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he goal of molecular simulation is to predict the mac-

roscopic properties of molecular substances on the ba-
sis of our knowledge of the interactions between the mol-
ecules. The two computational techniques used in
molecular simulation, molecular dynamics and Monte
Carlo, have been discussed extensively in this column. In
this article we focus on some recent advances in Monte
Carlo methods that have greatly increased the predictive
power of molecular simulation. We then apply these meth-
ods to the simulation of polymers.

Consider a chemist who is planning to make a novel
substance. Because synthesis is expensive and simulation is
increasingly inexpensive, it is worthwhile to predict the
properties of the new substance. Our chemist might wish to
know whether the substance will be a vapor, liquid, or solid.
Also of interest are the mechanical properties (compress-
ibility of fluids, strength of solids) and the transport prop-
erties (viscosity, heat or electrical conductivity). Finally,
how will this substance interact (or even react) with other
substances?
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Surprisingly, the question about the phase behavior is
by no means the easiest to answer., In the following, we
briefly explain why it is difficult to predict phase behavior
by simulation and discuss the recent progress that has been
made. Rather than giving a broad overview, we focus on
one specific method, namely configurational-bias Monte
Carlo. Our goal is to explain how this method works and
why it is useful.

Simulation is in many ways similar to experiment. We
must prepare a sample, that is, generate a well equilibrated
configuration of the system under the desired conditions.
Next, we perform a measurement during a certain time in-
terval. As in an experiment, the resulting numerical data are
subject to statistical and systematic errors. The analogy be-
tween experiment and simulation suggests that to determine
a phase diagram in a simulation, we should find the tem-
peratures and pressures where one phase spontaneously
transforms into another. However, for first-order phase tran-
sitions, this approach usually fails because hysteresis (su-
perheating and supercooling) is a serious problem in simu-
lations. To resolve this problem, we consider what
coexistence means. We say that two phases coexist if they
can be simultaneously present in equilibrium. Before equi-
librium has been established, there can be a net flow of heat
or mass from one phase to the other, and the volume of one
phase can increase at the expense of the other. In equilib-
rium, all such transient effects have ceased.

The second law of thermodynamics allows us to de-
duce the conditions for phase coexistence from the absence
of nonequilibrium fluxes. The absence of heat flow implies
that the temperature T of the two phases must be equal. The
absence of volume changes implies that the pressure P of
the two phases is the same. The absence of mass exchange
implies equality of the chemical potential w in the coexist-
ing phases. These conditions help us to determine the val-
ues of u where two phases coexist as a function of P and
T without bringing the phases in physical contact. The set
of points where the chemical potentials are equal define the
coexistence curve.

The problem is that, whereas it is easy to measure (or
even impose) P and T in a simulation, special techniques
are required to measure (or impose) ,u.l However, for phase
coexistence, we are not interested in the absolute value of
M, and we require only that u is the same in both phases.
This idea was first exploited by Thanasis Panagiotopoulos,’
who proposed the Gibbs-ensemble technique to study
liquid—vapor coexistence. In such simulations, we consider
two systems with periodic boundary conditions (thus mim-
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Figure 6. Probability density for the 3,2,0 state of the hydrogen atom.

Figure 7. X-ray diffraction pattern. Production of this pattern involved
transferring data from the x-ray diffractometer to an SGI workstation.

Finally, in Advanced Laboratory taken either in the win-
ter or the spring, students continue to do data analyses, fit
curves (including nonlinear functions), and graph experimen-
tal data by techniques already learned. In addition, they do
more sophisticated online gathering of data, transfer data
from the computer-based apparatus on which it is gathered to
other machines for further analysis, and work with techniques
for image processing. This course lays heavy expectation on
the students’ preparation of oral reports and formal written

Available Electives

Students at Lawrence University can choose from a
substantial number of electives in physics. Physics majors
must take three of the following courses: Thermal Physics,
Advanced Electricity and Magnetism, Mathematical
Methods, Optics, Condensed Matter, Advanced Mechan-
ics, Advanced Modern Physics, Tutorial in Physics, and
Laser Physics. Two additional electives—Computational
Tools in Physics and Independent Study in Physics—are
offered, bringing the total available to 11. Courses shown
in boldface have explicit computer content.

reports, so the course provides yet another motivation for
students to develop their skills at computer-based preparation
of technical documents.

Example 9: As part of his work with Professor Jeffrey
Collett during the summer of 1996, Michael Stenner, LU "97,
fathomed the structure of the file produced by a recently
acquired Siemens x-ray machine, successfully read the file into
IDL, and produced the x-ray image shown in Fig. 7 on the
screen of an SGI workstation. Images obtained on the Siemens
machine can now be massaged with the processing capabilities
available in the CPL with IDL. In the future, students will be
asked to use these capabilities both in the advanced laboratory
course and in various independent senior research projects.

The conclusion of this article in the next issue of Com-
puters in Physics will describe the impact of computers on the
remainder of the Lawrence physics curriculum and offer
reflections on the overall project.

From the Department Editor: Please send your com-
ments, suggestions, and manuscripts for submission to this
column to Dr. Denis Donnelly, Department of Physics, Siena
College, Loudonville, NY 12211. E-mail: donnelly@siena.edu.
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icking two buik samples) such that the particles In one sys-
tem do not interact with those in the other. We keep the two
systems at the same temperature, but allow them to ex-
change volume and particles. The total volume and the total
number of partictes are kept fixed. After an initial transient,
the two systems will come into equilibrium and the two
phases coexist, even though they are not in direct physical
contact (there is no liguid—vapor interface}. This method
works well, provided that we can cfficiently exchange par-
ticles between the systems (exchanging volume is hardly
ever a problem). Until recently, this condition limited the
use of the Gibbs-ensemble method to moderately dense sys-
tems of smail molecules, for example, methane, ethane, and
propane. In principle, the method is correct for larger mol-
ecules {say hexa-decane), but the probability of transferring
such a molecule from one system to the other becomes so
small that equilibrium cannot be reached in any simulation
of reasonable duration. As we discuss below, the
configurational-bias Monte Carlo method bas made it pos-
sible to overcome this problem.

Grand-canonical simulations

To explain how configurational-bias Monte Carlo can
be used to study phase coexislence, we first consider a sim-
pler problem, the adsorption of molecules in a porous me-
dium. This example is simple, yet of considerable practical
tmportance—an cxampie is the adsorption of hydrocarbons
in zeolite catalysts.” The problem of adsorption is simpler,
because we need consider only the exchange of particles
between the porous medium and the vapor phase. More-
over, we shalt assume that the vapor phase is so dilute that
it obeys the ideal-gas law. We wish to devise a Monte Carlo
scheme that results in the correct Beltzmann distribution of
the molecules over the two phases. The following deriva-
tion cuts a few corners but is essentially correct.

Let us first consider one molecule. The probability of
finding this molecule in an infinitesimal volume element
dr about the point r i{s proportional to exp[ —BU()] dr,
where 8 = 1/kpT and U(r) is the potential energy experi-
enced by the molecule at point r. The molecule may either
be in the gas phase, which has a (large) volume V, or in the
porous medium with volume V. Tt is convenient fo write
the probability of finding the molecule in an infinitesimal
fraction ds of the volume of the porous medium about r as

N(r)y=cV,e PUys, (1)

where ¢ is a normalization constant and ds = dr/V|. The
probebility that the particle is found in an equal infinitesi-
mal fraction of the volume of the gas is

N(r'y=cVyds, (2)

where we have used the fact that U{r") = 0 in the idcal gas.
The ratio of these probabilities is

N(r) v,
N(r') ¥,

C,“"ﬁu(r!. (3)

If we perform a Moate Carlo trial move in which we at-
tempt to swap a particle from the ideal gas to the porcus
medium, we should accept this trial move with the
Metropolis probability

acc(0-1)=minf 1,{V /Vytexpl — BU(x)}].

A single particle is nol very interesting, so let us con-
sider a system {ideal gas plus porous medium) that contains
M (indistinguishable) particles. The probability of finding a
realization of this system where N particles are in the po-
rous medium and M~ N in the ideal gas is given by

NyM - N
ViVy

Ny o - pUNy
N )y(.N!(M—N)!: ¢

"‘Nf‘ i :
./(El) M! }G--"-Buw") (4)
Vol INI(M N '

We now consider the limit of an infinite ideal-gas reservoir,
that is, M — ¢, Vy— 2% while the density in the reservoir is
fixed, p = M/V\. Then we can rewrite Eq. (4) as

N(Y)= (5)

N
(,OV]} 6,..[3[1'“-‘\')
N! '
Now consider the ratio of the probabilities of finding con-
figurations with ¥+1 and N particles in the porous me-
dium. From Eq. (5] it follows that this ratio is

N pYy

g T MIB{U(rAu"I‘; U(["\!)]
Ny TNFT S : (6)

This ratio determines the acceptance probability of a Monte
Carlo move in which we try to add {or remove) a particle to
(from) the porous medium. Note that the properties of the
reservoir enter only through the density p.

A simulation of a system in contacl with an infinite
particle reservoir is called a grand-canonical Monte Carlo
simulation. Usually the control parameter in such simula-
tions is the fugacity z, rather than the density p, and we
write

Ny

Nyl e "I, (M

For an ideal gas, the fugacity is equal to the density. The
relation between the fugacity and the chemical potential is

P

=R

(8)

Z

where A is the de Broglie thermal wavelength.

Before discussing the configurational-bias Monte Carlo
method, we recall a basic ingredient of all Monte Carlo
simulations: we need to ensure that all points in configura-
tion space are visited with the correct probability. Imagine
that we perform a very large number of simulations (say
M) in parallel. On average, we find that N, out of the M
systems are in configuration {. Of course, N, fluctuates.
However, because M is very large, the noise in the fraction
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N;/M is negligibie. In equilibrium, N, /M is proportional to
the Boltzmann weight of state /.

In a Monte Carlo simulation, we allow a system to
make jumps from its original state {(denoted by o) to a new
state m. In equilibrium, the rate at which a system leaves
state o should be equal to the rate at which other states jump
to state 0. In practice, we usuaily impose a stronger condi-
tion, namely that the average ““flow’ from state o to any
other state n, must be equal to the flow from # to ¢. This
condition is called detailed balance and is written as

Kio—m=K(n—o), (9

where K(o-—n) is the flow of state 0 to n. This flow is
given by the product of the probability of being in state
o, the probability of generating a trial state n, and the
probability of accepting this trial move,

Klo—n)=N{o) X alo—n)Xacclo—n). {10)

In the conventional Metropolis Monte Carlo scheme, the
probability of generating a particular state is equal for for-
ward and reverse f(rial moves, that is, a(o—n)
= g(n—o0). As a consequence, we can eliminate o in Eq.
{10}, If we use the fact that N(i) ~ exp[ — BU(D)] in equilib-
rium, we obtain the following relation between the forward
and reverse acceptance probabilities:

acc{o----m) =€_ﬁ[U('”—U(On. (11)

acc{n—o)

The Metropolis acceptance probability (sce the acceptance
rule used in Box 2) satisfies this criterion.

In a grand-canonical simujation, acceptable trial moves
are as follows.

(1) Displacement of particles. A particle is sclected at
random and moved to a new position. This trial move is
accepted with a probability

ace(s—s')=min[ 1, exp{—BLU(s'™M - UM
(12)

(2) Insertion and removal of particles. A particle is
inserted at a random position or, with equal probability, a
randomly selected particle is removed. The insertion of a
particle is accepted with probability

acc(N—N+1)

=min| 1 expl—-B[UN+1)-U{N)]}H, (13)

zV
(N T
and the removal of a particle is accepted with probability

acc(N—N—1)

:min{],%exp{—ﬁ[U(N—l}—U(N)]}}. (14)

Boxes -3 show the basic structure of a simulation in the
grand-cancnical ensemble.

Grand-canonical Moate Carlo will fail if the accep-
tance of particle insertions or removals becomes too low.
For atomic fluids, this condition effectively limits the maxi-
mum density at which the method can be used to about
twice the critical density. However, for chain molecules, the
method breaks down at a much lower density.

Application to polymers
Polymers are long chain molecuies, which are typically
modeled as a string of monomers connected together by a

Box 1 Basnc grand canomca] ensemmble srmuiatlon.

S BROGRAN e

doicyel=1, neyel - o
“ran=int(ranf()* (hpart--nexc)) +1

.- it {ran.le.npart) then L

'4 call mcmove TR

eise . LN

el mcexc

o endit

PR 3 (mod(lcycl nsamp} eq 0)

Raer. I call sample

i;'enddo :

~énd

The algorithin ensures that detailed balance is obeved after each Monte Carlo stcp Per cycle we perform ori average npart'.
attempts 1o displace particles and nexc attempts to exchange particles with the reservoir. Subfoutine memove attemiptsto.
“displace a particlé {see Box 2), subroutine meexc attempts :to exchange a particle .with a: reservoir {see: Box 3) and
subroutmc sampie determines quantmeq (such as the potemrai energy or the pressure) every nsamp cycle L

smulat;on of bassc /,NT ensemble B

: _-..":'cii'spxaae a_bar'ti'cre':'

- _exchange a pamcie :

perform ncycl MC cycles

ZWIth the reservmr S

:s'ample'avei'a'gesy PR
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Figure 1. Sketch of the configurational-bias Monte Carlo
scheme. The sketch shows the retracing of the old confor-
mation (a) and the generation of a new configuration (b).
The arrows indicate a set of trial positions.

polymer conformations.* In a static Monte Carlo scheme,
each new configuration is generated from scratch. The prob-
lem with the Rosenbluth scheme is that the probability of
generating a polymer configuration is ro! proportional (o ils
Boltzmann weight. To correct for this bias, we have to
weight every generated configuration by the *‘Rosenbluth
weight’" (see below). In the configurational-bias Monte
Carlo method, we use the Rosenbiuth scheme to generate
trial moves, and we use the Rosenbiuth weight 1o bias the
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acceplance of these trial moves. As we shall show, this
procedure guarantees that alt polymer conformations are
generated with the correct Boltzmann weight. Note that the
configurational-bias Monte Carlo algorithm is a dynamic
rather than a static method, because new configurations are
generated by applying a trial move to an existing configu-
ration,

To illustrate the basic idea, we show how the
configurational-bias Monte Carlo algorithm works for a lat-
tice model consisting of N polymers each consisting of /
monomers. The algorithm consists of the following steps:

{1) Choose a polymer at random, retrace its conformation
{see Fig. 1(a)], and determine its Roscabluth weight
W(o). In the foilowing we discuss how to determine
W(o).

(2) Generaie a trial conformation at a new position using
the Rosenbluth scheme [see Fig. 1(b)] to grow the en-
tire polymer and compute its Rosenbluth weight
W(n).

(3) Accept the trial move with a probability

ace{o—ny=min[ 1,W({n)/W({o}]. (15)

In practice, step (2) is carried out before step (1). The rea-
son is that the generation of a new trial configuration often
is unsuccessful. In that case, the {rial move can be rejected
right away, and there is no need to compute the Rosenbluth
weight of the old configuration.

To determine the Rosenbluth weight of the old configu-
ration denoted by o, we use the following steps [see Fig.
1{a)l

(1) Measure the energy of interaction ¢ (o) of the first
monomer  with other polymers and compute w,{0)
=k exp[ —Bu,{0)], where k is the coordination number of
the lattice.

(2) To compute the Rosenbluth weight for the remain-
der of the chain, we delermine the interaction energy
#:(j} of menomer 7 at its actual position, and the energy it
would have had if it had been placed in any of the other
k—1 sites (fabeled by j) neighboring the actual position of
monomer i — 1 [see Fig. 1{a)]. The energy u,(j) includes all
interactions of monomer 7 with other polymers in the sys-
tem and with monomers 1 through i — 1 of the same poly-
mer. These energies are used to calculate the weights
W,-(O),

x
wilo)=e Pty Z e Bl (16)
=2

{3) Once the entire chain has been retraced, we deter-
mine its Rosenbluth weight as




a given position. The ranf() function gencrates a random numbe

o give partlcfe random displacement

.';--accepted replace x(o) by X0

:'select a pamcle at random
"energy of old conf:gurat;on .

nergy of new: configuration
: --._Metmpo!fs acceptance ruie

(npart eq 0): return
- mt(npart*ranfO)H
cait ener(x(6),eno) - .
arg—'npart*exp(beta*eno)*"
“ /(zz vo!)

fixed spacing between adjacent monomers. One approach to
simulating polymers is called reptation. In this approach a
trial move consists of removing a monomer at one end of
the polymer and adding a monomer at a random oricntation
at the other end. However, we would like to move the entire
polymer to a new shape in cne trial move. An arbitrary
attempt to de this move or to add a polymer to the system
will atmost always be rejected. To overcome this low ac-
ceptance rate, we need to use a smarter Monte Carlo
scheme. We shall use trial moves that are no longer com-
pletely random; the moves are biased in such a way that the

trial position and shape of the polymer to be moved have an
enhanced probability to fit into the existing configuration. A
similar approach also will be used for polymer insertion and
removal. Biasing a Monte Carlo trial move means that the
probability to generate forward trial moves is no longer
equal to the probability to generate reverse triat moves, that
is, a(o—n) # a(n-—0). To satisfy detailed balance (10),
we also must change the acceptance rule (11).

The starting point for the configurational-bias Monte
Carlo techpique is the static Monte Carlo scheme intro-
duced by Rosenbluth and Rosenblath in 1955 to sample
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l
Wio)= I;[l w0}, {17

The implementation of this scheme is shown schematically
in Boxes 4 and 5.

The Rosenbluth scheme to generate a new trial confor-
mation (denoted by n} of a polymer proceeds as foliows
[see Fig, 1(b)]

(1) The first monomer is inserted at a random position.
Its energy is denoted by u,(n), and we define w (n)
=k exp[—pBu;(m)]. (The factor £ in the definition of the
Rosenbluth weight of the first monomer, strictly speaking,
is unnecessary. We introduce it here only to make the sub-
sequent notation more compact.) For example, k=6 for a
simple cubic lattice.

(2) For the next monomer, with index i, there are k
possible trial directions. The energy of trial direction j is
denoted by u,(j). From the & possible directions, we select
one, say i1, with a probability

e-—Bui(n)
(18)

piln)= )

where the partial Rosenbiuth weight w{n) is defined as

W (11)m2,1 e~ Budi), (19
=
Equation (18) biases the growing of the polymers in such a
way that conformations with the lowest energy are selected
with the highest probabitity. It does not include the inter-
actions with monomers i +1 to [. Hence, the total energy of
the polymer chain is given by #(n)= E wptti(m),

{(3) Step (2) is repeated until the entm: polymer chain is
grown. The total Rosenbluth weight of configuration n is
given by

I

win)=1] w.n). (20
i=1

We need to demonstrate that the acceptance rule {135)
removes the bias introduced by the use of the Rosenbluth

scheme to generate trial conformations. The probability of
generating a particular conformation n follows from the
repeated use of Eq. (18),

! — Bu. -
e Bulnd e B0}

Q(OHH):{];[} T WO (21)
Similarly, for the reverse move,
e~ BA0)
aln-—0)= Wio) (22)

Using Eqs. (21) and (22} in the requirement of detailed
balance {9} imposes the following condition on the accep-
tance criterion:

acclo-—n) B Win)

acc(n—o) W(o) (23)

Clearly, the acceptance criterion given in Eq. (15) satisfies
this condition.

Next we consider a configurational-bias Monte Carlo
method for off-lattice systems. If the orientation of a mono-
mer relative to a neighboring menomer is described by a
continuous variable, then there is an essential difference
with the lattice model. In the latter case all the possible
orientations can be considered explicitly, and the corre-
sponding Rosenbluth weight can be calculated exactly. For
the continuum case, we cannot sample all possible crienta-
tions, and it is impossible to determine the exact Rosenbluth
weight, because an infinite number of orientations are pos-
sible. Hence, the scheme for lattice models, in which the
Rosenbluth weight for alt orientations is calculated, cannpt
be used for a continuum model. A possible sofution would
be to use a large but finite number of irial directions. Sur-
prisingly, this approximation is not necessary. It is possible
to devise a rigorous algorithm using an arbitrary subset of
all possible trial directions. As a consequence, an off-lattice
trial move looks very much like its lattice equivalent.

(1) For the first monomer, a trial position r, is selected
at random, and the energy of this monomer is calculated.
This energy is denoted by u,(n), and, as before, we define

wi(n}=k exp[—Bu,(n)}.

'.'Box 4. Basic canﬁgm ational-bias Monte Carlo.

“The details of the model are considered in sibroutine grow (see Box ’i for a pofymer on

;-'_carc of the bookkeepmg of the new conﬁourduon

" PROGRAM oamc

i hew seonf: true. .
call grow(new com‘ wn)

o j_-"’héw ccnf— faise

call grow(new com‘ wo)

L f (ranf() lt wn/wo)
& call accept R
:_-_.en_d S e :

o jgohf;gur_aﬁénal bi_éis Monte Carlo -
" first consider the new configuration .

““next retrace old conflguratlon to caicuiate ._ S

- acoeptance test (15) -
. __aCCept and do bookkeepmg

(Tattice). Subroutine accept takes

“grow (part of) chain‘and caiculate .- -
-'Roser'n'bl'uth -'w'e'ight of new'c'onfig'.' -

“its Rosenbiuth we|ght
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5

Box 5. The growing of a polymer on a lattice.

alread\

SUBROUTINE grow (new_coni,w)
if {(new_conf) then
xn ()= ranf{) box
'else _ _
© 7 p=ranf()=npart+1
xn{1)=x(c,1)
- endif
call ener{xn(1}, en)
w=k=exp(-betaxen)
do i=2, ell
. sumw=0
“doj=1k _
xt(j)=xn{i- 1)+b(})
call ener(xt{j).en)
w(j)=exp(-—betaxen)
sumw= sumw+w{n
.- enddo £
if (new conf) then
-call select (w, sumw, n)
exn(i) =xt(h)
'else
—xa(it= x(o 1)
end:f
W= w>sumw
:enddo -
Creturn
.; end

The subroutine grows an /-bead polymer on & lattice with coordination number & and calculates its Rosenbluth weight

. If new_conf= true., a new configuration is generated: if new_conf= false.. an old one is retraced. In a lattice model we
consider all possible trial positions, denoted by b(j). and hence the existing configuration is automatically included.
Subroutine select chooses one of the trial positions with probability p2(i)=w(i)/Z,w(J}. Subroutine ener calculatés the
energy of the monomer at the given position with the other polymers and the monomers ()f the c}mn that have been gZrown

insert first monomer
select old chain at random « - i -

calculate energy
Rosenbluth weight of first monomer’

consider k trial directions
“ determine trial position .
determine energy trial position |

select one of trial positioné"

direction r1 is selected

updaté Rosenbi.uth weighf ;

{2) For the subsequent monomers, & trial bonds of
length b are generated, starting from the position of the
previous monomer. We denote these trial bonds by {b},
=(b,.b2.....b;). The end points of these vectors are dis-
tributed randomly or the surface of a sphere with radius
b. For cach trial position, the energy u;(b;) is calculated,
and one of these positions is selected with probability

e = Buib)
pib,)= o (24)
where
&
wilny= 2, e by, (25)

i=1

In practice, it often is convenient 1o separate the intramo-
lecular {(bending and torsion) potential energy from the non-
bonded {**external™’) potential energy. In that case, the frial
posttions for the monomers are drawn from a Boltzmann
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distribution of “‘internal’” energies, whereas the w;(b;) cor-
respond to the external interactions (for details, see Ref. 1),

(3) Step {2) is repeated until the entire polymer of
length ! has been: grown, and the normalized Rosenbluth
weight can be calculated as

W( 1)

i 11)
H (26)

We can interpret 7 as the ratio of the Rosenbluth weight
of the trial configuration to that of an ideal {non-self-
avoiding) chain in the ideal gas reservoir. As in the case of
normal configurational-bias Monte Carlo (15), we can de-
rive from the condition of detailed balance that this ratio
appears in the expression for the probability of accepting a
trial insertion [see Eq. (27) below].

To compute the (off-laitice) Rosenbluth weight of the
existing configuration of this polymer, we proceed as for
the new configuration, except that we now generate &~ |

7/(11




randomly oriented trial monomers around every existing
monomer. We compute the partial Rosenbluth weight,
w:(0), for every set consisting of the actual monomer plus
k—1 trial monomers. The total Rosenbluth weight of the
existing chain conformation is W{o}= I, w0}, and the
normalized weight is defined as 77(0)= W(o)/k’.

Trial moves to insert a polymer arc implemented as
follows. First we randomly select a position for the first
monomer of the polymer, and then we grow the rest of the
chain and compute the Rosenbluth weight in the same way
as we would for a trial move of an existing polymer. The
selected polymer is inserted with a probability

. (27)

. FA
acc(N—>N+1)xmm[1, T #(n)

Trial moves io remove a polymer are implemented in a
simifar way. Firsl we randomly select a polymer, then we
compute the Rosenbluth weight #(0), and then the se-
tected polymer is removed with a probability

. N 1 .
acc(N—N—~1}=min 1"21/ 7o) (28)
We note that for off-lattice configurational-bias Monte
Carlo, the number of trial directions & can be chosen at will.
The results that we obtain do nof depend on 4, but the
statistical accuracy does. In these equations z denotes the
fugacity of ideal (that is, non-self-avoiding) chains. In Ref.
1 it is explained how this fugacity can be related to the
vapor pressure of real chains in a reservoir.

Smit and Maesen® used grand-canonical config-
urational-bias Monte Carlo simulations to compute the ad-
sorption of hydrocarbons in zeclites {micro-porous materi-
als). Whereas conventional grand-canonical simulations are
Hmited to small alkanes (methane or ethane), the grand-
canonical configurational-bias Monte Carlo method can be
used to predict the adsorption of hydrocarbons that are used
in industrial applications. For exampie, Fig. 2 shows the
predicted adsorption isotherm of heptane in the industrially
important zeolite silicalite.

So far we have discussed three of the four trial moves
used in a Gibbs-ensemble simulation: moving a polymer,
insertion of a polymer, and removal of a pelymer. The last
type of move we need is a change in the volume of each of
the two systems such that the total volume V is fixed. To do
so, we change the original volume V{ of one of the two
systems by a random amount AV to V], while the volume
of the other system (V9) is changed by —AV 10 V5. As in
Eq. (1}, it is convenient to define scaled coordinates s, that
are related to the real coordinates by r;=V'"s,. When
changing the volumes, we keep the scaled coordinates of
the polymers in both systems fixed. The real coordinates
change with the volume, and hence the potential energy of
both systems also changes. Imposing detailed balance leads
to the following acceptance criterion:

where N, and (N —N,) are the numbers of polymers in
systems 1 and 2, respectively, and s* refers to all the scaled
coordinates of N polymers. U, the total potential energy of
system 1, and U, the total potential energy of system 2, are
functions of the scaled coordinates of all particles in the
system and of its volume. If system 2 is an ideal gas, then
U.=10.

We are now in a position to simulate two-phase coex-
istence using the Gibbs ensemble. First we choose ran-
domly which type of trial move (o make. The relative fre-
querncies of these trial moves depend on the specific model
under consideration. A good rule of thumb is to spend ap-
proximately equal amounts of computer time on all three
types of moves. For an N-molecule system, this usually
implies that trial displacements are <7(N) times more fre-
guent than volume moves. The frequency of particle ex-
changes depends on temperature and density—it is uswally
less frequent than translational moves, yet more frequent
than volume moves, After a certain number of trial moves
are made, thermodynamic quantities can be computed such
as the density and pressure in cach system. At the end of the
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Figure 2. Adsorption isotherms of heptane in the zeolite
silicalite (the number of adsorbed molecules N as a func-
tion of the pressure P). The closed symbols are experimen-
tal data and the open symbols the results from sinmulations
al T=298 K. Zeolites are used as catalysts in the petro-
chemical indusiry. For these applications it is important to
be able io predict the uptake of hydrocarbons by the zeolite.
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Figure 3. The critical temperature T, (a) and critical den-
sity p. (b) as a function of carbon nunber N .. The open
symbols are the simulation data and the closed symbols are
experimenial data (for details see Ref. 5).

simulation overall averages and statistical errors are com-
puted.

An example that illustrates the power of grand-
canonical configurational-bias Monte Carlo in the context
of Gibbs-ensemble simulations is the prediction of the
phase behavior of long-chain alkanes. Alkanes are ther-
mally unstable above approximately 650 K. Therefore, at
high temperatures it is necessary to measure very rapidly (o
reduce the effects of this decomposition on the thermody-
namic properties. This requirement makes the experimental
determination of the critical point of alkanes fonger than
decane extremely difficult, and consequently the phase be-
havior of long-chain alkanes is known only in part. Yet, a
knowledge of the (hypothetical) critical properties of pure

254 COMPUTERS [N PHYSICS, VOL. 11, NO. 3, MAY/HIN 1997

alkanes is important for predicting the thermodynamic be-
havior of the hydrocarbon mixtures that are encountered in
the petrochemical industry. Siepmann et al® used a combi-
nation of Gibbs-ensemble and configurational-bias Monte
Carlo to simulale vapor-ligquid equilibria of the fonger
n-alkanes for which experimental data are lacking. In Fig. 3
the critical temperatures and densities as predicted in Ref. 5
are plotted versus the carbon number. There are conflicting
experimental estimates of the critical densities for the
longer alkanes. The simulations lend support to those ex-
periments that report a decrease in critical density with in-
creasing carbon number. Without the use of grand-
canonical configurational-bias Monte Carlo, the same
simulations would have required astronomical amounts of
CPU time.

Progress in computational maferials science is not sim-
ply a matter of faster computers, Computational tricks, such
as configurational-bias Monte Carlo, result in a speedup that
far outweighs any gains due to improved hardware. Morse
importantly, the applicability of the method is not limited to
simplified model systems—it works for maierials of prac-
tical importance. The combination of smarter algorithms
and more powerful hardware is now rapidly transforming
computational materials science from an cternally promis-
ing field to an essential tool in the design of novel materials.

Suggestions for further study

The following set of problems will help the reader to
construct a grand-canonical configurational-bias Monte
Carlo program for Lennard-Jones chain polymers. Because
only a few papers have been written on grand-canonical
configurational-bias Monte Carlo for chain polymers, there
is a good chance that you will obtain new results.
The Fortran programs discussed in the probiems can be
downloaded from the authors® Web site at http://www.
hpen.tudelft.nl/frenkel _smit.html.

(1) Write an NVT Metropolis Monte Carlo program {6
simulate Lennard-Jones particles. Use the algorithm in Box
2 as a starting point. You wiil need to evaluate the pressure
from the virial (see Ref. 1, p. 75). Adopt the truncated and
shifted Lennard-Jones poteniial

L Juulnmuyte, rsrg
ne; _{0: e (30)
with
O' iz o_‘-. 6
”u{f‘):""f““;f) -1~ 6D

You can download a program from the authors® Web sitc
{Case Study 1). Use this program or one that you have
written to calculate the pressure as a function of density for
T=2.0 and T=0.9 in the density range 0-<p<<0.8. Note
that the temperature and density are expressed in reduced
units, that is, we assume €= ¢ = 1. Explain the qualitative
differences between the two isotherms.

{2) Extend the program used in Problem |} to include
particle insertions and deletions (see Box 3) so that the
grand-canonical ensemble is used. A program for this prob-
fern can be obtained from the Web (Case Study 9). Repeat




the calculations of the equation of state. In this case we
impose the temperature and chemical potential, and the
pressure and density are the resulis of the calculation.
Check the consistency of the results by comparing the iso-
therms with the ones obtained in Problem 1. At low pres-
sures the fugacity of the system should be equal to that of
an ideal gas z=p. Can you reach the regime where this
relation holds? What is the maximum density for which the
results are still reliable? Your answer depends on the
amount of CPU time you have available and the system size
you want to study, but you should be able to observe a sharp
decrease of the number of accepted insertions/deletions as a
function of the density.

{3) As a simple model of a porous media, we can use a
slitlike pore that can be described with the following poten-
tial:

w, z<—HP
w,  z>H/[2,

Modify the program used in Problem 2 so that this external
potential is taken into account in the energy calculation.
Consider the simulation of molecules in a single pore, and
compute the adsorption isotherms (number of molecules
adsorbed per unit volume as a function of the chemical
potential) for T=2.0 and for T=1.0 with H=4.0 and H
=1.5. Explain the shape of the isotherms.

(4) Use Boxes 4 and 5 as a guide to writing a
configurational-bias Monte Carlo program for a single (off-
fattice} chain in vacuum. Instead of generating the configu-
rations on a lattice, generate a set of trial orientations on the
surface of a sphere. (Case Study 20 on the Web site gives
some uscful hints on how te generate vectors on the surface
of a sphere.) As an example, use this program to compute
the radius of gyration R as a function of the number of
monomers N of the chain. We expect R«N". Extract the
exponent v from a log—tog plot of R versus N. If you plot
v as a function of temperature, you will be able to see the

collapse transition of the chain where v changes sharply,

(3) Now you should have all the ingredients to write a
grand-canonical configurational-bias Monte Carlo program
for chain molecules. Problem 4 gave the general scheme for
generating a new configuration and for retracing the old
one. This scheme should then be placed in a general frame-
work of a grand-canonical Monte Carlo method as we have
deveioped for simple Lennard-Jones molecules. Some hiats
can be obtained from Case Study 19 on the Web site, where
we use configurational-bias Monte Catlo for a simulation at
constant pressure in which the total number of particles
remains constant but the volume can fluctuate.

As a test of the program, cempute the equation of state
in the grand-canonicai ensemble and in the NVT ensemble
for a system of chains consisting of eight Lennard-Jones
beads. (Note that an NVT simulation can be done using a
grand-canonical program with zero exchanges.) To do so
we need to compute the pressure of a system with chain
molecules. How can this calculation be done? (Hint: com-

pute the virial between the centers of mass of the mol-
ecules.) What is the maximum density that can be obtained?

(6) Compute an adsorption isotherm for eight-bead
chain molecules in a slitlike pore. How do these isotherms
shift as a function of the number of monomers? Study the
density profile in the slit.
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Than Fortran?

“ ...a very smart compiler (KAl C++) and a revolutionary
technique {expression templates} could be used to
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** —SW. Haney, Comput. Phys. 10, (1596)
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copy of KAl C++ and use it for FREE for 30 days:
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