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CHAPTER 11

Some applications of the configurational-bias Monte
Carlo technique
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1. — Introduction

Irn the lectures of Frenkel some novel Monte Carlo techniques have been discussed
(see Chapter 3). In these notes these techniques are applied to some systems that are
of interest in petro-chemical applications. In particular, we focus on phase equilibria of
long-chain hydrocarbons and the adsorption and diffusion of hydrocarbons in zeolites.
Interesting to note is that without these special Monte Carlo techniques these simulations
would have required many (million) years of supercomputer time.

Zeolites are micro-porous materials which are used as catalysts in petro-chemical ap-
plications. A prerequisite for an understanding of the catalytic activity of these zeolites
is a knowledge of the behavior of the molecules adsorbed in the narrow pores of these
zeolites. Since this type of information is extremely difficult to obtain experimentally,
simulations appear to be an attractive alternative [1]. Over the last decade many simu-
lation studies on the behavior of molecules in zeolites have been published (for a review
see ref. [2]}. A more careful look at these studies reveals that most simulations concern
the adsorption of noble gases or methane, only a few studies of ethane or propane have
been published. In petro-chemical applications of zeolites, however, we are interested in
the behavior of much longer alkanes such as octane and decane.

The reason why only smali molecules have been studied becomes clear from the work
of June et ol.[3] and Herndndez and Catlow [4], in which Molecular Dynamics simulations
were used to investigate the diffusion of butane and hexane in the zeolite silicalite. June
et al. showed that the diffusion of butane from one channel of the zeolite into another
channel is very slow compared to diffusion of bulk butane. As a consequence many hours
of super-computer time were required to obtain reliable results. In addition. since the
diffusion coefficient decreases significantly with increasing chain length. extrapolasion
of these results suggests that many years of super-computer time would be required to
obtain comparable results for the longer alkanes.

The above example illustrates one of the main limitations of Molecular Dynamics.
If one tries to mimic the behavior of the motlecules as realisticly as possible, the diffusion
coefficient will be of the same order of magnitude as observed experimentally. Hence the
molecules diffuse slowly this will be reflected in very long simulation times and in the
case of long chain alkanes in zeolites these simulation times are much longer than we can
currently afford. In principle, one can circumvent this intrinsicly slow dynamics by using
a Monte Carlo technique. In a Monte Carlo simulation one does not have to follow the
“natural path” and one can, for example, perform a move a molecule is displaced to a
random position in the zeolite. If such a move is accepted, it corresponds to a very large
jump in phase space.

Again, utilization of these type of un-natural Monte Carlc moves turned out to be
limited to small molecules. For example, Goodbody et al.{5] have used grand-canonical
Monte Carlo simulations to determine the adsorption isotherms of methane in a zeolite.
In such a simulation one can observe that out of the 1000 attempts to move a methane
molecule to a random position in the zeolite, 999 attempts will be rejected because the
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methane molecule overlaps with a zeolite atom. If we were to perform a similar move
with an ethane molecule, we would need of the order of 1000 x 1000 attempts tc have
one that will be successful. Clearly, this random insertion scheme will break down for
any but the smallest alkanes.

Similar difficulties are encountered in the Gibbs-ensemble technique. As expiained in
the notes of Frenkel (Chapter 5), the Gibbs-ensemble technique is a very elegant method
to simulate vapour-liquid equilibria. The accuracy of this method, however, depends on a
successful exchange of particles between the liquid and vapour phase. For atoms or smaii
molecules at moderately high densities on can obtain & reasonable number of successful
exchanges. For chain molecules {i.e. molecules longer than butane), the probability of a
successful insertion in the liquid phase is very small and as a consequence the simulations
become prohibitively long.

Both examples illustrate the need for more efficient schemes to simulate chain
molecules. The configurational-bias Monte Carlo (CBMC) scheme has been developed
to make these kind of simulations of chain molecules possible [6, 7, 8, 9, 10]. In this
Chapter, the use of the CBMC technique is illustrated with some examples of practical
relevance. Important to note is that the CBMC technique is not limited to the simulation
of chain molecules, to illustrate this

2. — Phase equilibria of n-alkanes

‘The Gibbs-ensemble technique was introduced by Panagiotopoulos {11} as an efficient
tool to simulate vapor-liquid phase equilibria. In the Gibbs-ensemble scheme simulations
of the liquid and vapor phases are carried out in parailel. Monte Carlo rules which allow
for changes in the number of particies and the volume, ensure that the two boxes are in
thermodynamic equilibrium with each other. Since the two boxes are not in ‘physical
contact’, there is no interface and the bulk properties of the two coexisting phases can
be obtained directly with a surprisingly small number of particles. This makes the Gibbs
ensemble extremely efficient for phase equilibrium calculations. The major limitation of
the Gibbs-ensemble technique is that one of the steps involves the exchange of particles
between the two boxes. For liquids consisting of small molecules this does not cause
serious problems. However, for chain molecules the probability of successful exchanges
can become very small. For example, under conditions where it takes approximately 10
attempts per successful exchange of methane, it takes of the order of 103" attempts for
an n-alkane. to be limited to systems containing atoms or small molecules. However,
by combining the Gibbs-ensemble method with configurational-bias Monte Carlo, the
method can be made to work for much longer chain molecules (12, 13].

Siepmann et al[15, 16] have used the combination of the Gibbs-ensemble technique
and configurational-bias Monte Carlo to simulate vapor-liquid equilibria of the n-alkanes
at conditions where experiments are not (yet) feasible. Alkanes are thermally unstable
above approximately 650K, which makes experimental determination of the critical point
of alkanes longer than decane (Cip) extremely difficult. The longer alkanes, however, are
present in mixtures of practical importance for the petrochemical industry. In these
mixtures, the number of components can be so large that it is not practical to determine
all phase diagrams experimentally. One therefore has to rely on predictions made by
equations of state. The parameters of these equations of state are directly related to
the critical properties of the pure components. Therefore, the critical properties of the
long-chain aikanes are used in the design of petrochemical processes, even if they are
unstable close to the critical point [14]. Unfortunately, experimental data are scarce and
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Fig. 1. - Vapor-liquid curve of octane: comparison of Cibbs-ensemble simulations using the

OPLS model of Jorgensen and co-workers [17], the model of Toxvaerd [18), and the model of
Siepmann et al[15, 16].

contradictory, and one has to rely on semi-empirical methods to estimate the critical
properties [14].

Most available models for alkanes have been obtained by fitting simulation data to
experimental properties of the liquid at standard conditions. In Figure 1 the vapor-liquid
curve of octane as predicted by of some of these models is compared with experimental
data. This figures shows that the models of refs. [17, 18] which give nearly identical
liquid properties, yield estimates of the critical temperature of octane that differ by
100K. Siepmann et al.{15, 16] used these vapor-liquid equilibrium data to improve the
existing models.

In Figure 2 the critical temperatures and densities as predicted by the mode! of
Siepmann et al. are plotted versus carbon number. The simulations reproduce the ex-
perimental critical points very well. There is, however, considerable disagreement be-
tween the various experimental estimates of the critical densities. Much of our current
knowledge of the critical properties of the higher alkanes is based on extrapolations of
fits of the experimental data up to Cs. The most commonly used extrapolations assume
that the critical density is a a monotonically increasing function of the carbon-number,
approaching a limiting value for the very long alkanes [14, 19]. In contrast to these ex-
pectations, the experimental data of Anselme et 4l.[20] indicate that the critical density
nas a maximum for Cg and then decreases monotonically, The data of Steele (as reported
in ref. {19}), however, do not give any evidence for such a maximum {see Figure 2}. The
simulations indicate the same trend as that observed by Anselme et al. In this context, it
Is interesting to note that Mooij et al.[12} and Sheng et al[21) used Monte Carlo simula-
tions to study the vapor-liquid curve of a polymeric bead-spring model for various chain
lengths. These studies also show a decrease of the critical density as a function of chain
length.
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Fig. 2. — Critical temperature T, {left figure) and density p. (right figure) as a function of carbon
number N.. The open syrmbols are the simulation data and the closed symbols are experimental
data.

3. —- Adsorption and diffusion of alkanes in zeolites

In the introduction we have used the adsorption of molecules as an example to il-
lustrate the type of problem one can encounter in simulating systems that exhibit siow
diffusion. Smit and Siepmann have used the configurational-bias Monte Carlo tech-
nique to study the energetics and siting of alkanes in the zeolites silicalite and mordenite
[22, 23]. In these simulations alkane molecules are modelled with a united atom model,
ie., a CHz and a CH, group are considered as a single interaction centre and the ze-
olite is modelled as a rigid crystal. The zeolite-alkane interactions are assumed to he
dominated by dispersive interaction with the oxygen atoms, which are described with
a Lennard-Jones potential. A closely related technique was used by Maginn et al. [24].
The simulations of Smit and Siepmann and Maginn et al. predict heats of adsorption of
the longer chain alkanes in silicalite that are in good agreement with the experimental
data and the simulations of Bigot and Peuch [25].

Simulations can also be used to determine adsorption isotherms. Adsorption isotherms
are of practical importance since they give information an the number of molecules ad-
sorbed in the pores of a zeolite as a function of the pressure of the reservoir. Adsorption
isotherms are also of fundamental interest since they may signal phase transitions, such
as capillary condensation or wetting, of the fluid inside the pores [26}. For example,
if a system exhibits capillary condensation, one would measure a stepped adsorption
isotherm with hysteresis. Steps or kinks without hysteresis are occasionally ohserved on
flat substrates [27]. Since the pores of most zeolites are of molecular dimensions, adsorbed
alkane molecules behave like a (pseudo) one-dimensional fluid. In 2 one-dimensional sys-
tem phase transitions do not occur and therefore one would expect that for alkanes the
adsorption isotherms are of type I, i.e., do not show kinks or steps. If steps occur they are
usually attributed to capiilary condensation in the exterior secondary pore system formed
by the space between different crystals [28]. For silicalite, adsorption isotherms have been
determined for various n-alkanes: for the short chain alkanes (methane—pentane) the
isotherms are indeed of type I [29, 28], also for decane a type I isotherm is observed
[30, 28]. For hexane and heptane, however, a kink or step is observed {29, 31].
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Fig. 3. - Adsorption isotherms of hexane {left), and heptane (right), the closed svmbols are
experimental data and the open symbols the results from simulations at T° = 298 iK].

Adsorption isotherms are conveniently determined from simulations in the grand-
cancnical ensemble. In this ensemble the temperature and chemical potential are im-
posed, but the number of particles is allowed to fluctuate. Adsorption isotherms of
alkanes in silicalite have been simulated by Smit and Maesen [32]. The simulated ad-
sorption isotherms for hexane and heptane are shown in Figure 3. The agreement of
the simulation results with the experimental data is good at high pressures, but at low
pressures deviations exist which indicate that the zeolite-alkane model may be further
improved. It is interesting to note that for heptane both the experiments and the simula-
tions show a step at approximately half the loading. Also for hexane detailed inspection
of the calculated adsorption isotherm shows a kink at this loading. Since the simulations
are performed on a perfect single crystal, these deviations from the type I isotherm must
be due to a transition of the fluid inside the pores and can not be attributed to the
secondary pore system. Smit and Maesen attribute this transition to a commensurate
‘freezing’ in the channels of a zeolite. The length of a hexane molecule is of the order of
the length of the period of the zig-zag channel. At low chemical potential, the hexane
molecules move “freely” in these channels and the molecules will be part of their time in
the intersections. If part of the intersection is occupied, other molecules can not reside in
the straight channels at the same time. At high pressures, almost all hexane molecules
are exactly fitting into the zig-zag channel, they do no longer move freely and keep their
nose and tail out of the intersection. In such a configuration the entire straight chan-
nel can now be tightly packed with hexane molecules. This may explain the plateau in
the adsorption isotherm: in order to £ll the entire zeolite structure neatly, the hexane
molecules located in zig-zag channels have first to be “frozen” in these channels. This
“freezing” of the positions of the hexane molecules implies a loss of entropy and will
therefore only occur if the pressure (or chemical potential) is sufficiently high to com-
pensate for this loss. Further experimental evidence for this commensurate freezing of
hexane and heptane has been found by van Well et al. [33].

It is interesting to compare the siting of linear alkanes with the siting of branched
alkanes in zeolites. Figure 4 compares the distribution of the CH group of the head of
2-methyl-butane with the distribution of the middle segment of pentane in the pores of
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silicalite at T=498K [34]. This figure shows shat the distribution of the linear alkanes
is very different from the distribution of the branched alkanes. Whereas pentane has an
equal probability to be in the straight channels, zig-zag channels, or intersections, the
branched alkanes have a strong preference to be with the head group in the intersections.
These results are in very good agreement with the Monte Carlo integration results of
June et al. [35] Also for the other branches alkanes a similar preference of the head
group for intersections,
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Fig. 4. - Distribution of the alkanes in the channels of silicalite {34]. The lines represent the
zeolite lattice. At regular intervals a dot representing the position of the CH pseude atom of the
head group in the case of the branched alkane (2-methyl-butane) or the CH, middle segment
in the case of a linear alkane (pentane) is drawn. The density of the dots is a measure of the
probability of finding a molecule in a particular section of the zeolite. The top figures gives a
projection along the straight channels (i.e., the z-z plane), the bottom figures along the zig-zag
channel (i.e., the z-y plane).

It is interesting to discuss to consequences of these results for the diffusion of these
molecules in the pores of the zeolite. Comparison of the siting of the linear alkanes with
the siting of the branched alkanes shows that the (short chain)} linear alkanes have a
uniform distribution whereas the branched alkanes have a preference to be at the inter-
section. This suggests that these linear alkanes can move “freely” in the channels and
therefore their diffusion coefficient can be obtained from a mclecular dynamics simula-
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tions within a reasonable amount of cpu time. The branched alkanes, however, are pinned
with their head group at the intersections and have a very small probability to be in the
channels connecting the intersections. These straight and zig-zag channels therefore form
a barrier for the diffusion. ¥ this barrier is much higher than kgT, the diffusion of such
an alkane is an activated process; most of the time the molecule resides at a intersection
and occasionally a molecule hops from one intersection to another.

If the diffusion of these branched alkanes is an activated process, we can use the
simulation techniques developed by Bennett and Chandler [36, 37] to simulate rare events
[38). The basic idea behind these calculations is that the rate at which a barrier crossing
proceeds is determined by the product of a static term, namely the probability of finding
the system at the top of the barrier and a dynamic term that describes the rate at which
systems at the top of the barrier move to the other vailey.

To compute the diffusion coefficients of a branched alkane in a zeolite we have to
determine a reaction coordinate for which we can compute the free energy. For diffusion a
natural reaction coorvdinate is the position of one of the atoms of the adsorbed molecules,
In case of branched alkanes it is convenient to take. for example, the position of the CH
group (i.e., the group for which the distribution is shown in Figure 4}. Let us assume
the concentration of hydrocarbons is sufficiently low such that the probability that two
hydrocarbons are in neighbouring intersections is very small. In this limit, the jumps
from one intersection to another are independent. In silicalite we can jump from one
intersection to another via the straight channel or zig-zag channel. Of each of these
paths the jump rates can be calculated. Because of the symmetry of the crystal the two
different paths via the straight channels (jumping up or down) and the paths via the
zig-zag channels are equivalent. The calculation can therefore be limited to computing
the jump rates via these two paths.

In practice, the computation of a rate constant consists of two steps. The expression
of the rate constant is given by [38]

(g(0)ole” — q(0))8(g(t) —¢*))  {é(g” —a))
({g™ — ¢(0))) 0lg —q)

Where we assume that 4 is one intersection and B a neighbouring intersection, g(#) is
the reaction coordinate, #(z) is the Heavyside step-function, 8(z) = 1 for z > ¢ and
8{z) = 0 otherwise, and ¢* is the top of the free energy barrier separating the states
A and B. Let us focus on the second term on the right-hand side of equation (1), i.e.,
{(6(¢™ — q)) / {#(q” — q)), the probability density to find the system at the top of the
barrier, divided by the probability that the system is on the reactant side of the barrier.
This ratio, can be calculated from the free energy as a function of the order parameter.
We can use the CBMC algorithm to compute this free energy as a function of the order
parameter.

A typical result is presented in Figure 5, in which the free energy of 2-methylhexane
as a function of order parameter in the straight and zig-zag channels is shown. This
figure indicates that in the straight channel there are three barriers. The height of the
first barrier (g = 0.29) is approximately 14 kgT, which demonstrates that a jump over
this barrier is indeed a rare event. In addition this figure shows two additional barriers
one at ¢ = 0.5 and one at g = (.68. Because of the symmetry of the crystal the barrier
at ¢ = 0.68 and ¢ = 0.29 have an equal height. Within the accuracy of the calculation,
the barrier at ¢ == 0.5 has the same height as the other two. For the zig-zag channel
we observe 4 barriers, the highest barrier has a height of 18 kpT. If we assume that

(1} kA—a»B(t) -
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Fig. 5. - Free energy of a branched alkane as a function of the position of the head group in the
straight channel (left) and zigzag channel (right). For ¢ = 0 and ¢ = 1 the head group is in the
intersections. The resuits are for 2-methylhexane in silicalite at T = 368 K.

transition state theory can be applied to this system, Figure 5 is sufficient to compute
the crossing rate. For the straight channel we find that the highest barrier is crossed 1 10°
times per second. This implies that a molecules resides in the intersection approximately
7 micro seconds, which is very long on the time scale of a Molecular Dynamics simulation.
This shows that the diffusion of branched alkanes is indeed an activated process.

4. — Beyond chain molecules

Thus far, the configurational-bias scheme has been presented exclusively as a method
to generate conformations of chain molecules. In fact, the method is more general than
that. For example, it can be used as a scheme to perform collective rearrangements of
any set of labeled coordinates. In fact, the scheme can be used to carry out Monte Cario
moves to swap 7 small particles within a volume AV with one large particle that occupies
the same (excluded) volume. This application of the CBMC scheme has been exploited by
Biben [39] to study mixtures of large and small hard spheres. Gibbs-ensemble simulations
of mixtures of spherical colloids and rod-like polymers were performed by Bolhuis {40]
using CBMC-style particle swaps and a closely related approach was employed by Dijkstra
to study phase separation in [41, 42] mixtures of large and small hard-core particles
on a lattice. Another application is to perform Monte Carlo simulations on a parallel
computer.

4.1. Miztures of colloids and polymers. - Bolhuis and Frenkel are interested in sim-
ulating the properties of colloidal solutions. Examples of such solutions are milk, paint,

or mayonnaise. Since a single colloidal particle m:w  ontain over 109 atoms, its is not
possible to model such a particle as a collection -+ . ms. However, it is possible to de-
scribe colloidal solutions using coarse grained mo:: “or example, a suspension of silica
spheres can be described surprisingly accurate - : hard-sphere potential. Similariy
to the hard-sphere fluid, such a colloidal susper:. a8 a fluid-solid transition, but not
a liquid-gas transition. Experimentally, it is obs - .. that a liquid-gas transition can be

induced by adding polymers to the suspension.
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The effect of adding polymers is like having attractive interactions between the
colloidal particles. These effective interactions occur even in systems that have only
excluded volume interactions and are therefore called entropic interactions. To see this,
consider a system of two colloidal particles to which we add a polymer. We assume
that this polymer behaves like an ideal polymer except that it cannot overlap with the
colloidal particle, that is, the polymer and colleid have excluded volume interactions. If
the distance between the colloids is large, the total entropic contribution of the polymer
is related to the total number of configurations of the polymer minus those configurations
that overlap with the first colloidal particle and those which overlap with the second.
When the distance of the two colloidal particles is smaller than the length of the polymer,
the total entropy increases. If for such a system, we were to compute the entropy by
subtracting those configurations of the polymer that overlap with the two colloids, we
would count those configurations twice which overlap with both colloids at the same
time. This increase of the entropy as two colloidal particles approach each other gives
rise to an effective attractive force between the particles. Similar effects can be expected
in mixtures of infinitely thin hard rcds and hard spheres. If these rods are sufficiently
long, they may induce a vapor-liquid like transition for the hard-spheres.

Bothuis and Frenkel have studied the phase behavior of a mixture of hard spheres
and hard rods. In particular, Bolhuis and Frenkel used Gibbs-ensemble simulations to
determine the “vapor-liquid” coexistence curve. In a Gibbs-ensemble simulation one
simulates two boxes that are keep in equilibrium with each other via Monte Carlo rules.
In this case the “gas” box has as a low density of hard spheres and the “liquid” box has a
high density of spheres. Similarly, to the phase equilibrium calculation of linear alkanes.
the exchange step, in which particles are exchanged between the two boxes is the bottle
neck of the simulation. For example, the insertion of a sphere into the “gas-phase” would
almost always fail because of overlaps with some of the rods. Bolhuis and Frenkel have
used the following scheme to make this exchange possible;

1. Select a sphere in one of the boxes at random and insert this sphere at a random
position in the other box.

2. Remove all the rods that overlap with this sphere. These rods are inserted in the
other box. If these rods would be inserted at random, almost always one of the
rods would overlap with a sphere and such a move would be rejecied. However,
if one tries several orientations and positions of the rods and select an acceptable
configuration using the corfigurational-bias Monte Carlo scheme one can make such
a move possible. During the insertion of the rods one has to be careful that detailed
balance is obeyed (for details see [40]}.

Because of this redistribution scheme of the rods during the insertion step using the
CBMC one can generate configurations that do not have overlap. This allowed Bolhuis
and Frenkel to exchange spheres between the two boxes and obtain the coexistence den-
sities. The result of these Gibbs-ensemble simulations is shown in Figure 6. The figure
shows that if one increase the fugacity (chemical potential) of the rods and hence the
concentration of rods, a demixing occurs in a phase with a low density of spheres and a
phase with a high density of spheres. If the rods are longer, this demixing occurs at a
lower concentration. Important o note is that in this system the particles interact with
hard-core interactions ¢nly. Therefore this demixing is driven by entropy.

An interesting extension of this technique used by Bolhuis and Frenkel would be
to biological systems. For example, if one would like to make a large displacement
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Fig. 6. ~ Coexistence curves for a mixtures of hard spheres and rods as cbtained by Bolhuis
and Frenkel. The x-axis gives the density and the v-axis the fugacity {chemical potential) of the
rods. L/o is the ratio of the length of the rod and the diameter of the hard-sphere.

of a part of a protein, in vacuum this wouid be relatively easy to do. In an agqueous
solution, however, one has to remove the water molecules that overlap with that part of
the protein that has been moved and the water molecules need to be redistributed. This
redistribution can be done with the scheme of Bolhuis and Frenkel.

4.2, Parallel Monte Corlo simulations. — A different application of the CBMC ideas
is used by Esselink et al.[43] to develop an algorithm to perform Monte Carlo moves in
parallel. Parallel Monte Carle appears to be a contradiction in terms, since the Monte
Carlo procedure is an intrinsically sequential process. One has to know whether the
current move is accepted or rejected before one can continue with the next move. The
conventional way of introducing parailelism is to distribute the energy calculation over
various processors, or o farm out the calculation by performing separate simulations
over various processors. Although the last algorithm is extremely efficient and requires
minimum skills to use a parallel computer, it is not a truly parallel algorithm. For
example, farming out a calculation is not very eflicient if the equilibration of the system
takes a significant amount of c¢pu time. In the algorithm of Esselink et al. several trial
positions are generated in parallel and out of these trial positions the one with the highest
probability of being accepted is selected with the highest probability. This selection step
introduces a bias which is removed by adjusting the acceptance rules. The generation
of each trial move, which includes the calculation of the energy (or Rosenbluth factor
in the case of chain molecules), is distributed over the various processors. Loyens ef
al. have used this approach to perform phase equilibrium calculation in parallel using
the Gibbs-ensemble technique [44].

5. - Concluding remarks

In this Chapter, we have discussed various applications of the configurational-bias
Monte Carlo technique. For example, it is illustrated how this technique can be com-
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bined with the Gibbs-ensemble method to simulate vapour-liquid equilibria of long-chain
alkanes. This combination results in an algorithm that is many orders of magnitude more
eflicient compared to the conventional aigorithms. Similar gains in efficiency have been
obtained in the simulations of hydrocarbons adsorbed in the pores of a zeolite.
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