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A dynamically corrected transition state theory method is presented that is capable of computing
quantitatively the self-diffusivity of adsorbed molecules in confined systems at nonzero loading.
This extention to traditional transition state theory is free of additional assumptions and yields a
diffusivity identical to that obtained by conventional molecular-dynamics simulations. While
molecular-dynamics calculations are limited to relatively fast diffusing molecules, our approach
extends the range of accessible time scales significantly beyond currently available methods. We
show results for methane, ethane, and propane in LTL- and LTA-type zeolites over a wide range of
temperatures and loadings, and demonstrate the extensibility of the method to mixtures. ©2005
American Institute of Physics. fDOI: 10.1063/1.1924548g

I. INTRODUCTION

Molecular simulation1,2 has evolved over the years as a
powerful tool to study the equilibrium and transport proper-
ties of molecules adsorbed in nanoporous materials. It pro-
vides an understanding of the microscopic dynamics under-
lying the macroscopic properties of industrial interest such as
the separation of mixtures of molecules.3 The use of zeolites
as a means for chemically clean separations can be consid-
ered a prime example of how nanomaterials are able to ex-
ploit the critical match between the confinement and the
shape and size of the adsorbate. One of the difficulties en-
countered when studying diffusion behavior in zeolites using
simulation is that many processes occur outside the time
scale accessible to molecular dynamicssMDd, which is cur-
rently typically limited to diffusion rates in the order of
10−12 m2/s.

New methods have been developed for circumventing
this time scale problem.4 Systems characterized by a
sequence of rare events can be described by transition
state theorysTSTd methods such as the Bennett–Chandler
approach,5,6 the method of Ruiz–Monteroet al.,7 path
sampling,8 transition interface sampling,9,10 hyper-
dynamics,11 parallel replica dynamics,12 temperature-
accelerated dynamics,13 and on-the-fly kinetic Monte
Carlo.14 In principle, all of these methods have the potential
to be orders of magnitude more efficient while still retaining
full atomistic detail. In TST approximations one computes a

rate constant between statesA andB by computing the equi-
librium particle flux through the dividing surface. The divid-
ing surface should uniquely divide two connected states, and
in general the TST rate is an upper bound on the exact rate.
The exact rate can be recovered by running short MD trajec-
tories from the dividing surface to compute a dynamical cor-
rection sdcd.1

Many groups have worked on the time scale problem for
diffusion in confinement. The approach of Juneet al.15 mod-
els self-diffusion of xenon and SF6 in silicalite at infinite
dilution as a series of uncorrelated jumps between potential-
energy minimassitesd. The rate constants for jumping be-
tween the sites are converted to diffusivities by generating
continuous-time/discrete-space Monte Carlo random walks.
The computed diffusivities were reasonably close to the val-
ues computed using conventional MD. Snurret al.16 devel-
oped a hierarchical approach for predicting isotherms of ben-
zene in silicalite. The method can be applied to other systems
when molecules adsorb at well-defined sites. In a subsequent
paper, Snurret al.17 investigated the dynamical behavior of
benzene using TST. Diffusion paths connecting pairs of
potential-energy minima are constructed through saddle
points stransition statesd. Given the rate constants, the self-
diffusivity was computed with a kinetic Monte Carlo simu-
lation. Maginnet al.18 presented a hierarchical approach for
simulating the diffusion ofn-alkanes up to C20 in silicalite
using modest computational resources. The simulation strat-
egy utilized concepts from Brownian motion theory and tran-
sition state theory. Jousse and Auerbach19 used TST to com-
pute exact rate coefficients for benzene jumps in NaY
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zeolite. Forester and Smith20 used constrained reaction coor-
dinate dynamicssBluemoon ensembled to characterize the
free-energy profile of benzene in silicalite-1 at 300 K along
the mean reaction path for diffusion. The free energies, com-
bined with estimates of the transmission coefficient, were
used to obtain rate constants for diffusion between the main
adsorption sites. Subsequent kinetic Monte Carlo simulations
provided the self-diffusion coefficients. Mosselet al.21,22

studied the diffusion of benzene andp-xylene in zeolite NaY
by means of constrained reaction coordinate dynamics. MD
simulations were used to determine the potential of mean
force along the coordinate perpendicular to the window con-
necting two supercages of the zeolite. Diffusion coefficients
and activation energies were determined from a hopping
model that considers dynamical corrections. Ghoraiet al.23

estimated the rate of passage of CCl4 through the eight-ring
window in a model of zeolite A by combining a direct evalu-
ation of the free-energy profile and an adaptation of the rare
events method. The system contains on average one particle
per cage, and because particle-particle interactions rarely oc-
cur under this condition the free energy is evaluated from the
one-particle partition function. The self-diffusion of ethane
in cation-free sLTA d-type zeolite has been studied by
Schüringet al.24 using MD and TSTswithout dynamical cor-
rectiond for various temperatures. The bare TST jump rates
were similar to the MD jump ratesswhere also the MD re-
sults were not corrected for short-time recrossingsd. Dubbel-
dam and co-workers25,26 applied dynamically corrected tran-
sition state theorysdcTSTd to study abnormal diffusion of
linear alkane moleculessC1–C20d in ERI-, CHA-, and LTA-
type zeolites at infinite dilution. The exceptionally slow-
diffusion rates required the combination of rare-event TST
techniques with the configurational-bias Monte Carlo
sCBMCd algorithm.1,27 The diffusivities were evaluated on a
lattice spanned by the cage centers.

It is important to note that these works have been per-
formed at infinite dilution, even though many of the pro-
cesses of industrial importance occur at nonzero loading.28

Only a limited number of studies deal with nonzero loading.
Tunca and Ford29 used multidimensional TST to obtain the
hopping rate of adsorbates from ana-cage in LTA-type zeo-
lite as a function of loading. Various approximations were
applied to make the simulations computationally feasible. In
a subsequent study30 the limitations of an empty receiving
cage and the use of the Widom insertion method were
avoided. Recently, Tunca and Ford presented a new hierar-
chical approach to the molecular modeling of diffusion and
adsorption at nonzero loading in microporous materials.31

Although adsorption was well represented, the coarse-
grained self-diffusivity data under predicted the diffusivity at
low loading, while significantly over predicting the diffusivi-
ties at higher loadings, in comparison to conventional MD.

Coarse-grained kinetic Monte CarloskMCd studies have
pointed at the difficulties of computing an elementary hop-
ping rate, taking into account the various correlations in-
duced by particle-particle interactions.31,32 Very recently,
Beerdsenet al.33 extended the dcTST Bennett–Chandler ap-
proach to include diffusion of molecules at nonzero loading.

It was shown that the particle-particle correlations can be
taken into account by a proper definition of an effective hop-
ping rate of asingle particle. The self-diffusivity was com-
puted directly by computing the hopping rate of a molecule
over a typical length scale given by the smallest repeating
zeolite structure, i.e., from the center of cageA to the center
of cageB. The use of kinetic Monte Carlo and its underlying
assumptions are therefore avoided. Implicitly one integrates
over the whole volume of a cage and hence all adsorption
sites in the cage, irrespective whether these are well defined
or not. All other particles are regarded as a contribution to
the external field exerted on this tagged particle. The dcTST
extension to finite loadings yielded excellent agreement with
that obtained by conventional MD simulations and is appli-
cable in any system containing high free-energy barriers and
for any type of guest molecule. In this work, we elaborate on
the concepts introduced by Beerdsenet al., and show results
for methane, ethane, and propane in LTL- and LTA-type zeo-
lites over a wide range of temperatures and loadings.

The remainder of the paper is organized as follows. In
Sec. II we explain the used methods and concepts. First, the
force field is described, and we present shortly the canonical
MD algorithm focusing on maintaining temperature control
and obtaining diffusion coefficients. Next, we discuss some
concepts from random walk theory, e.g., jump rates and
memory effects. We show that TST is fully compatible and
consistent with random-walk theory and present our dcTST
at nonzero loading. Section III starts with the results on the
infinite dilution case. Two different sets of parameters from
literature are used and the difference indicates that the phys-
ics of adsorption and diffusion in zeolites is often highly
parameter dependent. The main emphasis of the paper lies on
the diffusivity results of methane, ethane, and propane in
LTL- and LTA-type zeolites using dcTST compared to MD
as a function of loading. For LTA-type zeolite we present
additional results of a mixture of methane and ethane. We
end with a general discussion on lattices, correlations, and
dcTST in Sec. IV, and conclusions in Sec. V.

II. METHODOLOGY

A. Force field parameters for adsorption
and diffusion of alkanes in siliceous
nanoporous materials

Zeolites are confined systems with pore sizes compa-
rable to the molecular size. Adsorption in cation-free zeolite
structures usually takes place at specific sites with little or no
electric field. For this reason the united-atom model34 seems
the most straightforward choice. We consider the CHx groups
as single, chargeless interaction centers with their own effec-
tive potentials. The beads in the chain are connected by har-
monic bonding potentials. A harmonic cosine bending poten-
tial models the bond bending between three neighboring
beads. The Lennard-Jones potentials are shifted and cut at
12 Å. Analytical tail corrections are not applicable in
zeolites.35 A truncated and shifted potential is equally suit-
able to Monte Carlo and molecular dynamics. Flexibility of
the framework is not an issue for adsorption of linear and
branched alkanes.36 For methane in LTA-type zeolite it was
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found that self-diffusion coefficients obtained with flexible
and with rigid lattices are also practically the same37 sin the
Discussion section we will further comment on thisd. The
interactions between the rigid framework and the guest mol-
ecules are assumed to be dominated by the oxygen atoms.38

The interaction parameters of alkanes listed in Table I for use
in molecular simulations of confined systems are obtained
uniquely and accurately through fitting on experimental iso-
therms with inflection points.39,40Recently, it was shown that
these parameters also give near-quantitative agreement for
collective diffusivities for ethane in silicalite compared to
neutron-scattering experiments.41 Details on the simulations
can be found in Refs. 39 and 42. The parameters listed in
Table II are used mainly for comparison with the simulations
of Schüringet al.,24,43 and because their very small size pa-
rameters enhance diffusion by two orders of magnitude for
ethane in LTA-type zeolite compared to the parameters of
Dubbeldamet al.Although the parameters used by Schüring
et al. are probably less realistic in our opinion, they are con-
venient to compare the diffusion of ethane from a
simulation-method point of view by MD and dcTST in LTA-
type zeolite.

B. Molecular dynamics „MD…

In MD simulations,1,2,44successive configurations of the
system are generated by integrating Newton’s laws of mo-
tion, which then yields a trajectory that describes the posi-
tions, velocities, and accelerations of the particles as they
vary with time. The self-diffusion coefficientsDS

a in the di-
rection a=x,y,z are computed by taking the slope of the
mean-squared displacementsmsdd at long times

DS
a =

1

2N
lim
t→`

d

dtKo
i=1

N

fr iastd − r ias0dg2L , s1d

whereN is the number of molecules,t the time, andr ia thea
component of the center of mass of moleculei. Equivalently,
Da is given by the time integral of the velocity autocorrela-
tion function

DS
a =

1

N
E

0

`Ko
i=1

N

yiastdyias0dLdt, s2d

whereyia is thea component of the center-of-mass velocity
of moleculei. A separation of time scales occurs for inter-
acting particles roughly at the times between particle-particle
and particle-zeolite collisionssFig. 1d. The mean-squared
displacement thus bends over to attain a different slope, and
we are interested in the long-time diffusion coefficient. The
collective diffusion coefficientsDC

a are given by

DC
a =

1

2N
lim
t→`

d

dtKHo
i=1

N

fr iastd − r ias0dgJ2L s3d

and

TABLE I. Force field of Dubbeldamet al. sRefs. 39 and 40d for guest-host and guest-guest interactions of
hydrocarbons in cation-free nanoporous materials. Lennard-Jones parameters,e /kB fKg in the top of each field,
s fÅg in the bottom of each field, bond and bend parameters.

O Si CH4 CH3 CH2

CH4 115.00
3.47

¯ 158.50
3.72

130.84
3.74

94.21
3.84

CH3 93.00
3.48

¯ 130.84
3.74

108.00
3.76

77.7
3.86

CH2 60.50
3.58

¯ 94.21
3.84

77.77
3.86

56.00
3.96

Bond Ubond= 1
2k1sr −r0d2

k1/kB=96 500 K/Å2, r0=1.54 Å
Bend Ubend= 1

2k2scosu−cosu0d2

k2/kB=62 500 K,u0=114°

TABLE II. Force field LJ parameters used by Schüringet al. for ethane in
cation-free LTA-type zeolitesRef. 24d. Lennard-Jones parameters,e /kB fKg
in the top of each field,s fÅg in the bottom of each field, bond and bend
parameters.

O Si CH3

CH3 142
3.17

82
2.12

104
3.78

Bond Ubond= 1
2k1sr −r0d2

k1/kB=96 500 K/Å2, r0=1.54 Å

FIG. 1. Mean-squared displacement of self-diffusivityDS and collective
diffusivity DC for methane in LTA-type zeolite at 300 K at an average load-
ing of 8 molecules/cage. We can identify four distinct regimesssee textd. For
reference, we shows 1

2ld2 and l2, with l=12.2775 Å the cage-center to
cage-center lattice distance. The dotted lines are of slope unity and indicate
normal diffusive behavior.
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DC
a =

1

N
E

0

`KFo
i=1

N

yiastdGFo
i=1

N

yias0dGLdt. s4d

There are several forms of collective diffusion, the definition
given here is in zeolite-literature often referred to ascor-
recteddiffusivity. The inclusion of a thermodynamic factor
results in the so-calledtransportdiffusivity, which is directly
related to the macroscopic Fickian diffusion. The removal of
the thermodynamic effect results in a slightly less loading
dependent behavior. Collective diffusivity measures the
transport of mass and the decay of density fluctuations in the
system, while self-diffusion measures the diffusive motion of
a single particle. The directionally averaged diffusion coeffi-
cient is given by

D =
Dx + Dy + Dz

3
. s5d

Note that in simple fluids there is only a time scale sepa-
ration for the self-motion, not for the collective motion. In
nanoporous materials, both the displacements of the single
particles as well as the displacements of the total center of
mass are restricted by the confinement and the time scale
separation is also present in collective diffusion. This is very
much related to the diffusion of polymers in melts where
similar time scale separations occur.45 In Fig. 1 we show the
mean-squared displacements of the self- and collective mo-
tions at 300 K of methane in LTA-type zeolite at an average
loading of 8 molecules/cage. Several regimes can be identi-
fied for this system,

sId At very short time scales both the self- and collective
motions are ballistic, and the msd is proportional tot2.

sII d While initially the same, the msd of self-motion is
lowered in comparison to the collective motion due to
the backcorrelation mechanisms that also occur in
simple fluids. The onset of regime II is signaling the
average mean free time before particles collide.

sIII d Regime three is dominated by a confinement effect
and particles have not yet been able, on average, to
hop to the next confinement. The msd of single par-
ticles is restricted to approximately the cage size
squared, but results in cancellation for the collective
behavior. The msd of self-motion is therefore higher
than for collective motion.

sIV d With increasing times the particles are increasingly
able to leave the confinement, and both self- and col-
lective motions increase eventually to a linear diffu-
sive regime IV. Here, particles originating fromdiffer-
ent cages start to collide, and self-motion is again
lowered in comparison with collective motion. For
collective motion the onset of this hydrodynamical
regime is a combined effect of confinement and the
time particles start to leave the cagesbecause here, a
change in the collective motion can only be accom-
plished by cage-to-cage hops of single particlesd. The
onset for self-motion for cage/window-type systems is
the cage-size squared, i.e., the average time for a par-
ticle to leave a cage.

The calculation of the diffusion coefficients requires
much memory and CPU power, especially when fluctuations
decay slowly. The order-n algorithm to measure correlations
allows us to measure fast and slow dynamics simultaneously
at a minimal computational cost by using adjustable sam-
pling frequencies.1 The order-n scheme is equally accurate as
the conventional scheme but the saving in memory as well as
CPU time is significant for computing the mean-squared dis-
placements at long times.

In a conventionalNVE molecular-dynamics simulation,
the total energyE, the number of particlesN, and the volume
V are constant. Hence, MD measures thestimed averages in
the microcanonical ensemble, while in a conventional Monte
Carlo simulation the canonical ensemblesNVT ensembled is
probed. The extended Lagrangian approach has become one
of the most important tricks for MD in theNVT ensemble
and is completely dynamic in origin. The Nosé–Hoover
ChainsNHCd formulation extends the Lagrangian with addi-
tional coordinates and velocities containing the system to a
constant temperatureNVT ensemble. We use the NHC
method as implemented by Martynaet al.46 in which the
dynamics is still reversible. The instantaneous kinetic tem-
perature fluctuates, but the probability to find the system in a
given energy state follows the Maxwell–Boltzmann distribu-
tion.

For the instantaneous temperature we measure the total
kinetic energy of the system and divide this by the number of
degrees of freedomNf s=3N−3 for a system ofN particles
with fixed total momentumd

kBTstd = o
i=1

N
miyi

2std
Nf

. s6d

The disadvantage of most methods for working at constant
temperature is that the dynamics is changed in an artificial
way. Because in our simulations we do not have photons or
electrons, i.e., the system is mechanical, heat is transported
at the speed of sound or slower. However, most thermostat
methods have a coupling constant, e.g., the masses of the
NHC and the effect of the thermostat on the particles is in-
stantaneous. The NHC masses should therefore be chosen as
large as possible to alter the dynamics as little as possible. If
this is taken care of, the nonphysical effects for dynamical
properties will be of orders1/Nd in general.

Figure 2 shows the importance of adequate temperature
control. Ideally, a flexible zeolite would provide excellent
thermostatting of adsorbed moleculesssee Fig. 18 in the Dis-
cussion, Sec. IVd. However, for computational reasons many
authors keep the framework rigid, and the thermostatting is-
sue arises. In theNVE ensemble the particles do not ex-
change energy with the heat bath and thermalization occurs
through mutual interactions between the adsorbates. More-
over, rather unphysical ballistic motion may occur, and par-
ticles may be stuck in local free-energy barriers. The non-
physical effects of the NHC thermostat using a single
molecule are clearly present in both MD and dcTST. We note
that at high temperatures the thermostat effects are small, but
they become significant at very low temperatures. This im-
plies that single-particle diffusion coefficients or correlations
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shouldbe computed in theNVEensemble, unless a sufficient
number of particles is used. At infinite dilution this can be
accomplished by switching the intermolecular forces off, i.e.,
the particles do not interact except through the thermostat in
NVT NHC simulations. However, even if this is taken care
of, the NHC method is only capable of maintaining adequate
temperature control in equilibrium, and therefore breaks
down in the limit of high potential-energy barriers.47 Entropi-
cal barriersse.g., due to constrictions and apertures in zeolite
cages and channelsd represent no problem.

To prepare the system at the desired temperature in an
equilibrium configuration we initialize the system by the fol-
lowing procedure:

• N molecules are inserted into the framework at random
positions as long as no overlaps occur with the frame-
work or other particles, and as long as the positions are
accessible from the main cages and channels.

• During the initializing period we perform anNVT MC
simulation to rapidly achieve an equilibrium molecular
arrangement.

• After the initialization step, we assign all the atoms ve-
locities from the Maxwell–Boltzmann distribution at the
desired average temperature. The total momentum of
the system is set to zero. Next, we equilibrate the sys-
tem further by performing anNVTMD simulation using
the NHC thermostat.

• The equilibration is completed and during the produc-
tion run we collect statistics using either theNVE or
NVT ensemble. Following this equilibration procedure,
the average temperature usingNVEover the entire pro-
duction period is usually within a few Kelvin of the
desired average temperature, whileNVTwould give the
exact desired average temperature if simulated suffi-
ciently long.

C. Lattice random-walk theory

Diffusive motion of particles occurs by a series of dis-
crete steps separated by elastic collisions, localized vibra-
tions, and short shuffles. Diffusion is an irreversible macro-
scopic process, but is actually comprised of reversible
microscopic steps, and may be well described by random-
walk theory. A random walk is a simple mathematical model
for the movement of a particle on a lattice under the influ-
ence of some random or stochastic force affecting its direc-
tion of motion. It is particularly attractive because in many
instances analytical solutions can be worked out for both
static as well as dynamic properties. From the internalscrys-
tald structure a lattice can be constructed that determines the
lattice topology and the lattice distances. The dynamics of
the random walk is uniquely determined once the jumping
frequencieski for a lattice directioni are specified. A jump
frequency is defined as

k =
knumber of successful hopsl

unit of time
. s7d

The total jumping frequencyktot is related to the specific
jumping frequencieski for a given structure by a summation
over the lattice connectivityZ:

ktot = o
i=1

Z

ki . s8d

For a truly random jump each of the possible jump di-
rections is chosen with equal probability. The probability that
the new lattice site is empty does not enter into any equation
sthe particles can overlapd. The expected valuekr stdl=0, and
the chemical potential driving force¹m=0 for a simple regu-
lar random walksnecessary for the measurement of the self-
diffusivity DSd. However, in real systems, jumps are usually
correlated by defined interactions between jumping particles.

Let ki be the average frequency that a random walkersan
atom or moleculed jumps for lattice vectorli, andr std is the
position of a particular random walker. The position of a
particle srelative to the starting positiond after a timet sor
n=kt hopsd will be

r std = o
i=1

n

li . s9d

In primitive cubic crystals there exists one lattice site per
unit cell surrounded byZ=6 neighbors, the lattice vectors are
li =lêi with

êi = sh1,0,0j,h0,1,0j,h0,0,1j,h− 1,0,0j,h0,− 1,0j,h0,0,− 1jd.

s10d

The distance between two particles should increase with
time, which is measured by the spread of the distribution
kr stdl,

kr 2stdl =Ko
i=1

n

li · li + 2o
i=1

n−1

o
j=i+1

n

li · l jL , s11d

written as a sum of diagonal and off-diagonal terms.

FIG. 2. Self-diffusion of ethane at infinite dilution in LTA-type silica using
the parameter sets of Schüringet al. The infinite dilution case using MD is
simulated by switching the ethane intermolecular forces off, i.e., the par-
ticles do not interactsexcept through the thermostat in NHC-NVT
simulationsd.
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For the one-dimensional lattice, the two-dimensional
square lattice, and the three-dimensional cubic lattice, all the
jumping frequencieski and jump vectors are equivalent. Us-
ing the relationship

li · l j = uliuul jucosDfi j = l2 cosDfi j , s12d

whereDfi j =−Df ji is the angle between theith andj th jump
vectors, we find

kr 2stdl = nl2S1 +
1

nKo
i=1

n

o
j=1

n

cosDfi jLD , s13d

and we can write forn→`

kr std2l = nfl2 = Zki fl
2t, s14d

where f denotes the correlation factor

f ; 1 +
1

nKo
i=1

n

o
j=1

n

cosDfi jL . s15d

Applying Einstein’s equation

kr std2l = 2dDt s16d

yields

D =
Z

2d
fkil

2 = fkA→Bl2, s17d

=
1

2d
fktotl

2. s18d

This relates the macroscopic self-diffusivity to the jump fre-
quencyk, lattice hop distancel, and correlation factorf. The
basic assumption of the random-walk model is the quick loss
of memory of the molecules between consecutive jumps, i.e.,
a molecule will proceed with a probability independent of its
history. The correlation factorf containsall memory effects,
arising from ordering and interparticle interactions.

The regular random walk has no “memory” of the pre-
vious step when determining the current one. This feature
can be applied to a wide range of physical problems, but
there are a number of other interesting problems for which
this is not the case. In a persistent walk, the transitionsor
stepd probability depends upon the previous transition, and a
particle has a retention to the directional over a certain num-
ber of trajectory steps. In order for a simplistic regular lattice
model to be valid, the loss of memory is an important con-
dition that has to be satisfied.

D. Correlations

The collective diffusivity contains all the dynamical cor-
relations. Here, the motion results from the jumps ofdifferent
particles at different times. In contrast, for self-diffusivity the
motion results from the jumps of ataggedparticle at differ-
ent times. Memory effects48,49 have a tendency to decrease
DS with respect toDC, indicating it is somehow related to the
well-known backcorrelation mechanism where a diffusing
particle has a higher probability to jump backwards than in
any other direction, simply because the originating site is
guaranteed to be empty. Most of the memory effect arise

from ordering and interparticle interactions, the latter giving
the leading contribution. Figure 3 shows the self- and collec-
tive diffusivities of methane in LTA-type zeolite at 300 K as
a function of loading. In the low loading limit both diffusivi-
ties converge, because particle-particle interactions vanish.
However, at a loading of 7 molecule/cage or higher the cor-
relations are clearly visible. Although in principle conven-
tional MD captures all relevant correlations, the dcTST
method by Beerdsenet al. not only captures these correla-
tions correctly but is also suitable for systems with large
free-energy barriers.33 These correlations, originating from
particle-particle interactions, are significant at higher load-
ings as is evidenced by the large difference between collec-
tive and self-diffusivities.

Memory effects are stronger on single-particle motion
than on the collective motion, where most of the backcorre-
lations cancel out. For a Langmuir gas, where the only inter-
action is the site exclusion, they cancel outexactly. Correla-
tions between successive jumps can be studied by
considering directional correlations between two jumps
separated bym previous jumps by a tagged particle. For a
Langmuir gas the factorf reduces in the high loading limit
to48

f =
1 + kcosfl
1 − kcosfl

, s19d

as a correlation factor for vacancy diffusion, wheref is the
average angle between two consecutive single-particle
jumps. This equation assumes that the predominant memory
contribution comes from the backcorrelation between two
consecutive single-particle jumpssm=1d. Equation s19d is
very much related to the end-to-end distance of an isolated,
infinitely long, hypothetical model chain comprised of bonds
of fixed lengths joined with fixed bend angles.50 Unlike the
freely joined case, the fixing of the anglesf imposes corre-
lations.

A particle residing in a lattice point once in a while
jumps to a neighboring site. If thermalization occurs, we call
it a single jump, otherwise we speak of along jump or a
multijump. These kinetic correlations become important at
low loadings and in channel-type structures with smooth
walls, e.g., carbon nanotubes. However, for entropy-
dominated barriersse.g., methane and ethane in LTA-type

FIG. 3. Self-diffusivity DS and collective diffusivityDC for methane in
LTA-type zeolite at 300 K as a function of loading.
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zeolitesd one can usually neglect kinetic correlations.

E. Dynamically corrected transition state theory
„dcTST … at infinite dilution

At infinite dilution and sufficient dissipation the correla-
tion factor f =1 sthere are no memory effectsd, and Eq.s17d
reduces to

D = kil
2 = kABl2. s20d

The lattice distancel is fixed and a property that can be
obtained from crystal X-ray scattering experiments. There-
fore, Eq.s20d defineski as the hopping rate from lattice point
A sin equilibriumd to a neighboring lattice pointB sin equi-
libriumd. Note that an attempt of a hop is always successful,
and that a particle cannot have a position in between the
lattice points, i.e., the jump is instantaneous and discrete. In
principle, one could use MD simulations to determine this
rate by computing the average residence time that a particle
is in a cage. However, such a computation using MD proves
cumbersome. Firstly, anA-to-B order parameter has to be
defined, secondly, a criteria should be used to distinguish
unsuccessful hops on a very short time scale from the suc-
cessfulAB hop on a much longer time scalesthe equilibrium
oned, and thirdly, very few trajectories will involve motion
from exactly pointA to point B.

Dynamically corrected transition state theory overcomes
these problems by computing precisely what we need: the
hopping rate from lattice pointA sin equilibriumd to a neigh-
boring lattice point B sin equilibriumd. In other words,
dcTST is fully compatible and complementary to lattice
random-walk theory. We consider a system which can be in
two stable states,A andB. The reaction coordinate, a param-
eter that indicates the progress of the diffusion event from
regionA to regionB, is denoted byq. Here,q is a function of
the Cartesian coordinates,q̇ denotes its time derivative,q* is
the location of the dividing surface, andqA,qB are the
minima of the free energy corresponding to statesA andB,
respectively. In general, the reaction coordinateq is a func-
tion of the configuration of the whole system, i.e.,q
=qsr 1, . . . ,r Nd. However, we can chooseq as the position of
one of the atoms of the diffusing molecules.25 We introduce
two characteristic functionsnA andnB that measure whether
the system is in stateA or B. A possible and often used
definition is

nA = usq* − qd, s21d

nB = usq − q*d, s22d

whereu is the Heaviside functionusxd, which has a value
zero for x,0 and a value of unity forxù0. With these
definitions the transition ratekA→B is given by7

s23d

whered is the Dirac delta function,PPAsq*d is the equilib-
rium probability density of finding the system at the top of
the barrier divided by the equilibrium probability of finding

it at stateA, and whereRstd is the averaged particle flux at
the top of the barrier multiplied by the probability that the
system ends up in stateB at time t. From detailed balance
follows

kA→B

kB→A
=

knBl
knAl

, s24d

where knAl is the equilibrium mole fraction of particles in
stateA,

knAl =

E
A

e−bFsqddq

E
A+B

e−bFsqddq

, s25d

knBl = k1 − nAl. s26d

The expression Eq.s23d is rigorously correct for arbitrary
crossings, provided thatsad the actual crossing time is negli-
gible compared to the time a particle spends inside the cage,
i.e., there is a large separation in time scales. This condition
is satisfied when the free-energy barrier is much larger than
kBT; sbd the velocity distribution at the dividing surface is
known. sThe order parameterq is taken to be the position of
a particle and thereforeq̇ is simply the velocity of a particle.
In TST is it assumed that the particles on top of the barrier
are in equilibrium and hence these velocities follow directly
from the Maxwell–Boltzmann distribution.d

At infinite dilution, the molecules perform a random
walk on a lattice spanned by the cage centers. The transmis-
sion rates are easily converted to diffusion coefficients if the
jump distance and the number of equivalent diffusion paths
are known.

It turns out that Eq.s23d can be written as a product of a
static and a dynamic term.

• The probabilityPPAsq*d of finding the system at the top
of the barrier is atime-independentequilibrium quantity
and can be computed explicitly,

PPAsq*d =
kdsq* − qdl
kusq* − qdl

=
e−bFsq* d

E
cage A

e−bFsqddq

, s27d

whereFsqd is the free energy as a function of the diffusion
pathq.

• The flux Rstd through the dividing surface is a condi-
tional average, namely, the productq̇s0dufqstd−q*g,
given thatqs0d=q* . Using the assumption that the ve-
locities of the atoms follow the Maxwell–Boltzmann
distribution, we can estimate from kinetic theory the
long-time value ofRstd by k 1

2uq̇ul=ÎkBT/2pm, wherem
is the mass of the segments of the particle involved in
the reaction coordinatesthe total mass of the particle if
the center of mass is used or the mass of only one
segment if the reaction coordinate is a single segment
such as the middle bead in a moleculed. Transition state
theory predicts a crossing ratekA→B

TST given by
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kA→B
TST =Î kBT

2pm

e−bFsq* d

E
cage A

e−bFsqddq

. s28d

Calculating TST rate constants is therefore equivalent to cal-
culating free-energy differences.

The TST particle flux estimationÎkBT/2pm contains
spurious crossings, i.e., some particles that cross the transi-
tion state fromA in reality would fail to equilibrate inB. The
correctionkstd is defined as the ratio between the real rate
and the TST expression,

kstd ;
kA→Bstd
kA→B

TST =
kq̇s0dd fqs0d − q*gu fqstd − q*gl

k 1
2uq̇s0dul . s29d

It is the probability that a particle that starts with an initial
velocity q̇ from the dividing surface will, in fact, cross the
barrier, and thereforekstd corrects for trajectories which
cross the transition state fromA but fail to equilibrate inB.
The numerator in Eq.s29d counts trajectories with a positive,
but also with a negative weight. It can be shown that
limt→0+kstd=1 and limt→0+kA→Bstd=kA→B

TST . There is a large
separation of time scales. The transmissions are completed in
a time much less than the time to react, and Eq.s29d will
reach a plateau valuek. For classical systems 0,kø1 and
Eq. s28d is corrected as

kA→B = kkA→B
TST . s30d

Standard molecular dynamicssMDd yields the transmission
coefficients, a separate MC simulation is used to generate the
starting configurations. The reaction coordinate is restricted
to the dividing surfaceq* . The MC moves involved are trans-
lations of the reaction bead in the plane of the dividing sur-
face and complete regrowing of the molecule starting from
the restricted bead. Subsequently, the transmission coeffi-
cient is calculated by standard MD in theNVE ensemble.
The beads are given independent velocities, corresponding
on average to the desired temperature, by sampling from the
Maxwell–Boltzmann distribution.

In the Bennett–Chandler approach it is sufficient to as-
sign the barrier positionq* inside the barrier region. The
result of the scheme does not depend on the specific location,
although the statistical accuracy does. If the dividing surface
is not at the top of the barrier the probability of finding a
particle will be higher than at the optimalq* , but the fraction
of the particles that actually cross the barrier will be less than
predicted by transition state theory.

F. Importance-sampled MD at infinite dilution

The approach ofkstd to its plateau value can be quite
slow.7 Moreover, in the case of diffusive barrier crossings the
transmission coefficient is quite small and as a consequence
many trajectories have to be generated for an accurate value
of k. The Bennett–Chandler approach becomes inefficient
for systems with low transmission coefficients because the
scheme employs the noisyu function to detect what state the
system in.51 The scheme can be improved by constructing a
more continuous detection function. More importantly, using

the free-energy we can compensate approximately for the
effect of the free-energy barrier. This leads to a more or less
uniform tagged-particle density distribution over the entire
range ofq. However, only trajectories starting in the barrier
region yield relevant information and therefore a weighting
function wsqd is applied, restricting the sampling to the bar-
rier region.

A general expression from transition state theory for the
rate of hopping from regionA to regionB over a barrier is:7

kA→B =
1

knAleq
Kq̇s0dnBstd

]xfqs0dg
]q

L , s31d

wherexsqd is a dimensionless function describing the initial
distribution function

rsq,t = 0d = reqsqdxsqd. s32d

The initial distributionxsqd can be approximated well by the
steady-state distribution determined from the Fokker–Planck
equation

xsqd =
1

knAl31 −

E
qA

q

ebFsq8ddq8

E
qA

qB

ebFsq8ddq84 , s33d

and varies rapidly withq in the barrier region and slowly
elsewhere, so that]xsqd /]q selects initial configurations in
the barrier region

]xsqd
]q

= −
1

knAl
ebFsqd

E
qA

qB

ebFsqddq

. s34d

We choose

nAsqd = 1 −

E
qA

q

esa−1dbFsq8ddq8

E
qA

qB

esa−1dbFsq8ddq8

, s35d

wsqd = eabFsqd, s36d

psqd ~ esa−1dbFsqd, s37d

wherea.0 is a biasing parameter, leading to

kA→B =
1

knAl

KE
0

`

q̇stdq̇s0d
wfqstdg
wfqs0dg

e−bFfqstdg

e−bFfqs0dgdtL
p

E
qA

qB

ebFsqddqE
qA

qB

e−bFsqddq

. s38d

Although Eq.s38d can be considered a TST method us-
ing a more continuous “detector” function than the noisyu
function, it can also be viewed as a MD method in which
starting configurations are sampled in a more convenient en-
semblepsqd~wsqde−bFsqd and subsequently a weighted ve-
locity autocorrelation is computed. It is important to note
that the actual dynamics of the particles is still generated
using MD in the conventional microcanonical ensemble
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without biasing potential. Importance-sampled MD is espe-
cially applicable to systems with erratic free-energy land-
scapes, e.g., multiple barriers of possibly different heights.
Note that the expression given by Ruiz-Monteroet al. in Ref.
7 reduces to Eq.s38d with a=2 when the estimated free
energy in their expression is the true free energy.

G. Dynamically corrected transition state theory
at nonzero loading

The extension of dcTST to finite loading is nontrivial.
Conventional methods use a hierarchical approach to com-
pute elementary hopping rateskA→B

iso betweenisolatedcages
A and B for use in a subsequent kMC scheme to obtain
diffusion coefficients. However, the fundamental question is
whether it ispossibleto compute an elementary hopping rate
kA→B

iso , in which the contributions of other cages are separated
from the contribution of only the cagesA and B. Let us
consider the class of window/cage-type systemsse.g., meth-
ane in LTAd where the barriers areentropic in nature. At
nonzero loading a molecule hopping fromA to B induces a
vacancy. While in principle, a particle originating from any
of the surrounding cages could fill the vacancy, hierarchical
approaches will allow only a molecule fromB to return toA
se.g., by blocking all the windows except the window be-
tween cagesA andBd. The fundamental assumption of kMC
sno two jumps can occur at the same timed artificially sup-
presses these correlated jumps, and we are not aware of a
scheme that results in effective kMC hopping rates that re-
gain those correlations. Another way to look at this is that the
correlated jumps should be identified as elementary kMC
moves.

Beerdsenet al.33 proposed a method to compute diffu-
sivity values directly in systems with high free-energy barri-
ers se.g., cage/window-type zeolitesd. Here, long time, large
distance memory effects are negligible, because once a mol-
ecule jumps thermal equilibration takes place and next- near-
est cage correlations are rare. It is therefore sufficient to in-
clude correlationsduring the jump across the barrier. Hence,
we compute

Dscd =
1

6
kA→B

eff scdl2, s39d

kA→B
eff scd = fscdkA→Bscd, s40d

where c denotes the loading in molecules per unit cell, or
mol/kg. But rather than attempting to computekA→Bsc=0d or
kA→B

iso from a molecular simulation and the correlation factor
fscd from a coarse-grained kinetic Monte Carlo method,
Beerdsenet al. computekA→B

eff scd directly from a molecular
simulation where the precise definition ofkA→B

eff scd is:
kA→B

eff scd is the hopping rate of a single-tagged particle at an
average loadingc from cageA to cageB under the influence
of an external field exerted by the molecular sieveand the
other N−1 particles. By including the nearest-neighboring
cages, all relevant short-time correlations are properly cap-
tured, including the dominant short-time backcorrelation ef-
fects due to particle-particle interactions. Correlations at
much longer times than 1/k are negligible in cage/window-

type systems. The computation once again consists of two
parts.

• The probability densityPPAsq*d of finding the system at
the top can be computed explicitly by computing free-
energy profiles making use of Eq.s27d. During a sepa-
rate MC simulation in theNVT ensemble at the desired
loading we measure the free energyFsqd by using his-
togram samplingsHSd. In the HS method, a histogram
is made of the particle positions, mapped on the reac-
tion coordinate. From the histogram a free-energy pro-
file is computed, by using

bFsqd = − lnkPsqdl. s41d

At conditions where conventional MC is still feasible, all
particles can be considered equivalent and all contributions
can be used.

When displacement of particles is impeded by high free-
energy barriers, conventional HS becomes unfeasible. A
single, tagged particle can be biased to achieve improved
statistics by using importance sampling. As a biasing poten-
tial the Widom particle insertionsWPId profile can be used.
WPI uses a probe particle that is inserted at random posi-
tions, to measure the energy required for or obtained by in-
sertion of the particle in the system. This energy is mapped
onto the reaction coordinateq, using

bFsqd = − lnke−bDUlN s42d

to produce a free-energy profile, whereke−bDUlN is the aver-
age Boltzmann factor over all positions in the slice perpen-
dicular to the reaction coordinate. A “ghost particle” is used
as the measuring probe, but the other particles in the system
do not feel its presence. At higher loadings, WPI is known to
give erroneous results1,33 and therefore the WPI method is
not used to computeFsqd directly, but rather to estimate the
biasing function when needed.

• The particle fluxRstd through the dividing surface can
be computed from the fraction of particles starting on
the top of the barrier that successfully reach cageB. The
other particles present in the system influence this frac-
tion. Starting configurations are generated with one par-
ticle constrained to the dividing surface andN−1
particles moving aroundssee Figs. 4 and 5d. These con-
figurations are then used to compute the particle flux in
unconstrainedNVE-MD simulations, starting with ve-
locities sampled from a Maxwell–Boltzmann distribu-
tion at the desired temperature.

In Fig. 4 an instructive snapshot of methane in LTL-type
zeolite at a loading of 3 molecules per unit cell at 300 K is
shown. The free-energy profile consists of maxima, corre-
sponding to geometric constrictions, and minima, corre-
sponding to the apertures. A natural hopping lattice is formed
by the one-dimensional sequences of free-energy minima
sqA, qB, qC, etc.d. As can be seen from this snapshot, there are
strong adsorption sites where the curvature of the zeolite is
the highest and commensurate with the shape of the particle.
Particles reside in these minima for a long time, before a
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thermal excitation will eventually give the particles enough
mobility to cross the free-energy barrier and proceed to a
neighboring lattice site. The latter process is afastprocess in
comparison to the time a particle spends near the lattice
points.

Figure 5 shows a snapshot of ethane at an average load-
ing of 4 molecules/cage at 750 K in LTA-type zeolite. The
lattice, formed by the cage centers, is the three-dimensional
cubic lattice. For this snapshot cageB contains more mol-
ecules than cageA, and the barrier molecule has a high prob-
ability of recrossing to cageA. The time-dependent transmis-
sion coefficient will reach a plateau valuek. However,
because during a successful hop cageA donated a particle,
while cage B received an additional particle, there is a
slightly higher probability for the particle to return toA on a
time scalelarger than the thermalization time. However, for
our systems this effect is negligible. Note that during the

computation none of the windows is blocked and simulta-
neous jumpsse.g., from cageC to cageA, and cageD to
cageBd are allowed.

The extension of the importance-sampled MD method
Eq. s38d to nonzero loading is similar. The method can be
summarized as follows:

• The free-energy profiles at the desired average loading
are measured as described above.

• The free-energy minimaqA andqB, and the correspond-
ing hopping lattice are identified.

• A biasing profilewsqd is constructed ranging fromqA to
qB using Eq.s36d.

• Starting configurations are sampled in the intervalqA to
qB with the bias potentialwsqd operating only on the
tagged particle, leaving the othersN−1 free to move
sunbiasedd.

• These starting configurations ofN particles are inte-
grated using MD for short timestmax, and Eq.s38d is
evaluated. The timetmax is chosen such that the integral
appearing in Eq.s38d has converged. The trajectories
are stopped aftertmax time has elapsed or whenq,qA

or whenq.qB.

As mentioned, in general, the reaction coordinateq is a
function of the configuration of the whole system. For
dcTST simulations at a certain loading, we choose the reac-
tion coordinate as the position of one of the atoms of the
taggedmolecule.33 Although it cannot be excluded that bet-
ter reaction coordinates exist, for physical reasons our choice
seems optimal. The diffusion mechanism is divided into two
parts. The first is a static term, corresponding to the locations
of preferable adsorption sites and estimations of free-energy
barriers in between, the lattersor actually the inverse of the
transmission coefficient: the recrossingd corresponds to col-
lision frequencies, which generally increase with loading. As
such the dcTST method is able to explain different diffusion
regimes over loading, and provides insight into the mecha-
nisms behind an increase or decrease in diffusivity with
loading.52

H. Zeolite descriptions and simulation details

To test and explore the limits of our dcTST method, we
have selected two types of zeolites: the one-dimensional
channel LTL-type zeolite structure and three-dimensional
cage/window LTA-type zeolite structure. The LTA-type zeo-
lite is selected because diffusion is slow, but just fast enough
for the smallest alkanes to allow for a comparison of dcTST
with MD. Here, dcTST is expected to work flawlessly. In
LTL-type zeolite the diffusion is relatively fast, the free-
energy barriers low, and the system is close to the limits of
TST, i.e., in this system it is more difficult to envision a clear
separation of time scales. Moreover, the system is one di-
mensional and correlations between diffusing particles are
even higher.

LTL-type zeolites are used industrially for the aromati-
zation of alkanes. The structure53 has space groupP6/mmm

FIG. 4. A typical snapshot of a tagged methane particlesgreen colord in
LTL-type zeolite restrained to the barrier surfaceq* at an average loading of
3 methane molecules per unit cellsthere are two parallel channels per unit
celld at 300 K. Four unit cells of 7.474 Å in length are shown. The constric-
tions are caused by the 12-T-membered rings, which form free-energy bar-
riers impeding diffusion. The free-energy profile in units ofkBT at this
average loading is plotted in white, where the reaction coordinate is chosen
parallel to the channel direction. If the free-energy barriers are high enough,
diffusion can be considered a hopping process from minima to minimasqA,
qB, qC, etcd.

FIG. 5. A typical snapshot of ethanesCH3–CH3d in LTA-type zeolite at an
average loading of 4 molecules/cage at 750 K, constraining one tagged mol-
ecule at the dividing surfaceq* . The hopping events are coarse grained on a
lattice spanned by the cage centers.
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with a=1.84, b=1.84, c=0.752 nm, anda=b=90°, g
=120°. For computational efficiency the unit cell is con-
verted to a rectangular cell. LTL-type zeolite provides a pore
system having cancrinite cagess11-hedrad alternating with
hexagonal prismss8-hedrad stacked in columns parallel to
the c axis. The channels thus formed have nearly planar 12-
membered rings with a free diameter of approximately
0.71 nm and expansions of approximately 0.126 nmssee
Fig. 4d.

The single largest use of zeolites is the use of LTA-type
zeolites for laundry detergents. LTA-type zeolite is also used
for separations of small molecules from air by exploiting
different polarities of molecules, and for bulk separations of
linear and branched alkanes. The LTA-type structure54 has a

cubic space groupFm3̄c with a=b=c=2.4555 nm, anda
=b=g=90°. The crystallographic unit cell consists of eight
large spherical cagessnamed a cagesd of approximately
1.12-nm interconnected via windows of about 0.41-nm
diameterssee Fig. 5d.

In addition to the relevant cages and channels there are
also topologically disconnected pockets. A methane molecule
does fit at that position, but it is not accessible from the main
cages and channels. Both LTAssodalite cagesd, as well as
LTL, have disconnected pockets. To obtain correct results in
MC simulations it is necessary to ensure that molecules will
not be inserted into inaccessible pockets for adsorbing mol-
ecules.

We have summarized the details of our periodic simula-
tion boxes in Table III. Simulation of one-dimensional chan-
nels requires special attention. Here, diffusion results are
very much dependent on the length of the channel, and sur-
prisingly long channels are needed to reliably extrapolate to
macroscopic diffusion coefficients.55

III. RESULTS

A. Infinite dilution

1. Methane, ethane, and propane in LTL zeolite

Figure 6 shows the free-energy profilesFsqd of methane
along the channel direction. Two free-energy minima are
separated by a 12-ring forming the free-energy barrier atq* .
For this system and the chosen reaction coordinate, the trans-
mission coefficient is nearly equal to 1, and the dcTST dif-
fusion can be directly computed using Eqs.s20d and s28d.
The free-energy barrier ranges from about 10kBT at 100 K
to less than 3kBT at 1000 K.

The transmission coefficient can only be assumed equal
to one for a single, spherical particle, provided the exact
barrier is known, and only at infinite dilution. Even for meth-
ane in LTL the position of the barrier is only known approxi-
mately because of the atomic structure of the window, al-
though the value is very close to 1 using the window as the
dividing surface. In Fig. 7 the transmission coefficientkstd
for propane using the second/middle bead as the reaction
coordinate is shown as a function of time for various tem-
peratures. The starting configurations are sampled using a
Monte Carlo scheme at the desired temperature constraining
the reaction coordinateshere: the middle beadd to the divid-
ing surface. This distribution of configurations is temperature

dependent, and also the transmission coefficient is tempera-
ture dependent. In general, the transmission coefficient in-
creases with temperature, because a higher fraction of con-
figurations has sufficient kinetic energy to overcome the free-
energy part resulting from a nonoptimal reaction coordinate
and dividing surface choice. The transmission coefficient
starts at onesby definition, because a particle cannot revert
its velocity within a single integration stepd, and slowly con-
verges to a limiting plateau value at about 15 ps. It is this

TABLE III. Simulation details for the LTL- and LTA-type zeolites. Crystal-
lographic positions are taken from Refs. 53 and 54.

LTL LTA

Molec./uc Unit cells N Molec./cage Unit cells N

1 1323128 256 1 23232 64
2 132364 256 2 23232 128
3 132364 384 3 23232 192
4 132332 256 4 23232 256
5 132332 320 5 23232 320
6 132332 384 6 23232 384
7 132316 224 7 23232 448
8 132316 256 8 13131 64
9 132316 288 9 13131 72
10 132316 320 10 13131 80
11 132316 352 11 13131 88
12 132316 384 12 13131 96
13 132316 416 13 13131 104
14 132316 448 14 13131 112
15 132316 480 15 13131 120
16 132316 512 16 13131 128

Framework densityskg/m3d
1626.94 1285.228

Unit-cell sizessnmd
a b c a b c
3.1984 1.8466 0.7476 2.4555 2.4555 2.4555

Unit-cell angless°d
a b g a b g

90 90 90 90 90 90

FIG. 6. Free-energy profilesFsqd of methane in LTL at various temperatures
s100–1000 K in steps of 100 Kd and infinite dilution. The reaction coordi-
nate is chosen along thez-channel directionslines from top to bottom in
order of the legendd.
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plateau valuek that is of interest, signaling all short-time
recrossing are eliminated. The intermediate oscillatory be-
havior is caused by the bond springs within the molecule
itself. From the point of view of the reaction coordinatesthe
position of the second/middle beadd, the other beads con-
nected to the middle bead with springs are just an external
field in addition to the zeolite.

The transmission rates can be computed from the free-
energy profiles using Eqs.s28d and s30d and transmission
coefficients, and then converted to diffusion coefficients us-
ing Eq. s20d. The methane, ethane, and propane diffusivities
computed from dcTST are compared to reference MD simu-
lations in Fig. 8. The MD simulations were performed in the
NVEandNVTensemblessNHC thermostatd with 128 nonin-
teracting particles. For methane, up to 450 Ksbarriers higher
than 3.5kBTd dcTST gives equivalent results to MD, but at
higher temperatures the methods diverge. For ethane, the
methods diverge at 550 K, while for propane both methods
overlap. When the methods diverge, the free-energy barriers
become too low for TST to be valid, because there is no
longer a clear separation of time scales. The methane mol-
ecules do not equilibrate properly leading to enhanced diffu-

sion due to kinetic correlations, i.e., the increased probability
of particles to continue in their current direction.

There are several ways to include kinetic correlations,
amongst them are the dynamical corrections as formulated
by Voter and Doll56 using multistate systems and the recently
proposed method of Ruiz-Monteroet al. fEq. s38d with
a=2g.7 The method of Voter and Doll would extend the two-
state systemA and B, to a multistate systemA,B,C,D , . . .,
by computing the hopping rateskij , dynamical corrections
ki j , and lattice distancesli j between statei and j . Note that
the dynamical correction in this formulation is not restricted
between 0 and 1, but can potentially increase beyond unity
when kinetic correlations are abundant. However, at the
highest temperatures reported here, the time scales of ther-
malization andk−1 become inseparable, so we pursue here
the alternative route of Ruiz-Monteroet al. Figure 9 shows
the method of Ruiz-Monteroet al. sa=2d at 1000 K for
methane in LTL-type zeolite. The Eq.s38d is reaching a pla-
teau value in time, equal to the MD results. These results
differ from the dcTST value due to presence of kinetic direc-
tional correlations, which are included usingsimportance-
sampledd MD methods. However, computing Eq.s38d is very
time consuming and the dcTST method is preferable for
cage/window-type systems with higher free-energy barriers.

2. Methane in LTA-type zeolite

At infinite dilution, the barrier for diffusion of methane
in LTA-type zeolite at 300 K is much higher than in LTL-
type zeolite. The barrier is approximately 8.5kBT and
sharply peaked. In Fig. 10 we compare various biasing func-
tions for the importance-sampled MD method. A biasing
weighting function of

wsqd =
eabFsqd

E eabFsqddq

, s43d

using a=1 flattens the free-energy landscape and the initial
configurations are sampled uniformly. However, for diffusion
only the configurations in the barrier region yield relevant
information, and witha@1 as a biasing function the con-

FIG. 7. Transmission coefficientkstd for propane in LTL-type zeolite at
infinite dilution using the second/middle bead as a function of time for
various temperatures.

FIG. 8. Diffusion of methane, ethane, and propane in LTL-type zeolite at
infinite dilution computed by dcTST and MD.

FIG. 9. Diffusion of methane at 1000 K in LTL-type zeolite at infinite
dilution computed by dcTST and MD compared to the method of Ruiz-
Monteroet al.
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figurations are indeed restricted to the barrier regions, and all
trajectories contribute significantly to the diffusion coeffi-
cient. The results show that for sharply peaked barriers a
high biasing function achieves fast convergence. For these
barriers the Bennett–Chandler method works well, because
diffusive behavior is negligible and dynamic corrections are
easily evaluated. However, the importance-sampled MD
method is also applicable in the diffusive regime where
k!1.

3. Ethane in LTA-type zeolite

Ethane molecules in LTA perform jumps on a simple
cubic lattice. It was found that self-diffusiondecreaseswith
increasing temperature at low temperatures.24 At low tem-
peratures the molecules become less confined in the win-
dows as temperature increases. Heating the system, ethane
moves away from the windows, which increases the entropic
barrier for cage-to-cage motion. Figure 11 shows that the
behavior found by Schüringet al.24 is strongly dependent on
the parameter setsTables I and IId. The parameter set of
Dubbeldamet al.39 does not show a decrease with increasing
temperature although for both parameter sets the local acti-

vation energy depends on temperature. The size parameter
used by Schüringet al. is so small that ethane at low tem-
perature is foundin the windows itself, and heating shifts the
adsorption sites to just in front of the windows. In contrast,
the set of Dubbeldamet al. has a larger size parameter for
ethane and also at low temperature the adsorption sites are
always in front of the window, reducing the behavior found
by Schüringet al. However, the phenomenom is likely to
be generic and present in cage/window-type systems and
applicable to small molecules. It shows how much the actual
adsorption sites can depend on temperature and simulation
parameters.

B. Nonzero loading

1. Methane, ethane, propane in LTL-type zeolite

The free-energy barriers for various loadings of methane
in LTL-type zeolite are plotted in Fig. 12. In comparison to
the infinite dilution case, the free-energy barrier initially de-
creases. Adding particles to the system induces an effectively
“smoother” channel. For increasing loadings the top of the
barrier flattens and eventually transforms into a barrier re-
gion with two local free-energy minima.

Figure 13 shows the diffusion behavior as a function of
loading in LTL-type zeolite for methane, ethane, and propane
at 300 K. The TST diffusivities based on the free-energy
profiles se.g., for methane shown in Fig. 12d increase, while
the dcTST values decrease and are equal to the conventional
MD results. Clearly the transmission coefficient not only
quantitatively, but also qualitatively, correct the TST results.
The good agreement between dcTST and MD for LTL-type
zeolites is encouraging. The diffusion of alkanes in LTL-type
zeolite is quite fast, and the fact that our dcTST method also
works for such low free-energy barriers as in LTL-type zeo-
lite is surprising.

Although this region of diffusion is fully accessible to
conventional MD, the dcTST method has a very important
advantage: it enables us to explain the qualitative behavior of
diffusion in terms of free-energy difference and transmission
coefficients. For example, initially the diffusion of methane
in LTL-type zeolite does not change much with loading. The

FIG. 10. Diffusion of methane over a high free-energy barrier in LTA-type
zeolite at 300 K and infinite dilution using various biasing functionsfEq.
s43dg. The method of Ruiz-MonterosRMd et al. usesa=2.

FIG. 11. Self-diffusion of ethane at infinite dilution in LTA-type silica using
the parameter set of Dubbeldamet al.The infinite dilution case using MD is
simulated by switching the ethane intermolecular forces off, i.e., the par-
ticles do not interactsexcept through the thermostat in NHC-NVT
simulationsd.

FIG. 12. Free-energy profilesFsqd at 300 K of methane in LTL at various
loadingssinfinite dilution, 1, 3, 5, 8, 11, 13, and 16 molecules per unit celld.
The reaction coordinate is chosen along thez-channel directionslines from
top to bottom in order of the legendd.
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MD results would suggest the fundamental reason could be
that particles hardly notice each other at these lower load-
ings. However, the picture painted by the dcTST is quite
different. There are two effects:s1d the free-energy barrier
decreases with loadingswhich means an increase in diffu-
siond rendering the channel environment more “uniform,”
and s2d as loading increases the transmission coefficient de-
creases due to an increased collision frequency. At low load-
ing the two effects almost counterbalance each other, but at
higher loadings the rapid increase in collision frequency
dominates.

An important observation made by Beerdsenet al.52 is
that the appearance of the two local minima on top of the
free-energy barrier at around 11 molecules per unit cell for
methane causes an inflection at the corresponding loading in
the diffusion curves. This inflection is similarly found in the
adsorption isotherms, and both are related to a change in
packing. They show that the dcTST method can generally be
used to qualitatively explain the self and collective diffusion
behaviors of a molecule/zeolite combination as a function of
loading, by carefully analyzing the change in free-energy
spacking effectsd.

The appearance of extra adsorption sites with loading,
and the change of packing, shows that the choice of the
random-walk lattice cannot solely be based on a lattice of
adsorption sites at low loading. The adsorption-site lattice
needed to describe diffusion over adsorption sites depends on
the zeolite, the guest, the temperature, and on the loading of
the zeolite. In fact, for every zeolite, guest, temperature, and
loading the lattice should be reconstructed. However, for
very slow diffusion in cage/window-type zeolites the rate-
determining step is the cage-to-cage motion and all the de-
tails of intracage diffusion are present in the free-energy pro-
file. For very fast diffusion the construction of a lattice based
on adsorption sites does not make sense either as there is too
much correlation present between the hops at such a lattice,
i.e., the separation of time scales vanishes and the descrip-
tion as “hopping” breaks down. The natural lattice to use
would be an effective lattice of cage-center to cage-center.

For zeolites accessible to conventional MD the free-
energy can be obtained using either MC or MD, and we

found no differences between both methods. In contrast, the
sampling of configurations with a tagged particle restricted
to the dividing barrier surface requires more thought. In Fig.
14 we show results for the transmission coefficients using
MC and MD. The MD results are splitted into two types:s1d
both the positions and velocities are stored, ands2d only the
positions are taken from MD trajectories, the velocities are
resampled from a Maxwell–Boltzmann distribution. As can
be seen, reinitializing the velocities holds equal results, and
one can conclude from the result that the velocities in this
system are indeed Maxwell–Boltzmann distributed, evenon
top of the barrier. For systems with higher free-energy barri-
ers configurations are adequately sampled with biased MC,
while conventional MD would become impossible.

2. Methane, ethane in LTA-type zeolite

Figure 15 shows the free-energy profiles at 600 K for
methane in LTA-type zeolite for various loadings. Relative to
the infinite dilution case, the addition of particles to the cages
leads to an increase of the free-energy inside the cage, while
the free-energy at the barrier remains unchanged up to inter-

FIG. 13. Diffusion of methane, ethane, and propane at 300 K as a function
of loading in LTL-type zeolite computed by TST, dcTST, and MD. FIG. 14. Transmission coefficientkstd at 300 K for methane and ethane in

LTL-type zeolite using the first bead as a function of time for various load-
ings. The starting configurations are sampled with MC or with MD, where
the velocities are either taken from the trajectory or newly resampled from
the Maxwell–Boltzmann distribution. The differences are negligible.

FIG. 15. Free-energy profiles of methane in LTA-type zeolite at 600 K for
various loadingss10, 8, 6, 4, and 2 molecules/cage, and infinite dilutiond.
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mediate loading. The inner-cage surface of LTA-type zeolite
is adsorbophylicswetting regimed, and upon increased ad-
sorption favorable adsorbate-adsorbent interactions are being
replaced by less favorable interaction with other particles.

Figure 16sad shows the individual components of the dif-
fusion process,DTST andk as a function of loading for meth-
ane in LTA. Although the transmission coefficient shows a
monotonic decrease with density, the diffusion coefficient
goes through a maximum. The driving force behind the ini-
tial increase in diffusion is a loss of guest-host attraction
inside the cages. Eventually, the free-energy barrier increases
again, due to packing and free-volume effects, causing a de-
crease of the diffusion coefficient. While the transmission
coefficient only slightly changes the qualitative behavior of
the diffusion as a function of loading, it has a profound quan-
titative influence. We show the diffusion in LTA of methane
at 600 K and ethane at 750 K using both MD and extended
dcTST in Fig. 16sbd. Our extended dcTST method and MD
again agree quantitatively.

3. Methane/ethane-mixture in LTA-type zeolite

In Fig. 17 we plotted the results for a 50%–50% mixture
of methane and ethane in LTA-type zeolite, as a function of
loading at 300 K. For each of the components the free-
energy and transmission coefficients are computed. For the
k- computation a single molecule of the component is re-

stricted to the barrier, while the other molecules of the same
component, and all molecules of the other component are
free to move. Again, our extended dcTST method and MD
agree quantitatively.

IV. DISCUSSION

We have shown that our method is applicable to simu-
lating self-diffusion in any elementary topology. The exten-
sion of Eq.s17d to more complex structures and lattices is a
geometric exercise to be published elsewhere.57 The connec-
tion between the random-walk lattice and the zeolite struc-
ture is found by an analysis of the free-energy profiles. The
diffusion of a tagged molecule is computed over that typical
length scale given by the smallest repeating zeolite structure,
i.e., from the center of cageA to the center of cageB. One
automatically averages over all adsorption sites in the cage,
irrespective whether the adsorption sites are strong or weak,
or even ill defined, i.e., for purely entropic barriers. For most
lattices the equivalent of Eq.s17d has been worked out. Since
the lattice is not based on specific adsorption sites, often the
same lattice can be used for all temperatures and loadings,
although sometimes at high loadings new barriers may be
formed.

Tunca and Ford29–31computed elementary hopping rates
using multidimensional TST for use in a subsequent coarse-
grained kinetic Monte CarloskMCd scheme. Besides the
various approximations to make the computation tractable,
this approach relies on the computation of anelementary
hopping rate. The fundamental question about hierarchical
approaches is “is it possible to compute an elementary hop-
ping rate?” In our calculations, we have observed that to
obtain agreement with MD results, one cannot limit the free-
energy calculation to the two cagesA and B for which the
hopping is computed. It is essential to average over fluctua-
tions in the number of particles in the neighboring cages.33

By “closing off” cages, the system is intrusively changed and
we are not aware of any other scheme that can separate the
contributions of other cages from the contribution of only the
cagesA andB. The omitted correlations are not the same as
those regained by a kMC simulation later and therefore fur-
ther corrections are needed to obtain results in exact agree-
ment with MD.

FIG. 16. dcTST and MD in LTA-type zeolitesad the TST and dcTST diffu-
sivities for methane at 600 K as a function of loading using the left axis, and
the tranmission coefficientk using the right axes,sbd diffusion of methane
and ethane in LTA-type zeolite, as a function of loading, at 600 and 750 K,
respectively.

FIG. 17. Self-diffusion in a 50%–50% mixture of methane and ethane in
LTA-type zeolite, as a function of loading at 300 K.
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We explicitly avoid the use of kMC and compute the
self-diffusion coefficient directly. The diffusion constant we
compute is the self-diffusion of a tagged molecule traveling
from cageA to cageB considering all other particles as an
external field. The external field is maintained by a MCNVT
simulationsfixed total number of particles, volume, and tem-
peratured of spectator molecules in the “background.” By
using a MC approach that includes translational, orienta-
tional, and regrow moves, we average over cage distribu-
tions, positions and orientations of neighboring molecules.
This renders it unnecessary to sample the complete phase
space by integrating over all particle positions and orienta-
tions, weighed with the correct Boltzmann weight. In addi-
tion to being computationally much cheaper, it also allows
for the use of advanced simulation techniques such as
CBMC, which speeds up simulations of longer molecules by
orders of magnitude. Longer molecules are efficiently
handled and likewise, diffusion in mixtures can easily be
computed; all particles are considered part of the external
field, irrespective of the type of particle. The LTA-type sys-
tem used here is a cation-free version of the commonly used
LTA 5A zeolite s4 Na+ and 4 Ca+ per caged. A quantitative
comparison with pulsed field gradient-nuclear magnetic reso-
nancesPFG-NMRd experimental results requires including
the ions in the simulations. Beerdsenet al.58 and Caleroet
al.59 have extended the united-atom model with cations, and
our dcTST method already includes the necessary tools.

The diffusion behavior of ethane in LTA as a function of
temperature has been well studied. In contrast to a previous
study of Schüringet al.,24,43 we found that ethane molecules
in LTA-type zeolite perform hops on a regular cubic lattice,
even when we used the smaller size parameters of Schüring
et al. However, these authors computedkAB from MD using
the number of cage visits divided by the MD time. Such an
approach overestimates the actual self-diffusivity by nearly
an order of magnitude for ethane in LTA-type zeolite at
100 K. Using the center of mass of ethane as the order pa-
rameter, they overestimate the rate, because a molecule com-
ing from A will show diffusive behavior in the barrier region
and change cage many times before equilibrating inA sre-
crossingd or B stransmissiond. Only the successful transmis-
sion should be counted and Schüringet al. found that the
correlation factorf fEq. s19dg computed using a molecular
simulation approximately corrects for this. Our results show
that a proper computation of the effective rate constantin-
cluding the transmission coefficient leads to exact agreement
between dcTST and MD. We stress thatk and f are different
concepts. The similarity in behavior for this specific system
originates from the fact thatk is dominated by backcorrela-
tions, and for a cubic lattice Eq.s19d computes the same.
However, the computation off using Eq.s19d is limited to
the MD time scale.

We would like to comment on the use of flexible zeolites
with regard to our dcTST method. Although for computa-
tional reasons we kept the zeolite rigid, our method is fully
applicable to flexible zeolites. In Ref. 37 it was found that
self-diffusion coefficients for methane in LTA-type zeolite
obtained with flexible and with rigid lattices are practically
the same. In Fig. 18 we show the self-diffusivity of ethane

using the Lennard-JonessLJd parameters of Table II and
compare the results of a rigid zeolite to the flexible model of
Demontiset al.60,61 Error bars are smaller or comparable to
the symbol size. We have added the results of Schüringet
al.43 for the infinite dilution case, and for 1 molecule”cage.
The data of Schüringet al. compare well and are consistent
with our simulations. An important observation is that the
differences between flexible and rigid LTA-type zeolites for
ethane are significant and temperature dependent. In the low-
temperature region the ethane molecule is tightly confined in
the window itself, while at higher temperature the molecule
is less tightly confined and located just in front of the win-
dow. The method proposed in this paper would allow a de-
tailed investigation of the effect of framework flexibility on
slow-diffusing molecules.

V. CONCLUSIONS

Our method applies dcTST at nonzero loadings without
introducing assumptions not already present in traditional
TST methods. It can be used to explain diffusion behavior as
a function of loading in any system with enough energy dis-
sipation between hops, so that random-walk theorysthe as-
sumption of equilibration between two subsequent jumpsd
and TST are valid, as we showed here for small alkanes in
LTL- and LTA-type zeolites. The method gives results in
exact agreement with MD, but is also applicable in the re-
gime of very slow diffusion where MD cannot be used. This
extends the range of accessible time scales significantly be-
yond currently available methods. Furthermore, the method
enables us to express loading effects in terms of free energy
differences. It can be used in any lattice and for any adsor-
bate, and also for mixtures.
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