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7.1
Introduction

In this chapter, we present an overview of various sirmulation techniques used to
study systems of particles that interact using classical force fields. In particular,
we focus on the molecular dynamics (MD) technique (Section 7.2), simulation
techniques to study rare events (Section 7.3), and the Monte Carlo (MC) technique
(Section 7.4). For a more detailed review of these topics, we refer the reader to
Refs. [1-8].

7.2
Molecular Dynamics

7.2.1
Introduction

In classical MD simulations, the system is treated as a set of N interacting atoms
(or molecules). The atoms are represented by spherical nuclei that attract and
repel each other depending on the distance. Their electronic structure is not
considered explicitly. After assigning point charges to each particle, the forces
acting on the particles are usually obtained from a combination of bonded and
nonbonded interactions. The motions of the atoms are calculated using the laws
of classical mechanics. Before starting a simulation, a model system is built
consisting all chemical components interacting in a simulation box. Just like any
real experiment, this system needs to be carefully prepared. It should be a realistic
representation of the system that is to be studied. The result of an MD simulation is
a trajectory of the positions and velocities of all N atoms in the system. If simulated
with an appropriate time step and for a sufficiently long time, thermodynamic
properties, time-dependent correlation functions, and transport properties can be
reliably calculated. The required length of the trajectory depends on the length scale
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of the system under study and the time scale needed for calculation of physical
parameters. Nowadays, the typical trajectory time in atomistic MD simulations
varies between few nanoseconds (ns) up to hundreds of nanoseconds.

The trajectory {positions and velocities as a function of time) is obtained from
solving a system of second-order differential equations that follow from Newton’s
second law, and can be written as

dr; ,
mqtizzé?pﬁzlzm i=1,2,...,N. (7.1)

Here i denotes the current particle, and m; and 1; the mass and the position of
this particle, respectively. The forces Fy; represent two-body interactions between
atom i and atom j. The forces Fey; due to external fields, for example, electric fields,
are added as extra terms. After determining these forces as functions of atomic
and molecular degrees of freedom, the equations of motion can be integrated. The
combination of all forces in the model, including van der Waals interactions and
electrostatic interactions, is called the force field. The choice of the force field is the
key to accurate results that appropriately reproduce the true physical phenomena
in the system. Popular force fields are, for example, TraPPE [9,10], CHARMM [11],
and AMBER [12]. Some force fields use a so-called united atom approach, in which
carbon atoms with attached hydrogen atoms are treated as a single interaction site.

The forces acting on the atoms are derived from the gradients of the potential
energy function,

F, = -vUu(), " (7.2)

where U is the total potential energy of the system and the vector r¥ represents
the positions of all N particles in the system. The force fields can be split
up into two contributions: nonbonded interactions between all nuclei and bonded
interactions between nuclei that are part of the same molecule. The nonbonded
interactions consist of the following terms: electrostatic interactions, van der Waals
interactions, and polarization effects. Polarization effects are the result of varying
electron densities; they cannot be described explicitly using force-field methods
that ignore electron dynamics. It is common practice to include them implicitly
in the van der Waals interactions as an overall effect. This leaves two terms for
the nonbonded interactions. The first type of nonbonded interactions corresponds
to dispersion or van der Waals forces. These are the interactions between atoms
that arise from (quantum) fluctuations of the electronic charge densities. Van der
Waals interactions are usually modeled using the Lennard—Jones potential,

12 6
uiry) = 4 [(%) - (%) } . (7.3)

In this equation, € represents the depth of the potential at the minimum (rmin =
2Y85) and r = o is the point at which u(r) = 0 (see also Figure 7.1). The term
4e012 /112 is due to the strong repulsion of atoms at short distances. The number of
interactions that needs to be computed can be reduced by neglecting all interactions
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Figure 7.1 The Lennard—|ones potential. Note that the axis
labels u/e and rj/o are dimensionless.

beyond a certain cut-off radius r,, which should not be too small (in practice,
feut = 2.50 is often used). This results in the so-called truncated and shifted
Lennard-Jones potential,

u(y) =1 [(%>1z‘(%)6_‘”cu‘ TS e (7.4)

0 r > reat

o \ 12 u 6]
Ucut = 4e (;——) — (r—) . (75)
cut cut

It is important to note that the result of a computer simulation may depend on ey
and whether a truncated or truncated and shifted potential is used. Note that other
truncation methods that remove discontinuities in higher order derivatives of u(r;)
are also often used in simulations. The second type of nonbonded interactions are
the Coulomb interactions

where

u(ryj) = 1% (7.6)

between two charged spheres at a distance r; from each other. In this equation,
q; represents the charge of particle i and ¢q is the dielectric constant of vacuum.
Particles can be assigned partial charges or integer values in the case of ions. Unlike
the Lennard-Jones interactions, simple truncation of Coulombic interactions can
lead to serious artifacts (e.g., an unphysical dipole moment at the cut-off radius).
The generally accepted method to handle Coulombic interactions is the Ewald
summation or equivalent method [4, 13, 14]. Recently, pairwise alternatives for the
Ewald summation have been proposed [15, 16).

125



126

7 Molecular Simulation Techniques Using Classical Force Fields

Figure 7.2 Schematic representation of the bond-stretching
(bond length ), bond-bending (angle 6}, and torsion interac-
tion (torsion angle ¢).

For atoms that are part of molecules, the bonded interactions also have to be cal-
culated. These bonded interactions are usually one of the following: bond-stretching
(2-body), bond-bending (3-body), and dihedral angle (4-body) interactions. For claz-
ity, the interactions are depicted in Figure 7.2. The first two interactions can be
described using a harmonic potential. The same mechanism can also be used to
describe the motion of a vibrating spring or a pendulum:

k
ustretch(l) = ‘2*‘1(1 - 10)2: (77)

k
Upena(6) = -22(9 ~ 60)%, (7.8)

where ly and 6, represent the bond length and bond angle equilibrium values, and
k; and kg are the force constants. The dihedral interaction cannot be described
using a harmonic potential but rather a periodic function is used, because of the
rotational symmetry,

n

Utorsion (@) = Z ci(cos ¢)i: (7.9)

i=0

where ¢y, . . ., ¢, are constants. Together the bonded interactions provide flexibility
to the molecular structure. They play a large role in, for example, simulations
of a hydrated nafion membrane, the transport of proton and water through the
membrane, simulations on protein folding, or the permeation event of an ion
through an ion channel.

7.2.2
Integrating the Equations of Motion

To integrate the equations of motion (Eq. (7.1)), special integration algorithms are
used. The simplest algorithm is the so-called Verlet algorithm, which is based on
a Taylor expansion of the coordinate of a particle at time ¢t + At and ¢t — At about
time #:

fo 3’r At3

AP 4+ — — + O(ALY, (7.10)

rit + At) = r(t) + v(t) At + = m pYe



7.2 Molecular Dynamics

and

a3 3
=AY = r(f) — vyar+ L0 ap - T A

4
T - w—y— + O(At ). (711)

Adding these two equations and subtracting 7(t — At} on both sides gives

t

P(t+ Af) = 2r(t) — r(t — At) L0y o(ath. (7.12)
m

Note that the new position is accurate to order At*. The Verlet algorithm does not

use the velocity to compute the new position, but the velocity can be derived from

the trajectory, which is only accurate to order At?:

r(t+ Af) — r(t — At
201

u(t) = + O(A). (7.13)

The instantaneous temperature T follows directly from the kinetic energy

N

mv?  3NkgT
Eyin = Z - T3 (7.14)

i=1

i
instantaneous temperature T(t) can be adjusted to match the desired temperature
T by scaling all velocities with a factor \/T/T(t). It is important to note that the
Verlet algorithm conserves:

where v = v}, 4 v}, + vZ; and kg is the Boltzmann constant. As T SN V2, the

e the total linear momentum of the system, i.e.,

d N
& Z m;vi(t) = 0 (7.15)
i=1

o the total energy of the system, which is the sum of the potential energy Epo: and
the kinetic energy Euy, (Eq. (7.14)).

If these quantities are not conserved in an actual simulation, there must be an error
in the simulation program. Other well-known integration schemes are the leap-frog
algorithm, the velocity—Verlet algorithm, and predictor—corrector algorithms [1,4].
The choice of the algorithm depends on several things. One consideration would
be the accuracy, because this controls the size of the time step. The larger the
time steps, the fewer evaluations of the forces are necessary, thus saving on CPU
time. It is important to note that the goal of MD simulations is to compute time
averages for a representative trajectory, and not to integrate the equations of motion
as accurately as possible. In fact, no algorithm even exists that can predict the
“real” trajectory over a large time scale. This is due to the fact that small integration
errors and round-off errors will accumulate over time and the calculated trajectory
will diverge from the “real” trajectory. In general, the choice for the algorithm
will depend on how well the total energy of the system is conserved, since this
property is more important for statistical predictions. It turns out that time-reversible
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integration algorithms like the Verlet algorithm conserve the total energy even on
long time scales and that algorithms that are not time reversible show an energy
drift for long time scales, even though they conserve the total energy very well for

short time scales [4].

A program that performs an MD simulation consists of the following steps (see

also Table 7.1):

Table 7.1 Pseudocomputer code for a molecular dynamics simulation of
npart particles that interact with a Lennard—Jones potential.?

program md

call init

t=0.0

do while (t.lt.tmax)
call force
call integrate
t=t+deltat
call sample

enddo

end

subroutine force
en=0
do i=1,npart
f(i)=0
enddo
do i=t1,npart-1
do j=i+1,npart
xr=x(1)-x(j)
xr=xr-box*nint(xr/box)
ra2=xr**2
if(r2.1t.rc2) then
r2i=1/r2
réi=r2i**3
ff=48*r2i*r6i(r6i-0.5)
f(i)=Ff(i)+ff*xr
F(3)=F(])-Ff*xr
en=en+4*réi* (réi-1)-ecut
endif
enddo
enddo
return
end

subroutine integrate
sumv=0

sumv2=0

do i=1,npart

Molecular Dynamics algorithm
generate initial positions and velocities
start at timet =0

fort < tmax

calculate the forces on all particles
integrate equations of motion

update the time with At

sample time averages

calculation of the forces
set total energy to zero

"~ set forces to zero

consider all particle pairs

distance between i and j

apply periodic boundary conditions
distance, note that x**2 = x2

rc? = rc % rc, where rc is the cut-off distance

Lennard—Jones forces
update force for particle i
update force for particle j
update total potential energy

integration of equations of motion
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Table 7.1 (Continued).

XX=2*x (i) -xm(i)+delt**2*f (1) Verlet algorithm (Eq. (7.12))
vi=(xx-xm(i))/(2*delt) estimate for the velocity
Sumv2=sumv2+vi**2 compute > v?
Xm(i)=x(i) update positions
X (1)=xx
enddo
temp=sumv2/(3*npart) compute temperature
etot=(en+0.5*sumv2) /npart total energy per particle
return

end

2The subroutine init generates initial positions and velocities. Counters to
compute ensemble averages are updated in the subroutine sample. The function
nint rounds off to the nearest integer.

1. Read the initial conditions: temperature, number of particles, integration time
step, etc.

2. Initialize the positions and velocities of all atoms in the system.
3. Compute the forces on all particles. This is the most time-consuming step.

4. Integrate the equations of motion. Steps 3 and 4 form the core of the MD
simulation. They are repeated until the desired number of time steps is reached.

5. Compute the average of the measured quantities and stop.

When the simulation has finished, the results can be analyzed. First the sim-
ulation results need to be validated. Do the pressure, temperature, and energy
components remain constant during the simulation? Do large molecules such as
proteins drift over time? These inspections can provide valuable clues to whether a
simulation has been successful or not. After validation, macroscopic properties of
the system can be estimated. Examples of such properties are the viscosity of liquids
or the self-diffusion coefficient. The estimation usually takes place by averaging one
or more quantities over the simulation time and over a large amount of molecules.

7.2.3
Practical Issues

While evaluation of the molecular interactions and the integration of the equations
of motion make up the largest part of the simulation, some practical problems also
have to be accounted for. The simulated system is always finite, which means that
a part of the molecules is located at the boundaries of the system. These molecules
are not completely surrounded by other molecules. Such a situation would lead
to serious boundary effects in systems with a relatively small number of atoms.
Imagine a cubic system containing n® atoms arranged on a cubic lattice. A large
fraction of them (n® — (n — 2)3/n® = 6/n) is located at one of the surfaces of the
box. This means that for 1000 particles (n = 10), 60% of all particles belong to the
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Figure 7.3 Periodic boundary conditions. A central box is surrounded by copies of itself.

surface. Even for a system of 10° particles (n = 100), still 6% of all particles belong
to the surface. To minimize the influence of boundary effects, multiple images
of the simulation box in all directions are used, in order to obtain a continuous
system. This approach is known as periodic boundary conditions (see Figure 7.3).
It is similar to treating the simulation system as a unit cell of a crystal. However,
it is necessary to keep the amount of calculations manageable due to the limits in
CPU time. Instead of calculating the interactions between all (original and periodic)
atoms, only the interaction between one (original) atom and the closest image of
the other atoms in one of the surrounding boxes could be calculated. This is called
the nearest-image convention and it is satisfied automatically when the box length
is at least twice the value for 7ey.

While molecular dynamics simulations have their obvious advantage in the
amount of detail they provide, one should also be aware of the limitations:

1. The time span of current simulations is in the order of tens of nanoseconds
for large systems. This is enough if the permeation of water molecules through
channels is under investigation, but it will not be long enough to study the
permeation of ions. It remains difficult to get information on ion-channel
conduction and phenomena such as channel gating. Special techniques to study
infrequent but important events will be discussed in Section 7.3.

2. The absence of atomic polarizability in the most force fields may present a flaw.
Since the atoms are treated as point (partial) charges, a dynamic redistribution
of electronic charge is not allowed. Instead, the polarizability is an average effect
that is included by fitting the parameters of the Lennard-Jones potential to
experimental data. This approach is sufficient to model bulk-like behavior of
solvent molecules but it might not correctly represent individual water molecules
inside a narrow channel pore.

3. The last limitation is caused by the classical treatment of the atoms. Using
classical mechanics it is only possible to calculate the positions, accelerations,
and forces between atoms. Due to the fact that protons and electrons are not
explicitly modeled, proton conduction or reactions cannot be simulated. The
blocking of protons would be worthwhile to investigate in this case, since it also
occurs in the water channels.
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Figure 7.4 The self-diffusion coefficient can be computed
from the displacements of individual particles (Eq. (7.16)).

These issues are still under development. Force fields for atomistic simulations are
constantly updated and improved. Addressing the third point, for large systems
the use of quantum mechanical methods is still too detailed and is not expected
to provide solutions in the next few years on the scale of molecular dynamics.
However, with computational power doubling roughly every other year we might
be able to apply quantum mechanics to these large systems in the near future.

7.2.4
Diffusion

Transport properties like the diffusion coefficient can be computed directly from
an MD simulation. The self-diffusion coefficient follows from the mean-squared
displacements of individual particles:

1 d |
Dy seif = == lim — <Z (Fig () — Tig (0))2>, (7.16)
i=1

where i, (t) is the position of particle i at time t (¢ = x, y, 2) (see also Figure 7.4).

To describe the transport of particles due to a gradient, the Maxwell-Stefan
approach is often more useful than the traditional Fick formulation, especially for
multicomponent systems {17}. In the Maxwell—Stefan approach, the driving force
for transport is a gradient in chemical potential, which is balanced by frictional
forces between compounds (and/or the host structure). The Maxwell-Stefan
diffusion coefficients can be computed directly from MD simulations at equilibrium
(i.e., without gradients in chemical potential or concentration) [18], or, alternatively,
from nonequilibrium MD (NEMD) simulations [19,20]. For a review on diffusion in
porous materials and liquids, we refer the reader to Refs. [17,21,22] and references
therein.

7.3
Rare Events

Diffusion coefficients of adsorbed molecules can vary as much as 10 orders of
magnitude. If the diffusion coefficient is sufficiently high, straightforward MD can
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Figure 7.5 Schematic representation of a single molecule dif-
fusing in a one-dimensional pore (a) and the free energy of
this molecule as a function of the position g (b).

be used to simulate the system. If, however, the diffusion coefficient is very low,
one often observes that molecules are trapped in low (free) energy sites and once
in a while the molecule hops to another adsorption site. To compute a diffusion
coefhicient reliably, one has to observe a sufficient number of hops. Most of the
CPU time is spent on molecules that “wait” at an adsorption site until a fluctuation
gives them sufficient kinetic energy to take the barrier between adsorption site.
The higher the barrier the longer the molecules remain trapped and - on the time
scale of an MD simulation ~ such a hopping becomes a very rare event.

Special techniques have been developed to simulate such rare events [4]. The
basic idea is to compute the hopping rate in two steps [23-25]. First, we compute
the probability that a molecule can be found on top of the free-energy barrier
followed by a separate simulation in which the average time is computed it takes
for a molecule on top of the barrier to actually cross it.

Let us consider, as an example, the system shown in Figure 7.5. The adsorption
sites are in the cavities and the windows are the diffusion barriers. In a rare-event
simulation it is important to define an appropriate reaction coordinate which
characterizes the progress of the “reaction.” In case of a single atom, an obvious
choice is the position along the tube and a typical free energy as a function of the
reaction coordinate q as shown in Figure 7.6. The probability to find a molecule on
top of the barrier can be computed directly from the free-energy profile

—BF(g*)1d
P(q")dg = t;:fp[ BE(q"))dg
f_ dgexp[—BF(g)]

where ¢* is defined as the top of the barrier. F(g) is the free energy as a function
of the order parameter. This free energy can be computed using the techniques
described in Refs. [4,26,27].

The second step involves the average time taken by a molecule to cross the
barrier. The simplest approach is to assume that transition state theory (TST) holds.
A molecule that arrives at the top of the barrier is assumed to be in equilibrium

. (7.17)
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Figure 7.6 Free energy as a function of the reaction coordinate g.

with its surrounding. As a consequence, the velocity distribution P(v) is given by
the Maxwell distribution corresponding to the temperature of the system:

P(v) o exp[—Bmuv?/2). (7.18)

TST assumes that half of the molecules that reach the barrier also cross the barrier,
i.e, those with a positive velocity of the order parameter. The TST approximation
of the hopping rate is

ksT  exp[-BF(q")]
2rm q°

/ dqexpl—FF(g)]

-

1. N
kTST — Elqlp(q ) — (719)

The advantage of TST is that one has to compute only the free energy as a function
of the reaction coordinate to compute the hopping rate. The disadvantage is that
one does not know in advance whether the assumptions underlying TST hold. In
addition, TST also assumes that the transition state is known exactly, i.e., the top
of the free energy, g*, exactly corresponds to the true transition state. In practice,
we do not know the free energy exactly and we, therefore, can only approximate the
transition state.

More importantly, in the system we consider in Figure 7.5, the choice of the
reaction coordinate is straightforward. However, in practice one has to be very
careful. Consider, for example, the zeolites shown in Figure 7.7. Both the zeolites
are one-dimension channels of cages connected via narrow windows. In analogy
with the system of Figure 7.5, one would take as order parameter the position of
the atom projected on the axis of the channel (red-short dashed line), but we could
have also taken a projection on a line through the window that has an angle with
the channe! axes (blue-long dashed line). Depending on the particular choice, the
free energy of the transition state will be different. If we use these free energies
and compute the hopping rate using Eq. (7.19), we would find different values
of this hopping rate. In fact, TST gives an upper limit; the true hopping rate is
always lower compared to the TST result. It is, therefore, important to select the
reaction coordinate that gives the highest free energy of the transition state. Since
the free energy appears in the exponential in Eq. (7.19), TST can give a large error
in the hopping rate if the choice of reaction coordinate is far from optimal. It may
look strange to use a reaction coordinate that does not correspond to the direction
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Figure 7.7 Comparison of two different right the window takes an angle. The shaded

choices of the reaction coordinate g. The red areas show the part of the zeolite of which
(short dashed) choice is parallel to the axis  the free energy is projected on the transi-
of the zeolite, while the blue choice (long tion state g. The bottorn figures show that
dashed) makes an angle with the horizontal ~ depending on the choice of reaction coordi-
axis. In the left figure the window is perpen- nate, the free energy of the transition state,
dicular to the axis of the zeolite while in the F(g*}, has a different value.

of diffusion. Figure 7.7 shows that for the zeolite in which the window is not
perpendicular to the channel axis this choice results in a higher free energy of the
transition state. This example illustrates that even for diffusion of an atom the choice
of reaction coordinate can be nontrivial, For molecules, the number of possible
reaction coordinates increases dramatically and it will be impossible to compute the
free energies for all possible reaction coordinates. Finally, even if one is able to select
the optimal reaction coordinate, TST may not give the correct hopping rate since in
Eq. (7.19) it is assumed that all particles that start in one cage and arrive on top of
the barrier with a positive velocity of the order parameter arrive in the product cage.
TST ignores the possibility that such a particle recrosses the barrier and returns in
the cage it originates due to, for example, collisions with the zeolite atoms.

To compute the “true” hopping rate, one has to correct the TST to take
into account the recrossing of the barrier. These recrossings can be intrinsic to
the system or due to the nonoptimum choice of the reaction coordinate. This
correction is obtained using, for example, the Bennet—Chandler [23-25] approach
in which MD simulations are performed to compute the transmission coefficient «.
The computation of the transmission coefficient « involves many MD simulations,
which all start on top of the barrier (4*) and of which we determine the fraction

that ends up in the product cage. The time-dependent transmission coefficient is
defined as

) = k(1) _ (4(0)5(a(0) — 9*)9(a() — q*))
TkTST 0.5(14(0))) ’

(7.20)
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where #(g) is the Heaviside function (¢(q) = 1if g > 0Oand 6(g) = 0 otherwise) and
5(q) the Dirac delta function. The delta function in Eq. (7.20) indicates that the
trajectories are initiated on top of the barrier and the Heaviside function takes a
value if the particle is on the product side of the barrier. Equation (7.20) shows that
if all particles with a positive velocity of the order parameter stay in the product
cage the transmission coefficient is one and TST gives the correct result. For those
systems in which barrier recrossings are important, Eq. (7.20) gives a plateau
value for intermediate times that can be used to correct the TST hopping rate.
The important aspect of these MD simulations is that they are initiated on top of
the barrier, which is a very unfavorable configuration for which the relaxation to
equilibrium, one of the cages, is relatively fast. These simulations, therefore, do
not require much CPU time for most systems.

In our discussion, we focus on one-dimensional order parameters and for some
systems it can be desirable to use a multidimensional order parameter. TST can be
generalized to higher dimensions and one has to locate the saddle point in such
a multidimensional space. Special techniques have been developed for this [28].
For some systems, however, the dynamics on top of the barrier can be diffusive;
because of collisions with the atoms of zeolite a particle may spend a relatively long
time on top of the barrier before it falls in one of the cages. For such systems, it can
be advantageous to compute the hopping rate using the approach of Ruiz—Montero
et al. [29]. In the methods we have discussed so far we assume that a good estimate
of the transition state can be obtained. Although Eq. {(7.20) can be used to correct
an unfortunate choice of reaction coordinate, if the transmission coefficient is very
small it is expensive to compute it accurately. Special techniques like transition
path sampling [7, 30—34] have been developed to compute hopping rates without
prior knowledge of the reaction coordinate. This method can also be used to check
whether the assumed transition state resembles to true transition state.

7.4
Monte Carlo

7.4.1
Introduction

In molecular dynamics, one integrates the equation of motion for a system of
particles (atoms, molecules) that interact according to a certain force field, and
from this trajectory one can calculate time averages. According to the ergodicity
hypothesis [4], these time averages should, in principle, be equal to averages over all
possible configurations of the particles in the system.

Consider a system where the positions of all N particles in the system are denoted
by the vector r. From elementary statistical thermodynamics, it is well known that
the statistical weight of each configuration r" is not equal. At a fixed number of
particles N, fixed volume V and absolute temperature T, the statistical weight of a
system with configuration 1V is proportional to exp[—B U(r")], where § = 1/(ks T),

135



136

7 Molecular Simulation Techniques Using Classical Force Fields

ks is the Boltzmann factor (~1.38066 x 1072 | K1), and U(rV) is the potentia
energy that depends on the positions of all the particles in the system. Therefore,
ensemble averages that only depend on the positions of the particles in the system
(e.g., the average energy or average pressure) can be calculated in the following way:

/ dr¥X () expl— B U(rY)]

- /drN exp[-BUIV)]

(X) (7.21)

Naively, one might think that the ensemble average (X) can be evaluated by
the conventional numerical integration techniques such as numerical quadrature.
However, evaluating the integrand on a grid in the high-dimensional phase space
is impossible as the number of gridpoints becomes more than astronomically
large. For instance, N = 100 particles in D = 3 dimensions using a very rough
grid of only m =5 gridpoints already leads to mPN = 53% gridpoints at which
this integrand has to be evaluated. This is impossible within the lifetime of our
universe. In addition, suppose that we would somehow be able to perform the
integration of Eq. (7.21). Our claim is that the statistical error will then be so large
that the result is not meaningful anyway. The reason is that when two particles
overlap, the potential energy is extremely large and therefore the Boltzmann factor
equals zero. In fact, it turns out that for a typical liquid this is the case for almost
all configurations r" and only an extremely small part of the phase space will have
a nonzero contribution to the integrals of Eq. (7.21) (see also Figure 7.8).

We therefore have to resort to more suitable numerical techniques. One such
a technique is the Monte Carlo method. The basic idea in the Metropolis Monte
Carlo method is that phase points are generated in phase space according to
the desired probability. In this way, one avoids the numerical evaluation of the
integrand on a high-dimensional grid where most of the gridpoints result in
configurations with an extremely low Boltzmann weight. Consider, for example, a
sequence of configurations rf, r}, £, ..., . If this sequence consists of random
configurations, the ensemble average (X) is simply an unweighted average

Figure 7.8 If particles are inserted randomly in a simulation
box, already at a moderate density it is very likely that there
is at least a single particle overlap in the system, resulting

in a Boltzmann weight exp[—gU] that is extremely low.
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> x@)expl-pUEY)]

i=1

(X) = lim m
> exp-BUE)]
i=1

n—+00

(7.22)

Again, computing (X) in this way is often not meaningful as exp[—BU(rY)] is
nearly always zero for random configurations. However, suppose that we are able
to generate rV in such a way that the probability of generating r}" is proportional to
exp[—B U(r})], then the ensemble average is simply

n
DoX()
(X) = lim =L — (7.23)
n—o0 n
This sampling is called Metropolis sampling [35]. As we cannot generate an
infinitely long sequence of configurations on the computer, we estimate the
ensemble average by taking a large value of n.

We will now present a method to generate r with a probability proportional to
exp[—BU(rY)] (Metropolis sampling). For a system of N particles in volume V,
this works as follows: We first generate a configuration of N particles at positions
o =r1¥ with a nonvanishing Boltzmann weight exp[—BU(0)]. Next we generate
a random new trial configuration n = 1Y, for example, by picking randomly a
particle and by displacing it randomly. The Boltzmann weight of this new trial
configuration is exp[—B U{n)]. We must now decide whether we accept or reject
this trial configuration satisfying the constraint that on average the probability
of finding the system in a configuration rV is proportional to the probability
distribution f(rV) = exp[— B U(™)]. If we reject this trial move, the next element
in our sequence of configurations (Eq. (7.23)) will be rY, otherwise it will be r.
The rule to accept or reject 1 must satisfy three conditions: (1) the number of
points in any configuration o should be proportional to f.(0); (2) all configurations
can, in principle, be visited, (3) in equilibrium, the average number of accepted
trial moves leaving state o should be equal to the average number of accepted trial
moves from all other states to state o. This is called the balance condition [36].
It is however, convenient to impose a much stronger condition (detailed-balance
condition); namely that in equilibrium the average number of accepted trial moves
leaving state o to state n is equal to the average number of accepted trial moves
leaving state n to state o, which essentially means that all “fluxes of configurations”
are equal:

feo)m(o — n) = fi(n)ym(n - o), (7.24)

where 7 (0 — n) denotes the transition probability that can be split into two terms:
(1) the probability @(o — n) to perform a trial move from o — n, and (2) the
probability acc(o — n) of accepting a trial move from 0 — n:

(o — n) = a(o = njacc(o — n). (7.25)
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In the original Metropolis scheme [35], a0 — n} is chosen to be symmetric, i.
w0 — n) = a(n — o) and we arrive at
accfo > n)  fi(n)
acc(n — o)~ fi(0)

= exp[—B(U(n) ~ U(0))] = exp[-BA U]. (7.2

An example of such a symmetric transition is the random displacement of
randomly selected particle. Many choices for acc{o — nj satisfy this condition, b
the commonly used choice is of Metropolis:

acc(o — n) = fo(n)/fe(o) if  fifn) < £(0)
= 1 if f(n>Ff). 7.2

More explicitly, to decide whether a trial move will be accepted or rejected w
generate a random number, denoted by ranf{), from a uniform distribution intk
interval [0,1]. If ranf() < acc(o — n), we accept the trial move and reject it otherwis:
This rule satisfies the Metropolis condition and can be written as

acc(o — n) = min(1, exp[—B(U(n) — U(o))]) = min(l, exp[-BAUJ), (7.2¢

where min(a, b) = a when a < b, and b otherwise. This means that new confi
urations that lower the energy are always accepted, and new configurations th:
increase the total energy are accepted with a certain probability that depend
on their energy difference and the temperature. In summary, our Monte Carl
approach to compute ensemble averages of a system of N particles in volume V i
as follows (see also Table 7.2): o

- Generate an initial configuration.
- Start with a configuration o, and calculate its energy U(o).

- Select a particle at random.

PBwW N

- Give the selected particle a random displacement x(n) = x(0) + A, where A is :
uniformly distributed random number from [—Ax, Ax]

w

. Calculate the energy U(n) of the new configuration .
6. Accept the trial move with a probability

acc(o — n) = min(l, exp[—B(U(n) — U(o))]) = min(l, exp[-BAU])  (7.29)

7. Update the calculation of ensemble averages, also after rejected trial moves.

A pseudocomputer code of this algorithm is listed in Table 7.2.

7.4.2
The Grand-Canonical Ensemble

In the previous section, we have discussed the Monte Carlo technique for a system
with a constant number of particles N and a constant volume V at temperature T.
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Table 7.2 Pseudocomputer code of the Monte Carlo algorithm described in the text.?

program mc
do icycle=1,ncycle
call move
if(mod{icycle,nsample).eq.0)
+ call sample
enddo
end

subroutine move
i=int(ranf()*npart)+1

call energy(x(i),eold,i)

xnew=x (i)+(2*ranf()-1)*Ax

call energy(xnew,enew,i)
if(ranf().1lt.exp(-beta*(enew-eold))
+ X (1i)=xnew

return

end

subroutine energy(xi,e,i)
e=0.0
do j=1,npart
if (j.ne.i) then
dx=x(j)-x1i
dx=dx-box*nint {dx/box)
eij=4*(1.0/(dx**12)-1.0/(dx**8))
e=etelj
endif
enddo
return
end

basic Monte Carlo algorithm
number of MC cycles

displace a randomly selected particle
collect ensemble averages

each nsample MC cycles

perform a trial move

select particle i at random

calculate energy of old configuration
random displacement of particle i
calculate energy of new configuration
acceptance rule

accept new position of particle i

subroutine to calculate the energy

foop over all particles
if particlej is not

139

calculate distance between particles i and j

apply periodic boundary conditions

calculate Lennard—Jones potential energy

3The program consists of three parts. The main program mc controls the simulation. The
subroutine move displaces a randomly selected particle, and the subroutine energy computes the
energy of a particle. The function ranf () generates a uniformly distributed random number
between 0 and 1. The function int truncates a real number to its inter value, while the function

nint converts a real number to its nearest integer value.

However, the choice of a constant number of particles N is not always a convenient
one.l) Consider, for example, the case where one is interested in studying the
adsorption of guest molecules inside a microporous host such as a zeolite or
carbon nanotube, In this system, the gas phase (with pressure P} is in equilibrium
with the host material in such a way that the chemical potential u of the guest
molecules in the gas phase and in the porous host is identical. A direct MD or

1) For a description of other ensembles that are
useful in molecular simulation, we refer the
reader to Ref. [4].
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/W’\/\
\._/.\’/'\_‘./\/

Figure 7.9 lllustration of the grand-canonical to insert/remove guest molecules in/from

ensemble. A porous host structure is cou- the host structure. In this way, one can
pled to an infinitely large reservoir of guest  compute the adsorption isotherm (average
molecules at temperature T and chemical number of guest molecules (N) in the host

potential . There is no direct interaction be- structure as a function of the chemical po-
tween the molecules in the reservoir and in  tential ).
the host. Monte Carlo trial moves are used

MC simulation of the gas phase and the porous solid in a single simulation box is
not very convenient as this will create a large surface area and the zeolite cannot
be periodic in all directions. In this case, the grand-canonical (1 VT) ensemble
is more useful. In this ensemble, the volume V and chemical potential u of the
guest molecules are fixed, while the number of adsorbed guest molecules (N) is
fluctuating. The host structure is coupled to an infinitely large particle reservoir at
a certain chemical potential u and temperature T (see Figure 7.9). The reservoir
and the host structure can exchange particles. For a given chemical potential u and
temperature T one can compute average of the number of particles (N} adsorbed
in the host structure.

From statistical mechanics, it is known that the statistical weight of the host
structure with N guest molecules each consisting of a single atom with coordinates
rV is proportional to

V¥ exp[BuN — BU(rN)]
A3NN! ’

W(N, V) « (7.30)

In this equation, V is the volume of the host system, y is the chemical potential of
the guest molecules in the reservoir, and A is the thermal wave vector

3 h _h
© 2nmksT  JZnm/B’

(7.31)

where m is the mass of a guest molecule. The acceptance rules for the Monte Carlo
method in the grand-canonical ensemble follow directly from Eq. (7.30), see also
Refs. [4, 8]. The following trial moves are used:

1. Particle displacement. A randomly selected particle in the host is given a random
displacement. This move is accepted according to Eq. (7.28)
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2. Particle insertion. A guest molecule is inserted at a random position in the host
structure. This move is accepted with a probability

acc(N — N+ 1) = min (1 exp[B(n — UV + U(r”m) :

v
TA3N 1)
(7.32)

3. Particle deletion. A randomly selected guest molecule in the host structure is
deleted. This move is accepted with a probability

3

acc(N - N —1) = min (1, expl—B(n + UV ) — U(f”))]) .

(7.33)

It can be shown that Egs. (7.32) and (7.33) obey detailed balance. The trial moves
are schematically illustrated in Figure 7.10. It is selected at random which move is
performed. For the simulation of mixtures, it can be very advantageous to include

Figure 7.10 Trial moves in the grand-canonical ensem-
ble: particle displacement, particle insertion, and particle
deletion. Here, it is convenient to select the trial moves at
random [5].
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trial moves that change the identity of a guest molecule in the host (semigrand
ensemble). For details, we refer the reader to Refs. {37-40].

The chemical potential of the molecules in the reservoir can be converted to the
pressure P or fugacity f of the reservoir. The fugacity of a system is defined as the
pressure that the system would have if it would be an ideal gas, at exactly the same
chemical potential. As for an ideal gas 1 = kg T1n pA® it follows directly that

_ exp{Bu]
f=22

(7.34)

It can be shown that the pressure P and the fugacity f are related according to [41]
P Yy
mi = f plgad bty (7.35)
P/ P

where Z is the compressibility factor Z = PV/kgT and V = V/N is the volume
per molecule. The compressibility Z can be taken from experiments or it can be
computed in a separate simulation.

7.43
Chain Molecules

In the previous section, we have shown that the grand-canonical Monte Carlo
technique critically relies on the insertion and deletion of guest molecules. For
small guest molecules like methane or ethane, random insertion of guest molecules
in the host structure does not pose any- problem. However, for longer chain
molecules, random insertion of a guest molecule becomes increasingly more
difficult as nearly always there is an overlap with one of the zeolite atoms (see
Figure 7.11).

The low acceptance probability can be overcome by using the configurational-bias
Monte Carlo (CBMC) algorithm [4, 42~45]. This algorithm uses the Rosenbluth

Figure 7.11 Random insertion of long-chain molecules is dif-
ficult as nearly always there will be an overlap with the host
structure.
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Figure 7.12 Schematic representation of the CBMC tech-
nique. k trial directions (each represented by values for /,
0, ¢) are generated according to Eq. (7.36), and one of the
trial directions is selected according to Eq. (7.37). Here,
k=3.

scheme [46] to generate chain configurations. This introduces a bias, which
can be removed exactly in the acceptance rules. The CBMC algorithm signif-
icantly improves the acceptance probability of insertions and deletions in the
grand-canonical ensemble, as well as the internal rearrangements of adsorbed
chains.

The algorithm works as follows. Consider a linear chain consisting of M
monomers. The interactions of this chain can be split into bonded interac-
tions (e.g., bond-stretching, bond-bending, torsion) and nonbonded interactions
(Lennard-Jones, Coulombic interactions). The nonbonded interactions can be in-
tramolecular (within the same molecule) or intermolecular (with other molecules
or the host structure). For the insertion of a chain molecule, the following steps are
executed (see also Figure 7.12):

1. The first monomer of a chain is placed at a random position in the system and
its energy u; is recorded.

2. For the next monomer, k trial positions are generated. The position of each trial
direction is generated with a probability proportional to the Boltzmann factor
of the bonded interactions. In general, the position of the next monomer can be
characterized by the bond length I, bond-bending angle 6, and a torsion angle
¢ with corresponding energies Ugierch(l), Ubend(6), and iorsion. For each trial
direction, the values of |, 6, and ¢ are generated according to

P(l) o dl1* exp[—Bustrerch ()]
P(6) o do sin(0) exp[—Bupend(0)]
P(¢) x d¢ exp[_ﬂutorsion(‘p)L (736)

A method to draw random numbers from arbitrary distributions is presented in
Ref. {47).
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3. One of the trial directions (a) is selected with a probability proportional to the
Boltzmann factor of the nonbonded energy of that monomer:

exp[— Buia]

P, = 7 ,
> exp[—puy)
J=1

(7.37)

where u;; is the nonbonded energy of the jth trial direction for monomer i. In is
way, it is very unlikely that unfavorable trial directions (with a low Boltzmann
weight due to a large u;j) are chosen and in this way overlaps with other particles
are avoided.

4. This process is continued until the chain has been grown. The Rosenbluth
weight of the generated chain equals

i=2 Li=1

M k
exp[—Bu] [ | [Z eXP[—ﬁug]]

W= o (7.38)
The insertion of a chain is accepted with a probability
. BVIW )
(N> N+1)=min (1, —————1}, 7.39
acc(N — ) n ( N+ 1) {(Wro) (7.39)

where f is the fugacity, V the volume of the simulation box, W is the Rosenbluth
weight of the generated chain, and (W) is the Rosenbluth weight of an isolated
chain (ideal gas phase). In Ref. [4], it is shown that this scheme obeys detailed
balance. Note that for the insertion of a chain consisting of a single monomer,
this equation reduces to Eq. (7.32).

For the removal of a molecule, the same procedure is followed, but with the
difference that the first trial direction is always the old chain, and this trial direction
is always selected. One can show that the acceptance rule equals

N (ch))
BVIW )
The CBMC technique can also be applied to branched molecules [40,48-50] and to

various ensembles [4]. Over the years, various improvements of the algorithm have
been proposed, we refer the reader to Refs. [48-57).

acc(N - N — 1) = min <1, (7.40)

7.4.4
Calculating Adsorption Properties

In the previous sections, we have shown how to compute the adsorption isotherm
(number of adsorbed guest molecules (N) as a function of the pressure, fugacity,
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or chemical potential). From the adsorption isotherm, two other properties that are
directly accessible by experiments can be computed: the Henry coefficient and the
heat of adsorption. For an overview on how to compute the adsorption entropy or
free energy we refer the reader to Ref. [58].

7.4.5
Henry Coefficient

In the limit of a very low loading of guest molecules, the adsorption isotherm is a
linear function:

(N) = Ky VP, (7.41)

where V is the volume of the host, P the pressure of the gas phase, and Ky the
Henry coefficient (in units of molecules per unit of volume per unit of pressure).
In principle, the Henry coefficient follows from the result of grand-canonical
simulations. However, the Henry coefficient can also be computed directly. In
molecular simulations, the most convenient way to calculate the Henry coefficient
is using Widom's test particle method (see Figure 7.13) [1,59]:

{exp[—put])

Ky = B x exp[—Bliex] = B X 7——— (7.42)
g
{exp(—Bujg))
® Y v 6 ®
MC simulation
e © L (e e
*e® | o%e®
MC simulation
Figure 7.13 Schematic illustration of The excess chemical potential follows from
Widom's test particle method. During a Hex = —kg T In{exp[—But]), where the brack-
simulation in the NVT ensemble, a test ets (---) denote an average over all posi-
particle is positioned at a random posi- tions of the test particle and over all con-
tion and the energy change of the system figurations of the system. When CBMC is
due to this (u¥) is computed. Note that used, the excess chemical potential equals

the insertion is actually never accepted. tex = —kg T In[(W) / (W5)].
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where ey is the excess chemical potential of the guest molecules, (exp[—But])
is the average Boltzmann factor of a test (guest) molecule inserted at a random
position in the host, and (exp[—Buj]) is the average Boltzmann factor of a test
(guest) molecule inserted at a random position in an empty box without the
presence of the host (often referred to as an isolated chain). For chain molecules
like alkanes, it is well known that insertion of a test chain at a random position
in the zeolite nearly always results in overlaps with zeolite atoms, and therefore
the sampling statistics of the average (exp[—Bu*]) will be extremely poor [60].
For chains that are not too long (< 50 monomers), it is convenient to use the
CBMC method to insert test chains. In this case, the Henry coefficient is computed
from [60]

(W)
(Wig)’

where (W) is the average Rosenbluth weight of a test chain in the host and
(Wjg) is the average Rosenbluth weight of an isolated test chain in an empty
box.

Ky = B x (7.43)

7.4.6
Heat of Adsorption

The heat of adsorption describes the change in enthalpy when a molecule is
transferred from the gas phase into the pores of a zeolite. In experiments, the heat
of adsorption is usually computed using the Clausius—Clapeyron equation [61] or
direct calorimetry experiments [62]. In molecular simulations, there are several
routes to compute this quantity [63]:

1. Directly from the Clausius-Clapeyron equation

8ln[P/P0]) _ (Bln[P/Po])

a T-l {N)=constant 8ﬂ {N)=constant ’
(7.44)

where Py is an arbitrary reference pressure and R = kg/N,, is the gas constant.

Note that the differentiation is carried out at a constant number of adsorbed

guest molecules ({N)). At low loading, this equation becomes

—q=AH=kB(

_ 01n[Ku/Kho)

q 38

(7.45)

where Kpo is an arbitrary constant (that has the same units as the Henry
coefficient Ky). Note that this method requires more than one simulation as
one needs to compute temperature derivatives.

2. From energy differences computed in the canonical (NVT) ensemble [60,61]

—g= AH = (Up); — {(Uo)o — {Ug) — =, (7.46)

™| =
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where Uy is the total energy of a host with N guest molecules present,
(---)y refers to an ensemble average at constant V,T, and X guest molecules,
and (U} is the average energy of an isolated guest molecule (without the
host present). The average {U,) for a certain guest molecule only depends
on temperature and needs to be calculated only once. Note that Eq. (7.46)
only applies at low loading. It turns out that this method has severe dif-
ficulties when applied to zeolites with strongly interaction nonframework
cations [63].

3. From energy/particle fluctuations in the grand-canonical (1 VT) ensemble [64].
We can approximate the change in potential energy upon adsorption of a single
guest molecule:

a<U>u> ~ (%),

(Un+1) v = (Undn & <6 = T,
( du ),s

_ (UXN), = (U} (N
(N2], — (N}, (),

, (7.47)

where the brackets (- - -), denote an average in the grand-canonical ensemble,
N is the number of guest molecules, and y is the chemical potential of the guest
molecules. This leads to [64]

(U X N)y - (U)p, <N>u. _
(NZ)M — (N)y (N

(Ug) = 5 (7.48)

™| =

where AH in Eq. (7.48) is usually defined as the isosteric heat of adsorption and

it is often applied at nonzero loading. It is assumed here that the gas phase is
ideal.

4. From a direct application Widom’s test particle method using the Rosenbluth
method [63]

((Un +uh) x W),

1 W)y

—(Un)n —(Ug) — (7.49)

1
Ik
where W is the Rosenbluth weight of a test chain and u* its energy. (- - -)x refers
to an ensemble average at constant V,T, and X guest molecules. This method
is equivalent to Eq. (7.48) and it requires only a single simulation of the host
structure.
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