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Abstract— Control of the longitudinal beam dynamics in
heavy ion synchrotrons is a challenging task due primarily to
the very fast time constants present in the system. Recently, the
authors developed a model predictive controller for this system
and demonstrated that solution of the required optimisation
problem can be accomplished in about 1us when implemented
on a Field Programmable Gate Array (FPGA). This initial
design made several simplifying assumptions and in this paper
we extend this initial design to account for known implemen-
tation issues relevant to the SIS18 heavy ion synchrotron at
the GSI Helmholtz Center. In particular, in this paper we
present a design of an offset-free output feedback predictive
control scheme for longitudinal beam dynamics in heavy ion
synchrotrons. Furthermore, we demonstrate how to compensate
for possible communication delays. The performance of this
offset-free output feedback predictive controller is validated in
simulation.

I. INTRODUCTION

Currently, more than 30,000 particle accelerators are op-
erated around the world in both research institutions and
industry for research and medical purposes. Hadron syn-
chrotrons are high-energy accelerators for protons and ions
with a closed reference orbit. Due to their fast nonlinear
dynamics the operation of synchrotrons poses interesting
control challenges. Here, we focus on stabilisation of the
longitudinal beam dynamics in a hadron synchrotron.

Most of the existing papers dealing with beam feedback
focus on hardware and implementation issues. As feedback
algorithms, analog and digital filters or PI controllers are
used [2, 6, 7]. Very few papers exist that focus on the
feedback design. In [4], a synchrotron beam serves as an
example for a robust observer based state feedback controller,
but no implementation issues are discussed. In this paper,
we consider the specific setup of the synchrotron SIS18
at GSI Helmholtz Center for Heavy Ion Research [5] and
consider open problems that are essential for a successful
implementation of Model Predictive Control (MPC) scheme.

In [3] we presented an MPC scheme for stabilisation of
the longitudinal beam dynamics in the heavy ion synchrotron
SIS18 at the GSI Helmholtz Center for Heavy Ion Research
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[5]. A Field Programmable Gate Array (FPGA) implemen-
tation of this MPC scheme, using a fast gradient method
to solve the required optimisation problem, was presented
in [3]. For implementation on the SIS18 synchrotron, the
control action needs to be computed in under 3us and a
timing analysis of the FPGA implementation in [3] showed
that, on a high-end FPGA, the optimisation problem could
be solved in approximately 1pus.

The design in [3] ignored certain practical implementation
issues and in this paper we address several of these issues.
In particular, the current paper differs from [3] in four
important aspects. First, the MPC scheme of [3] assumes
full state feedback whereas here we consider the output
feedback problem. Second, the MPC scheme of [3] assumes
the knowledge of a set-point value whereas, in practice, the
set-point is unknown a priori. Consequently, in this paper, we
present an offset-free MPC design. Third, the design of [3]
ignores communication and computation delays and herein
we explicitly take these delays into account. Fourth, and
finally, we observe that the system model in [3] contains an
invariant of motion that allows us to reduce the model order
for the longitudinal beam dynamics from five to four. We
validate the performance of this new design by simulations.

The remainder of the paper is structured as follows:
In Section II we briefly present a model of the particle
bunch dynamics in synchrotrons and recall the problem of
longitudinal beam feedback control. In a refinement of [3],
we describe how the model for control can be reduced from
five states to four states. Section III describes the proposed
MPC scheme and the structures used for offset compensation
and delay compensation, all making use of the refined four
state model. Section IV presents results obtained from a
simulation study and Section V concludes the paper.

II. PARTICLE BEAM DYNAMICS
Longitudinal Beam Dynamics

For constant energy, the longitudinal single-particle dy-
namics in hadron synchrotrons can be written as [10]

(1a)
(1b)

Sbj = —Wsyn,0Wj,
Wi = wWsyn,0(1 + ug)sin(p; — uq),
where j is the index indicating the individual particles, ¢
denotes the phase or position deviation of the particles,
whereas w is a normalised coordinate proportional to the
energy deviation. Both deviations are measured with respect
to the ideal reference trajectory in the synchrotron. The
frequency wsyn,0 is the so-called synchrotron frequency,



which is typically in the range of a few hundred Hz at SIS18.
The inputs u; and ue are phase and amplitude modulations.

The dynamics of a particle beam in a synchrotron are
nonlinear and high-dimensional. For example, in the heavy-
ion synchrotron SIS18 at GSI, the number of particles in
the beam can exceed 10!°. However, what is important
for beam experiments is not the behaviour of individual
particles, but the shape and properties of the overall particle
ensemble. Therefore, statistical quantities may be used to
model the beam dynamics. In the following, we focus on
the longitudinal dynamics of the particle beam.

Derivation of a Linearised Model

A simplified model describing the longitudinal beam dy-
namics using moments has been derived in [11]. The model
describes the dynamics of the first and second order moments
of the beam. For the derivation of the model, the longitudinal
single-particle dynamics (1) are used.

The state vector of the model is defined as
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where p, and p,, are the mean values of the particle ensem-
ble, p, and g, are the variances, fi, ., is the covariance,

and 7z, and i, are the set-points of fi, and fi,.
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: (="
ap =1+ g .
19n ¥
ot nl2

6
_ =D"(n+1)_,
as = 1+§TMW “)
az = 2CL17 b1 = alﬁw.

The model derivation involves a linearisation around the set-
point
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iy = b1 = a1fi,,. (6)

Observe that the subsystem (1212, Bs) contains an invariant
of motion. Considering the third and fifth row of (3b)
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holds. With the assumption that the set-point x3 = x5 = 0
should be reachable, the constant is dgtermined as C = 0.
A reduced version of the subsystem (As, Bs) is therefore
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In order to simplify the notation we subsequently denote the
reduced state (71, ...,74)7 by z. The reduction of (3) reads
as follows
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It should be noted that (8a) describes the dynamics of the
whole bunch of particles (1).

Beam Emittance

A major goal of the beam feedback is the preservation of
the beam quality. In order to evaluate the beam quality, we
will consider the so-called rms longitudinal beam emittance.
Roughly speaking, the emittance is defined as the area that
is occupied by the beam in the longitudinal phase space. For
arbitrary beam shapes, this area is not easy to determine.
However, one simple possibility is the definition of the rms
emittance [10]
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where p, and g, denote the variances of the particle
ensemble along the axes ¢ and w, and fi, ,, is the covariance.
In case the beam density function represents a Gaussian
distribution, the emittance €,,s is the area of an ellipse
containing 39.3% of all particles of the beam.

For ideal accelerators, i.e., those with only linear magnetic
fields and no disturbances on the beam, the emittance is
a constant of motion. However, due to various effects, the
emittance increases during the acceleration cycle. The beam
feedback should minimise this emittance increase. Due to
the fact that the beam density function cannot be measured

(10)



directly, the emittance can only be reconstructed off-line
after the acceleration cycle and cannot be used directly
for the beam feedback. Therefore, we will use the bunch
moments (2) as an indirect measure for the beam quality. Our
assumption is that if disturbances on the moments are quickly
damped by the feedback, this will also prevent most of the
emittance increase. The emittance (10) will be calculated in
the simulation results of Section IV and used to justify this
assumption.

Formulation of the Control Problem

The longitudinal beam feedback control problem can be
summarised as follows: Stabilise the bunch moments (2),
which are the outputs of the nonlinear system (1), at the
steady state (5) subject to the input constraint (9).

In this paper we propose to solve the longitudinal beam
feedback control problem via an offset-free MPC approach.
Since the development of predictive controllers is simplified
in a discrete-time setting, we discretise (8a) with zero-order-
hold and a sampling time T4, = 2.66us. This sampling
time corresponds to one used for a previously developed
control scheme using an FIR filter and hence allows for a fair
comparison with the current state-of-the-art. The discretised
version of (8a) reads

z(k+1) = Az(k) + Bu(k), x(0)=xz¢. (11)

ITI. OFFSET-FREE PREDICTIVE PARTICLE BEAM
CONTROL

In order to design a realistic control scheme for the
longitudinal beam feedback control problem we have to take
several aspects into account:

(i) Unknown set-point. The set-point (5) is not known

exactly, i.e., the constants fi, and [, = aifi, are
unknown.
(ii) Output feedback: Full state information of system (8a)

is not available. Only the moments p,(k) and p, (k)
are available as measurements

y1(k) psa(k —0m) —u1(k —dm),
y2(k) = po(k — 0m).

In other words, we can compute the bunch moments
po(k) and p, (k) directly from sensor data.
Measurement and actuation delays: Due to the need
to process the measurement data, the outputs (12) are
subject to a constant communication delay §,, € N, i.e.,
at time k we merely know y(k — d,,). Furthermore, at
time k the actuator only has information computed at
time k — 64, 0, € N. Thus, our design must account for
actuation and measurement delays J, and &,,.

(12a)
(12b)

(iii)

In what follows, we will describe how to account for all of
these issues. First we will tackle issues (i) and (ii) via offset-
free MPC techniques (cf. [13]). Second we sketch how the
measurement and computational delays can be taken into
account. In order to achieve this we make the following
assumptions:

(A1) The measurement delay d,, € N and a possible (com-
putational) actuation delay d, are a priori known and
constant.!

(A2) The dependence of the system matrices Ay, As, By, B
on the unknown set-point ji, can be neglected, i.e., in
(4) we use fi, = 1.2

Offset-free Design

Taking (2) into account we see that (12) can be rewritten
in terms of the states 1, ..., x4 of the reduced model

yl(k) = (El(]ﬂ — (Sm) — ul(k — 6m),
yQ(k) = xS(k - 5m) + -

(13a)
(13b)

In view of issue (i) it is clear that in our MPC design we
have to account for the uncertain offset fi,, on the output ys.

To simplify the notation for the rest of this section
we assume temporarily that the measurement delay is not
present, i.e., 6, = 0. Assuming that fi, changes slowly
compared to the dynamics (11) we model fi,, as an unknown
constant disturbance d(k) € R (cf. [13]). Thus we obtain the
augmented system description

G = (0 ) G+ (2w as
y(k) = (C,Cy) @Eg) + Du(k) . (14b)

It is well-known [13] that the augmented system (14) is
observable if and only if

rank (AC d gj) = dim(x) + dim(d).
Assuming B; = 0 and that (A2) holds, it can be easily
verified that this rank condition is satisfied. The main idea
of offset-free MPC can be summarised as follows: at each
time k obtain the state of the augmented system (14) via
an appropriate observer; solve an optimal control problem to
predict the future behaviour of (14) over some horizon N €
N, and apply the first part of the optimal input trajectory.

Delay Compensation via MPC

In order to simplify the notation we write z(k) =
(x(k),d(k))T and denote the system matrix of (14a) by
A € R>® and B := (B,0)T € R5*2. Observed states are
denoted by superscript *. At each sampling instance k the
following optimal control problem has to be solved:

1 1N+5m71
[uin §|\Z(N+5m)||?a t3 > @1 + @)
i=1

(15a)

'The proposed MPC controller will eventually be implemented on an
FPGA as in [3]. Thus the assumption of constant and known (computational)
actuation delay is justified.

2In [11] the influence of the uncertain set-point fiyo on the eigenvalues
of A = diag(A1, A2) is discussed. The results presented therein and our
simulation results presented later justify this assumption.
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quadratic
program u(k — 5m)¢
B z(k — ) Kalman
filter
Fig. 1.

subject to Vi =0,..., N + 6, — 1:

2(i+1) = Az(i) + Bu(i) (15b)
2(0) = (&(k — 6m), d(k — 6,))" (15¢)
u(i) € [u, T (15d)
and for all i =0,...,6,, — 1:
w(@) = u(146m +0q | 2(k = 6m — 0a +1)).  (15€)

To simplify the notation we use here |z||% = 2T Pz.

Furthermore, u*(1|2(k)) denotes the value of the optimal

input at time [ based on the state estimate available at time

k.

In principle the proposed MPC scheme is a straightforward
extension to the usual QP formulation of MPC with linear
dynamics, see [12, 13]. The main differences are:

(a) System (14) is subject to measurement delay, i.e., at
time £ we only have access to the state estimate at
time k — J,,,. Hence, we set the initial conditions of the
MPC prediction in (15¢) as z(0) = 2(k—0dy, ). Note that
due to the measurement delay the prediction horizon is
increased from N to N + 6,,.

(b) In (15e) it is enforced that the first §,, elements of the
decision sequence {u(7)} are consistent with the control
computed at the previous sampling instants.

While (a) follows in a straightforward manner from the
presence of the measurement delay &,,, the equality con-
straints (15e) of (b) require an explanation.

Temporarily assume that the measurement and actuation
delays are d,, = 1,0, = 0 and consider the sampling
instance k. Since §,, = 1 the most recent state estimate
at time k is Z(k — 1). Furthermore, at time k — 1 the input
u*(2| 2(k — 2)) has been applied to the system. Hence the
first element of the sequence of decision variables {u(i|2(k—
1))} is already fixed to u(1) = u*(2| 2(k—2)). Generalising
this observation to the case that §,, > 1,5, > 0 we see
that at time k the first &, elements of the sequence of
decision variables {u(i|Z(k))} are fixed. It is this consistency
requirement that is expressed in (15¢e).

Thus in the absence of actuation delay (d, = 0) we apply
at each sampling instance k the input

w(k) =uw (L +0m |2k —dm)).
If the actuation delay is known and constant d,, we apply

u(k) = u* (14 0pm + 60 | 2(k — 6m — da)). (16b)

(16a)

Predictive Output-Feedback Controller

|
. u(k
> input-buffer _|_(L synchrotron measurement

delay

|
|
| y(k_ém)
1
|

Predictive output-feedback synchrotron control with measurement and actuation delays.

The last equation basically means that from any optimal input
sequence {u*(i|2(k — d,n))} we do not necessarily pick the
first element. Rather we pick the element with the index
that corresponds to the combined measurement and actuation
delay of the system. This implies that we need to store &,, +
d, inputs in a buffer which ensures that the correct input
is applied to the system.® The overall control algorithm is
sketched in Figure 1.

Remark 1 (Implementation aspects): From an implemen-
tation point of view it may be desirable to remove the
additional equality constraints (15e). This can be easily
achieved by an open-loop prediction of the system state for
i = k — 0m,..., k. As discussed in [3] we use efficient
fast gradient methods (FGM) [9, 14] to solve the necessary
quadratic program. For FGM algorithms such simple input
equality constraints can be implemented directly without any
difficulty.

IV. SIMULATION RESULTS

To assess the performance of the proposed approach we
simulate the proposed MPC scheme (15). As simulated
reality we consider a bunch with ~ 2.5 - 10° particles
obeying the nonlinear dynamics (1). The system is subject
to measurement and actuation delay §,, = 6, = 1. The
prediction horizon is set to N = 30. The weight matrices
are chosen by trial-and-error and are set to @Q = P =
diag(2, 2,2, 0,0), R = diag(0.9, 0.5). We do not pe-
nalise the disturbance d since this is an uncontrollable state of
(14). The state x4 is also not penalised since by comparison
with a detailed model it is known that the quality of the state
estimation for x4 is not very good. The input constraints (9)
are 41 = 0.5, ug = 0.15. The QP (15) is solved via a Matlab
implementation of the FGM with 17 iterations.*

For the sake of realistic simulation results we add uncorre-
lated white noise to the measurements (13). The noise level
is chosen consistent with available measurement data from
the SIS18 synchrotron. The state of the augmented system
(14) is obtained via a standard steady state Kalman filter [1].
We consider a steady state Kalman filter since it does not
require divisions or inversion of matrices which is beneficial

3Note that, even in the case of non-deterministic communication delays,
the combination of buffers with MPC allows for delay compensation [15].

4This number of iterations ensures an optimality gap smaller than 10~6
and has been computed according to the accuracy bounds provided in [9,
14].
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Fig. 2. Simulation results.

from an implementation perspective. Due to space limitations
a detailed description of the Kalman filter is beyond the
scope of this paper. The initial conditions for the observer
are set to (2(0),d(0))” = (0,0,0,0,1)7, meaning we use
cZ(O) =1 as an initial guess for the unknown set-point. The
controller is active from k£ = 20 onward, where k is the
discretised time variable corresponding to the sampling time
Tsamp = 2.66us.

Figure 2 shows the behaviour of the uncontrolled system
in Fig. 2(a) and the results obtained via two different MPC
schemes in Fig. 2(b). In Fig. 2(b) we consider (i) the pro-
posed offset-free MPC (15) and (ii) MPC (15) without offset
compensation, i.e., Bg = Cyq = (0,0). In both cases state
feedback is obtained from a steady state Kalman filter. At k €
{368, 718,1068} we excite the nonlinear bunch dynamics (1)
via jumps of the gap voltage amplitude influencing wgy,, o or
jumps of the phase angle ¢; in (1). As one can see in Fig.
2(a) these disturbances lead to oscillations of the measured
system outputs. These oscillations are undesirable, since they
generally correspond to a deteriorated beam quality [3].

If one assumes that the unknown offset/set-point in (13)
is always fi, = 1 and applies the MPC scheme (15) without
offset compensation, i.e., Bg = Cy = (0,0), one obtains
the results as depicted in Figure 2(b) in black dash-dot lines.
One can see that although the oscillations of the bunch length

=i,
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Fig. 3.  Estimate of the offset/set-point d(k) = [i, obtained from the
offset-free MPC scheme (15).

and the bunch mean are damped by the MPC scheme without
offset compensation, the behaviour of input us is undesirable
since its constraints are almost always active until k£ =~ 1070.
Figure 2(b) also shows the behaviour of the proposed output
feedback offset-free MPC controller (15) in grey. As one can
see, the amplitude of the oscillations of the bunch length
is more effectively reduced compared to the MPC without
offset compensation.

In Figure 3 the estimate of the offset/set-point d(k) = fp
is depicted. Recall that we use cz(()) =1 as the initial guess
for the unknown set-point. One can see that initially it takes
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about 200 time steps until the Kalman filter converges.

Figure 4 illustrates the emittance (10) resulting from an
open-loop simulation, the MPC without offset estimation,
and the proposed offset-free MPC scheme. The offset-free
output feedback MPC leads to low values for the emittance
after £ = 1068. The MPC controller without offset esti-
mation and the open-loop dynamics show a larger increase
of the emittance. The better performance of the offset-free
MPC is due the fact that the disturbance at k£ = 1068 leads
to a large change in the unknown set-point as shown in
Figure 3. Since the offset-free MPC scheme estimates this
unknown set-point it achieves better performance than the
usual MPC. Finally, one can conclude that since the offset-
free design achieves lower emittance it is the preferable
design for longitudinal beam feedback.

V. CONCLUSIONS

In this paper we presented an offset-free, output feedback
predictive control approach to longitudinal beam feedback
control in hadron synchrotrons. We proposed an MPC
scheme that explicitly compensates for constant actuation
and measurement delays. By means of simulations we
have shown that the offset-free MPC approach improves
the control performance. Future work will combine these
results with previous investigations on the real-time feasible
implementation of MPC for longitudinal beam control on
FPGAs [3].
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