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computer time dependencies that are typically of the order n™
where n is the number of basis functions and m is 7 or 8.

7 CLOSING REMARKS

This account is presented as a brief overview of the field
of QMC for the electronic structure of atoms and molecules.
The attempt has been made to provide a broad cross section
of references to enable the interested reader to have access to
more extended literature than present space limitations permit.
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tional Applications; Density Functional Theory (DFT), Har-
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1 INTRODUCTION

Since the work of van der Waals it has been known
that leng-range attractions and short-range repulsions between
spherical particles are sufficient to explain a vapor-liquid
phase transition. Computer simulations have shown that short-
range repulsions between spherical particles are responsible for
freezing and melting.! Since in real fluids in which the atoms
resemble spherical particles that have short-range repulsions
and long-range attractions one also can observe these three
phases {gas, liquid, and solid), such a fluid is often called a
simple fluid.

There are, however, a significant number of systems that
can not be described using simple spherical particles with long-
range attractions. Typical examples are elongated molecules
that can form liquid crystalline phases or surfactants that
can form various sorts of micelles or vesicles. Compared to
simple fluids, the phase behavior of these fluids can be very
complicated and therefore these fluids are often calied complex
fluids.

Since the conventional simulation technigues such as mole-
cular dynamics (see Molecular Dynamics and Hybrid Monte
Carlo in Systems with Multiple Time Scales and Long-range
Forces: Reference System Propagator Algorithms; Molec-
ular Dynamics: Simulations of Nucleic Acids; Molecular
Dynamics: Studies of Lipid Bilayers; and Molecular Dynam-
ics: Techniques and Applications to Proteins) and the Monte
Carlo technique (see Monte Carlo Simulations for Liquids
and Monte Carlo Simulations for Polymers) are equally valid
for simple and complex fluids, one may wonder whether a
simulation of a complex system is simply changing the force
fields and potential. In some cases it may indeed be as simple
as that, in particular if the computers are powerful enough to
deal with these more complex systems in a reasonable amount
of time. For some problems, however, the increase in com-
puter time can be prohibitively large; it may take many years
of super-computer time before a calculation is finished. For
these types of system it is important that novel algorithms
will be developed.

Let us illustrate the above with a specific example. Al-
though this example is strongly application driven, the con-
clusions are equally valid for more fundamental problems in
simulations of complex fluids. There is considerable interest
in studying the adsorption of alkanes in the pores of a zeolite.
Zeolites are microporous materials which are used as catalysts
in petrochemical applications (see Zeolites: Applications of
Computational Methods). A prerequisite for an understand-
ing of the catalytic activity of these zeolites is a knowledge
of the behavior of the molecules adsorbed in their narrow
pores. Since this type of information is extremely difficult
to obtain experimentally, simulations appear to be an atirac-
tive alternative.? Indeed, over the last decade many simulation
studies on the behavior of molecules in zeolites have been pub-
lished (for a review see Ref. 3). A more careful look at these
studies reveals that most simulations concem the adsorption
of noble gases or methane, only a few studies of ethane or
propane have been published. In petrochemical applications of
zeolites, however, we are interested in the behavior of much
longer alkanes such as octane and decane.,

The reason why only small molecules have been studied
becomes clear from the work of June et al.* and Hernéndez
and Catlow,’ in which molecular dynamics simulations were

used to investigate the diffusion of butane and hexane in the
zeolite silicalite. June et al. showed that the diffusion of b ne
from one channel of the zeolite into another channel is .y
slow compared with diffusion of bulk butane. As a conse-
quence many hours of super-computer time were required to
obtain reliable resuits. In addition, since the diffusion coef-
ficient decreases significantly with increasing chain length,
extrapolation of these results suggests that many years of
super-computer time would be required to obtain comparable
resuits for the longer alkanes.

The above exampie illustrates one of the main limitations
of molecular dynamics: in such a simulation, the approach
is to mimic the behavior of the molecules as realistically as
possible. If successful, all properties will be like in nature,
including the diffusion. If the molecules diffuse slowly this
will be reflected in very long simulation times and in the case
of long chain alkanes these simulation times turn out o be
much longer than we can currently afford. In principle, one
can circumvent this intrinsically slow dynamics by using a
Monte Carlo technique. In a Monte Carlo simulation one does
not have to follow the ‘natural path’ and one can, for example,
perform a move in which it is attempted to displace a molecule
to a random position in the zeolite. If such a move is acc: 4,
it corresponds to a very large jump in phase space.

Again, utilization of this type of unnatural Monte Carlo
move turns out to be limited to small molecules. For example,
Goodbody et al.® have used this Monte Carlo trick to deter-
mine the adsorption isotherms of methane in a zeolite. [n such
a simulation one can observe that out of the 1000 attempts to
move a methane molecule to a random position in the zeolite-
999 attempts will be rejected because the methane molecule
overlaps with a zeolite atom. If we were to perform a similar
move with an ethane molecule, we would need 1000 x 1000
attempts to have one that was successful. Clearly, this random
insertion scheme will break down for any but the smailest
alkanes.

The above example, the adsomption of chain molecules in
the pores of a zeolite, is used to iltustrate the problems that
may occur if one uses conventional simulation technigues for
more complex systems. Similar problems may occur in the
simulation of phase equilibria of chain molecules, simulations
of polymers, or liquid crystals. For many of these systems
it is relatively straightforward to implement the force fi~lds
to simulate these systems; however, the simulation 28
required to determine reliable equilibrium properties may be
prohibitively long. These simulation times may even be so
extreme that it cannot be expected that increasing computer
power will be of any help. To be able to perform simulations
on complex systems it is therefore important ta develop novel
algorithms that are orders of magnitude more efficient than
the conventional algerithms. In this article such algorithms
are discussed.

2 SIMULATION TECHNIQUES

To make Monte Carlo moves of long chain molecules possi-
ble, Siepmann and Frenkel’ developed the configurationai-bias
Monte Carlo technique for lattice models. This technique is
based on the early work of Rosenbluth and Rosenbluth® and
Harris and Rice.” This technique has since been extended to
continuum models by Frenkel et al.!% and de Pablo et al.!!
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The starting point for configurational-bias Monte Carlo is
the scheme as introduced by Rosenbluth and Rosenbluth in
1954.% At first sight, this may not appear to lead to a new algo-
rithm but to a very old one. The original Roseabluth scheme
itself was designed as a method to sample polymer conforma-
tions. However, it suffers from the drawback that it generates
an unrepresentative sample of all polymer conformations, i.e.,
the probability of gererating a particular conformation using
the Rosenbiuth scheme is not proportional to its Boitzmann
weight. Rosenbluth and Rosenbluth introduced the weight W
to correct for this biasing in the computation of thermal aver-
ages. Batoulis and Kremer!? have shown that this correction
procedure only works for relatively short chains, The solution
of this problem is to bias the Rosenbluth sampling in such
a way that the correct (Boltzmann) distribution of chain con-
formations is generated in a Monte Carlo sequence. In the
configurational-bias scheme, the Rosenbluth weight is used to
bias the acceptance of trial conformations that are generated
with the Rosenbiuth procedure. If one were to use the ordinary
Metropolis acceptance rule, such a bias in the configurations of
the molecules would lead to an incorrect distribution of config-
arations. Frenkel et al.!® have shown that by using acceptance
with the Rosenbiuth weight this bias can be removed exactly.
As a consequence, all conformations are generated with their
correct Boltzmann weight. This removes the main drawback
of the original Rosenbluth scheme,

2.1 Beyond Metropolis

The general idea of biased sampling is best explained by
considering a simple example. Let us assume that we have
developed a Monte Carlo scheme that allows us to generate
trial configurations with a probability that depends on the
potential energy of that configuration:

w(o — n) = f[Un)]
For the reverse move, we have
a(n — o) = f[H(0)]

Suppose we want to sample the N, V, T ensemble, which
implies that we have to generate configurations with a Boltz-
mann distribution:

N} o exp[~pli(n)] (1}

To prove that the correct distribution is sampled, we have to
demonstrate that detailed balance is obeyed

K(o—n)=K(n - 0) (2)

where K{o — n) is the flow of configuration ¢ to n. This
fiow is given by the product of the probability of being in
configuration o, the probability of generating configuration n,
and the probability of accepting this move,

K(o — n)} = Mo) x alo — 0) x acc(o — n) £3)

If we impose detailed balance, we get as a condition for the
acceptance rule,

acc(o — l'l) _ f{U(n)] exp{ W.B{M(n) —u{o)]}

acc(n ~» o) f{U(o)]

A possible acceptance rule that obeys this condition is

fidn)]
" fiuio)]

This derivation shows that we can introduce an arbitrary
biasing function f (1) into the sampling scheme and generate
a Boltzmann distribution of configurations, provided that the
acceptance rule is modified in such a way that the bias is
removed from the sampling scheme. Ideally, by biasing the
probability of generating a trial conformation in the right way,
we could make the term oa the right-hand side of equation (4)
always equal to unity. In that case, every trial move will
be accepted. Sometimes it is possible to achieve this ideal
situation;'? however, in general, biased generation of trial
moves is simply a technique to enhance the acceptance of
such moves without violating detailed balance.

We now illustrate the use of non-Metropolis sampling
techniques to demonstrate how they can be used to enhance
the efficiency of a simulation of a system containing chain
molecules.

acc(p — n) = min (l exp{—pliir) — U(D}”) (4}

2.2 Configurational-bias Monte Carlo
2.2.1 lLarice Models

The configurational-bias Monte Carlo algorithm consists of
the following steps:

1. Generate a trial conformation using the Rosenbiuth scheme
to grow the entire molecule, or part thereof, and compute
its Rosenbluth weight W(n).

2. ‘Retrace’ the old conformation and determine its Rosen-
bluth factor, W{o).

3. Accept the trial move with a probability

acc{o — n) = min{l, W(n)/W(o0)} {5)

The generation of a trial conformation n of a polymer consist-
ing of £ monomers is generated using an algorithm based on
the method of Rosenbluth and Rosenbluth {see Figure 1):

1. The first atom is inserted at random, and its epergy
is denoted by wuj(n), and the Rosenbluth weight of the
first segment by wy(n) = kexp[—Pu, (n)], where k is the
coordination number of the lattice, for example, & = 6 for
a simple cubic lattice. (The factor & in the definition of the
Rosenbiuth weight of the first segment, strictly speaking,
is unnecessary. We introduce it here only to make the
subsequent notation more compact.)

2. For the next segment, with index |/, there are k possible
trial directions. The energy of trial direction j is denoted
by u;(j). From the & possible directions, we select one,
say, n, with a probability

exp{ P ()]

pi(n) = i) )
where w;(n) is defined as
k
wi(n) =y exp{~Bui(j)] (7
f=1

}

The interaction energy u;(J) includes all interactions of
segment { with other molecules in the system and with
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Figure 1 Skeich of the configurational-bias Monte Carlo scheme. The left figure shows the generation of a new configuration and the right
figure shows the retracing of the old conformation. The arrows indicate the three trial positions

segments | through { — 1 of the same molecule. [t does
not include the interactions with segments i+ 1 to £
Hence, the total energy of the chain is given by U(n) =
Yol win).

3. Step 2 is repeated until the entire chain is grown and we
can determine the Rosenbluth factor of configuration n:

¢
Wn) = [ ] witn) (8
i=|

To determine the Rosenbluth factor of the old configuration,
W(o), we use the following steps (see Figure 1).

1. One of the chains, say o, is selected at random.

2. We compute the energy of the first monomer u)(0) and its
Rosenbluth factor w)(0) = k exp[—Bu, (0}].

3. To compute the Rosenbluth weight for the remainder of
the chain, we determine the energy of monomer [ at its
actual position, and also the energy it would have had
it been placed in any of the other £ — | sites neighboring
the actual position of monomer { — 1 (see Figure 1). These
energies are used to calculate

3
w;(0) = expl—Pu; (0)] + 3 _ exp{—Bui( /)]

j=2

4. Once the entire chain has been retraced, we determine its
Rosenbluth factor:

¢
Wio) = H wi{0) (9)
P=t

Finally the trial move from o to n is accepted with a probability
given by

acc{o — n) = min[f, W(n)/W(o}] (1M

We now have to demonstrate that the acceptance rule (1)
correctly removes the bias introduced by using equation (6)
of generating new segments in the chain.

The probability of generating a particular conformation n
follows from the repetitive use of equation (6):

4

a(o—>n}=H

i=|

exp[~Pui(n)] _ exp[—Bum)]

w, (1) W{n) ab

Similarly, for the reverse move,

a{n%o}zw {02

The requirement of detailed balance (2) imposes the following
condition on the acceptance criterion

acc(o — n) _ W(n) (13)

acc(n —» 0) - Wi{o)
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Clearly, the proposed acceptance criterion (10) satisfies this
condition.

It should be stressed that the vaiue of factor W{o) depends
on the direction in which the old configuration is retraced:
if we start from monomer 1, we find a different numerical
value for Wio) than if we start from monomer £. As a
consequence the probability of such a move depends on the
way the factor W(o) has been caleulated. Although such a
dependence is at first sight counterintuitive, both ways of
retracing the old conformation - starting with monomer 1 or
with monomer £ - result in the correct distribution of states,
as long as both ways occur with equal probability during the
simulation. This is automatically satisfied in the case of linear
chains of identical segments where the labeling of the terminal
groups is completely arbitrary.

2.2.2 Off-lattice Case

Next we consider configurational-bias Monte Carlo for off-
lattice systems. An important point that we have to consider
is the way in which trial conformations of a chain molecule
are generated. In a lattice model, the number of trial con-
formation is dictated by the lattice. In an off-lattice system,
one could generate trial segments with orentations distributed
uniformly on a unit sphere. However, for many models of
interest this procedure is not very efficient, in particular when
there are strong intramoiecular interactions (e.g., bending and
torsion potentials). The efficiency of a configurational-bias
Monte Carlo algorithm depends to a large extent on the
method used of generating the trial orientations. For exam-
ple, an isotropic distribution of trial directions is well suited
for completely flexible chains. In contrast, for a stiff chain
{e.g., liquid-crystal forming polymer), such a trial position will
almost always be rejected because of the intramolecular inter-
actions.

From the preceding discussion, it follows that the intramole-
cular interactions should be taken into account in generating
the set of trial conformations. Here, we consider the case of
a flexible molecule with contributions to the internal energy
due to bond bending and torsion. The fully flexible case
then follows trivially. Consider a chain of £ linear segments,
the potential energy of a given conformation {f has two
contributions:

i. The bonded potential energy &4* is equal to the sum of
the contributions of the individual joints. A joint between
segments { and { +- [ (say) has a potential energy u®™ that
depends on the angle 8 between the successive segments,
For instance, uf™ () could be of the form uP®™ (8 )=ky (6 —
B0)%. For realistic models for polyatomic molecules, u?*"
includes all local bonded potential erergy changes due to
the bending and torsion of the bond from atom i — 1 to
atom I.

2. The external potential energy L*** accounts for all inter-
actions with other molecules and for ajl the nonbonded
intramolecular interactions. In addition, interactions with
any external field that may be present are also included in
ue)&t'

In what follows we shall denote a chain in the absence of
the external interactions as the ideal chain. Note that this is a
purely fictitious concept, as real chains always have nonbonded
intramolecular interactions.

To perform a configurational-bias Monte Carlo move, we
apply the following ‘recipe’ to construct a conformation of a
chain of € segments. The construction of chain conformations
proceeds segment by segment. Let us consider the addition
of one such segment. To be specific, let us assume that we
have already grown i — | segments and are trying to add
segment i. This is done in two steps. First we generate a trial
conformation n, next we consider the old conformation o. A
trial conformation is generated as follows:

1. Generate a fixed number (say k) trial segments. The
orientations of the trial segments are distributed according
to the Boltzmann weight associated with the bonded
interactions of monomer / (™). We denote this sel of k
different trial segments by

{bhe = {by. ... bt

where the probability of generating a trial segment b is
given by

exp[—Bul®™()]db

p::\and(b)db =
fdbexP{—ﬁU?""d(b)]

= C exp{—Bul™(b)]db (14)

2. For all k trial segments, we compute the external Boliz-
mann factors exp{—fuf*(b;)], and out of these, we select
one, dencted by n, with a probability

exp[—Puf* (by)]

P by} = W) (15
where we have defined
k
wi(n) = Y _ exp{—Pu (b;)} (16)

j=1

3. The selected segment n becomes the /th segment of the
trial conformation of the chain.

4. When the entire chain is grown, we calculate the Rosen-
biuth factor of the chain:

:
wny = [ wi e an
i=
where Rosenbluth factor of the first monomer is defined by
wi(n) = kexp[—Pui™ (r)] (1%
where r; is the position of the first monomer.

For the old configuration, a similar procedure for calculating
its Rosenbluth factor is used.

1. One of the chains is selected at random. This chain is
denoted o.

2. The external energy of the first monomer is calculated.
This energy involves only the external interactions. The
Rosenbluth weight of this first monomer is given by

wi™(0) = kexp[—Pui™(0)] (19

3. The Rosenbluth factors of the other € — 1 segments are
calculated as follows. We consider the calculation of the
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Rosenbiuth factor of segment i. We generate a set of
k - | orientations with a distribution prescribed by the
bonded interactions (14), These orientations, together with
the actual bond between segment —1 and ¢, form the set
of k orientations (b,. &}. These orientations are used to
calculate the external Rosenbluth factor:

k
wito) =y exp(—Bui™(b;)] (20)

j=1

4. For the entire chain the Rosenbluth factor of the old
conformation is defined by

¢
W0) = [ [ wi*(0) @
f=1

After the new configuration has been generated and the Rosen-
bluth factor of the old configuration has been calculated the
move is accepted with a probability

acc{o — n) = min[1. W {n)/ W (0)] (22)

In Ref. 13 it is demonstrated that this algorithm samples the
desired distribution.

3 APPLICATIONS

Here the use of the CBMC technique is illustrated with
some examples of practical relevance.

3.1 Adsorption of Alkanes in Zeolites

In the introduction we have used the adsorption of mole-
cules as an example to itlustrate the type of problem one can
encounter in simulating systems that exhibit slow diffusion.
Smit and Siepmann have used the configurational-bias Monte
Carlo technique to study the energetics and siting of alkanes in
the zeolites silicalite and mordenite.!*!® In these simulations
alkane molecules are medeled with a united atom model,
te., a CH;y and a CH; group are considered as a single
interaction centre and the zeolite is modeled as a rigid crystal.
The zeolite -alkane interactions are assumed to be dominated
by dispersive interaction with the oxygen atoms, which are
described with a Lennard-Jones potential. A closely related
technique was used by Maginn et al.*¥® Figure 2 shows that the
simulations of Smit and Siepmann and Maginn et al. predict
heats of adsorption of the longer chain alkanes in silicalite
that are in good agreement with the experimental data and the
simulations of Bigot and Peuch.?

From the simulations, we can determine the distribution of
the alkanes over the channels. In Figure 3 the distribution of
butane and dodecane is shown graphically. It is interesting to
compare the probability disiribution of butane with the one of
dodecane. Whereas the plots of butane show an equal density
of points in the straight and zig-zag channels, dodecane has a
significantly lower probability of being in the zig-zag channels.
In a sense, silicalite becomes more and more ‘unidimensional’
with increasing length of the hydrocarbon.

Simulations can also be used to determine adsorption
isotherms. Adsorption isotherms are of practical importance
since they give information on the number of molecules
adsorbed in the pores of a zeolite as a function of the pressure

M | v 1 v T ¥ T Y T v Y
5 o |
Q
"
100 b ° )
B -]
£ )
2 2 °
& 50 o -
! [
- u Experiments :
e Qsim. (Smit ang Siepmann) |
: O sim. {(Maginn et at.) :
O M [ Y i i 3 " 1 2 3 2 i
0 2 4 6 8 10 12

N

o3

Figure 2 The heats of adsorption of the alkanes in silicalite as a
function of the total number of carbon atoms. The closed symbols are
experimental and the open symbois are simulation data from Maginn
et al.'® and Smit and Siepmann!*I3

of the reservoir. Adsorption isotherms are also of fundames
interest since they may signal phase transitions, such as cap-
illary condensation or wetting, of the fluid inside the pores. 13
For example, if a system exhibits capillary condensation, one
would measure a stepped adsorption isotherm with hysteresis.
Steps or kinks without hysteresis are occasionally observed
on flat substrates.'® Since the pores of most zeolites are
of molecular dimension, adsorbed alkane molecules behave
like a (pseudo) one-dimensional fluid. In a one-dimensional
system phase transitions do not occur and therefore one would
expect that for alkanes the adsorption isotherms are of type I,
i.e., do not show kinks or steps. If steps occur, they are
usually attributed to capillary condensation in the exterior
secondary pore system formed by the space between differ-
ent crystals.2? For silicalite, adsorption isotherms have been
determined for various n-alkanes: for the short-chain alkanes
(methane -pentane) the isotherms are indeed of type 1, also for
decane a type I isotherm is observed. For hexane and heptane,
however, a kink or step is observed.

Adsorption isotherms are conveniently determined from
simulations in the grand-cancnical ensembie. In this ense—
ble the temperature and chemical potential are imposed, .
the number of particles is allowed to fluctuate. Adsorption
isotherms of alkanes in silicalite have been simulated by Smit
and Maesen.?! The simulated adsorption isotherms for hex-
ane and heptane are shown in Figure 4. The agreement of the
simulation results with the experimental data is good at high
pressures, but at low pressures deviations exist which indi-
cate that the zeolite-alkane model may be further improved.
It is interesting to note that for heptane both the experiments
and the simulations show a step at approximately half the
loading. Also for hexane detailed inspection of the calculated
adsorption isotherm shows a kink at this loading. Since the
simulations are performed on a perfect single crystal, these
deviations from the type I isotherm must be due to a transi-
tion of the fluid inside the pores and cannot be attributed to
the secondary pore system.

Smit and Maesen attribute this transition to a commensurate
‘freezing’ in the channels of a zeolite. The length of a hexane
molecule is of the order of the length of the perod of
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Figure 3 Distribution of butane (top} and dodecane (bottom) over the various channels of silicalite. At regular intervals during the simalations,
the end-to-end vector of the alkane molecule is calculated and depending on its orientation a color is selected: blue for the intersection, grey
for the zig-zag charnel, and magenta for the straight channel, and a dot in the selected color is drawn at the position of the center of mass of
the molecule. The density of the dots is a measure of the probability of finding an alkane in a particular section of the zeotite. The left figures
are projections on the side plane and the right figures projections on the top plane

the zig-zag channel. At low chemical potential, the hexane
molecules move ‘freely’ in these channels and the molecules
will spend part of their time in the intersections. If part of
the intersection is occupied, other molecules can not reside
in the straight channels at the same time. At high pressures,

almost all hexane molecules are exactly fitting into the zig-
zag channel, they no longer move freely and keep their nose
and tail out of the intersection. In such a configuration the
entire straight channel can now be tightly packed with hexane
molecules (see Figure 5). This may explain the plateau in the




MONTE CARLO SIMULATIONS FOR COMPLEX FLUIDS 1748

1.5
a
= 1.0 F o y
£ | g
£ oy
=z
05 F .
] ARichard and Rees
W Stach et al.
[ B simulations h
0.0 E - -
10° 10° 10" 10'

P [kPa]

T T T T T T T T T T
a
10 }F o -
a
CHE | a -
Egsp 0 .
Z o
A | ADubininetal _
- O ¥ Rakhmatkariev et al. |
o B simulations H
0.0 u..ul Y IPNYT IPIPPE NPT IWETET ST AP Erut 2

10° 10” 10* 10° 10

P [kPa]

Figure 4 Adsorption isotherms of hexane (left), and heptane (right), the closed symbols are experimental data and the open symbols the

results from simulations at T = 298 K

Figure 5 Hexane in silicalite: the left figure is at approximately half the maximum loading and the left figure is at almost maximum loading.
The figures are projections, the zig-zag channels are in the plane of the figure and straight channels are perpendicular to the plane of the figure.
The hexane molecules are represented by gray spheres and red/orange lines represent the zeolite framework

adsorption isotherm; in order to fill the entire zeolite structure
neatly, the hexane molecules located in zig-zag channels have
first to be ‘frozen’ in these channels. This ‘freczing’ of the
positions of the hexane molecules implies a loss of entropy
and will therefore only occur if the pressure (or chemical
potential) is sufficiently high to compensate for this loss.
Further experimental evidence for this commensurate freezing
of hexane and heptane has been found by van Well et al.2

3.2 Phase Equilibria of n-Alkanes

The Gibbs-ensemble technique was introduced by Panagio-
topoulos® as an efficient ool to simulate vapor-liquid phase
equilibria. In the Gibbs-ensemble scheme simulations of the
Hquid and vapor phases are carried out in parallel. Monte Carlo
rules which allow for changes in the number of particies and
the volume ensure that the two boxes are in thermodynamic
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equilibrium with each cther. Since the two boxes are not in
‘physical contact,’ there is no interface and the bulk properties
of the two coexisting phases can be obtained directly with a
surprisingly smail number of particles. This makes the Gibbs
ensemble extremely efficient for phase equilibrium calcula-
tions. The major limitaticn of the Gibbs-ensemble technique is
that one of the steps involves the exchange of particles between
the two boxes. For liquids consisting of smail molecules this
does not cause serious problems. However, for chain mole-
cules the probability of successful exchanges can become very
small. For example, under conditions where it takes approx-
imately 10 attempts per successful exchange of methane, it
takes of the order of 10°" attempts for an n-alkane with »
segments. Therefore, this technique is limited to systems con-
taining atoms or sntall molecules. However, by combining the
Gibbs-ensemble method with the configurational-bias Monte
Carlo, the method can be made to work for much longer chain
molecules.

Alkanes are thermally unstable above approximately 650 K,
which makes experimental determination of the critical point
of alkanes longer than decane (Cig) extremely difficult. The
longer alkanes, however, are present in mixtures of practical
importance for the petrochemical industry. In these mixtures,
the number of components can be so large that it is not
practical to determine all phase diagrams experimentally. One
therefore has to rely on predictions made by equations of state.
The parameters of these equations of state are directly related
to the critical properties of the pure components. Therefore,
the critical properties of the long chain alkanes are used in the
design of petrochemical processes, even if they are unstable
close to the critical point.® Unfortunately, experimental data
are scarce and contradictory, and one has to rely on semi-
empirical methods to estimate the critical properties.?

Siepmann et al.®2?® have used the combination of the
Gibbs-ensemble technique and configurational-bias Monte-
Carlo to simulate vapor-liquid equilibria of the n-alkanes at
conditions where experiments are not (yet) feasible. Phase dia-
grams are very sensitive to the choice of interaction potentals.
Most available modeis for alkanes have been obtained by fit-
ting simulation data to experimental properties of the liquid
under standard conditions. In Figure 6 the vapor-liquid curve
of octane as predicted by some of these models is compared
with experimental data. This figures shows that the models
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Figure 6 Vapor-liquid curve of octane: comparison of Gibbs-ense-
mble simulations using the OPLS model of Jorgensen and co-work-
ers,?” the model of Toxvaerd,?® and the model of Siepmann et al 2%

of Refs. 27 and 28 which give nearly identical liquid proper-
ties, yield estimates of the critical temperature of octane that
differ by 100 K. Siepmann et al.? used these vapor-tiquid
equilibrium data to improve the existing models.

In Figure 7 the critical temperatures and densities as pre-
dicted by the model of Siepmann et al. are plotted versus
carbon number. The simulations reproduce the experimental
critical points very well. There is, however, considerable dis-
agreement between the various experimental estimates of the
critical densities.

Much of our current knowledge of the critical properties
of the higher alkanes is based on extrapolations of fits of
the experimental data up to Cg. The most commonly used
extrapolations assume that the critical density is a monotoni-
caily increasing function of the carbon number, approaching
a limiting vatue for the very long alkanes.”? In contrast to
these expectations, the experimental data of Anselme et a}.®
indicate that the critical density has a maximum for Cg and
then decreases monotonically. The data of Steele (as reported
in Ref. 29), however, do not give any evidence for such a
maximum (see Figure 7). The simulations indicate the same
trend as that observed by Anselme et al. In this context, it is
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Figure 7 Critical temperature T, (left figure) and density p. (right figure) as a function of carbon number M., The open symbols are the
simulation data and the closed symbols are experimental data
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interesting to note that Mooij et al.’! and Sheng et al.*? used
Monte Carlo simulations to study the vapor-liquid curve of a
polymeric bead spring model for various chain lengths. These
studies also show a decrease of the critical density as a func-
tion of chain length. Such a decrease of the critical density
with chain length is a general feature of long chain molecules,
as has already been pointed out by Flory.

3.3 Liquid Crystals

In a liquid crystal the molecules have an orientational order
but do not have tramslational order: a liquid crystalline state
is therefore intermediate between a liquid and a solid. The
simplest liquid crystalline phase is the nematic phase and most
liquid crystalline materials have a nematic-isotropic phase
transition {see Figure 8). Because of the applications of liquid
crystals in, for example, displays, understanding the properties
of these materials is of considerable practical interest. For more
details on the physics and applications see Ref. 33.

In the introduction it is mentioned that short-range repul-
sions and long-range attractions between spherical particles
are sufficient to explain the existence of the solid, liquid, and
gas phases. Similarly, one can wonder what type of interac-
tions are required to have liquid crystalline phases. More than
50 years ago, Onsager was among the first to ask this ques-
tion. Onsager argued that infinitely thin hard rods have an
entropy driven isotropic-nematic phase transition. Later com-
puter simulations have shown that also other elongated hard
core potentials have liquid crystalline phases (for an extensive
review see Ref, 34),

Infinity thin hard rods can be considered as completely stiff
polymers; completely flexible rods can be considered as ideal
polymers. In contrast to thin hard rods, these ideal polymers do
not have liquid crystalline phases (compare the average orien-
tation of cooked spaghetti with uncooked spaghetti}. Therefore

chain flexibility is an imporiant parameter determining whether
or not a polymer has liquid crystalline behavior. Several the-
ories have been developed to predict whether a polymer is
sufficiently rigid to exhibit liquid crystalline behavior. Diik-
stra and Frenkel have used computer simulations to test these
theories,*

The polymer of Dijkstra and Frenkel consists of ten hard
spherocylinders with a fixed bond length [. (A spherocylinder
is a cylinder with fength L and diameter D with hemispher-
ical caps of diameter D at each end. For suitable values of
L/D a fluid of (monomeric) spherocylinders has liquid-crystal
phases - smectic and nematic phases.) The flexibility is deter-
mined by the bond bending potential

Upp = 58
where 8 is the bond angle. The constant C defines the stiffness,
or persistence length of the polymer:

-
P2 ket

For a completely flexible polymer we have {p =0 and for
[p — o the polymer is completely rigid.

Since the isotropic-nematic transition (see Figure 8) occurs
at relatively high densities, the CBMC scheme provides an
efficient scheme for generating new configurations of the poly-
mers. The results of the simulations are shown in Figure 9, For
various persistence lengths Dijkstra and Frenkel have calcu-
lated the coexistence densities of the isotropic and nematic
phases. In addition, comparison with theoretical predictions of
this transition shows that although the theories are qualitatively
correct the description of the nematic phase needs significant
improvements before quantitative agreement can be obtained.

Figure 8

Isotropic -nematic phase transition, in the smectic phase (right) the molecules have orentational order but do not show any long-range

translational order. In the isotropic phase (left) the ordentational order is lost (Figure by M. Dijkstra)
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Figure 3 The isotropic-nematic coexistence densities ¢ of flexi-
ble polymers for various persistence lengths I, The lines are the
predictions of various theories and the dots the results of computer
simulations

3.4 Mixtures of Colloids and Polymers

Thus far, the configurational-bias Monte Carlo scheme has
been presented exclusively as a method to generate conforma-
tions of chain molecules. In fact, the method is more general
than that. It can be used as a scheme to perform collective
rearrangements of any set of labeled coordinates. In fact, the
scheme can be used to carry out Monte Carlo moves to swap n
small particles within a volume AV with one large particle that
occupies the same (excluded) volume. This application of the
CBMC scheme has been exploited by Biben* to study mix-
tures of large and small hard spheres, Gibbs-ensemble simu-
lations of mixtures of spherical colloids and rod-like polymers
were performed by Bolhuis and Frenkel?’ using CBMC-style
particle swaps and a closely related approach was employed
by Dijkstra** (o study phase separation in mixtures of large
and small hard-core particles on a lattice.

Bolhuis and Frenkel are interested in simulating the prop-
erties of colloidal solutions. Examples of such solutions are
milk, paint, or mayonnaise. Since a single colloidal particle
may contain over 10° atdéms: it is not possible to model such
a pasticle as a collection of atoms. However, it is possible
to describe colloidal solutions using coarse-grained models.
For example, a suspension of silica spheres can be described
surprisingly accurately with a hard-sphere potential. Similasly
to the hard-sphere fluid, such a colloidal suspension has a
fluid-solid transition, but not a liquid-gas transition. Exper-
imentally, it is observed that a liquid-gas transition can be
induced by adding polymers to the suspension.

The effect of adding polymers is like having attractive
interactions between the colloidal particles. These effective
interactions occur even in systems that have only excluded
volume interactions and are therefore called entropic interac-
tions. To see this, consider a system of two colloidal particles
to which we add a polymer. We assume that this polymer
behaves like an ideal polymer except that it cannot overlap
with the colloidal particie, that is, the polymer and colloid
have excluded volume interactions. If the distance between the
colioids is large, the total entropic contribution of the poly-
mer is related to the total number of configurations of the
polymer minus those configurations that overlap with the first
colloidal particle and those that overlap with the second. Whea
the distance between the two colloidal particles is smaller than
the length of the polymer, the total entropy increases. I, for

such a system, we were to compute the entropy by subtract-
ing those configurations of the polymer that overlap with the
two colloids, we would count those configurations twice which
overlap with both colloids at the same time. This increase of
the entropy as two colloidal particles approach each other gives
rise to an effective attractive force between the particles. Sim-
ilar effects can be expected in mixtures of infinitely thin hard
rods and hard spheres. If these rods are sufficiently long, they
may induce a vapor-liquid like transition for the hard spheres.
Bolhuis and Frenkel have studied the phase behavior of a
mixture of hard spheres and hard rods. In particular, Bolhuis
and Frenkel used Gibbs-ensemble simulations to determine
the ‘vapor-liquid’ coexistence curve. In a Gibbs-ensemble
simulation one simulates two boxes that are kept in equilibrium
with each other via Monte Carlo rules. In this case the ‘gas’
box has as a low density of hard spheres and the ‘liquid’
box has a high density of spheres. Similarly to the phase
equilibrium calculation of linear alkanes, the exchange step,
in which particles are exchanged between the two boxes, is
the bottleneck of the simulation. For example, the insertion of
a sphere into the ‘gas phase’ would almost always fail because
of overlaps with some of the rods. Bothuis and Frenkel have
used the following scheme to make this exchange possible:

1. Select a sphere in one of the boxes at random and insert
this sphere at a random position in the other box.

2. Remove ail the rods that overlap with this sphere. These
tods are inserted in the other box. If these rods were
inserted at random, almost always one of the rods would
overlap with a sphere and such a move would be rejected.
However, if one tries several orientations and positions of
the rods and selects an acceptable configuration using the
configurational-bias Monte Carlo scheme one can make
such a move possible. During the insertion of the rods
one has to be careful that a detailed balance is obeyed
(for details see Ref. 37).

Because of this redistribution scheme of the rods during the
insertion step using the CBMC one can generate configurations
that do not have overlap. This allowed Bolhuis and Frenkel
to exchange spheres between the two boxes and obtain the
coexistence densities. The result of these Gibbs-ensemble
simulations is shown in Figure 10. The figure shows that if
one increases the fugacity? (chemical potential) of the rods and
hence the concentration of rods, a demixing cccurs in a phase
with a low density of spheres and in a phase with a high density
of spheres. (Experimental colloidal systems are usually in open
contact with a reservoir of rod-like particles, therefore Bolhuis
and Frenkel used the fugacity instead of the pressure.) If the
rods are fonger, this demixing occurs at a lower concentration.,
Important to note is that in this system the particles interact
with hard core interactions only. Therefore this demixing is
driven by entropy.

An interesting extension of this technique used by Bothuis
and Frenkel would be to biological systems. For example, if
one would like to make a large displacement of a part of a
protein, in vacuum this would be relatively easy to do. In
an agqueous solution, however, one has to remove the water
molecules that overlap with that part of the protein that has
been moved and the water molecules need to be redistributed.
This redistribution can be done with the scheme of Bolhuis
and Frenkel,
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Figure 10 Coexistence curves for a mixtuse of hard spheres and
rods as obtained by Bolhuis and Frenkel. The x-axis gives the density
and the y-axis the fugacity {chemical potential) of the rods. L/o is
the ratio of the tength of the rod and the diameter of the hard sphere

3.5 Parallel Monte Carlo Simulations

A completely different application of the CBMC ideas is
used by Esselink et al.* to develop an algorithm to perform
Monte Carlo simulations on parallel computers

When the size of the simulated system is necessarily large
or the simulation times are long, one would like to use as much
computing power as possible, for instance by using more than
one processor in parallel. This concept of increasing comput-
ing power by placing processors in parallel is not new. Due to
physical constraints, there is a theoretical speed lmit beyond
which no single processor will ever operate. The only way
to buiid faster computers still is by placing them in parallel.
Nowadays, there is a wide varety of vendors selling paral-
lel computers. The products differ in processor technology, in
the way communication between processors is handled, and
in the level of abstraction offered to the user or programmer.
Some users don’t want to ‘think parallel,” but rather prefer
the original sequential view of programming. In that case,
a sophisticated compiler, operating system or specific hard-
ware, needs to be able to cope with the parallel architecture.
Indeed, automatic parallelization is a large research area. How-
ever, ‘hand-coding' of parallelism so far often yields the best
resuits.

The molecular dynamics technique is well suited for par-
allel computations, since the necessary computations are the
same for all particles. We can use this natural parallelism
if during the computation each processor calculates the tra-
jectories of all particles that are assigned to this processor.
An alternative would be not to distribute parts of the sim-
ulation box, but to assign particles to processors. However,
this would imply communication between every pair of pro-
cessors, in order to look for close atoms. This is known to
perform poorly for large simulation systems and processor
networks.

Whereas molecular dynamics is very well suited for par-
alielism, paralle] Monte Carlo appears to be a contradiction
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Figure 11 The average energy of an alkane molecule in a zeolite
as a function of the number of processors. If the acceptance rules are
not corrected, a bias (dependence on the number of processors) in the
restlts is found®

in terms. Since the Monte Carlo procedure is an intrinsi-
cally sequential process, one has to know whether the current
move is accepted or rejected before one can continue with the
next move. The conventional way of introducing parallelism
is to distribute the energy calculation over various proces-
sots, or to farm out the calculation by performing separate
simulations over various processors. Although the last algo-
rithm is extremely efficient and requires minimum skills to
use a parallel computer, it is not a truly parallef algorithm.
For example, farming out a calculation is not very efficient if
the equilibration of the system takes a significant amount of
cpu time.

In the algorithm of Esselink et al. several trial positions
are generated in parallel and out of these trial positions the
one with the highest probability of being accepted is selected
with the highest probability. This selection step introduces a
bias which is removed by adjusting the acceptance rules. The
generation of each trial move, which includes the calculation
of the energy (or Rosenbluth factor in the case of chain mole-
cules), is distributed over the various processors. In Figure 11
the results of a typical simulation are shown, in this case the
average encrgy of a molecule as a function of the number of
processors of the computer, If the calculation is done correctly
the result should, of course, be independent of the number of
processors. The figure shows a bias in the results, i.e., a depen-.
dency on the number of processors occurs if the acceptance
rules are not corrected. This example illustrates the importance
of adjusting the acceptance rule; if the acceptance rule is not
used systematic errors are made.

4 CONCLUDING REMARKS

In this article we have discussed the configurational-bias
Monte Carlo scheme. In this method we combine tailor-made
algorithms to generate new configurations with an appropr-
ate acceptance rule. These acceptance rules are chosen so that
they remove a possible bias in the generation of these new
configurations. Here we have introduced this scheme in the
context of simulating chain molecules. Some examples are dis-
cussed in which this technique is many orders of magnitude
more efficient than the conventional Monte Carlo techniques
or molecular dynamics.
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1 BACKGROUND

Monte Carlo (MC} methods are used in many fields to
provide numerical solutions to multi-dimensional integrals
by random sampling of the integration variables. For many-
particle systems in classical statistical mechanics, the problem
focuses on solving the configurational integral that appears in
the averages for a property O (equations [ and 2).!

() = O +fQ(X)P(x>dx "
P(X)=exp(—ﬁE(X)}/fexp(#ﬁE(X))dX )

These equations are for the canonical NVT (constant number
of particles, volume, and temperature) ensemble where P(X)
is the Boltzmann factor, £(X) is the total potential energy, 8 =
1/kgT, and the integrals are taken over all possible geometrical





