p(s) is equivalent to the p(s) generated from the
alcohol hydrophilic bead density profile for all activity val-
ues within the region of ideality. For the higher, nonideal
activities, we also examined p(s) generated by the actual
density profiles at those activities.

In order to test the effect of choice of density profile on
equilibrium averages, we have run grand-canonical simula-
tions with (i) a uniform p(s)=1, (ii) a head-group p(s) based
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FIG. 5. Comparison of different choices of p(s) explored in this paper. The
(magenta) circles indicate p(s) determined as shown in Fig. 3. The (blue)
upright triangles indicate the p(s) determined from the density profile of the
alcohol hydrophilic bead at activity 10'4, which is equivalent to the p(s) for
all activities in the ideal regime. The (black) inverted triangles show the p(s)
determined from the alcohol head bead profile specifically for the activity
5X10%.

on the density profile of all hydrophilic beads in the lipids,
(iii) an ideal p(s) based on the density of the alcohol hydro-
philic bead at ¢(T)e##=10", and (iv) nonideal p(s) based on
the actual densities of the alcohol hydrophilic bead at the
different nonideal activities ¢(T)eP*={10",2x10",5
X 10'3}. The results were shown on a linear scale in Fig. 4
and are shown in Fig. 6 in logscale to emphasize the agree-
ment over the full span of chemical activities studied. As is
evident, the results are invariant for choice of p(s). The sole
substantial difference is the size of the error bars based on
the quality of estimation of p(s).

B. Alcohol Insertion in the bulk

In agreement with the conclusions of Pool and Bolhuis,23
we find that the aqueous solubilities of these soft-core repul-
sive amphipilic molecules is quite low. Therefore, determin-
ing the corresponding aqueous alcohol concentration proved
computationally challenging. Furthermore, at chemical ac-
tivities where (Ny),q is measurable, nonideality quickly be-
came an important factor. As an example of this, a trace of
N, over MC cycles is shown in Fig. 7 for two chemical
activities. For ¢(T)eP*=10'3, the number of water insertions
is barely measurable over a lengthy simulation. For the
higher activity, there still is relatively poor sampling, but
alcohol insertions occur in bursts. These bursts in conjunc-

100 .
p(s): lipid heads -
_1 [ p(s): uniform A é
10 p(s): ideal alcohol v
p(s): nonideal alcohol ¢
20
z 10 -
T«
< 10-3 L e
104 F e
10°

102 1013 10" 10" 10'
q(m e

FIG. 6. Mole fraction of alcohol in lipid phase for different biasing distri-
butions. Error bars are included for all data points but are smaller than the
symbol in some cases. This plot shows the same data as Fig. 4 using a
logarithmic scale in order to emphasize the agreement resulting from differ-
ent density-biasing distributions across the full range of chemical activities.
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FIG. 7. Traces of number of alcohol particles in a simulation box containing
200 water beads for two different chemical activities. The transition from
nearly immeasurable (N,) to systems with nonideal interactions occurs quite
rapidly.

tion with the observation that the alcohols tend to aggregate
during these bursts suggest that we surpassed the critical mi-
cellar concentration for our model alcohol at these relatively
modest concentrations. This is a consequence of the fact that
our model “alcohol” can also serve as a model surfactant in
general and the very low solubility of the tail beads in water.
Such considerations are not immediately transferable to all
alcohol models since the model we are studying was not
parametrized to alcohols and ethanol in particular is fully
miscible in water.

Due to the difficulty in calculating mole fractions in the
aqueous phase at the relevant chemical activities, we employ
two different techniques for determining

oo by (1)
<NA>aq + Nw

At the higher chemical activities, we calculate (N4),q directly
from simulation, and at lower chemical activities we apply
Henry’s law based on a chemical activity determined from
histogram overlap of the Rosenbluth factors.”’ Simple Wi-
dom insertion will not suffice because the average is highly
dominated by the rare low energy insertion conformations. In
Henry’s law regime, we determine (Nj),q using (Na)y
=A-q(T)eP* as described in Sec. II B with Ky,=3.48 +0.40
X 10718,

As shown in Fig. 8, the mole fraction moves away from
ideality as well at approximately the same chemical activity
as nonideality appeared in the membrane system. This simi-
larity is likely a coincidence since the driving force for non-
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FIG. 8. Mole fraction of alcohol molecules in the aqueous phase with error
bars. Those values determined from grand-canonical simulations are shown
with circles, and those values determined from histogram overlap techniques
and assuming Henry-like ideality are shown with triangles.
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FIG. 9. Partition coefficient K,, as a function of alcohol mole fraction with

error bars. An ideal regime at small xffq) is evident prior to a decrease in the

partitioning coefficient. To give a sense of the physical concentrations, the
corresponding weight percent of ethanol is given on the upper-x axis, ac-
counting for three water molecules to one water bead and assuming that the
weight of the solution is essentially that of the water.

ideality in the membrane system is due to bilayer perturba-
tion and the mechanism of solvation in the aqueous phase is
quite different. The nonideality also increases the mole frac-
tion in the aqueous phase with rising chemical potential as is
experimentally observed.”* While we do not expect quantita-
tive agreement for the onset of nonideality for alcohol solva-
tion, our simple model for alcohols and water does capture
the correct qualitative trend for the deviations from Henry’s
law regime, suggesting that we captured some of the essen-
tial driving forces in this system.

C. Partition coefficient

Given the adsorption of the alcohol into the lipid bilayer
and the solvation of alcohol into the aqueous phase over a
range of chemical activities, determination of the partition
coefficient as a function of bulk alcohol concentration is rela-
tively straightforward. Defining K, as

(lip)
XA
K,= W , (32)
A
we find the trends in K, shown in Fig. 9.

As shown, K, remains constant up to an xﬁfq) of 1073 and
subsequently decreases, due to complementary deviations
from Henry’s law regime for both aqueous and lipid-bilayer
solvation. As noted in Sec. IV B, qualitatively the deviations
for alcohol in water follow the experimental trends. Further-
more, our alcohol-lipid bilayer model captures important
physics related to the perturbation of the bilayer structure
due to alcohol, leading to a decrease relative to Henry’s law.
Certainly the model for both systems neglects specific polar
and hydrogen bonding interactions; therefore drawing quan-
titative conclusions seems ill advised. As one example of
this, we know that K), is certainly overestimated due to the
unphysically low solubility of our model alcohol in water.

Due to this the aqueous concentration for onset of non-
ideality is potentially misestimated as well. In order to give
physical units to the mole fractions we do observe, the cor-
responding weight percent of alcohol is shown on the upper
y-axis of Fig. 9. For our model, substantial nonideality is
present in the biophysical range of concentrations—the full
range of concentrations studied. Previous NPT simulations
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FIG. 10. Trace of N, in lipid bilayer for different p(s). The variation in N,
is substantially greater for any p(s) which reflects the nonuniformity of the
system.

found a nonideality onset as the aqueous concentration of
alcohol decreased, but making quantitative statements about
the nature of this nonideality and the extent of it at biophysi-
cal alcohol concentration was essentially inaccessible.”
While quantitative conclusions about actual alcohol-
water-membrane systems are dubious for our chosen model
system, the ability of this technique to quantitatively capture
this nonideal partitioning for a given lipid bilayer and alco-
hol model is of note. Models which more accurately capture
the molecular interactions between alcohols and lipids and
alcohols and water could be treated with this approach to
obtain quantitative curves of K, as a function of [A(aq)].

D. Computational efficiency

Use of the density-biased grand-canonical MC is also
substantially more computationally efficient then using stan-
dard grand-canonical simulations. In Fig. 10, a trace of N,
over the course of GCMC simulations at activity 10'* with
different density-biasing qualitatively demonstrates that the
traditional uniform biasing far less effectively samples the
relevant numbers of alcohol particles in the membrane
phases.

The percentage of GCMC insertions and deletions actu-
ally accepted indicates the frequency of sampling of different
N, states and is therefore a direct reflection of the computa-
tional efficiency of various density biases. Shown in Fig. 11
is a plot of this acceptance rate for a variety of simulations
run at an activity of 10'%, on a log scale. Applying intelligent
density-biasing improves the sampling of N, substantially.

Furthermore, while the equilibrated results displayed for xﬁip)
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>
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FIG. 11. Plot of sampling efficiency with different biases and different water
layer widths.
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FIG. 12. Plot of K, for ht in hs(t,), as a function of temperature. A substan-
tial spike in K, (red circles) is present, though the value at 7=0.30 is only a
lower bound on K,,. The full range is made visible via a logarithmic scale.
This enhancement in K, however does not translate into a dip in free energy
(blue triangles), where the free energy accounts for the vast range in tem-
peratures in the system’s energy units.

are independent of biasing choice, these acceptance rates
make clear that the more physically informed the density-
biasing function is, the more efficiently N, is sampled.

Furthermore, Fig. 11 makes clear that density-biasing
scales as expected with increasing simulation box volume
normal to the interfacial region. Use of density-biasing func-
tions results in an acceptance frequency that is invariant with
N,/ Ny, whereas traditional GCMC insertion and deletion
acceptance frequencies decline substantially as the water
layer thickens relative to the bilayer.

E. Temperature-dependence of K|,

Experimentally, researchers observed that for small alco-
hols, K, is substantially enhanced as the temperature was
lowered from the liquid crystalline L,-phase toward the
ripple phase,6 but moderate length alcohols like hexanol do
not exhibit this partitioning increase.”® The coarse-grained
model studied undergoes the relevant phase transitions,'® and
the “alcohol” model used has been shown to induce reason-
able structure modification in the bilatyer.7 Therefore, we
studied the temperature dependence of K, in our model in
the hope of gaining insight into the structural drivers for this
increase in partitioning. For this study, the lipid model /5(2,),
was used instead of 715(z5), since that model would have been
appropriate for looking at the effects due to the presence of
cholesterol as well.*’

The frequency of acceptance of insertions and deletions
fell substantially as T dropped; therefore the trial configura-
tion generation was modified to include the repulsive inter-
action between the head and tail bead in the alcohol, in order
to enhance this sampling frequency. By altering the thermo-
dynamic integration to reflect this change, Henry’s constant
for the corresponding reservoir was determined. While the
equilibria between the reservoir and each of the two simula-
tion boxes (pure water and lipid bilayer) were altered, the
equilibrium between the aqueous and lipid phases was unal-
tered, as was confirmed for the higher temperatures where
both trial generation approaches were employed. All simula-
tions were conducted at the low concentration limit where
Henry’s law is valid.

The resulting K, as a function of 7 is shown in Fig. 12.
The point at 7=0.30 is a lower bound on K, due to a con-



064107-9 Alcohol solubility in a lipid bilayer

tinually increasing Nﬁlp) and incredibly slow equilibration.
As seen, K, substantially increases as T drops toward the
main transition temperature, 7=0.30, in our model. However
the temperatures lower than the main transition temperature
were computationally inaccessible. Furthermore, neither in-
creasing alcohol tail length to species ht, or ht;, altering the
alcohol-head/lipid-head interactions, nor shortening the bond
length within Af did anything to alter this basic trend, despite
reasonable hypotheses to the contrary.

By relating K, to a pseudo-free-energy via the transfor-
mation

AG,=-k;TInK,, (33)

we observed in Fig. 12 that the free energy of partitioning
remained relatively flat. The enhancing of K, was rather
driven by the unphysically large factor of 2 difference be-
tween 7=0.60 and 7=0.30 for the temperature scale in the
model system. In contrast, the corresponding factor in physi-
cal units would be 1.10. Based on this, we conclude that
comparing energetics and partitioning as a function of 7 will
lead to stark inaccuracies. Furthermore, based on the AGP
profile, the simple coarse-grained model used does not cap-
ture the necessary physics to explain the spike in K, as the
main transition temperature is approached.

V. CONCLUSIONS

We presented a new simulation tool for studying the
equilibration of solute particles between an interfacial region
and a bulk phase. As shown, this density-biasing technique
yields identical equilibrium results regardless of p(s) form,
including the traditional grand-canonical MC. However, use
of density-biased MC yields enhanced sampling of solute
particle insertions and deletions in the interfacial region. Fur-
thermore, computational cost associated with these density-
biased insertions and deletions scales solely with the volume
of the interfacial region, not with the total volume of the
simulation box.

This density-biased grand-canonical MC technique has
been applied to a biophysically relevant system—the equili-
bration of alcohol molecules between the aqueous bulk phase
and the lipid bilayer. The study of such equilibration, in par-
ticular the examination of nonideality in such a partitioning
process, has been computationally infeasible until now. Den-
sity biasing in tandem with a coarse-grained model of the
lipid bilayer and water allowed us to quantitatively deter-
mine the partitioning coefficient K, as a function of alcohol
concentration for the model studied.

This technique should be immediately and broadly ap-
plicable to interfacial systems of similar topology to the lipid
bilayer, such as simple surface adsorption. The geometry of
these systems all allow the use of a one-dimensional density-
biasing function and the associated simplifications in gener-
ating random numbers from such a distribution as described
in Appendix. However, such an approach could be reason-
ably extended to more general geometries where regions of
accessibility are limited in a known way. More complex

J. Chem. Phys. 132, 064107 (2010)

density-biasing which is not pseudo-one-dimensional would
require some more research into efficient ways of generating
random numbers for those distributions.

The results of this study demonstrate a clear need for the
development of new coarse-grained models which capture
the physics of this partitioning over a range of temperatures.
Given the dearth of experimental data related to the onset of
nonideality and furthermore its dependence on temperature,
simulations could contribute substantial understanding of the
biophysical impact of small solutes on the cell membrane.
We are currently exploring the use of these density-biasing
techniques in tandem with the development of more molecu-
larly specific coarse-grained models.”™® Much work is yet to
be done, but the combination of these approaches is intrigu-
ing. Given molecular models of alcohols or anesthetics
which capture the thermodynamics of partitioning in a quan-
titative fashion, a role for molecular modeling not previously
envisioned” might be possible. The ability to fully charac-
terize the equilibrium of an anesthetic molecule between wa-
ter and the membrane over a range of chemical activities
offered by density-biased grand-canonical MC could allow
us to assay the potency of new anesthetics initially in silico.
Furthermore, such a computational system would allow for a
very natural simultaneous examination of the effect of such
adsorbed bilayer solutes on proteins within the bilayer.
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APPENDIX: GENERATION OF RANDOM NUMBERS
FROM AN ARBITRARY p(s)

We create an arbitrary p(s) by simply summing the den-
sity profiles of beads of interest, for example the head beads
of the lipids. We then guarantee that even the aqueous region
will be hypothetically accessible by setting all low density
values, especially zero values, to a small density that is at
least the bulk density of alcohol at that given activity. Fi-
nally, normalization is enforced.

Generating random numbers according to a given p(s)
and furthermore knowing p(s) exactly for a given value of s
are crucial components to implementing the density-biased
grand-canonical MC algorithm introduced in this paper.
Without appropriate random number generation, detailed bal-
ance will not be obeyed.

We achieve this by taking the discrete steplike nature of
collected density histograms quite literally and generating
two functions based on these histograms, p(s) and P(s),
where P is the cumulative probability at any given position
ranging from O to 1 monotonically. An example of these two
functions are shown in Fig. 13, with very coarse As chosen
to better display the effect of this discretization on the form
of each of these two functions.

Solely knowing p(s) allows us generate the probability
density associated with a given particle position, necessary
for the removal probability of a particle. By inverting P(s)
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FIG. 13. Demonstration of p(s) and P(s) for a sample distribution which has
been discretized into five regions. For density-biasing distributions, a much
finer discretization of 200 points is used.

into s(P), which is possible since it is a monotonic function,
we may generate a random number from p(s) simply by
generating a random number ¢ from the uniform distribution
[0,1] and determining s(&) from the inverse cumulative prob-
ability.
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