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We present Gibbs ensemble Monte Carlo simulations of monomer—solvent and polymer—solvent
mixtures with soft interaction potentials, that are used in dissipative particle dynamics simulations.
From the simulated phase behavior of the monomer—solvent mixtures one can derive an effective
Flory—Hugginsy-parameter as a function of the particle interaction potential. We show that this
x-parameter agrees very well with the free energy difference between a monomer surrounded by
solvent particles, and a solvent particle surrounded by solvent particles. We develop a new “identity
change” Monte Carlo move to equilibrate the polymer—solvent mixtures. In this move a polymer
chain from one box is exchanged with an equal number of solvent particles from the other box. At
realistic densities this new move offers a large computational advantage over the convential
insertion method for a polymer chain using a configurational bias Monte Carlo algorithm. The new
algorithm is demonstrated for polymer—solvent mixtures with a chain length of up to 150 segments.
Significant differences are found between the simulated polymer—solvent phase behavior and results
predicted by mean-field theory. Finally, we fit a master—equation to the simulated binodal curves at
different chain lengths. This function is used to make a quantitative comparison between the
simulations and experimental data for the phase equilibrium of the polystyrene—methylcyclohexane
system. ©2001 American Institute of Physic§DOI: 10.1063/1.1362298

I. INTRODUCTION ing DPD simulations. They assumed that their simulations
could be interpreted on the basis of the Flory—Huggins
In this paper we investigate the phase behavior of a bitheory for polymer solutions. This then makes it possible to
nary mixture of soft spheres similar to those used in theuse solubility parameters to determine the interaction param-
dissipative particle dynamicé€DPD) technique. This tech- eters in a(mesoscopicDPD simulation. However, this pro-
nique was introduced a few years ago by Hoogerbrugge angedure may introduce non-negligible errors due to the mean-
Koelmart*to simulate the hydrodynamic behavior of fluids. field approximation that is made in Flory—Huggins theory.
It was later extended to polymers by introducing bead-andyhether such errors are indeed large can be tested by simu-
spring type particle3:® Espaml and Warref showed how  |ating the(full) binodal curve. This is a computationally very
the noise and friction terms in the DPD method should bejemanding task, though, especially near the critical point.
chosen to satisfy the fluctuation—dissipation theorem. Whepjowever, as the DPD model corresponds to a Hamiltonian
this condition is satisfied the model corresponds to a Hamilsystem, one can use different simulation methods to generate
tonian system. Because of the coarse-grained character of tfigs equilibrium configurations of the soft sphere model. Over
simulation model, in which several molecular groups can bqhe past years the advance of molecular simulation tech-
incorporated into one simulation particle, this technique isniques has produced the tools we require to simulate effi-
well suited for simulations on a mesoscopic scale. For eXciently the demixing of a polymer solution.
ample, Grootet al®° used this method to study block co- | the late 1980's Panagiotopolous introduced the Gibbs
polymer mesophase formation. Jieyal."’ used DPD simu-  ensemble Monte Carlo simulation methodoldgy** which
lations of a minimal amphiphile model to study amphiphilic gescribes the equilibrium between two phases without ex-
mesophases, and Venturoli and Sthisimulated the self- pjicity taking the interface between both phases into ac-
assembly of membranes with more realistic molecular pagoynt. Initially developed for the liquid—vapor equilibrium
rameters. of a one-component system, this method was soon extended
The aim of this paper is to gain a better insight into they, pinary mixtures? Another major advancement was made

phase behavior of monomer—monomer and ponmer—soIverHy combining the Gibbs ensemble method with the CBMC
mixtures in the DPD model. Groot and Wartevere the first (configurational bias Monte Cajl@lgorithm>®which is a

authors to study the demixing of DPD particles by conductyery efficient way of generating configurations of chain mol-

ecules. Thus it became possible to investigate the phase be-
ectronic mail: chris@its.chem.uva.n Vi r u SYyS S.
3| i il: chris@its.ch | havior of macromolecular tem
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For monomer mixtures it has been shown that one camowever, one does not expect that the crossability of bonds
determine the phase behavior more efficiently using Gibbsvill have any important effect on the the equilibrium prop-
ensemble techniques than using DPD simulatidris. this  erties of the system.
paper we apply the Gibbs ensemble method both to binary
mixtures of soft sphere@nonomers and to bead-and-spring
polymers in a monomeric solvent. In the next two sectioné“' SIMULATION METHOD
we first define the model that is used in the simulations. In \We consider a Gibbs ensemble, consisting of two sub-
Sec. IV we then present results for monomer mixtures. Thgytems (“boxes”) | and Il, with a total volumeV=V'
simulated data are compared with predictions from mean- V! The system containldg solvent particles ant¥ poly-
field theory, assuming that the interparticle interactions camner chains. Each polymer chain consistsr afegmentgso
be described by an effective Flory—Huggigsparameter. that the total number of polymer segmentdis=Mr). The
The thermodynamic significance of this parameter is eXtotal density is defined gs=N/V, whereN=Ng+Np. We
plored in some more detail. Finally, we investigate the phasguant to calculate the coexistence curve for this system as a
behavior of polymer—solvent systems. In order to simulatgynction of Aa.
these systems we need to develop a new Monte Carlo move The Gibbs ensemble simulation technique has been de-
to equilibrate the system. The simulated coexistence curvescribed in detail many times beforsee, for example, Ref.

are then compared with curves predicted by Flory—Huggingg). We equilibrate the system using the following Monte
theory using they parameters derived for monomeric sys- Carlo moves:

tems. (1) Displacement. A particle is chosen at random and is
given a random displacement. The move is then accepted
with a probability P2°=min(1,expf BAU)), whereAU

Il. MODEL is the energy change due to the displacement And

(2) particle exchange. One of the two components is se-
lected at random, and one of the two boxes is selected at

We consider a particle of typei and a particlem of
type j. These two particles interact via a soft repulsive po-

tential random. Then a particle of the selected species is chosen
1. 1. 2 < < — at random and transferred to the other box. This move is
ey, )= | 22T for 0=Fam=rc=1 accepted with a probability
0 forr,p=1
(1) N2
P**=min| 1,expIn|——— |—-BAU|],
wherer , is the distance between particlesand m; a;; is (N2+ 1)V

the repulsion parameter that defines the interaction between
particles of type andj; andr. is the cut-off distance for the
interaction force, which defines our unit of length=1. We
usea;=a;;>0 anda;j=a;+Aa (Aa>0). If we are, for
example, modeling water, and we assume that one water
molecule maps onto one DPD particle, the repulsion param-
eter must be set tay; = 25 to get the correct compressibility.
One can of course map a different number of water mol-
ecules onto one DPD particle. If one chooses to map three
water molecules onto a DPD particle, one needs a value of
a;; =75 to match the compressibility of water. Most results
presented in this paper will usg; =25 and a small number
of simulations will be presented usirg =75 to explore the
effect of thea;; parameter. )
Polymer chains are formed as a linear array of mono-
mers. Neighboring segments are held together by the follow-
ing bonding potential:

where NY and N? are the number of particles of the
selected componerntin the donor and acceptor boxes,
respectively, an&/9 andV? are the volumes of these two
boxes. For a mixture of two monomers this move can be
used to exchange both components between both boxes.
However, for the polymer—solvent system it can only be
applied to the solvent particles. The conventional way to
move a polymer chain from one box to the other one is
by using a CBMC(configurational bias Monte Caplo
algorithm. In our systems this approach is also extremely
inefficient, and we will, therefore, introduce an alterna-
tive approach;

volume change. The simulation can be performed at a
constant total voluméi.e., constant overall densjtyor

at a constant pressure. In the first case, the volume of one
of the boxes is increased kyV and the volume of the
other box is decreased by the same value. The accep-

UB(r)y=2r2+r4, 2) tance probability of this move is
wherer is the bond length. This potential is slightly steeper o [ VAV VI-AV
than that used in Ref. 5, because we want to impose an upper © —min| 1, V X NI X exp(—BAU)
limit on the maximum bond length, as will be explained in
Sec. Il A. (assuming that box | is the box whose volume increases
The “soft” character of the particle interaction potential For a symmetric mixture of monomerdN§=Np) it is
means that bonds can cross. This has important implications not necessary to include the volume rearrangement in the
for the dynamics of this model. Spenfeshowed that a poly- case of a constant total volume. When the system is

mer melt behaves in excellent agreement with Rouse theory. simulated at a constant pressi&" (which is externally
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imposed on the systemthe volume of only one box
(say, box ) is changed in one Monte Carlo moyeom
V'to V'+AV). In this case the acceptance probability is:

N

VI
X exp(—BAU—P*XAV) |,

Pa°=min( 1| ——

(4) identity change. In a mixture of two monomers the
equilibration can be improved by choosing a rand8m
particle in box | and exchanging it with a randomly cho-
senP particle in box Il (option 1); or, with equal prob-
ability, choosing & particle in box | and exchanging it
with a randomly chosel$ particle in box Il (option 2

[Ref. 17]. This move is then accepted with a probability

( Il
. S'Yp
min| 1———————— X exp(— BAU)
( (Ng+1)(Np+1)
option 1,
pe= NEN!
( L NNS )
(Np+1)(Ng+1)
| option2.

Of course this move cannot be applied directly to a

polymer—solvent mixture. For such a system we hav

one box is exchanged with solvent particles from the
other box.

A. identity change move for polymeric systems

Wijmans, Smit, and Groot

it is possible to use a different probability distribution to
select the new segmenhiNow we calculate the segment
factor
P3(i+1)
exp(—BU°(r 1)
=1 exp(—BUAry)
where the denominator is a sum over the bonding ener-
gies of all “neighbor particles” if they were converted
into a chain segment;
this procedure is repeated uritt 1=r andW""is cal-
culated as
r—1

ween= [ Ps(i+1);
=1

PY(i+1)= 3

4

4

(5) in a completely analogous way® is calculated for the
old chain conformation in box I, and the energy differ-
enceAU=U""—U% s calculated for the move;

(6) finally, the move is accepted with a probability

NISM 1l Id

min| 1, ®
( (Ng+r)(M'+1) wrew

exp(—BAU) |.

The procedure outlined above can be compared with a
CBMC algorithm for a lattice chain where the lattice sites are

developed a new move in which a polymer chain fromeformed by the solvent particles. The expression for the ac-

ceptance probability of the identity change move is analo-
gous to that of the CBMC move. A formal derivation of this
expression is given in the Appendix.

The identity change move for polymers is necessary be-
cause it is not possible to exchange a polymer chain directly
between both boxes. The approach we have taken bears some
likeness with that of the semigrand canonical Gibbs en-

The algorithm for the polymer—solvent Identity change semple method proposed by Kofke and Glaldn this en-

move is as follows:

semble one also has a mixture of two different species. Only

(1) Choose one of the two boxes, from which the polymerone of these species is moved from one box to another. In

chain is moved to the other orf@e assume that box | is
chosen;

addition, any particle can change its identity without chang-
ing its spatial coordinates. For example, Stapletral?®

(2)

3

choose a po'ymer chain at random from box |, and aused this method to calculate the phase equ”ibria of fluids of

solvent particle from box II. The first segment of the Polydisperse particles such as micellar solutionsliéfuand
polymer chain will be inserted at the position of this Wilding®" studied asymmetric binary polymer mixturéss-
solvent particle; ing the bond fluctuation modein which the chain length of
we now move on to the next Segmdgegment 2, or, one SpeCieS is an integer times that of the other one. In our
more generally, segment-1). Locate allK(i) “neigh- case it would be possible to conversolvent particles into
bor particles” of segment, which are defined as the One polymer chain without exchanging any particles between
solvent particles that lie within a certain radiis maxi-  the boxes, ifNs andNp were not kept constant. In combina-
mum bond length of the polymefrom segmeni. We  tion with the direct exchange of solvent particles, such a
use a value of 1.75 for this radiugAt this point it be- ~ semigrand canonical approach would in principle be
comes clear why we introduced the rather steep bonding" alternative for the identity swap move to equilibrate the
potential of Eq.(2). For a less steep potentidP(r), the ~ System.
maximum bond length would be longer, giving larger
values forK. In order to obey the condition of micro-
scopic reversibility, it is necessary to take all possible
positions of the new segment into account. At the end of the simulation, the results can be analyzed
We now choose one of thegdi) particles to become by measuring the average densities of solvent and polymer in
segmeni + 1. The choice among these particles is madeboth boxes. This method only works when the system is well
according to the probability distribution P into the two-phase region. Near the critical point the ideal
=exp(—,8Ub(rivi+1)), wherer; i, is the distance be- way to analyze the results would be the histogram method
tween segmentand the new segment- 1. (Of course, (probability of finding a certain fraction of polymer in one of

B. Simulation analysis and mean-field theory
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FIG. 1. Phase diagram of a mixture of two different monomers. Parametersz|G. 2. Ratio of the effectivey-parameter and\a for constant volume
a;;=25.0, p=3.0. The symbols are simulated data. The curve is the meansimulations(open symbolsand constant pressure simulatiofiifed sym-
field prediction, as explained in the text. bols) (p=3.0).

the boxes plottedrersusthat fraction. However, in most Fig. 1 are results from the Gibbs ensemble simulations,
cases this gives a maximum value of zero for the lower fracwhereas the curve is a mean-field fit which will be explained
tion. (That is because of the finite system size and the lengthelow.
of the polymer chaing.Therefore, we calculate the ratios of Equation (8) has been used to calculate the effective
both species in both boxes at each timestep, and averagelue ofy as a function ofAa for the phase separation data
these ratios at the end of the simulation. of Fig. 1 (at constant volume In Fig. 2 the ratioy/Aa has
The compositions of the simulated coexisting phases arbeen plotted againgta (open symbols The filled symbols
compared with the predictions of mean-field theory. Accord-in Fig. 2 are derived from constant pressure simulations,

ing to Flory—Huggins theory, in a mixture of polymérol-  which will be discussed later.
ume fraction¢) and solvent(volume fraction - ¢) the It can be seen from Fig. 2 thatis not a linear function
chemical potentials of the solventg, and polymer,up, of Aa. However, if, as a first-order approximation, we would
can be written as assume thaj is proportional toAa, we get the following
relationship based on a fit of the simulated data in the range
ms( ¢)k—TMs(0) =In(1—¢)+<1— %) b+ y b2, (6) 10.0sAa<20.0(ie., not too near the critical point
x=1(0.292+0.003 Aa. 9

mp(@) — pp(1)

T =INng—(r—1)(1— )+ xr(1— ¢)?, This corresponds well with Ref. 5, where it is reported that

7 x=(0.286+ 0_.002)A_a._ The error given in Eq(9) represents
the systematic deviation gff Aa with Aa. The curve in Fig.

where y is the Flory—Huggins interaction parameter. It is 1 was drawn by combining Eq&9) and(8). Except near the
now possible to calculate binodal curves from the conditionsritical point, this “linear” mean-field approximation gives a
s Piow) = us(bhign)  and  wp(Piow) = wp(dnign), Where  reasonably good prediction of the simulated data.
dnigh and ¢, are the polymer volume fractions in the two If we take the mean-field expression for the phase equi-
coexisting phases for a given value yf Forr=1 one gets librium as definition of the interaction paramejgrtheny is
the following expression for the relationship betwagrand  given by the following difference in free energy:

1 AMii—AMij+AM1j_AMji

| (1—¢) Xi = 5T Vi v, , (10)
n

(8)  whereAy;; is the excess chemical potentialith respect to
an arbitrary reference statef specied in an environment,
andV; is the molecular volume af We consider a system of
IV. RESULTS AND DISCUSSION i-particles only, and we compare this system with another
A. Monomeric mixtures system in which onei-particle has been replaced by a
j-particle. If we only consider the interaction energy; of

Figure 1 shows simulated data of the phase behavior of ghej-particle with all surrounding-particles, we can make a
system with 1000 particlesNs=Np="500) at a total density first approximation ofy as

p=23.0, fora;; =25.0. The value ofAa has been plotted as a
function of the particle molar fractiom. The symbols in x=Ujj(Aa)—U;;(Aa=0). (17
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FIG. 4. Radial distribution functiong;;(r) of thei-particles with respect to

FIG. 3. Relationship between different expressions foritarameter and 0 haricle for different excess repulsions as indicated in the graph.

the excess repulsioda. In all casesp=3.0. Open circles: Eq(12) for
a;;=25.0. Stars: Eq(12) for a;=75.0. Filled circles: Eq(11) for a;;
=25.0. Squares: Ed8) for a;;=25.0.

i-particles around theparticle for three different values of

the repulsion parameteda=0, 12.5, 25.0 §;=25.0 and
This expression is exact for a lattice modefithout vacan- p=3.0). On average, theparticles do indeed move farther
cies, in which x is simply defined asy;;=2z/2 (2w;; —w;; away from thej-particle asAa increases. This implies that
—Ww;j;), wherezis the lattice coordination number amg; is  thei-particles become more strongly ordered as the repulsion
the interaction energy between two partidlesdj on neigh-  increases, and therefore the entropy of the system increases.

boring sites. In general, a more correct expressioryfoon- This free energy differencébetween a system with

siders all interactions rather than only thg interactions. i-particles and one wittN—1 i-particles and ong¢-particle

This leads to the following approximation for. can be computed using the Kirkwood coupling parameter
=UP(Ag)— U Aa=0). (12) method [Ref. 1§. We introduce a coupling parametar

which increases linearly from zero to unity Ast increases
Equation(12) takes multibody correlations into account but from zero to its maximum value. We then calculate the free
still neglects the entropic contributions to the free energy. energy difference as

In Fig. 3 results of Egs(11) (filled circles and (12)

. . . 1 [9UN)

(open circleg are shown for a system with 375 particles at a AF(Aa)zJ d)\< > , (13)
density p=3.0, using a repulsion parametaf=25.0. The 0 N[
stars are the results of Eq12) for a system witha;
=75.0. The squares give thevalues that are directly cal-
culated from the phase equilibrium using &8). The system term accounts for all—i interactions and the second one

phase behavior hardly depends on the value;gfbut only accounts for allj—j interactions. The partial derivative

on Aa. This explains the very close agreement of the results . Lo .
of Eq. (12) for a; =25.0 anda; = 75.0 (for Aa up to 10. It JdU;; 1N equals zero. The partial derivative dfwith respect

is clear from Fig. 3 that Eq.11) does not give a good pre- to \ is calculated as
diction of y. When all interactions are taken into account <(9U()\)> <r7Uij()\)
N

where U(\) is the system energy faa;;=a;; +AAa. This
energy is the sum of two terms);; andU;; , where the first

[Eqg. (12)] one gets a far better agreement with the values for N N (14)

x that are found directly from the phase diagram using Eq.
(8) than when only the interactions between partjcéad its  In Fig. 5 bothAU andAF are plotted as a function dfa for
neighbors are taken into consideratifgg. (11)]. But for  the system §=3.0, a;;=25.0). These values are compared
large values ofAa (Aa>10), Eq.(12) does still underesti- with y as calculated using E¢8). As Aa increasegbeyond
mate y. ~15), AU clearly underestimateg, but the free energy dif-
The difference between Eq&ll) and(12) is due to the ferenceAF gives a very good estimate gf The line given
rearrangement afparticles around thgparticle (three-body by Eq. (9) is also drawn in Fig. 5. Although the effectiye
correlation$. The (excess repulsion by thg-particle means values do not lie exactly on this line, this simple expression
that thei-particles will want to move away from this particle. can be used as a reasonable first-order approximation for the
Consequently, the average distance betwiegarticles will  relationship betweery and Aa. For small values ofAa,
decrease and the potential energy due the interactions behere the monomers do not phase separate, this linear ex-
tweeni-particles will also increase. At moderately larga, pression still agrees well with the values &fF. Polymers
three-body correlations are clearly the most important factowill phase separate at these smalkex values, so we expect
determiningy. to be able to use E(9) to calculate the relevant param-
Figure 4 shows the radial distribution functigy)(r) of  eters for polymer—solvent systems.

=Ujj(N) X ———.
>A i) a;+NAa

Downloaded 20 Aug 2001 to 145.18.129.54. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 114, No. 17, 1 May 2001 Phase behavior with soft potentials 7649
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AU, AF,

FIG. 5. Energy differencéopen circleg and free energy differendéilled

circles between a system with — 1 i-particles and ]-particle and a system 3
with N i-particles. The squargsonstant volume simulationand triangles

(constant pressure simulatigrgive y according to Eq(8). The line shows

the linear relationship betweepandAa of Eq. (9). 7

One factor that we have ignored up to now is the effect
of pressure. The simulation results shown up to now were allg
at constant volume. These simulations have been repeated ¢
constant pressure, using the pressure of a system of particle
with a densityp=23.0 and a repulsion paramete+ 25.0 for
all interactions(which is P=23.83 in simulation unifs The
results from the constant pressure simulations have been in
cluded in Figs. 2 and 5. Figure 2 shows that for any value of
Aa, the effectivey value is slightly smaller in a constant obool 0001 001 0. i
pressure simulation than in a constant volume simulation.

The difference between both simulations is a few percent. , _
Figure 5 shows that the free energy difference gives a FIG. 6. Phase diagrams of polymer—solvent mixturesrfeR0; N=1000

L . . (triangles up, N= 2000 (circles, andN=4000 (triangles dowih Two dif-
good prediction fory both in the constant volume and in the ferent values were used fa; : a;;=25.0 (filled symbolg and 75.0(open

constant pressure simulations. symbols. In both cases the density js=3.0. The full curves show the
Flory—Huggins binodals, based on the relationship betweandAa given
B. Polymer—solvent mixtures by Eq.(9).

In Fig. 6 phase diagrams are shown for a chain length
r=20. In all cases the particle density=3.0 (all simula- is always an upper limit on the value dfa for which it is
tions were conducted at constant total volymall open  possible to simulate the binodal curve. For example, for
symbols refer to simulations with a repulsion parameter beAa=5.0 we have an acceptance probability of 0.009. For
tween like particlegsolvent—solvent and polymer—polymer longer chain lengths these probabilities are smaller and de-
a;;=25.0. The total number of particles in these simulationscrease more quickly with increasinja. No finite size ef-
(N=Ng+Mr) varies from 1000 to 4000. Different system fects show up when one compares the results of simulations
sizes were used to check for finite system size effects. Thasing different system sizes.

filled symbols refer to simulations with;;=75.0. In this In Fig. 6 there is a small but systematic difference be-
caseN=2000 only. The curves in Fig. 6 are mean-field pre-tween the results foa;; =25 anda;;=75. The data fol;
dictions. They were calculated using E¢B), (7), and(9). =75 are shifted to slightly higher values dfa. Although

Figure 6 demonstrates the potential of the identity swagbetter statistics are required to provide a very precise deter-
move to equilibrate a polymer—solvent mixture. For the sys-mination of the critical point, it is clear that the critical point
tems shown here, the solvent insertion acceptance probabibccurs for a higher value dfa than predicted by the Flory—
ity is ~0.5 fora;; =25, and two orders of magnitude smaller Huggins curve(a difference 0f~30%). For the monomeric
for a;;=75. Similar values would be found for polymer seg- system the difference between the value\af at the critical
ments, and, although these values are not extremely smappint predicted by the mean-field theory and the value found
they do lead to very small values for the acceptance probin the simulations was~13%. Although this difference
ability of long chains using a CBMC algorithm. In contrast, seems smaller than that for the polymer solutions, one must
the identity change move has an acceptance probabilitbear in mind that the absolute value Af at the critical
which is as large as 0.24 fa; =25 andAa=3.5. AsAa  point is more than twice as large in the monomer system
increases, this probability decreases, so that in practice thebempared to the polymer system. Moving away from the
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TABLE |. Fit parameters for Eq(16) to describe the simulated polymer
binodal data. The numbers in brackets are the estimated errors in the last
digits. The column markeg. gives the volume fraction at the critical point
calculated from Eq(17). R? is the correlation coefficient for the fit. In
addition to the chain lengths shown in Fig. 7, three more chain lengths
(r=14, 32, and 8bwere simulated.

r c n Aa, e R?

1 051575 1.0000  7.56) 05000  0.999 973
2 0.3086) 1.271)  5.953) 0.4589  0.995
5  0.1542) 1.892)  4.4903) 0.3913  0.997

10 0.0881) 2.602)  3.863) 0.3398  0.996

14 0.073)) 2.903)  3.591) 0.3228  0.996

20  0.0537) 3513  3.391) 0.2943  0.997

32 0.03%2) 4336)  3.152) 0.2645  0.97

50  0.02626) 5568  2.991) 0.2315  0.992

85  0.0201) 7.02) 2.842) 0.2035  0.95

150 0.141) 8.94) 2.691) 0.1768 0.88
FIG. 7. Phase diagrams of polymer—solvent mixturesrfet (squarey 2
(triangles leff, 5 (diamond$, 10 (circles, 20 (triangles up, 50 (triangles
down), and 150(triangles, right The symbols are simulation data. The
curves show the fit of Eq16) using the parameter values given in Table I. (1— Cf’)n 1.826
Aa=c In(T) +Aa;. (16)

critical point, the polymer concentration in the concentrated! NiS equation was used to draw the curves shown in Fig. 7.
polymer phase is seen to be fairly well predicted by thel he values of the fitting parameters and the correlation co-
Flory—Huggins curve. However, in the low-polymer concen-€fficients for different chain lengths are given in Table I.
tration phase, the polymer concentrations are far higher thaf?Nc€ we have the functional fit to the binodal, the volume
predicted by Flory—Huggins theofgee Fig. 6b)]. For ex- fraction at the critical point follows from the minimum in
ample, fora;; = 25 the simulations give a polymer fraction of A&(¢), which occurs at

2x 10 2, whereas the mean-field value i<80 °. This is

not surprising, as the mean-field approximation greatly un- (1—¢)"= ¢, (17)
derestimates the stability of the polymer chains in the diluteand which can be solved numerically.

regime. . ) i To arrive at a completely closed expression for the bin-
Binodal curves were simulated for a series of chaingya) cyryves, we will derive functions describing the depen-

lengths, ranging from=1 up to 150. In all cases we used yonce of the fit parameters in Table | on the chain lemgth

a;;=25.0. The symbols in Fig. 7 show the results of thesqyq giart by considering the relationship between the critical

simulation runs. In order to arrive at closed expressions Wi ume fractiong, and the chain length. The mean-field
derived equations that give a good fit of the simulated dataexpression forp i‘;
Cc

These curves are also shown in Fig. 7. Below, we explain
how they were calculated.

Forr=1 the binodal curvéla(x) is a symmetric func- bo= 1
tion of x=In((1— ¢)/¢), and a power-law in this coordinate © 42

gives a very accurate description of the simulation data. We . . ) , ,
find By generalizing this expression and imposing the exact con-

dition that .= 1/2 atr =1, we can fit¢. to the function

(18

C2

In(% +cC3, (15 b

C X"
with ¢,=0.5159+0.0038, c¢,=1.8259-0.0035, andc, 2b=1+r
=7.569+0.014. (Surprisingly, the powec, is less than 2.  We then find thab=1.53+0.09 andx=0.38+0.01. Com-
The correlation coefficient of this fit iR2=0.999973, and bining Egs.(18) and (17), we get a closed functional form
Fig. 7 also shows that the fit is excellent down to the criticalfor n

Aa=c,

(19

point.
For longer chain lengths &1) we introduce a variable b
n which depends on the polymer chain length, and we now In—x
fit the binodal curve to the functioma(x), where x n= 2b—1+r (20)

=nIn(1-¢)—In(¢). This gives a four-parameter fit; How- b—1+r*

ever, the fitting parameters appear not to be completely in- |nm

dependent, and the errors become very large. We therefore

fixed the power, at the value given above, resulting in the When we separately fit the data foto this expressiofiasn
following three-parameter fit function: was the actual parameter in our fits, and @g), we find
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b=1.36+0.09 andx=0.36x0.01. It should be noted that

has also been fitted by a power-lawrofn~r%439, but the

worse quality of that fit rules out a simple power-law for 36
on the basis of our data, in favor of E@®O).

The mean exponent=0.37+0.01 that we find from the
simulated data can be compared with several experimentag 34
and simulation studies. Dobasht al??> measured coexist-
ence curves for polystyrene—methylcyclohexane mixtures s
which give a valuex=0.39. Shinozakiet al® reported a & 32
value of x=0.46 for polystyrene—propylbenzene mixtures.
Simulations of lattice polymers have yielded values for this
exponent in the range 0.27—-0.38. Mackieal 2* reported an 3
exponent ofk=0.32, although this value increases to 0.35 if
they only consider their longest chain length simulations. 2
Wilding et al?® foundx=0.37 and Yaret al?® reported that
x=0.27. Finally, Panagiotopoulost al?’ found a valuex , _
=0.38. Our exponent clearly falls within the range of values-FIG-' 8. Inverse temperature as a function . Each pair of symbols

' - . - . indicates the end points of the line segment for one experimental polymer
found in the lattice simulations. The FIOfy—HUgglnS €XPO-sample. The curve is an overgfower-law fit.
nent x=0.5) very clearly falls outside this range of values.

We still need to consider the parameterand Aa, in
Eq. (16). The former parameter is well described by a power- , . ,
law of r. Forcing this expression through its=1 value, We analyz_ed the e4xper|mental data for eight different mo-
which is our most accurate result, we obtain lecular Welghts_ (_10 M, =1.02, 1.73, 2.02, 3.49, 4.6_4, 10.9,

18.1, 71.9. Defining a parametg8= 1000, whereT is the
—0.5159 ~0-751(4) o1 coexistence temperature, we mapped the experimental data
=0 ' 2D points B(¢,M,,) onto Aa(¢,r). For each molecular weight
Finally, for Aa, we try a functional form that is similar to we fitted the experimental binodal to the function
that of the mean-field expression for the critical Flory—

Huggins parametey, B=\Aa+pu, (25)
2 whereAa is the function given in Eq(24), and where\, u,

X :E 1+ i 22) andr’ are fitting parameters. For each molecular weight this
€2 rirz) gives a linear relation betweefi and Aa, which is valid

over a small range of temperatures. These results are col-
Yected in Fig. 8. Different symbols indicate the end points of
the line segments for one particular binodal, calculated for

but we replace the powers 1/2 and 2 by free parameter
Forcing this fit through the =1 result Aa,=7.569), we

obtain the lowest and highest temperature available for that particu-
— 0.446(9),1.75(2) Iar_ polymer sar_nple. The_ curve is an overall fit to thes_e

Aa :7_565(1“ j 23) points. Theoret_lcally _aII line segments should fall on this

¢ 2 mean curve. It is obvious that only the result for the highest

molecular weight(the lowestAa) has a slope that differs
considerably from the mean; all other experiments are rea-

critical repulsionAa,=2.25, which is a 31% larger value bl istent. Th ts th .
than predicted by mean-field theory. The fact that for infinite>CNapPy CONSISIENL. The curve Now represents the mapping
between temperature and excess repulsion; it is given by

chain length we do not recover the scaling behavior pre-
dicted by Flory—Huggins theory indicates that there is a
qualitative difference between a polymer—solvent mixture ~B=(1.64+0.03Aa%"%%% (26)
and a binary polymer blend, which was simulated by Es-  paying determined the relationship between the tem-
cobedo and de Pafoand which only deviates from the heratyre and the excess repulsion parameter, the chain length
simple scaling lawT.~N for finite N. o r remains as the only free parameter to fit E2¢) to the
The closed expression for the binodal is finally found by experimental data. The result of this fit is shown in Fig. 9. A
combining the previous results, which lead to good agreement is found between the experimental data and
the simulated expression for the binodal curves. Figure 10
Aa=0.516 "%"InIn(1— ¢)—In(¢)|+8%° shows the values af that were found in the fitting proce-
044 1. dure. The chain length should scale linearly with the mo-
T2.25 L MR (24) lecular weight of the polymer samples. We find a relation-
Equation(24) enables us to compare the simulations di-shipr« M&V'l?’, which is reasonably consistent with the actual
rectly with experimental binodal curves. We have used thenolecular weight. The sample with the largest molecular
phase equilibrium data of the  polystyrene— weight again does not agree very well with the other data
methylcyclohexane system given in Ref. 22 for this purposepoints.

Equation(23) predicts that for —oo we will find an excess
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In addition to monomer—monomer mixtures, we
have simulated the phase behavior of polymer—solvent
mixtures. In order to equilibrate such systems it was
necessary to develop a new “identity change” Monte Carlo
move. Our simulation method can also be used for models
with a different type of pair potential, as long as the
monomers and solvent particles are of the same, or at
least similar, size. We demonstrated the potential of this
approach for polymer chains up to 150 segments, although
this chain length is certainly not an upper limit. A straight-
forward application of Flory—Huggins theory gives only
a rather poor description of the simulation results. The
critical point is underestimatey ~30%) and the polymer

o volume fraction in the low-polymer phase is underestimated

_ _ o _ _ by several orders of magnitude. One reason for these

FIG. 9. Comparison of the fit function given by E@4) with experimental discrepancies could be that a Flory—Huggins segment does
phase coexistence data for the polystyrene—methylcyclohexane system

taken from Ref. 22. The polymer molecular weights are given in the textNOt correspond exactly to one monomer in our model.
All curves were fitted using the same mapping betw&emdAa. However, this can certainly not explain fully the differences
between theory and simulation. The main reason for the
failure of Flory—Huggins theory is that the mean-field
V. CONCLUDING REMARKS approximation does not give an appropriate description of
) ) the system. Of course, one does not expect mean-field to be
In this paper we have presented Gibbs ensemble Montgq, ract for the very low polymer concentrations that occur in

Carlo simulations fo investigate the phase behavior of,q simulations, where the polymer chains become collapsed
systems with soft potentials such as those that ariobules

used in the DPD simulation technique. As a first-order
approximation it is possible to interpret the behavior of
such systems in terms of a Flory—Huggins parameter
that is proportional to the repulsion parameter differefee

1000/ T [K ]

We have fitted a master equation that describes the
simulated data for all chain lengths. Such a fit function is a
useful tool when one wants to compare the simulations with

. : . experimental data. We illustrated how such a comparison can
[Eq. (9)]. This approach was first suggested in Ref. 5 as e made with solubility data for polystyrene in methylcyclo-

way to bri th tween m ic DPD simulation . . ;
ay to bridge the gap be een Mesoscopic Simuliatio ﬁexane. The experimental binodal curves can be fitted very
and real systems with experimental parameters. We have

shown in this paper that the above definition yfagrees weII_ for each indivio'lual molegular weight,. although  the
reasonably well with the free energy difference between calmg of t_he the chain length with the experimental molecu-
monomer surrounded by solvent particles, and a solve gr weight is not perfect.. )
particle surrounded by solvent particles. However, near the olymer phase coexistence curves have been published
critical point the mean-field description of a monomer- o Significantly longer chain lengtheup to 1000 using

H 4,25,27 ; H
monomer mixture shows a clear discrepancy with simulatedPtice models that were simulated using
phase coexistence equilibria. the Gibbs ensemble and grand-canonical ensemble

methodologies. In a lattice model a solvent molecule
can simply be represented as an empty lattice site.
That makes it a lot easier to equilibrate the system by
growing chains on the empty sites. Vapor—liquid equilibria
of chain molecules have also been simulated using
continuous-space modelgup to 100 segments chain
lengtt?). It is of course possible to regard the vacuum as a
solvent, and then one can use the conventional CBMC
algorithm to grow the chains. To our best knowledge, this
paper presents the first results of simulations of the phase
behavior of polymer—solvent mixtures that take explicit
account of the solvent molecules.

1 1 11 1 1 1 1 1) l-
10000 le+05 1e+06
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APPENDIX

For a Gibbs ensemble witNg solvent particles and/

polymer chains we can write the following expression for the

canonical partition function:

Ng

>

_
Ng=0

1 1
3N 3N
Ng! AV MIAZYPY

Ng!
Ng! N&!

Gibbs__
NPT —

M

0

!
S L LY
M=o M'ITM'"1 Jo

X exp(— BPV)) dev” exp(— BPV!)
0
x [ dtrs [ arby e exp—pu'rt)

xfd(rb“gf d(rb)Ne exp(— U (")),
(A1)

wherer! represents the positions of all particles of type
(i=P or 9 in subsystemj and U! is the total energy of

subsystemj, which is a function of the coordinates of all
particles in that subsystefand consists of both the bonded
and nonbonded interactionsThis expression is similar to

the one given by Smit and FrenkR&and Greeret al.*! but

the segments in the polymer chains are not indistinguishable psw_

(as is the case for detached monomeT$e kinetic energy

of the system is accounted for by the de Broglie wavelengths
Ag and Ap of the solvent particles and polymer segments.
Following the procedure outlines in Refs. 30 and 31 we in-

troduce a pseudo-Boltzmann factef s
the distribution probability of the ensemble average

M!

M'tm™

In PGibb5=In< +N'InV'+N"In V"

I
S.
0 ||,>+ n
NLI NI

—BPV'—=pPV'—pU'-pu". (A2)

We consider a move in which the system undergoes a tran-

sition from configurationa(Na,Ma,NtS’,Mb) to configura-

tion B(N&—r, M?+1, Ng+r, MP—1) by transferring a
polymer chain from box Il to box I, and solvent particles
from box | to box Il. The probability of this transition is
proportional to

P 5= Ng M'INgI M1 x pmovex pool

% Pi‘?sertiorb< PSibbSX Picﬁ* (A3)

where PMV¢=1/2 is the probability that a polymer chain is
moved from box Il to box I(rather than vice vergaP?; is
the acceptance criterion for this moveP®=1/M" is the
probability of choosing one specific polymer chain from box
I, PINseNis the probability to select a given conformation
for the chain that is inserted into box |

T R .
Plcr:sertlonzm ,]']2 P§(|) (A4)
e

and
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. Ng! M!
Gibbs____S"_ ¢ xexp(N'InV'+N"InV"
NEING! MM
- BPV'=gPV'—gU! — pul). (A5)
For the reverse move we can write

Pge=(Ng=n)!(M'+1)I(Ng+r)I(M"—1)!

pol insertiol Gibb: ac
X Pmovex pEIx PRSerionk prbtS P (A6)

where P%"'z 1/(M'+1), the probability to select the right
conformation for the chain is

_ 1

Plnsertlon: PSI A?

g Ng+r le o) (A7)

and

Gibbs_ Ns! % M!

P NGNS (MY 1)1 (M= 1)
Xexp(N'InV'+N"InV"'— gPV'— gPV!
~BU=BUp). (A8)

In order to satisfy the condition of microscopic reversibility,
P.s=Pg., the acceptance criterion must obey the following
relationship:

ac Id
Pas B

pac

M"Ng
X
(M'+1)(Ng+r)  Wnew

X exp — BAU).

(A9)

In this equatiomM U is thetotal energy difference due to the
Monte Carlo move, which includes both the bond energy of

which represents  he polymer chain and the repulsion energy =U'™P

+UP). By introducing

W
=— 5 : (A10)
I, exp(— BUP(ri_4;))
we can also write EQLA9) as
IFNL
Ph, (M'+1)(Ng+r) Qo
X exp(—BAU™P), (Al

This last equation more clearly shows the similarity with the
acceptance criterion used in a conventional CBMC algo-
rithm.
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