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Nonequilibrium methods have become increasingly
popular for calculating the viscosity of liquids.1–6 The use of
nonequilibrium methods is frequently rationalized by the no-
tion that pressure fluctuation-based equilibrium methods,
such as those using the Green–Kubo �GK� formula and the
Einstein relation, do not converge well, and hence are less
suitable than nonequilibrium methods.1 In this short note, we
revisit the systems on which this conclusion is based. We
show that a slightly different way of analyzing the data al-
lows us to use equilibrium molecular dynamics methods to
compute viscosities with comparable accuracy and reliability
as the nonequilibrium techniques considered in Ref. 1 and
the reverse nonequilibrium molecular dynamics method.7

The shear viscosity can be computed using the GK
formula8,9
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Equation �2� requires computing the mean-square displace-
ment �MSD� of the time integral of the pressure tensor,9
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where ��� is the Kronecker delta and ���=0 when ���. It
should be noted that some researchers10 use a weighting fac-
tor of 4/3 for the diagonal components ��=�� and 1 for the
off-diagonal components �����, but here we take the view
in Refs. 8 and 9 that all weighting factors should be 1. We
note further that Eqs. �1� and �2� utilize the information of
the diagonal components of the pressure tensor to improve
statistics. To compare our results with those in Ref. 1, we
also compute the viscosity using only the off-diagonal com-
ponents of the pressure tensor, i.e., when ���, and then the
normalization factors in Eqs. �1� and �2� become 6 and 12,
respectively. The overhead in computing the stress tensor in
the simulation is very small once the forces have been cal-
culated. The computed pressure-pressure time correlation
function was averaged over multiple time origins spaced ev-
ery ten time steps and block averaging method was used to

obtain viscosity estimate and corresponding standard devia-
tion within specified correlation time period.

Molecular dynamics simulations were performed for a
1000-particle Lennard–Jones �LJ� fluid using the LAMMPS

�Ref. 11� package in the NVT ensemble with a Nosé–Hoover
thermostat. All quantities are expressed in reduced units:
T�=kBT /�, ��=��3, r�=r /�, t�= t�� /m�2, and ��

=��2 /�m�. The simulations were carried out for the same
conditions as those used in Ref. 1 �T�=2.0, ��=0.452, a time
step of 0.01 and a cut-off radius of 5�. The system was
equilibrated for a period of 1	103 followed by a production
run of t�=1	105.

Figure 1 shows the viscosity curves determined using the
fluctuation information of all components and only the off-
diagonal components of the pressure tensor �see SI �Ref. 12�
for a typical example of a pressure-pressure time correlation
function�. The inset shows the short correlation time behav-
ior. Since the GK formula and the Einstein relation give
identical results, we do not distinguish these two approaches.
We find that our viscosity calculation converges quickly and
reaches a plateau within a correlation time of 2. For the inset,
the two viscosity averages obtained over a correlation time
period between 2 and 6 �or 400 samples� were 0.549
0.002
and 0.545
0.002 using all components and only off-
diagonal components of the pressure tensor, respectively.
The corresponding viscosity averages over a long correlation
time period of 2–150 are 0.545
0.006 and 0.555
0.006.

To compare our results directly with those of Hess, we
also performed a simulation of exactly the same duration as
reported in Ref. 1 �t�=5	103, which is a factor of 20 times
shorter�. Of course, the statistics of this short simulation is
poorer. An average over a correlation time period of 2–6
gives a viscosity of 0.549
0.004 using all pressure compo-
nents information and a viscosity of 0.52
0.05 using only
the off-diagonal pressure components information. These re-
sults are consistent with our longer simulation. However, if
we use a longer correlation time, we see the same divergence
as reported by Hess.

At this point, it is important to mention that one can
reliably use the data only at short correlation times to calcu-
late viscosity. Indeed, in agreement with Mondello and
Grest,9 we found that it is better to make viscosity estimates
at early correlation times rather than at later correlation times
once the plateau in the GK integral, or equivalently, the lin-
ear regime in MSD has been reached, to avoid larger statis-
tical errors. Caution also has to be taken in determining the
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time at which to make an estimate of the viscosity. If this
time is too short, a systematic error can be introduced if the
plateau in GK formula is not reached or not well defined, or
the slope in Einstein MSD plot is not taken in the linear
regime. If the time at which the viscosity is evaluated is too
long, the integration will be significantly influenced by the
noise in the pressure correlation function and as a conse-
quence the viscosity estimates fluctuate heavily leading to
unreliable predictions. The optimal simulation time at which
to evaluate viscosity depends on the details of the systems.

Our viscosity of 0.549 differs from the one reported in
Ref. 1, which ranges between 0.444 and 0.462. We compared
our equilibrium calculations with the reverse nonequilibrium
molecular dynamics �RNEMD� �Ref. 7� method. These cal-
culations were performed on a 2197-particle LJ system with
a time step of 0.005 and a velocity exchange rate of W
=100 in the NVE ensemble. At T�=2.0 and ��=0.452,
RNEMD calculation gave a viscosity of 0.543
0.002, in
excellent agreement with that from the equilibrium approach.
Additionally, 12 adjacent state points were simulated. As
shown in Fig. 2, we found that our computed viscosities

obtained using equilibrium approaches and those obtained
using the RNEMD method are consistent with each other,
and both are in good general agreement with values reported
by Rowley and Painter13 and Heyes.14 All equilibrium simu-
lations in Fig. 2 were run for a period of 5	104 and all
RNEMD simulations were run for a period of 1	104. All
viscosities from equilibrium approaches are averages over a
correlation time of 2–20. For the LJ fluid at the triple point:
T�=0.722 and ��=0.8442, our computed
viscosity of 3.269
0.002 matches well the most recent and
accurate viscosity value reported by Viscardy et al.,15

3.291
0.057.
To ensure that a similar accuracy can be obtained for

more complex fluids, we have extended these calculations to
compute the viscosity of SPC and SPC/E water models. The
details of these calculations can be found in the SI.12 For
both LJ fluids and water models, we obtained viscosity data
with comparable accuracy and reliability as nonequilibrium
methods. Our results also confirm Hess’ conclusion that the
equilibrium method can result in poorly converged viscosi-
ties. However, in this note, we show that these convergence
issues can be addressed with enough statistics and by a care-
ful selection of the integration times. For a simple LJ fluid,
equilibrium molecular dynamics has computational costs
similar to RNEMD method. Equilibrium methods, however,
do not require additional adjustments that nonequilibrium
methods usually need, such as choosing optimum velocity
exchange rate in RNEMD method or appropriate strength of
perturbation or proper shear rate, or an extrapolation to ob-
tain zero-shear rate viscosity.
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FIG. 1. The viscosity as a function of maximum time taken in the integra-
tion of Eq. �1� for the LJ fluid. The viscosity reaches a plateau for an
integration time longer than the correlation length. At longer times, the
statistical error in the correlation functions causes the deviation from the
plateau value. The inset shows the short-time behavior where lines and
symbols are results based on the GK formula and the Einstein relation,
respectively.

FIG. 2. Viscosities of LJ fluids as a function of temperature at ��=0.5 �the
data for ��=0.4 can be found in the SI �Ref. 12��. Triangles and stars are
viscosity data from Refs. 14 and 13. Circles and crosses are viscosity esti-
mates obtained using equilibrium molecular dynamics and RNEMD,
respectively.
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