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ABSTRACT: Two new D−A−π-spacer−A organic dyes, KM-10 and KM-11, containing a
benzothiadiazole unit in a π-spacer and a cyanoacrylic acid as an acceptor have been
synthesized and tested as sensitizers in dye-sensitized solar cells. Structural variations of the
donor moiety, i.e., π-extension of the diphenylamine electron-donating groups, gave rise to
different photovoltaic efficiencies7.1% for KM-10 and 8% for KM-11despite having
comparable absorption properties. A detailed investigation, including transient photo-
current and photovoltage decay measurement, transient absorption spectroscopy, and
quantum chemical methods, provided important conclusions about the nature of the
substitution on the photovoltaic properties of dyes.

■ INTRODUCTION

Dye-sensitized solar cells (DSCs) attracted intensive attention
due to their promising potential as solar energy conversion
devices.1 In the past decade, metal-free organic dyes have been
explored for the use in DSCs due to their facile structural
modification, high molar absorption, and low cost processability
with respect to conventional silicon-based photovoltaic devices.
As a result, some sensitizers such as coumarin-, indoline-, and
triphenylamine-based dyes have achieved up to 10% of power
conversion efficiencies (PCEs) using iodide-/triiodide-based
electrolytes.2−28 An efficiency of 12−13% was reached with a
donor−π−acceptor zinc porphyrin in combination with a
cobalt redox-based electrolyte.29−31 One of the key issues for
the improvement of the photovoltaic performance is enhancing
the light-absorbing capability of dyes to match closer the solar
spectrum. Hence, the development of new metal-free organic
dyes with specifically tuned light-harvesting features continues
to be an important research topic.
Recently, organic dye molecules comprising a benzothiadia-

zole unit have been utilized in DSCs.32−37 The benzothiadia-
zole moiety serves as an electron-deficient acceptor and realizes
a broader absorption spectrum and lower HOMO−LUMO
band gaps. In this article, we report two novel organic donor−
acceptor−π-spacer−acceptor (D−A−π−A) dyes, KM-10 and
KM-11, that contain diphenylamine donors and benzothiadia-
zole and cyanoacrylic acid acceptors bridged by a cyclo-
pentadithiophene (CPDT) as the π-spacer. The structures of
these two new dyes are shown in Figure 1. The CPDT spacer
was employed to enhance the absorption cross-section of the

dyes.8 The bulkier donor group of KM-11 as compared with
KM-10 was chosen to reduce the dye’s aggregation and
suppress the charge recombination. To investigate the donor
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Figure 1. Molecular structures of KM-10 and KM-11.
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structure influence on the photovoltaic performance of DSC
devices, a iodide-/triiodide-based redox electrolyte was applied.
The DSC device performance with alternate redox electrolytes
will be focused on in future studies.

■ EXPERIMENTAL SECTION

Materials. All chemicals and solvents were purchased from
commercial sources and used without further purification. For
chromatographic purification, we used Silica Gel 60 (230−400
mesh, Merck, Germany).
Instruments. Absorption spectra (Cary 5, Varian),

fluorescence spectra (Fluorolog 3, Horiba), and NMR spectra
(AVANCE-400, Bruker) were recorded with the indicated
instruments. The differential pulse voltammetries (DPVs) of
the dyes were measured in DMF solution containing
tetrabutylammonium hexafluorophosphate (0.1 M) as a
supporting electrolyte with glassy carbon as the working
electrode and Pt as the counter electrode under Ar atmosphere.
The redox potentials were calibrated with ferrocene as the
internal reference.
Cell Fabrication. State-of-the-art double-layer mesoporous

TiO2 layers (6.6 μm of 20 nm particle (DSL 18NR-T,
DYESOL) plus 6.7 μm of 400 nm light-scattering particles
(HPW-400NRD, CCIC)) were deposited on FTO conducting
glass (Solar-4 mm, Nippon Sheet Glass Co, Ltd.). The double-
layer TiO2 film was sensitized by immersing it into a DMF
solution of the respective KM dye (0.1 mM) for 13 h at room
temperature. The composition of the Z-960 electrolyte was: 1.0
M 1,3-dimethylimidazolium iodide, 30 mM I2, 0.5 M tert-
butylpyridine, 0.1 M lithium iodide, and 0.1 M guanidinium
thiocyanate in a mixture of acetonitrile and valeronitrile (85/15,
v/v). A platinized FTO conducting glass (LOF TECH 7,
Pilkington) was used as counter electrode.
The spectral distribution of the light source simulates the

AM 1.5G solar irradiation characteristics (Xe 450W, K113

filter) with a spectral mismatch of less than 4%. The exposed
area of the devices was 0.16 cm2, a black tape mask being used
to exclude any stray light. An antireflection film (ARCTOP,
Mihama Co.) was attached on the photoanode side.

Photophysical Studies. Time-resolved transient absorp-
tion measurements were performed on dye-sensitized, 3 μm
thick, transparent TiO2 mesoporous films screen-printed on
insulating microscope slides. The pump−probe technique used
a compact CPA-2001, 1 kHz, Ti:Sapphire-amplified femto-
second laser (Clark-MXR), with a pulse width of about 120 fs
and a pulse energy of 1 mJ at a central wavelength of 775 nm.
The output beam was split into two parts for pumping a
double-stage noncollinear optical parametric amplifier (NOPA)
and to produce a white light continuum in a sapphire plate or
387 nm UV light by second harmonic generation of the CPA
output in a thin BBO crystal. The NOPA was pumped by 200
μJ pulses generating pulses of approximately 10 μJ at a
wavelength of 580 nm. The output pulses of the NOPA were
compressed in an SF10-glass prism pair compressor down to a
duration of less than 60 fs (fwhm). Iris diaphragms were used
to decrease the pulse energy down to a few microjoules for the
pump and to less than 1 μJ for the probe beam. Transient
spectra were measured using a white light continuum (WLC)
for probing.
The nanosecond laser flash photolysis employed 7 ns

duration pulses to excite the sample at λ = 580 nm, using a
20 Hz repetition rate. An OPO-355 optical parametric oscillator
(GWU, Erftstadt, Germany) pumped by a Powerlite 7030
frequency-tripled Q-switched Nd:YAG laser (Continuum,
Santa Clara, California, USA) served as a light source. The
OPO beam output was expanded by a planoconcave lens to
irradiate a large cross-section of the sample, whose surface was
kept at a 30° angle to the excitation beam. The laser fluence on
the sample was kept at a low level (≤40 μJ cm−2 per pulse) to
ensure that, on average, less than one electron was injected per

Scheme 1. Synthetic Route for the KM-10 and KM-11 Dyes

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp411504p | J. Phys. Chem. C 2014, 118, 16486−1649316487



nanocrystalline TiO2 particle upon pulsed irradiation. The
probe light, produced by a continuous wave xenon arc lamp,
was first passed through filters, a monochromator tuned
between 420 and 720 nm, then through various optical
elements, the sample, and finally through a second mono-
chromator, before being detected by a fast photomultiplier tube
(Hamamatsu, R9110). Typical recorded signals were averaged
over 1000−2000 laser shots.

■ RESULTS AND DISCUSSION
Synthesis. The synthetic route of KM-10 and KM-11 is

shown in Scheme 1. The diphenylamine donors 3 and 6 were
prepared by a monoallylation reaction and Suzuki coupling
reaction, respectively. In the next step, these donors were
attached to the benzothiadiazole by monoallylation reactions.
The dibromo-benzothiadiazole 7 has two reaction sites;
however, the pure desired compounds can be easily obtained
by column chromatography. The unreacted bromides were
exchanged for boronic acid pinacol ester, leading subsequently
to a Suzuki coupling reaction between boronic acid 10 and 11,
and the CPDT segment 12 gave the aldehyde compounds. The
functionalized CPDT compound 12 was synthesized by the
previously reported method.2 Finally, a typical Knoevenagel
condensation of the aldehydes 13 and 14 and 2-cyanoacetic
acid as the acceptor and anchoring group afforded the novel
photosensitizers, KM-10 and KM-11, respectively. The dyes are
obtained as dark red solids and dissolve in several organic
solvents, such as dichloromethane, chloroform, DMF, and
DMSO.
Optoelectronic Properties. The excitation and emission

spectra of KM-10 and KM-11 dyes adsorbed on thin TiO2 films
are shown in Figure 2. The absorption spectra of KM-10 and

KM-11 dyes measured in dichloromethane solution in the acid
and deprotonated form are shown in Figure S1 (Supporting

Information). The extension of the π-system for the electron-
donating diphenylamine (DA) moiety does not lead to a
significant change in the position of the absorption bands. For
both dyes in the protonated form, two maxima are observed
one around 498 nm and another at 600 nm. Their relative
intensities differ from each other and lead to molar extinction
coefficients of 11 000 and 20 700 M−1·cm−1 for KM-10 as well
as 11 160 and 21 200 M−1·cm−1 for KM-11 as presented in
Table 1. The longer-wavelength peak is due to the π−π* charge
transfer (CT) transitions from the donor to the cyanoacrylic
acid acceptor. The shorter-wavelength absorption band (400−
500 nm) appeared because of the introduction of a 2,1,3-
benzothiadiazole moiety as a spacer. However, the overall π-
conjugation length is not affected by the extension of the donor
π-system, which is the reason for the lack of a shift of the KM-
11 absorption maxima. The effect of substituting the phenyl
ring of C218 with the electron-accepting benzothiadiazole is
clearly reflected in red shifting the low-lying transition by 45
nm with lower molar extinction coefficients.8 The absorption
spectra of KM-10 and KM-11 are more red-shifted compared
to other benzothiadiazole analogues reported previously, which
is due to the direct attachment of a diphenylamine nitrogen to
the benzothiadiazole.32−37

The redox potentials of KM-10 and KM-11 dyes were
measured by differential pulse voltammetry (DPV), and the
values are tabulated in Table 1. The redox potential of the KM-
10 and KM-11 dyes is 0.23 and 0.3 V more positive than
ferrocene, respectively. The redox potential is higher than that
of the iodide/triiodide redox electrolyte, providing ample
driving force for dye regeneration. The structural differences in
the donor groups of KM-10 and KM-11 have a small influence
on their redox potentials, and the redox potential of KM-11 dye
is increased by 70 mV compared to KM-10. The excited state
reduction potentials of KM-10 and KM-11 were obtained from
the redox potentials and the energy of the 0−0 transition
(E00). The excited state potentials are placed sufficiently
above the TiO2 conduction band edge to ensure no energetic
barriers for the electron injection.

Theoretical Calculations. The molecular structures and
electronic properties of the dyes were investigated at the
density functional theory (DFT) level using the B3LYP38

functional with a 6-31G*39 basis set as implemented into the
Gaussian0940 suite of programs. The optimized geometries are
shown in Figure 3. The structural differences between the two
dyes are rather subtle. Characteristic for both dyes is that the
linker between the DA donor and the anchoring group is
entirely planar, which promotes complete conjugation through-
out the whole structure. Furthermore, the planarity is retained
upon oxidation of the molecules, as shown by calculations of
the structure for the cation radicals of KM-10 and KM-11.
The representation of the frontier molecular orbitals (Figure

4) corroborates the extended π-conjugation. Orbital coefficients
of the highest occupied molecular orbital (HOMO) and the

Figure 2. Excitation spectrum measured at an emission wavelength of
750 nm (red) for KM-10 (solid line) and KM-11 (dashed line) as
adsorbed on the surface of a thin TiO2 layer deposited by ALD and the
corresponding emission at an excitation of 460 nm (blue).

Table 1. Opticala and Electrochemical Properties of Dyes

dye λmax (nm) ε (M−1·cm−1)
HOMO
(eV)

LUMO
(eV)

HOMO
(DFT)

LUMO
(DFT)

E0ox1
(V)

E0ox2
(V)

ΔE0−0
(eV)

E0
ox1 − (ΔE0−0)

(V)

KM-10 498, 600 11000, 20706 −5.45 −3.50 −4.56 −2.29 0.23 0.43 1.85 −0.90
KM-11 496, 598 11160, 21200 −5.52 −3.47 −4.57 −2.41 0.30 0.45 1.85 −0.83

aCH2Cl2 as a solvent. All potential values are in V vs Fc+/Fc. Dyes were dissolved in DMF. Standard redox potential of a Fc+/Fc couple in DMF is
0.720 V vs SHE.
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lowest unoccupied molecular orbital (LUMO) are extended
over the whole system. This guarantees efficient electronic
communication between the DA donor and the cyanoacrylic
acid acceptor and is reflected in extremely fast charge
separation processes as discussed in the photophysical part.
Important in this regard is the fact that the insertion of the
additional phenyl rings in KM-11 does not perturb the overall
conjugation length. The LUMO in KM-11 is slightly lower in
energy (by 0.07 eV) and the HOMO slightly higher (by 0.03
eV) compared to KM-10, which leads to a smaller HOMO−
LUMO energy gap and would lower the excitation energy for a
HOMO to LUMO charge transfer excitation.
The significance of these structural changes is best seen when

plotting the electrostatic potential of the calculated oxidized
states (charge = +1) of the dyes as shown in Figure 5. The plots

show that after oxidation the positive charge in KM-10 is
strongly localized on the DA nitrogen. In KM-11, on the other
hand, the extended π-conjugation allows for a better spatial
delocalization of the positive charge over the entire DA moiety.
Such a delocalization and the lower HOMO−LUMO energy
gap stabilize the excited charge transfer state and explain the
long-lived oxidized species of KM-11 as compared with KM-10
(see the Time-Resolved Spectroscopy section).

Photovoltaic Properties. DSC devices were fabricated
using KM-10 and KM-11 dyes to compare the influence of the
structural variations of dyes on the photovoltaic parameters.
The photocurrent−voltage curve and the incident photon to
current conversion efficiency (IPCE) of the KM-11 device are
shown in Figure 6. For KM-11 the maximum IPCE value

reached 85% at 450 nm, exceeding 80% from the 430 to 650
nm range with an onset up to 750 nm. The photovoltaic
parameters of the devices are tabulated in Table 2. The 6-7-
bis(2′,4′-dibutoxy-[1,1′-biphenyl]-4-yl)amino donor in KM-11
as compared with a 6-7-bis(4-(hexyloxy)phenyl) amino group
in KM-10 is responsible for the enhancement of the
photovoltaic conversion efficiency due to an increase in Jsc
and Voc values. Overall, power conversion efficiencies (PCEs)
of 7.1−8.0% are obtained for the KM-10 and KM-11 devices,
respectively.

Figure 3. Optimized geometries of KM-10 and KM-11 as computed
using DFT theory at the B3LYP/6-31G* level showing the planar
configuration of the linker between the DA donor and the anchoring
group.

Figure 4. Representation of the highest occupied (HOMO) and
lowest unoccupied (LUMO) molecular orbitals of KM-10 and KM-11
with the corresponding orbital energies in vacuum as computed using
DFT theory at the B3LYP/6-31G* level.

Figure 5. Representation of the electrostatic potential as mapped on
the electron density surface (positive to negative: red to blue) of the
optimized cationic forms of KM-10 and KM-11 dyes. KM-10 exhibits
strong localization of the positive charge around the DA nitrogen (red
color).

Figure 6. Incident photon-to-current conversion efficiency (IPCE)
spectra of the DSCs with the KM-10 and KM-11 dyes.
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The 25 mV increase in the Voc of the KM-11 device may be
attributed to the change of the electron recombination kinetics.
Transient photovoltage experiments give access to the apparent
electron lifetimetime that the injected electron resides in
TiO2 before it recombines. When plotted against the cell
capacitance, which is linearly tied to the density of states,
measured under decreasing light illumination, electron lifetime
should exhibit a linear growth, which is presented in Figure 7.

There is a shift between these parallel lines indicating that
shorter lifetimes were measured for the device with KM-10 dye
at the same density of states level. The dark current is
essentially the recombination current and reveals the robust-
ness of the dye at the TiO2/electrolyte interface. The
comparison of the dark currents of the two devices shows
clearly that the recombination rate of the cell with KM-10 is
higher than that of KM-11 because the amount of the leaking
current is larger. Extending the donor part by an additional 6-
(7-(bis(2′,4′-dibutoxy-phenyl))) ring on KM-11 improved
shielding of the TiO2 surface from the oxidized form of the
electrolyte and contributed to much higher photocurrent

generation. The interface seems to be more resistant, and this
is manifested in the higher Voc.

Time-Resolved Spectroscopy. To investigate the charge
transfer properties of the dyes and their kinetics in solution as
well as after adsorption on TiO2 we have employed time-
resolved transient absorption spectroscopic techniques on the
femto- and nanosecond time scales. Important conclusions
about the spectroscopic fingerprints of the excited state species
of the dyes were obtained by femtosecond transient absorption
studies on 0.1 mM solutions of the dyes in dimethylformamide
(DMF). 580 nm laser excitation leads to an immediate
formation of the dyes’ excited states. Due to the donor−
acceptor type architecture the excitation results in an
intramolecular electron transfer between the DA donor moiety
and the cyanoacrylic acid acceptor/anchoring unit. In both dyes
these charge-separated states are characterized by the signature
of the positively charged diphenylamine radical cation (DA•+),
which is identified by a ground state bleaching signal at
wavelengths between 400 and 550 nm and a new positive
absorption feature between 620 and 750 nm (Figure 8a). The

formation of those excited states occurs for both dyes with
comparable kinetics within less than 2 ps (Table 3). Differences
arise when looking at their lifetimes. In KM-11 the dye excited
state exhibits more than a 3-fold increase of its lifetime as
compared with KM-10 (Figure 8b). The reason for this
difference in deactivation kinetics is the distribution of the
positive charge after charge separation. The additional 6-(7-
(bis(2′,4′-dibutoxy-phenyl))) rings and enhanced conjugation

Table 2. Photovoltaic Parameters of KM-10 and KM-11
Sensitized Solar Cells under Illumination of AM 1.5G (100
mW cm−2) Simulated Solar Light

dye Jsc (mA cm−2) Voc (mV) FF η (%)

KM-10 14.5 653 0.742 7.1
KM-11 16.0 678 0.732 8.0

Figure 7. Top: Apparent electron lifetime plotted against the cell
capacitance for cells sensitized with dyes KM-10 (black) and KM-11
(orange). Bottom: The comparison of dark currents of the devices in
the appropriate range of applied potential.

Figure 8. (a) Differential transient absorption spectrum obtained upon
femtosecond pulsed laser excitation (λexc = 580 nm) of 0.1 mM DMF
solutions of KM-10 and KM-11 probed with a time delay of 2 ps at
room temperature. The spectral region around 580 nm excitation is
omitted for clarity. (b) Corresponding time profiles monitored at a
probe wavelength of 680 nm illustrating the different decay kinetics of
the radical cation signal of both dyes.
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in KM-11 allow for a better spatial delocalization of the positive
charge, which in turn helps to stabilize the excited state. This
corresponds well with the results obtained in the theoretical
studies (see Theoretical Calculations section).
The femtosecond transient absorption spectra of the dye-

sensitized TiO2 films exhibit spectral fingerprints of the DA
radical cation comparable to those found in solution studies
however red-shifted and with different kinetics. The signifi-
cantly broadened bleaching appears now at 460−670 nm, and
the DA•+ maximum is shifted beyond 680 nm (Figure 9). The

broadening and the red shift of the signals stem from the
electronic interactions with TiO2. The adsorption of the dyes
onto the semiconductor surface induces intermolecular
interactions between individual molecules and a shift of charge
density onto TiO2, which in turn broadens the signals and
lowers their excitation energies.
The charge transfer kinetics has been investigated in the

presence and in the absence of a redox-active electrolyte (Z-
960). In a redox medium the charged molecules of the
electrolyte tend to stabilize the generated positive charge and
favor the charge injection, which may result in marginal
differences between the charge injection kinetics in the
presence and absence of the electrolyte. In general, on TiO2

extremely fast charge injection on time scales of only a few
picoseconds is observed for both systems (Table 3). Although
the comparison of charge injection kinetics in this time regime
is laborious due to the limitations of our experimental setup,
exponential fitting of the signals corresponding to the excited
state formation (Figure S2, Supporting Information) hints to
slightly faster charge injection rate constants in KM-11. Again,
the improved delocalization of the positive charge on KM-11
induces stabilization effects, which may be considered to trigger
a faster charge injection.
Nanosecond flash photolysis experiments were performed to

scrutinize the fate of the long-lived charge-separated species of
the dyes adsorbed on TiO2. Thereby, the spectral attributes of
the DA•+ radical cation, i.e., ground state bleaching between
440 and 660 nm and the absorption maximum beyond 680 nm,
served as a probe of the oxidized state of the dye, as well
(Figure 10).

Table 3. Charge Injection (kCI) and Charge Recombination
Rate Constants (kCR) for KM-10 and KM-11 in 0.1 mM
DMF Solutions and on 3 μm TiO2 Films with and without a
Redox Electrolyte (EL) as Obtained by Femtosecond
Transient Absorption Measurements and Nanosecond Flash
Photolysis with 580 nm Light Excitation

kCI/s
−1 kED/s

−1 τ1/2(CI) τ1/2(ED)

DMF
KM-10 1.9 × 1012 9.8 × 109 <1 ps 102 ps
KM-11 1.3 × 1012 2.9 × 109 <1 ps 345 ps
TiO2 no EL
KM-10 1.1 × 1012 2.3 × 104 ∼1 ps 43.5 μs
KM-11 0.9 × 1012 1.6 × 103 ∼1 ps 636 μs
TiO2 with EL
KM-10 2.4 × 1012 2.7 × 105 <1 ps 3.66 μs
KM-11 1.7 × 1012 1.5 × 105 <1 ps 6.59 μs

Figure 9. (a) Differential absorption spectrum of KM-10 obtained
upon femtosecond flash photolysis (λexc = 580 nm) of 3 μm thick
transparent TiO2 films without electrolyte and with several time delays
at room temperature showing the singlet bleach from 460 to 670 nm
and the radical cation maximum beyond 670 nm. (b) Corresponding
differential absorption spectrum of KM-11. The spectral regions
around the 580 nm excitation are omitted for clarity.

Figure 10. (a) Differential absorption spectrum obtained upon
nanosecond flash photolysis (λexc = 580 nm) of KM-10 on 3 μm
thick TiO2 in the absence of a redox electrolyte solution with several
time delays at room temperature. (b) Corresponding differential
absorption spectrum of KM-11.
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In the absence of the redox electrolyte the temporal analysis
of the decays of the radical cation signals at 540 and 680 nm
reveals the most significant differences between KM-10 and
KM-11. Without the iodide ion in the electrolyte, the electrons
injected into the TiO2 can only recombine with the oxidized
dye. The charge recombination rate constant for KM-10 was
determined to 2.3 × 104 s−1, which gives a 14-times faster
charge recombination lifetime than for KM-11 with kCR =
1.6 × 103 s−1 (Table 3). Again, this is well explained by the
outcome of our theoretical investigation. Due to enhanced
spatial delocalization of the positive charge on the DA donor
moiety in KM-11 its oxidized state is stabilized which retards
the charge recombination kinetics.
The addition of the iodide redox electrolyte confirms that the

charge recombination kinetics (photo-injected electrons into
the conduction band of TiO2) with the oxidized form of the
dye only depend on the structural differences of the two dyes
(Figure 11). Hence, in the presence of iodide, the lifetimes of

the charge-separated states drastically decrease by a factor
greater than 10 for KM-10 (from 43.5 to 3.66 μs) and almost
100 for KM-11 (from 636 to 6.59 μs) (Table 3). The similarity
of the regeneration times arises from the fact that in the redox
electrolyte the oxidized dye is reduced back to the neutral state
via electron donation from iodide, which is faster than the back
electron transfer from TiO2 and is not affected strongly by the
structural differences between the two dyes. Hence, their
chemical architecture significantly impacts the charge recombi-
nation and the amount of electrons present in TiO2 before
recombination.

■ CONCLUSIONS
Two novel organic dyes containing a benzothiadiazole acceptor
unit part of a D−A−π-spacer−A structure featuring cyanoa-
crylic acid as a second terminal acceptor/anchoring group have
been synthesized for the application in DSCs. Photophysical
investigation in combination with quantum chemical methods
have shown favorable light-harvesting properties of both the
dyes. The extension of the π-system within the diphenylamine
donor moiety in KM-11 leads to improved photovoltaic
performance of the corresponding devices with a maximum
PCE of 8.0% at AM 1.5 G illumination (100 mW cm−2). These

promising results obtained by judicious arrangement of the four
simple structural units of these sensitizers warrant further
investigations to explore, e.g., the effects of the extension of the
π-system in the spacer moiety between the donor and acceptor
within comparable dye architectures.

■ ASSOCIATED CONTENT
*S Supporting Information
Synthesis of dyes, absorption spectra of dyes in acid and
deprotonated form, and exponential fits of the time profiles of
excited state formation in DMF solutions of KM-10 and KM-
11 and TiO2 films sensitized by KM-10 and KM-11 with and
without electrolyte (EL). This material is available free of
charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: shaik.zakeer@epfl.ch.
*E-mail: michael.graetzel@epfl.ch.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful to Dr. Tsuguo Koyanagi from JGC C&C
(Japan), Nippon Sheet Glass Co., Ltd., and Mihama Co. for
providing the 400 nm sized TiO2 particles the FTO glass and
antireflection layer, respectively. M.K. is grateful to the Kureha
Corporation for his scholarship. M.G. is thankful to the Swiss
National Science Foundation (Swiss-Romanian Joint Research
Programme) and an advanced research grant (ARG) from the
European Research Council (ERC) supporting the Mesolight
project under project number 247404. M.W. and J.-E.M. thank
NCCR MUST, a research instrument of the Swiss National
Science Foundation, for support.

■ REFERENCES
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C.-H.; Yeh, C-Y; Graẗzel, M. Molecular Engineering of Push−Pull
Porphyrin Dyes for Highly Efficient Dye-Sensitized Solar Cells: The
Role of Benzene Spacers. Angew. Chem., Int. Ed. 2014, DOI: 10.1002/
anie.201309343.
(32) Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher,
J.; Moser, J-E; Humphry-Baker, R.; Zakeeruddin, S. M.; Graẗzel, M.;
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Graẗzel, M.; Zhu, W. High-Conversion-Efficiency Organic Dye-
Sensitized Solar Cells: Molecular Engineering on D−A−π-A Featured
Organic Indoline Dyes. Energy Environ. Sci. 2012, 5, 8261−8272.
(34) Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Xi, X.; Chen, J.; Wang, Z.-S.;
Tian, H. Organic D-A-π-A Solar Cell Sensitizers with Improved
Stability and Spectral Response. Adv. Funct. Mater. 2011, 21, 756−763.
(35) Li, J.-Y.; Chen, C.-Y.; Lee, C.-P.; Chen, S.-C.; Lin, T.-H.; Tsai,
H.-H.; Ho, K.-C.; Wu, C. G. Unsymmetrical Squaraines Incorporating
the Thiophene Unit for Panchromatic Dye-Sensitized Solar Cells. Org.
Lett. 2010, 12, 5454−5457.
(36) Kim, J.-J.; Choi, H.; Lee, J.-W.; Kang, M.-S.; Song, K.; Kang, S.
O.; Ko, J. A. Polymer Gel Electrolyte to Achieve ≥6% Power
Conversion Efficiency with A Novel Organic Dye Incorporating A
Low-Band-Gap Chromophore. J. Mater. Chem. 2008, 18, 5223−5229.
(37) Tang, Z.-M.; Lei, T.; Jiang, K.-J.; Song, Y.-L.; Pei, J.
Benzothiadiazole Containing D-π-A Conjugated Compounds for
Dye-Sensitized Solar Cells: Synthesis, Properties, and Photovoltaic
Performances. Chem. Asian J. 2010, 5, 191−1917.
(38) Stephens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. Ab
Initio Calculation of Vibrational Absorption and Circular Dichroism
Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994,
98, 11623−11627.
(39) Rassolov, V.; Pople, J. A.; Ratner, M. A.; Windus, T. L. 6-31G*
Basis Set For Atoms K Through Zn. J. Chem. Phys. 1998, 109, 1223−
1229.
(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; et al. Gaussian 09; Gaussian, Inc., Wallingford CT,
2009.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp411504p | J. Phys. Chem. C 2014, 118, 16486−1649316493


