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Phase behavior of monomeric mixtures and polymer solutions with soft
interaction potentials
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We present Gibbs ensemble Monte Carlo simulations of monomer–solvent and polymer–solvent
mixtures with soft interaction potentials, that are used in dissipative particle dynamics simulations.
From the simulated phase behavior of the monomer–solvent mixtures one can derive an effective
Flory–Hugginsx-parameter as a function of the particle interaction potential. We show that this
x-parameter agrees very well with the free energy difference between a monomer surrounded by
solvent particles, and a solvent particle surrounded by solvent particles. We develop a new ‘‘identity
change’’ Monte Carlo move to equilibrate the polymer–solvent mixtures. In this move a polymer
chain from one box is exchanged with an equal number of solvent particles from the other box. At
realistic densities this new move offers a large computational advantage over the convential
insertion method for a polymer chain using a configurational bias Monte Carlo algorithm. The new
algorithm is demonstrated for polymer–solvent mixtures with a chain length of up to 150 segments.
Significant differences are found between the simulated polymer–solvent phase behavior and results
predicted by mean-field theory. Finally, we fit a master–equation to the simulated binodal curves at
different chain lengths. This function is used to make a quantitative comparison between the
simulations and experimental data for the phase equilibrium of the polystyrene–methylcyclohexane
system. ©2001 American Institute of Physics.@DOI: 10.1063/1.1362298#
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I. INTRODUCTION

In this paper we investigate the phase behavior of a
nary mixture of soft spheres similar to those used in
dissipative particle dynamics~DPD! technique. This tech-
nique was introduced a few years ago by Hoogerbrugge
Koelman1,2 to simulate the hydrodynamic behavior of fluid
It was later extended to polymers by introducing bead-a
spring type particles.3–6 Español and Warren7 showed how
the noise and friction terms in the DPD method should
chosen to satisfy the fluctuation–dissipation theorem. W
this condition is satisfied the model corresponds to a Ham
tonian system. Because of the coarse-grained character o
simulation model, in which several molecular groups can
incorporated into one simulation particle, this technique
well suited for simulations on a mesoscopic scale. For
ample, Grootet al.8,9 used this method to study block co
polymer mesophase formation. Juryet al.10 used DPD simu-
lations of a minimal amphiphile model to study amphiphi
mesophases, and Venturoli and Smit11 simulated the self-
assembly of membranes with more realistic molecular
rameters.

The aim of this paper is to gain a better insight into t
phase behavior of monomer–monomer and polymer–sol
mixtures in the DPD model. Groot and Warren5 were the first
authors to study the demixing of DPD particles by condu

a!Electronic mail: chris@its.chem.uva.nl
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ing DPD simulations. They assumed that their simulatio
could be interpreted on the basis of the Flory–Hugg
theory for polymer solutions. This then makes it possible
use solubility parameters to determine the interaction par
eters in a~mesoscopic! DPD simulation. However, this pro
cedure may introduce non-negligible errors due to the me
field approximation that is made in Flory–Huggins theo
Whether such errors are indeed large can be tested by s
lating the~full ! binodal curve. This is a computationally ver
demanding task, though, especially near the critical po
However, as the DPD model corresponds to a Hamilton
system, one can use different simulation methods to gene
the equilibrium configurations of the soft sphere model. O
the past years the advance of molecular simulation te
niques has produced the tools we require to simulate e
ciently the demixing of a polymer solution.

In the late 1980’s Panagiotopolous introduced the Gib
ensemble Monte Carlo simulation methodology,12–14 which
describes the equilibrium between two phases without
plicitly taking the interface between both phases into
count. Initially developed for the liquid–vapor equilibrium
of a one-component system, this method was soon exten
to binary mixtures.13 Another major advancement was ma
by combining the Gibbs ensemble method with the CBM
~configurational bias Monte Carlo! algorithm,15,16 which is a
very efficient way of generating configurations of chain m
ecules. Thus it became possible to investigate the phase
havior of macromolecular systems.
4 © 2001 American Institute of Physics
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For monomer mixtures it has been shown that one
determine the phase behavior more efficiently using Gi
ensemble techniques than using DPD simulations.17 In this
paper we apply the Gibbs ensemble method both to bin
mixtures of soft spheres~monomers! and to bead-and-sprin
polymers in a monomeric solvent. In the next two sectio
we first define the model that is used in the simulations
Sec. IV we then present results for monomer mixtures. T
simulated data are compared with predictions from me
field theory, assuming that the interparticle interactions
be described by an effective Flory–Hugginsx parameter.
The thermodynamic significance of this parameter is
plored in some more detail. Finally, we investigate the ph
behavior of polymer–solvent systems. In order to simul
these systems we need to develop a new Monte Carlo m
to equilibrate the system. The simulated coexistence cu
are then compared with curves predicted by Flory–Hugg
theory using thex parameters derived for monomeric sy
tems.

II. MODEL

We consider a particlen of type i and a particlem of
type j. These two particles interact via a soft repulsive p
tential

U rep~r nm!5H 1
2 ai j ~12r nm!2 for 0 < r nm < r c 5 1

0 for r nm > 1
,

~1!

wherer nm is the distance between particlesn and m; ai j is
the repulsion parameter that defines the interaction betw
particles of typei and j; andr c is the cut-off distance for the
interaction force, which defines our unit of length:r c51. We
useaii 5aj j .0 andai j 5aii 1Da (Da.0). If we are, for
example, modeling water, and we assume that one w
molecule maps onto one DPD particle, the repulsion par
eter must be set toaii 525 to get the correct compressibility5

One can of course map a different number of water m
ecules onto one DPD particle. If one chooses to map th
water molecules onto a DPD particle, one needs a valu
aii 575 to match the compressibility of water. Most resu
presented in this paper will useaii 525 and a small numbe
of simulations will be presented usingaii 575 to explore the
effect of theaii parameter.

Polymer chains are formed as a linear array of mo
mers. Neighboring segments are held together by the foll
ing bonding potential:

Ub~r !52r 21r 4 , ~2!

wherer is the bond length. This potential is slightly steep
than that used in Ref. 5, because we want to impose an u
limit on the maximum bond length, as will be explained
Sec. III A.

The ‘‘soft’’ character of the particle interaction potenti
means that bonds can cross. This has important implicat
for the dynamics of this model. Spenley6 showed that a poly-
mer melt behaves in excellent agreement with Rouse the
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However, one does not expect that the crossability of bo
will have any important effect on the the equilibrium pro
erties of the system.

III. SIMULATION METHOD

We consider a Gibbs ensemble, consisting of two s
sytems ~‘‘boxes’’ ! I and II, with a total volumeV5VI

1VII . The system containsNS solvent particles andM poly-
mer chains. Each polymer chain consists ofr segments~so
that the total number of polymer segments isNP5Mr ). The
total density is defined asr5N/V, whereN5NS1NP . We
want to calculate the coexistence curve for this system a
function of Da.

The Gibbs ensemble simulation technique has been
scribed in detail many times before~see, for example, Ref
18!. We equilibrate the system using the following Mon
Carlo moves:

~1! Displacement. A particle is chosen at random and
given a random displacement. The move is then accep
with a probabilityPac5min(1,exp(2bDU)), whereDU
is the energy change due to the displacement andb
51/kBT;

~2! particle exchange. One of the two components is
lected at random, and one of the two boxes is selecte
random. Then a particle of the selected species is cho
at random and transferred to the other box. This mov
accepted with a probability

Pac5minS 1,expFlnS Ni
dVa

~Ni
a11!VdD2bDUGD,

where Ni
d and Ni

a are the number of particles of th
selected componenti in the donor and acceptor boxe
respectively, andVd andVa are the volumes of these tw
boxes. For a mixture of two monomers this move can
used to exchange both components between both bo
However, for the polymer–solvent system it can only
applied to the solvent particles. The conventional way
move a polymer chain from one box to the other one
by using a CBMC~configurational bias Monte Carlo!
algorithm. In our systems this approach is also extrem
inefficient, and we will, therefore, introduce an altern
tive approach;

~3! volume change. The simulation can be performed a
constant total volume~i.e., constant overall density!, or
at a constant pressure. In the first case, the volume of
of the boxes is increased byDV and the volume of the
other box is decreased by the same value. The ac
tance probability of this move is

Pac5minS 1,
VI1DV

VI
3

VII2DV

VII
3exp~2bDU!D

~assuming that box I is the box whose volume increas!.
For a symmetric mixture of monomers (NS5NP) it is
not necessary to include the volume rearrangement in
case of a constant total volume. When the system
simulated at a constant pressurePext ~which is externally
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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imposed on the system!, the volume of only one box
~say, box I! is changed in one Monte Carlo move~from
VI to VI1DV). In this case the acceptance probability

Pac5minS 1,S VI1DV

VI D NI

3exp~2bDU2PextDV!D ,

~4! identity change. In a mixture of two monomers th
equilibration can be improved by choosing a randomS
particle in box I and exchanging it with a randomly ch
senP particle in box II ~option 1!; or, with equal prob-
ability, choosing aP particle in box I and exchanging i
with a randomly chosenS particle in box II ~option 2!
@Ref. 17#. This move is then accepted with a probabili

Pac55
minS 1,

NS
I NP

II

~NS
II11!~NP

I 11!
3exp~2bDU!D

option 1,

minS 1,
NP

I NS
II

~NP
II 11!~NS

I 11!
3exp~2bDU!D

option 2.

Of course this move cannot be applied directly to
polymer–solvent mixture. For such a system we ha
developed a new move in which a polymer chain fro
one box is exchanged withr solvent particles from the
other box.

A. identity change move for polymeric systems

The algorithm for the polymer–solvent Identity chan
move is as follows:

~1! Choose one of the two boxes, from which the polym
chain is moved to the other one~we assume that box I is
chosen!;

~2! choose a polymer chain at random from box I, and
solvent particle from box II. The first segment of th
polymer chain will be inserted at the position of th
solvent particle;

~3! we now move on to the next segment~segment 2, or,
more generally, segmenti 11). Locate allK( i ) ‘‘neigh-
bor particles’’ of segmenti, which are defined as th
solvent particles that lie within a certain radius~5 maxi-
mum bond length of the polymer! from segmenti. We
use a value of 1.75 for this radius.~At this point it be-
comes clear why we introduced the rather steep bond
potential of Eq.~2!. For a less steep potentialUb(r ), the
maximum bond length would be longer, giving larg
values forK. In order to obey the condition of micro
scopic reversibility, it is necessary to take all possib
positions of the new segment into account.!

We now choose one of theseK( i ) particles to become
segmenti 11. The choice among these particles is ma
according to the probability distribution P
5exp(2bUb(ri,i11)), where r i ,i 11 is the distance be
tween segmenti and the new segmenti 11. ~Of course,
Downloaded 20 Aug 2001 to 145.18.129.54. Redistribution subject to A
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it is possible to use a different probability distribution
select the new segment.! Now we calculate the segmen
factor
Ps( i 11)

Ps~i11!5
exp~2bUb~ri,i11!

(j51
K(i) exp~2bUb~rij !!

, ~3!

where the denominator is a sum over the bonding en
gies of all ‘‘neighbor particles’’ if they were converte
into a chain segment;

~4! this procedure is repeated untili 115r andWnew is cal-
culated as

Wnew5)
i 51

r 21

Ps~ i 11!; ~4!

~5! in a completely analogous wayWold is calculated for the
old chain conformation in box I, and the energy diffe
enceDU5Unew2Uold is calculated for the move;

~6! finally, the move is accepted with a probability

minS 1,
NS

I M II

~NS
II1r !~M I11!

Wold

Wnew
exp~2bDU !D . ~5!

The procedure outlined above can be compared wit
CBMC algorithm for a lattice chain where the lattice sites a
formed by the solvent particles. The expression for the
ceptance probability of the identity change move is ana
gous to that of the CBMC move. A formal derivation of th
expression is given in the Appendix.

The identity change move for polymers is necessary
cause it is not possible to exchange a polymer chain dire
between both boxes. The approach we have taken bears
likeness with that of the semigrand canonical Gibbs
semble method proposed by Kofke and Glandt.19 In this en-
semble one also has a mixture of two different species. O
one of these species is moved from one box to another
addition, any particle can change its identity without chan
ing its spatial coordinates. For example, Stapletonet al.20

used this method to calculate the phase equilibria of fluids
polydisperse particles such as micellar solutions. Mu¨ller and
Wilding21 studied asymmetric binary polymer mixtures~us-
ing the bond fluctuation model! in which the chain length of
one species is an integer times that of the other one. In
case it would be possible to convertr solvent particles into
one polymer chain without exchanging any particles betw
the boxes, ifNS andNP were not kept constant. In combina
tion with the direct exchange of solvent particles, such
semigrand canonical approach would in principle
an alternative for the identity swap move to equilibrate t
system.

B. Simulation analysis and mean-field theory

At the end of the simulation, the results can be analyz
by measuring the average densities of solvent and polyme
both boxes. This method only works when the system is w
into the two-phase region. Near the critical point the ide
way to analyze the results would be the histogram met
~probability of finding a certain fraction of polymer in one o
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the boxes plottedversus that fraction!. However, in most
cases this gives a maximum value of zero for the lower fr
tion. ~That is because of the finite system size and the len
of the polymer chains.! Therefore, we calculate the ratios o
both species in both boxes at each timestep, and ave
these ratios at the end of the simulation.

The compositions of the simulated coexisting phases
compared with the predictions of mean-field theory. Acco
ing to Flory–Huggins theory, in a mixture of polymer~vol-
ume fractionf) and solvent~volume fraction 12f) the
chemical potentials of the solvent,mS , and polymer,mP ,
can be written as

mS~f!2mS~0!

kT
5 ln~12f!1S 12

1

r Df1xf2, ~6!

mP~f!2mP~1!

kT
5 ln f2~r 21!~12f!1xr ~12f!2,

~7!

where x is the Flory–Huggins interaction parameter. It
now possible to calculate binodal curves from the conditio
mS(f low)5mS(fhigh) and mP(f low)5mP(fhigh), where
fhigh andf low are the polymer volume fractions in the tw
coexisting phases for a given value ofx. For r 51 one gets
the following expression for the relationship betweenf and
x:

x5

lnS 12f

f D
122f

. ~8!

IV. RESULTS AND DISCUSSION

A. Monomeric mixtures

Figure 1 shows simulated data of the phase behavior
system with 1000 particles (NS5NP5500) at a total density
r53.0, foraii 525.0. The value ofDa has been plotted as
function of the particle molar fractionf. The symbols in

FIG. 1. Phase diagram of a mixture of two different monomers. Parame
aii 525.0, r53.0. The symbols are simulated data. The curve is the me
field prediction, as explained in the text.
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Fig. 1 are results from the Gibbs ensemble simulatio
whereas the curve is a mean-field fit which will be explain
below.

Equation ~8! has been used to calculate the effecti
value ofx as a function ofDa for the phase separation da
of Fig. 1 ~at constant volume!. In Fig. 2 the ratiox/Da has
been plotted againstDa ~open symbols!. The filled symbols
in Fig. 2 are derived from constant pressure simulatio
which will be discussed later.

It can be seen from Fig. 2 thatx is not a linear function
of Da. However, if, as a first-order approximation, we wou
assume thatx is proportional toDa, we get the following
relationship based on a fit of the simulated data in the ra
10.0<Da<20.0 ~i.e., not too near the critical point!:

x5~0.29260.003!Da. ~9!

This corresponds well with Ref. 5, where it is reported th
x5(0.28660.002)Da. The error given in Eq.~9! represents
the systematic deviation ofx/Da with Da. The curve in Fig.
1 was drawn by combining Eqs.~9! and~8!. Except near the
critical point, this ‘‘linear’’ mean-field approximation gives
reasonably good prediction of the simulated data.

If we take the mean-field expression for the phase eq
librium as definition of the interaction parameterx, thenx is
given by the following difference in free energy:

x i j 5
1

2kT S Dm i i 2Dm i j

Vi
1

Dm j j 2Dm j i

Vj
D , ~10!

whereDm i j is the excess chemical potential~with respect to
an arbitrary reference state! of speciesi in an environmentj,
andVi is the molecular volume ofi. We consider a system o
i-particles only, and we compare this system with anot
system in which onei-particle has been replaced by
j-particle. If we only consider the interaction energyUi j of
the j-particle with all surroundingi-particles, we can make a
first approximation ofx as

x5Ui j ~Da!2Ui j ~Da50!. ~11!

rs:
n-

FIG. 2. Ratio of the effectivex-parameter andDa for constant volume
simulations~open symbols! and constant pressure simulations~filled sym-
bols! (r53.0).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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This expression is exact for a lattice model~without vacan-
cies!, in which x is simply defined asx i j 5z/2 (2wi j 2wii

2wj j ), wherez is the lattice coordination number andwi j is
the interaction energy between two particlesi andj on neigh-
boring sites. In general, a more correct expression forx con-
siders all interactions rather than only thei–j interactions.
This leads to the following approximation forx:

x5U total~Da!2U total~Da50!. ~12!

Equation~12! takes multibody correlations into account b
still neglects the entropic contributions to the free energy

In Fig. 3 results of Eqs.~11! ~filled circles! and ~12!
~open circles! are shown for a system with 375 particles a
densityr53.0, using a repulsion parameteraii 525.0. The
stars are the results of Eq.~12! for a system withaii

575.0. The squares give thex values that are directly cal
culated from the phase equilibrium using Eq.~8!. The system
phase behavior hardly depends on the value ofaii , but only
on Da. This explains the very close agreement of the res
of Eq. ~12! for aii 525.0 andaii 575.0 ~for Da up to 10!. It
is clear from Fig. 3 that Eq.~11! does not give a good pre
diction of x. When all interactions are taken into accou
@Eq. ~12!# one gets a far better agreement with the values
x that are found directly from the phase diagram using
~8! than when only the interactions between particlej and its
neighbors are taken into consideration@Eq. ~11!#. But for
large values ofDa (Da.10), Eq.~12! does still underesti-
matex.

The difference between Eqs.~11! and ~12! is due to the
rearrangement ofi-particles around thej-particle~three-body
correlations!. The ~excess! repulsion by thej-particle means
that thei-particles will want to move away from this particle
Consequently, the average distance betweeni-particles will
decrease and the potential energy due the interactions
tweeni-particles will also increase. At moderately largeDa,
three-body correlations are clearly the most important fac
determiningx.

Figure 4 shows the radial distribution functiongi j (r ) of

FIG. 3. Relationship between different expressions for thex-parameter and
the excess repulsionDa. In all casesr53.0. Open circles: Eq.~12! for
aii 525.0. Stars: Eq.~12! for aii 575.0. Filled circles: Eq.~11! for aii

525.0. Squares: Eq.~8! for aii 525.0.
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i-particles around thej-particle for three different values o
the repulsion parameter:Da50, 12.5, 25.0 (aii 525.0 and
r53.0). On average, thei-particles do indeed move farthe
away from thej-particle asDa increases. This implies tha
the i-particles become more strongly ordered as the repuls
increases, and therefore the entropy of the system increa

This free energy difference~between a system withN
i-particles and one withN21 i-particles and onej-particle!
can be computed using the Kirkwood coupling parame
method @Ref. 18#. We introduce a coupling parameterl
which increases linearly from zero to unity asDa increases
from zero to its maximum value. We then calculate the fr
energy difference as

DF~Da!5E
0

1

dl K ]U~l!

]l L
l

, ~13!

whereU(l) is the system energy forai j 5aii 1lDa. This
energy is the sum of two terms,Uii andUi j , where the first
term accounts for alli – i interactions and the second on
accounts for all j – j interactions. The partial derivative
]Uii /]l equals zero. The partial derivative ofU with respect
to l is calculated as

K ]U~l!

]l L
l

5 K ]Ui j ~l!

]l L
l

5Ui j ~l!3
Da

aii 1lDa
. ~14!

In Fig. 5 bothDU andDF are plotted as a function ofDa for
the system (r53.0, aii 525.0). These values are compar
with x as calculated using Eq.~8!. As Da increases~beyond
;15!, DU clearly underestimatesx, but the free energy dif-
ferenceDF gives a very good estimate ofx. The line given
by Eq. ~9! is also drawn in Fig. 5. Although the effectivex
values do not lie exactly on this line, this simple express
can be used as a reasonable first-order approximation fo
relationship betweenx and Da. For small values ofDa,
where the monomers do not phase separate, this linear
pression still agrees well with the values ofDF. Polymers
will phase separate at these smallerDa values, so we expec
to be able to use Eq.~9! to calculate the relevantx param-
eters for polymer–solvent systems.

FIG. 4. Radial distribution functionsgi j (r ) of the i-particles with respect to
the j-particle for different excess repulsions as indicated in the graph.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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One factor that we have ignored up to now is the eff
of pressure. The simulation results shown up to now were
at constant volume. These simulations have been repeat
constant pressure, using the pressure of a system of par
with a densityr53.0 and a repulsion parametera525.0 for
all interactions~which is P523.83 in simulation units!. The
results from the constant pressure simulations have bee
cluded in Figs. 2 and 5. Figure 2 shows that for any value
Da, the effectivex value is slightly smaller in a constan
pressure simulation than in a constant volume simulat
The difference between both simulations is a few perce
Figure 5 shows that the free energy differenceDF gives a
good prediction forx both in the constant volume and in th
constant pressure simulations.

B. Polymer–solvent mixtures

In Fig. 6 phase diagrams are shown for a chain len
r 520. In all cases the particle densityr53.0 ~all simula-
tions were conducted at constant total volume!. All open
symbols refer to simulations with a repulsion parameter
tween like particles~solvent–solvent and polymer–polyme!
aii 525.0. The total number of particles in these simulatio
(N5NS1Mr ) varies from 1000 to 4000. Different syste
sizes were used to check for finite system size effects.
filled symbols refer to simulations withaii 575.0. In this
caseN52000 only. The curves in Fig. 6 are mean-field p
dictions. They were calculated using Eqs.~6!, ~7!, and~9!.

Figure 6 demonstrates the potential of the identity sw
move to equilibrate a polymer–solvent mixture. For the s
tems shown here, the solvent insertion acceptance prob
ity is ;0.5 for aii 525, and two orders of magnitude small
for aii 575. Similar values would be found for polymer se
ments, and, although these values are not extremely sm
they do lead to very small values for the acceptance pr
ability of long chains using a CBMC algorithm. In contras
the identity change move has an acceptance probab
which is as large as 0.24 foraii 525 andDa53.5. As Da
increases, this probability decreases, so that in practice t

FIG. 5. Energy difference~open circles! and free energy difference~filled
circles! between a system withN21 i-particles and 1j-particle and a system
with N i-particles. The squares~constant volume simulations! and triangles
~constant pressure simulations! give x according to Eq.~8!. The line shows
the linear relationship betweenx andDa of Eq. ~9!.
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is always an upper limit on the value ofDa for which it is
possible to simulate the binodal curve. For example,
Da55.0 we have an acceptance probability of 0.009. F
longer chain lengths these probabilities are smaller and
crease more quickly with increasingDa. No finite size ef-
fects show up when one compares the results of simulat
using different system sizes.

In Fig. 6 there is a small but systematic difference b
tween the results foraii 525 andaii 575. The data foraii

575 are shifted to slightly higher values ofDa. Although
better statistics are required to provide a very precise de
mination of the critical point, it is clear that the critical poin
occurs for a higher value ofDa than predicted by the Flory–
Huggins curve~a difference of;30%!. For the monomeric
system the difference between the value ofDa at the critical
point predicted by the mean-field theory and the value fou
in the simulations was;13%. Although this difference
seems smaller than that for the polymer solutions, one m
bear in mind that the absolute value ofDa at the critical
point is more than twice as large in the monomer syst
compared to the polymer system. Moving away from t

FIG. 6. Phase diagrams of polymer–solvent mixtures forr520; N51000
~triangles up!, N52000 ~circles!, andN54000 ~triangles down!. Two dif-
ferent values were used foraii : aii 525.0 ~filled symbols! and 75.0~open
symbols!. In both cases the density isr53.0. The full curves show the
Flory–Huggins binodals, based on the relationship betweenx andDa given
by Eq. ~9!.
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critical point, the polymer concentration in the concentra
polymer phase is seen to be fairly well predicted by
Flory–Huggins curve. However, in the low-polymer conce
tration phase, the polymer concentrations are far higher t
predicted by Flory–Huggins theory@see Fig. 6~b!#. For ex-
ample, foraii 525 the simulations give a polymer fraction o
231022, whereas the mean-field value is 531025. This is
not surprising, as the mean-field approximation greatly
derestimates the stability of the polymer chains in the dil
regime.

Binodal curves were simulated for a series of ch
lengths, ranging fromr51 up to 150. In all cases we use
aii 525.0. The symbols in Fig. 7 show the results of the
simulation runs. In order to arrive at closed expressions
derived equations that give a good fit of the simulated d
These curves are also shown in Fig. 7. Below, we exp
how they were calculated.

For r 51 the binodal curveDa(x) is a symmetric func-
tion of x5 ln((12f)/f), and a power-law in this coordinat
gives a very accurate description of the simulation data.
find

Da5c1U lnS 12f

f D Uc2

1c3 , ~15!

with c150.515960.0038, c251.825960.0035, and c3

57.56960.014. ~Surprisingly, the powerc2 is less than 2.!
The correlation coefficient of this fit isR250.999 973, and
Fig. 7 also shows that the fit is excellent down to the criti
point.

For longer chain lengths (r .1) we introduce a variable
n which depends on the polymer chain length, and we n
fit the binodal curve to the functionDa(x), where x
5n ln(12f)2ln(f). This gives a four-parameter fit; How
ever, the fitting parameters appear not to be completely
dependent, and the errors become very large. We there
fixed the powerc2 at the value given above, resulting in th
following three-parameter fit function:

FIG. 7. Phase diagrams of polymer–solvent mixtures forr51 ~squares!, 2
~triangles left!, 5 ~diamonds!, 10 ~circles!, 20 ~triangles up!, 50 ~triangles
down!, and 150~triangles, right!. The symbols are simulation data. Th
curves show the fit of Eq.~16! using the parameter values given in Table
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Da5cU lnS ~12f!n

f D U1.826

1Dac . ~16!

This equation was used to draw the curves shown in Fig
The values of the fitting parameters and the correlation
efficients for different chain lengths are given in Table
Once we have the functional fit to the binodal, the volum
fraction at the critical point follows from the minimum in
Da(f), which occurs at

~12f!n5f, ~17!

and which can be solved numerically.
To arrive at a completely closed expression for the b

odal curves, we will derive functions describing the depe
dence of the fit parameters in Table I on the chain lengthr.
We start by considering the relationship between the crit
volume fractionfc and the chain lengthr. The mean-field
expression forfc is

fc5
1

11r 1/2
. ~18!

By generalizing this expression and imposing the exact c
dition thatfc51/2 at r 51, we can fitfc to the function

fc5
b

2b211r x
. ~19!

We then find thatb51.5360.09 andx50.3860.01. Com-
bining Eqs.~18! and ~17!, we get a closed functional form
for n

n5

ln
b

2b211r x

ln
b211r x

2b211r x

. ~20!

When we separately fit the data forn to this expression~asn
was the actual parameter in our fits, and notfc), we find

TABLE I. Fit parameters for Eq.~16! to describe the simulated polyme
binodal data. The numbers in brackets are the estimated errors in the
digits. The column markedfc gives the volume fraction at the critical poin
calculated from Eq.~17!. R2 is the correlation coefficient for the fit. In
addition to the chain lengths shown in Fig. 7, three more chain leng
(r514, 32, and 85! were simulated.

r c n Dac fc R2

1 0.5157~5! 1.0000 7.569~9! 0.5000 0.999 973
2 0.308~6! 1.27~1! 5.95~3! 0.4589 0.995
5 0.154~2! 1.89~2! 4.49~3! 0.3913 0.997

10 0.088~1! 2.60~2! 3.86~3! 0.3398 0.996
14 0.073~1! 2.90~3! 3.59~1! 0.3228 0.996
20 0.053~7! 3.51~3! 3.38~1! 0.2943 0.997
32 0.039~2! 4.33~6! 3.15~2! 0.2645 0.97
50 0.0262~6! 5.56~8! 2.99~1! 0.2315 0.992
85 0.020~1! 7.0~2! 2.84~2! 0.2035 0.95

150 0.14~1! 8.9~4! 2.69~1! 0.1768 0.88
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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b51.3660.09 andx50.3660.01. It should be noted thatn
has also been fitted by a power-law ofr (n;r 0.435), but the
worse quality of that fit rules out a simple power-law forn
on the basis of our data, in favor of Eq.~20!.

The mean exponentx50.3760.01 that we find from the
simulated data can be compared with several experime
and simulation studies. Dobashiet al.22 measured coexist
ence curves for polystyrene–methylcyclohexane mixtu
which give a valuex50.39. Shinozakiet al.23 reported a
value of x50.46 for polystyrene–propylbenzene mixture
Simulations of lattice polymers have yielded values for t
exponent in the range 0.27–0.38. Mackieet al.24 reported an
exponent ofx50.32, although this value increases to 0.35
they only consider their longest chain length simulatio
Wilding et al.25 foundx50.37 and Yanet al.26 reported that
x50.27. Finally, Panagiotopouloset al.27 found a valuex
50.38. Our exponent clearly falls within the range of valu
found in the lattice simulations. The Flory–Huggins exp
nent (x50.5) very clearly falls outside this range of value

We still need to consider the parametersc and Dac in
Eq. ~16!. The former parameter is well described by a pow
law of r. Forcing this expression through itsr 51 value,
which is our most accurate result, we obtain

c50.5159r 20.751(4). ~21!

Finally, for Dac we try a functional form that is similar to
that of the mean-field expression for the critical Flory
Huggins parameterxc

xc5
1

2 S 11
1

r 1/2D 2

, ~22!

but we replace the powers 1/2 and 2 by free paramet
Forcing this fit through ther 51 result (Dac57.569), we
obtain

Dac57.569S 11r 20.446(9)

2 D1.75(2)

. ~23!

Equation~23! predicts that forr→` we will find an excess
critical repulsionDac52.25, which is a 31% larger valu
than predicted by mean-field theory. The fact that for infin
chain length we do not recover the scaling behavior p
dicted by Flory–Huggins theory indicates that there is
qualitative difference between a polymer–solvent mixtu
and a binary polymer blend, which was simulated by E
cobedo and de Pablo28 and which only deviates from th
simple scaling lawTc;N for finite N.

The closed expression for the binodal is finally found
combining the previous results, which lead to

Da50.516r 20.751un ln~12f!2 ln~f!u1.826

12.25~11r 20.44!1.75. ~24!

Equation~24! enables us to compare the simulations
rectly with experimental binodal curves. We have used
phase equilibrium data of the polystyrene
methylcyclohexane system given in Ref. 22 for this purpo
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We analyzed the experimental data for eight different m
lecular weights (1024Mw51.02, 1.73, 2.02, 3.49, 4.64, 10.9
18.1, 71.9!. Defining a parameterb51000/T, whereT is the
coexistence temperature, we mapped the experimental
pointsb(f,Mw) onto Da(f,r ). For each molecular weigh
we fitted the experimental binodal to the function

b5lDa1m, ~25!

whereDa is the function given in Eq.~24!, and wherel, m,
andr 8 are fitting parameters. For each molecular weight t
gives a linear relation betweenb and Da, which is valid
over a small range of temperatures. These results are
lected in Fig. 8. Different symbols indicate the end points
the line segments for one particular binodal, calculated
the lowest and highest temperature available for that part
lar polymer sample. The curve is an overall fit to the
points. Theoretically all line segments should fall on th
mean curve. It is obvious that only the result for the high
molecular weight~the lowestDa) has a slope that differs
considerably from the mean; all other experiments are r
sonably consistent. The curve now represents the map
between temperature and excess repulsion; it is given by

b5~1.6460.03!Da0.7260.02. ~26!

Having determined the relationship between the te
perature and the excess repulsion parameter, the chain le
r remains as the only free parameter to fit Eq.~24! to the
experimental data. The result of this fit is shown in Fig. 9.
good agreement is found between the experimental data
the simulated expression for the binodal curves. Figure
shows the values ofr that were found in the fitting proce
dure. The chain lengthr should scale linearly with the mo
lecular weight of the polymer samples. We find a relatio
ship r}Mw

1.13, which is reasonably consistent with the actu
molecular weight. The sample with the largest molecu
weight again does not agree very well with the other d
points.

FIG. 8. Inverse temperature as a function ofDa. Each pair of symbols
indicates the end points of the line segment for one experimental poly
sample. The curve is an overall~power-law! fit.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V. CONCLUDING REMARKS

In this paper we have presented Gibbs ensemble Mo
Carlo simulations to investigate the phase behavior
systems with soft potentials such as those that
used in the DPD simulation technique. As a first-ord
approximation it is possible to interpret the behavior
such systems in terms of a Flory–Hugginsx parameter
that is proportional to the repulsion parameter differenceDa
@Eq. ~9!#. This approach was first suggested in Ref. 5 a
way to bridge the gap between mesoscopic DPD simulat
and real systems with experimental parameters. We h
shown in this paper that the above definition ofx agrees
reasonably well with the free energy difference betwee
monomer surrounded by solvent particles, and a solv
particle surrounded by solvent particles. However, near
critical point the mean-field description of a monome
monomer mixture shows a clear discrepancy with simula
phase coexistence equilibria.

FIG. 9. Comparison of the fit function given by Eq.~24! with experimental
phase coexistence data for the polystyrene–methylcyclohexane sy
taken from Ref. 22. The polymer molecular weights are given in the t
All curves were fitted using the same mapping betweenT andDa.

FIG. 10. Polymer chain lengthr in the fitting procedure as a function of th
experimental molecular weight. The line has a slope of 1.13.
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In addition to monomer–monomer mixtures, w
have simulated the phase behavior of polymer–solv
mixtures. In order to equilibrate such systems it w
necessary to develop a new ‘‘identity change’’ Monte Ca
move. Our simulation method can also be used for mod
with a different type of pair potential, as long as th
monomers and solvent particles are of the same, or
least similar, size. We demonstrated the potential of t
approach for polymer chains up to 150 segments, altho
this chain length is certainly not an upper limit. A straigh
forward application of Flory–Huggins theory gives on
a rather poor description of the simulation results. T
critical point is underestimated~by ;30%! and the polymer
volume fraction in the low-polymer phase is underestima
by several orders of magnitude. One reason for th
discrepancies could be that a Flory–Huggins segment d
not correspond exactly to one monomer in our mod
However, this can certainly not explain fully the differenc
between theory and simulation. The main reason for
failure of Flory–Huggins theory is that the mean-fie
approximation does not give an appropriate description
the system. Of course, one does not expect mean-field t
correct for the very low polymer concentrations that occur
the simulations, where the polymer chains become collap
globules.

We have fitted a master equation that describes
simulated data for all chain lengths. Such a fit function is
useful tool when one wants to compare the simulations w
experimental data. We illustrated how such a comparison
be made with solubility data for polystyrene in methylcycl
hexane. The experimental binodal curves can be fitted v
well for each individual molecular weight, although th
scaling of the the chain length with the experimental mole
lar weight is not perfect.

Polymer phase coexistence curves have been publis
for significantly longer chain lengths~up to 1000! using
lattice models,24,25,27 that were simulated using
the Gibbs ensemble and grand-canonical ensem
methodologies. In a lattice model a solvent molecu
can simply be represented as an empty lattice s
That makes it a lot easier to equilibrate the system
growing chains on the empty sites. Vapor–liquid equilib
of chain molecules have also been simulated us
continuous-space models~up to 100 segments chai
length29!. It is of course possible to regard the vacuum a
solvent, and then one can use the conventional CB
algorithm to grow the chains. To our best knowledge, t
paper presents the first results of simulations of the ph
behavior of polymer–solvent mixtures that take expli
account of the solvent molecules.
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APPENDIX

For a Gibbs ensemble withNS solvent particles andM
polymer chains we can write the following expression for t
canonical partition function:

QNPT
Gibbs5

1

NS!LS
3NSV

1

M !LP
3NPV

(
NS

I
50

NS NS!

NS
I !NS

II !

3 (
M I50

M
M !

M I! M II !
E

0

`

dVI

3exp~2bPVI!E
0

`

dVII exp~2bPVII !

3E d~rS
I !NS

I E d~r P
I !NP

I
exp~2bU I~r I!!

3E d~rS
II !NS

IIE d~r P
II !NP

II
exp~2bU II~r II !!,

~A1!

where r i
j represents the positions of all particles of typei

(i5P or S! in subsystemj and U j is the total energy of
subsystemj, which is a function of the coordinates of a
particles in that subsystem~and consists of both the bonde
and nonbonded interactions!. This expression is similar to
the one given by Smit and Frenkel30 and Greenet al.,31 but
the segments in the polymer chains are not indistinguish
~as is the case for detached monomers!. The kinetic energy
of the system is accounted for by the de Broglie waveleng
LS and LP of the solvent particles and polymer segmen
Following the procedure outlines in Refs. 30 and 31 we
troduce a pseudo-Boltzmann factorPGibbs, which represents
the distribution probability of the ensemble average

ln PGibbs5 lnS NS!

NS
I !NS

II !
D 1 lnS M !

M I! M II !
D 1NI ln VI1NII ln VII

2bPVI2bPVII2bU I2bU II . ~A2!

We consider a move in which the system undergoes a t
sition from configurationa(NS

a ,Ma,NS
b ,Mb) to configura-

tion b(NS
a2r , Ma11, NS

b1r , Mb21) by transferring a
polymer chain from box II to box I, andr solvent particles
from box I to box II. The probability of this transition is
proportional to

Pab5NS
I ! M I!NS

II ! M II ! 3Pmove3Pa
pol

3Pa
insertion3Pa

Gibbs3Pab
ac , ~A3!

wherePmove51/2 is the probability that a polymer chain
moved from box II to box I~rather than vice versa!, Pab

ac is
the acceptance criterion for this move,Pa

pol51/M II is the
probability of choosing one specific polymer chain from b
II, Pa

insertion is the probability to select a given conformatio
for the chain that is inserted into box I

Pa
insertion5

1

NS
I )

i 52

r

Pa
s ~ i ! ~A4!

and
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Pa
Gibbs5

NS!

NS
I !NS

II !
3

M !

M I! M II !
3exp~NI ln VI1NII ln VII

2bPVI2bPVII2bUa
I 2bUa

II !. ~A5!

For the reverse move we can write

Pba5~NS
I 2r !! ~M I11!! ~NS

II1r !! ~M II21!!

3Pmove3Pb
pol3Pb

insertion3Pb
Gibbs3Pba

ac , ~A6!

where Pb
pol51/(M I11), the probability to select the righ

conformation for the chain is

Pb
insertion5

1

NS
II1r

)
i 52

r

Pb
s ~ i ! ~A7!

and

Pb
Gibbs5

NS!

~NS
I 2r !! ~NS

II1r !!
3

M !

~M I11!! ~M II21!!

3exp~NI ln VI1NII ln VII2bPVI2bPVII

2bUb
II2bUb

II !. ~A8!

In order to satisfy the condition of microscopic reversibilit
Pab5Pba , the acceptance criterion must obey the followi
relationship:

PSW5
Pab

ac

Pba
ac

5
M IINS

I

~M I11!~NS
II1r !

3
Wold

Wnew
3exp~2bDU !.

~A9!

In this equationDU is the total energy difference due to th
Monte Carlo move, which includes both the bond energy
the polymer chain and the repulsion energy (U5U rep

1Ub). By introducing

V5
W

) i 52
r exp~2bUb~r i 21,i !!

, ~A10!

we can also write Eq.~A9! as

PSW5
Pab

ac

Pba
ac

5
M IINS

I

~M I11!~NS
II1r !

3
Vnew

Vold

3exp~2bDU rep!. ~A11!

This last equation more clearly shows the similarity with t
acceptance criterion used in a conventional CBMC al
rithm.
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