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Wide-baseline foreground object interpolation using
silhouette shape prior

Cédric Verleysen, Thomas Maugey, Pascal Frossard and Christophe De Vleeschouwer.
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(a) Left and right reference views are positioned, (b) Reference views and (c) The intermediate views continuum
after epipolar rectification, as a function of intermediate silhouette priors. is equivalent to a vertical stack
their normalized distance α to the left view. of Epipolar Plane Images.

Fig. 1: (a) Two images of an object, captured by a wide-baseline stereo camera. (b) To drive the interpolation of intermediate
views, our method generates a sequence of plausible object silhouettes between those in the reference views using a Gaussian
Process latent variable model [1] that has been learned from previous observations of the same object by the same cameras.
(c) The sequence of silhouette priors is exploited to disambiguate the reconstruction of Epipolar Plane Images, which are used
to construct intermediate views [2].

Abstract—We consider the synthesis of intermediate views
of an object captured by two widely spaced and calibrated
cameras. This problem is challenging because foreshortening
effects and occlusions induce significant differences between the
reference images when the cameras are far apart. That makes the
association or disappearance/appearance of their pixels difficult
to estimate. Our main contribution lies in disambiguating this ill-
posed problem by making the interpolated views consistent with
a plausible transformation of the object silhouette between the
reference views. This plausible transformation is derived from an
object-specific prior that consists of a nonlinear shape manifold
learned from multiple previous observations of this object by the
two reference cameras. The prior is used to estimate the evolution
of the epipolar silhouette segments between the reference views.
This information directly supports the definition of epipolar
silhouette segments in the intermediate views, as well as the
synthesis of textures in those segments. It permits to reconstruct
the Epipolar Plane Images (EPIs) and the continuum of views
associated with the Epipolar Plane Image Volume, obtained by
aggregating the EPIs. Experiments on synthetic and natural
images show that our method preserves the object topology in
intermediate views and deals effectively with the self-occluded
regions and the severe foreshortening effect associated with wide-
baseline camera configurations.

Index Terms—Epipolar plane image, light-field, shape prior.

I. INTRODUCTION AND OVERVIEW

Virtual view synthesis aims at rendering images of a real
scene from viewpoints different from those recorded by a
camera. Our paper restricts the synthesis problem to the in-
terpolation of images observed by a virtual camera positioned
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at an arbitrary point along the wide-baseline connecting two
reference cameras. Formally, the two reference images are
denoted Il and Ir, and referred to as left and right images
in the rest of the paper. Any intermediate synthesized image
is denoted Iα, 0 ≤ α ≤ 1, with α defining the distance to the
left image, normalized by the baseline length (Figure 1). From
an application perspective, the smooth transition in synthetic
views between two reference viewpoints is especially desired
in the field of video production [3], where it prevents the visual
discomfort caused by the loss of visual cues and landmarks
during abrupt camera switching.

In previous works, the image interpolation problem has
been addressed successfully when the distance between the
cameras is small compared to their distance to the scene.
State-of-the-art methods generally decompose the scene into
background and foreground objects and reconstruct them in-
dependently [4] [5]. The existing solutions however remain
largely unsatisfactory in wide-baseline setups. In particular,
the scene’s proximity to the cameras causes many projective
discrepancies between the two views (e.g., occlusions, fore-
shortening effects), which hamper the computation of dense
correspondences and damage the interpolated views [6]. Our
work is original in that it specifically addresses the case of
objects that are close to the wide-baseline cameras. It considers
that the background can be reconstructed using state-of-the-
art methods, and after segmentation of a foreground object,
e.g. using [7], it provides a generic solution to reconstruct
intermediate views of this object, including when it is close
to the cameras. That ability to handle proximity makes our
solution unique in the related literature.
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As depicted in Figure 1, our paper adopts the usual Epipolar
Plane Image (EPI) formalism [2] to reconstruct the images of
the foreground object between the two widely spaced reference
cameras. This formalism builds on epipolar rectification [8],
which applies homographies to the views, so that all horizon-
tal lines with the same ordinate in the transformed images
correspond to the same epipolar plane. Hence, after epipolar
rectification, the 3D stack obtained by gathering, as a function
of α, the images captured along the baseline by a dense array
of cameras is named Epipolar Plane Image Volume [9] [10]
(EPIV) because any transverse cross-section of this 3D volume
corresponds to an EPI. As depicted in Figure 1(c), each EPI
describes how the pixels of one epipolar line in a reference
view move to the other reference. The light field theory [2]
states that these transitions are always linear and their slopes
are inversely proportional to the scene’s depth. Despite its
richness, the EPIV estimation has been limited so far to very
narrow-baseline setups [10].

We propose in this paper to close this gap and to reconstruct
the EPIV of an arbitrary foreground object in the wide-
baseline scenario. After epipolar rectification, the silhouette
of the foreground object in each reference view is described
by a sequence of background/foreground segments along each
epipolar line. Our contribution primarily aims at matching
those segments between the two reference images, and then
using this information to guide the EPIs reconstruction. As
illustrated in Figure 1(b), our new method builds on interme-
diate object silhouette priors to guide the EPIs reconstruction.
To generate this prior, an object-specific 2D-shape manifold
is learned from a set of silhouettes that represent the various
appearances of the object shape, when projected on a planar
view. The flow chart of our algorithm is presented in Figure 2.
The steps involved in the EPIs reconstruction are further
illustrated in Figure 3. We note that the set of silhouettes
used to learn the object-specific manifold is composed of
silhouettes of the same object moving in front of the same
stereo pair, as shown by the black components in Figure 2. The
training set is typically collected before the instant at which the
object image has to be interpolated. At the interpolation time,
the learned object-specific 2D-shape manifold is exploited to
guide the deformation of the pair of object silhouettes observed
by the reference views, as shown in Figure 3. Specifically, after
projecting the reference silhouettes in the low-dimensional
manifold, a sequence of shapes that likely represents the
deformation of the object silhouette between the stereo pair is
generated by sampling the geodesic path computed between
the two projections of the reference silhouettes on the manifold
(Figure 3, left side). The resulting sequence of plausible
silhouettes is then used to guide the transformation (i.e., the
scaling/translation/vanishing) of epipolar foreground segments
between the two reference views (Figure 3, right side).

Interestingly, the priors are used not only to disambiguate
the association of pixels between reference views, but also to
determine how the occluded parts vanish/appear while moving
from one reference view to the other. This gives a unique abil-
ity to reconstruct visually pleasant and topologically consistent
images in the presence of significant self-occlusions or severe
foreshortenings inherent in wide-baseline stereo setups.
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Fig. 2: Flow chart of our algorithm. Black components are
only activated in an initialization stage, to capture the object-
specific prior. Black solid lines depict the blocks involved
in the generation of the object-specific GPLVM shape man-
ifold, from a set of silhouettes that correspond to various
and representative object poses. The dashed lines indicate
that the representative silhouettes are collected from previous
observations of the object, assumed to be moving in front of
the stereo setup. Blocks and arrows in blue implement the
interpolation of intermediate images, and are run each time an
intermediate view has to be interpolated. The behavior of the
three blocks following the object segmentation is described in
Sections III, IV, and V, and is illustrated in Figure 3.

The rest of our paper is organized as follows. Section II
surveys the recent advances in virtual view reconstruction, and
identifies the limitations of earlier methods in our envisioned
wide-baseline stereo acquisition setup. Section III explains
how to capture and embed a prior about the plausible silhou-
ettes of the object in a low-dimensional silhouette manifold,
which can be exploited to guide the reconstruction of the
EPIs between two reference images, as detailed in Section IV.
The view synthesis process is described in Section V. Section
VI then validates our framework by generating topologically
valid intermediate views on both real and synthetic images
captured by two cameras with very different viewpoints. The
advantages induced by shape priors are further demonstrated
by comparing our method with a set of conventional and state-
of-the-art approaches.

II. RELATED WORK AND CHALLENGES

View synthesis methods are generally categorized into two
groups: model-based rendering and image-based rendering.

In model-based rendering, a 3D shape model of the observed
scene is reconstructed explicitly from multiview images. Ap-
propriate texture is then mapped on the model, which is
projected onto any arbitrary viewpoint. Methods such as pro-
jective grid space [11] [12], visual-hull [13] [14] [15] [16], 3D
model adjustment [17], and shape-from-video [18] belong to
this category. These methods have the advantage of synthesiz-
ing intermediate views representing the actual 3D scene. How-
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Fig. 3: The reconstruction of Epipolar Plane Images (EPIs) is driven by incorporating prior knowledge about the deformations
of the object silhouette. This knowledge is learned from previous observations of the object by (one of) the two reference
views. It is captured by a low-dimensional Gaussian Process latent space, from which intermediate 2D prior silhouettes are
extracted in-between the projected reference ones (in the left part of the figure, each point of the 2D latent space represents a
silhouette, and warmer colors indicate a higher ’plausibility’). These intermediate 2D priors are then appropriately placed in
the EPIV to be converted into a set of 1D priors that disambiguate the matching of epipolar silhouette segments between the
reference epipolar lines. Eventually, this matching drives the reconstruction of the EPI (right part of the figure).

ever, the quality of the virtual view is highly dependent on the
accuracy of the estimated 3D model [19]. To obtain an accurate
3D model, model-based rendering methods therefore rely on a
dense coverage of the scene, which requires a large number of
precisely calibrated video cameras [20]. The trade-off between
the accuracy of the reconstruction and the number of cameras
is often relaxed when the distance between the object and
the reference cameras is large compared with the baseline
distance separating these cameras [21]. In this particular case,
a simple (set of) planar model(s) (called billboards) enables
one to generate realistic intermediate views of the object.
However, when the distance to the scene decreases, planar
proxies become insufficient to approximate the 3D structure
of the object [22]. Therefore, to synthesize intermediate views
in-between wide-baseline reference cameras, state-of-the-art
methods generally decompose the scene into its background
and its foreground objects and reconstruct them independently
[4]. The still background 3D geometry is typically acquired
based on state-of-the-art active 3D acquisition systems [23]
[24], or estimated based on piecewise-planar 3D geometry
approximations [25] [26] [22] [27]. In contrast, the capture
of dynamic foreground geometry is impractical, and current
estimation solutions are restricted to specific contexts, where
the foreground is still relatively far from the cameras [18] [5]
[22]. Hence, the interpolation of dynamic foreground objects
situated relatively close to the pair of cameras remains a
largely unsolved question [28] [6].

In contrast, image-based rendering (IBR) methods [29] cre-
ate the virtual views directly in the image color space without
explicit reconstruction of a 3D piecewise-smooth surface. Such
methods are further classified into arbitrary-view and baseline
interpolation approaches. On the one hand, arbitrary-view IBR
approaches determine the pixel color values of each virtual
view in a way that is geometrically and/or photometrically
consistent with N ≥ 2 reference views. These methods
focus on optimizing multiple depth maps (either the ones of
the virtual views [5] or those of the reference views [22])
and/or the virtual image’s color [30]. However, the dense

estimation of a depth map is possible only when all the 3D
points corresponding to a pixel in the reconstructed view are
observed with at least two reference views. This requires a
sufficiently dense coverage of the scene with many cameras.
On the other hand, baseline interpolation approaches determine
region correspondences or pixel correspondences (disparity)
between two reference views and generate the intermediate
views by interpolation [31] or morphing [32]. They rely on
dense correspondences between the views, generally for small-
baseline configurations. This trend culminates in light-field
reconstruction approaches [2], which require tens or hundreds
of narrow-baseline1 cameras/lenses [33] to determine a con-
tinuous (sub-pixel) correspondence between the references.

So far, image-based rendering techniques have thus been
restricted to dense acquisition setups, where many images of
the same 3D scene are captured by cameras that are close to
each other compared with their distance to the 3D scene. To the
best of our knowledge, no image-based rendering method has
been able to provide effective synthesis with a wide-baseline
setup composed of only two reference cameras.

The main source of failure in wide-baseline stereo rendering
lies in the strong geometrical deformations (including occlu-
sions) induced by the projections. More specifically:
• The foreshortening effect causes a distance or an object

to appear shorter/wider than it is because it is angled
toward the viewer. As a consequence, a given 3D object
will be represented by a different number of pixels in
different views. This implies that finding correspondences
with fixed-template matching methods fails [34]. The
same holds when a pixel correspondence is optimized
by graph-cut [35], belief propagation [36], or dynamic
programming [37] approaches, which generally enforce
the pixel uniqueness constraint, i.e., a pixel in an image
corresponds to at most one pixel in another image.

• The self-occlusion effect occurs when part of an object
hides another region of the same object. It drastically

1The reference views are separated by a few microns (microlens arrays) to
a few centimeters in narrow-baseline setups.
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limits the correspondence-based interpolation methods
[32] in a wide-baseline configuration.

• The ambiguous correspondences induced by the large
difference in viewpoints results in sparse disparity/depth
maps, leading to large holes in the reconstructed interme-
diate view. Multiple methods exist to fill in these holes
[38] [39] [40], but they are based either on globally non-
valid hypotheses (e.g., holes should contain patterns that
are visible in the non-occluded parts) or on computation-
ally expensive (post-)processing techniques [41].

Our work explicitly addresses these issues by computing
correspondences between image segments, and by constraining
those correspondences to be consistent with a plausible defor-
mation of the projected object silhouette between the reference
views. Therefore, our approach is able to properly deal with
occlusion of segments or their shrinkage/elongation.

III. OBJECT SILHOUETTE PRIORS

This section derives a sequence of object silhouettes that
defines a priori a plausible transition between the wide-
baseline stereo images. We rely on a set of object silhouettes
that have been observed before the interpolation time by (one
of) the reference cameras, and assume that those silhouettes of
the object moving in front of the cameras are representative of
the silhouettes observed when moving the cameras along the
baseline. We then describe each silhouette based on Elliptic
Fourier Descriptors (Section III-A), and map the resulting set
of high-dimensional features to a lower dimensional latent
space (Section III-B), in which a smooth and topologically
consistent sequence of intermediate silhouettes is interpolated
(Section III-C) and registered (Section III-D) between the
silhouettes from the actual cameras.

A. High-dimensional silhouette description

We use Elliptic Fourier Descriptors (EFD) [42] to describe
each silhouette. Therefore, the silhouette contour is first rep-
resented as a parametric curve (x(t), y(t)) in a 2D coordinate
system with arbitrary origin and horizontal direction aligned
with rectified epipolar lines. The origin of the contour is
selected arbitrarily to be the point with the smallest x-
coordinate among the ones having the same y-coordinate as the
silhouette’s center of mass. Given those definitions, as detailed
in [42], Elliptic Fourier Descriptors then represent the shape
of a silhouette as a sum of N elliptic harmonics2. We have:

x(t) = a0 +

N∑
n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
,

where T is the perimeter of the contour. The second coordinate
of the shape contour, y(t), is defined analogously as a function
of the coefficients c0, cn, and dn. To make the silhouette
features translation invariant, we ignore a0 and c0 and describe
the shape of an object silhouette as a high dimensional
feature vector composed of N sets of harmonic coefficients
(an, bn, cn, dn). Note that scale invariance naturally results
from the normalization of the curvilinear coordinate t by T .

2N is set to 50 in most of our experiments.

B. Low-dimensional silhouette manifold

To capture the structure of the high-dimensional object
silhouette space, we collect M silhouette instances that have
been previously observed by (one of) the reference cameras.
We then map the M instances of high-dimensional EFD
vectors to a low-dimensional latent space that captures the
high-dimensional data set distribution. Here we follow the
pioneering approach of [43, 44], which uses a nonlinear
dimensionality reduction technique called Gaussian Process
Latent Variable model (GPLVM) [1].

Let W = [w1, · · · ,wM ]T denote the M high-dimensional
silhouette instances. Each silhouette instance wi is defined
as a vector of dimension D = 4 · N that collects the N
elliptic harmonics of the silhouette, each harmonic being
defined by 4 parameters. The corresponding set of low di-
mensional latent variables computed by GPLVM is denoted
by V = [v1, · · · ,vM ]T , where the variable vi is the latent
point of dimensionality d corresponding to the silhouette wi,
with d << D (d = 2 in our case). To associate a latent point to
each silhouette in W, GPLVM considers that each dimension
of the silhouette data samples results from a Gaussian process.
Given a definition of the covariance kernel in the latent space,
it determines how the latent points V associated with the
data samples W should be distributed in order to maximize
the likelihood P (W|V,θ) of the observed high-dimensional
samples, with θ denoting the kernel parameters. As in [45],
this likelihood is defined as the product of D separate Gaus-
sian processes sharing the same covariance/kernel function. It
assigns a precision to each point in the latent space, where
the precision is defined as the inverse of the (shared) variance
of the D posterior Gaussian distributions resulting from the
projections of the latent point in the D-dimensional data
space [45]. A small precision corresponds to a large variance
and thus to an ambiguous mapping. By construction of the
latent space model, which aims at maximizing the likelihood
of the data set W, high precision latent points correspond to
shapes that are frequent in W. We visualize the precision by
coloring the latent space pixels. Warmer, i.e., red, (resp. colder,
i.e., blue) pixels correspond to higher (smaller) precision
and are more (less) likely to generate a valid shape, i.e., a
shape that is similar to the training samples (see for example
Figure 3, where GPLVM has learned a latent space from
M = 150 hand silhouettes).

In its native formulation, GPLVM ensures that points that
are close in the latent space remain close in the data space.
Hence, points that are far apart in the data space are far apart in
the latent space. However, it does not guarantee that points that
are close in the data space will also be close in the latent space.
To push GPLVM to preserve local distances, we follow [46]
and impose back-constraints in the computation of the latent
variables by forcing the form of the mapping from the data
space to the latent space. As a result, the learned latent space
becomes more adapted to our interpolation purpose, since it
guarantees that the transition between two close points in the
latent space maps to a smooth and topologically coherent
silhouette transition in the high-dimensional space.
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C. Interpolating intermediate silhouettes on the manifold

Here we derive a sequence of plausible 2D silhouettes
between the reference views. We first project the two reference
silhouettes onto the latent space (points 1 and 6 in the left
part of Figure 3), using the mapping function learned in Sec-
tion III-B. We then use the Dijkstra’s shortest path algorithm
[47] to interpolate a plausible transition between these low-
dimensional reference silhouettes (white path in Figure 3), and
obtain the corresponding high-dimensional silhouette prior by
back-projecting some (P + 1 uniformly sampled) points of
this path to the high-dimensional space. The black silhouettes
in the left part of Figure 3 depict the silhouettes obtained by
back-projection of the points represented in white in the latent
space (in this example, P = 5).

More precisely, the shortest path connecting the two refer-
ence silhouettes in the latent space is computed in a graph
defined as follows. Each node in the graph corresponds to
a point in a discretized latent space. Edges connect neigh-
boring nodes only, with the cost cij between two neigh-
boring nodes i and j being defined to increase when the
precision (see Section III-B) of node j decreases, namely
cij = − log(precisionj + ε), where ε avoids numerical insta-
bilities. By computing the shortest path on this graph, we
obtain a smooth sequence of silhouettes that are well supported
by the training set, and could thus be observed with a reason-
able likelihood when moving the viewpoint from one reference
view to the other (reconstruction scenario), or when the 3D
object moves with respect to a single viewpoint (learning
scenario). In general, there is no strict guarantee that the
intermediate silhouettes derived from the latent space corre-
spond to the actual ones. In practice, however, the similarities
between the actual and GPLVM interpolated silhouettes have
been confirmed in all our experiments.

D. Registering the silhouette priors with the reference ones

Due to the translation and scale invariance of the shape
features (see Section III.A), the intermediate shapes extracted
from the manifold define the object silhouettes up to a scaling
and translation. To exploit them during the EPI reconstruction,
we have to register them in the EPIV. This is performed by:

1) translating the intermediate shapes in such a way that
their centers of mass coincide with the linear interpolation
of the centers of mass of the two reference silhouettes,

2) scaling the translated prior shapes based on the linear
interpolation of the height of the object between the two
reference silhouettes.

Figure 1(b) shows examples of registered prior shapes,
sampled along the manifold shortest path, according to their
normalized distance α to the left reference camera.

IV. TRANSFORMATION OF EPIPOLAR LINE SILHOUETTES

In a given view and along an epipolar line, the object
silhouette defines a sequence of consecutive background and
foreground line segments, named epipolar line silhouette
(ELS). Examples of reference and prior ELSs are illustrated
by the blue and red lines in Figure 4(a). This section explains

how the sequence of ELS priors helps in estimating how
the actual ELS segments evolve between the reference views,
thereby supporting the EPI reconstruction (see Figure 3). For
this purpose, we represent the ELS segments transformation
between the views by the displacement and potential fusion
of the segments’ borders, simply named ELS borders. After
some terminology definition in Section IV-A, Section IV-B
derives a method to match ELS borders between the reference
views, in a way that is consistent with the available ELS priors.
Section IV-C then explains how these priors can be used to
control the vanishing/occlusion of unmatched segments.

A. Terminology and notations

Along a given epipolar line, the ELS consists in a sequence
of S adjacent background and foreground segments. It is
denoted by S = [s1, s2, · · · , sS ], with each component si
defining the spatial support and the type (foreground vs.
background) of the ith segment. A corresponding sequence
of ELS borders is denoted B = [b0,b1, · · · ,bS ], with bk−1
and bk denoting the coordinates of the beginning and the end
of the segment sk, respectively. The modality m(bk) of the
border bk defines the type of segment ended by bk.

As depicted in Figure 4, in a given EPI, we use SL and SR

to denote the two sequences of ELS segments observed in the
left and right reference views, respectively. BL and BR denote
the two corresponding sequences of ELS borders. We also
introduce {Sαp}p∈[0;P ] and their corresponding ELS borders
{Bαp}p∈[0;P ] to refer to the (P + 1) ELSs derived from the
prior silhouettes (see red lines in Figure 4). After registration
of the prior silhouettes with the reference views (Section
III-D), the extraction of ELSs from each prior silhouette is
straightforward, except regarding the beginning of the first
segment and the end of the last one. In our work, those
two points are defined based on a linear (with respect to α)
interpolation of their corresponding points in the left and right
reference views. For the sake of clarity, in the rest of the
paper, the reference (blue) and prior (red) ELS segments will
be represented on a front view, as shown in Figure 4(b).

B. Matching epipolar line silhouette borders

To match the left and right reference ELS borders, i.e. BL

and BR, we aim at designing an algorithm that:

• promotes the associations that are consistent with the
prior {Bαp}p∈[0;P ], describing a plausible deformation
of the ELS between the reference views;

• tolerates unmatched borders to reflect the potential van-
ishing/appearance of ELS segment between the views.

Mathematically, within a given EPI, the left/right ELS border
matching is formulated as a constrained minimization problem.
For all 0 ≤ i ≤ SL and 0 ≤ j ≤ SR, let δij indicate whether
bLi and bRj are matched (δij = 1) or not (δij = 0), and define

δLi = max
j

δij , and δRj = max
i

δij , (1)

to indicate whether bLi and bRi , respectively, are matched or
not. The optimal ELS border matching decisions δ∗ are then
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(a) (b) (c)

Fig. 4: (a) Prior information about the plausible deformations of the object silhouette is used to determine the cost of matching
the left epipolar border bLk to the right epipolar border bRn . (b) For clarity, the actual and prior epipolar line silhouettes
(ELSs) are presented in a frontal picture. (c) The cost g(bα0

k ,bαP
n ) of matching the kth and nth border of the left and right

priors, respectively, is defined by summing, over the intermediate views, the shortest distance measured between one of the
intermediate prior borders and the linear interpolation of bα0

k and bαP
n , as depicted in green in (c).

defined as:

δ∗ = argmin
{δij}

(∑
i,j

δij · d(bLi ,bRj )

+
∑
i

(1− δLi ) · u(bLi ) +
∑
j

(1− δRj ) · u(bRj )
)
,

subject to
∑
i

δij ≤ 1 , and
∑
j

δij ≤ 1, (2)

with u(.) denoting the penalty cost induced by unmatched
borders, and d(bLi ,b

R
j ) measuring how different the bLi and

bRj borders are, given the priors. We observe that, if we admit
that the relative left/right order of borders has to be preserved
during the matching, this minimization problem becomes
equivalent to a sequence alignment problem. This problem can
be solved efficiently based on dynamic programming, using
the Needleman-Wunsch (NW) algorithm [48][49]. Formally,
the ordering constraint writes

∀i, i′, j, j′ | δij · δi′j′ = 1, (i− i′) · (j − j′) ≥ 0,

and makes the minimization problem of Equation (2) solvable
with the standard NW algorithm.

We now define the costs used in Equation (2). The cost
u(bvi ), induced by skipping the ith border in view v, is defined
to be equal to max

(
l(svk), l(s

v
k+1)

)
, with svk denoting the kth

ELS segment in view v, and l(svk) measuring the length of
svk. This definition ensures that borders delimiting long ELS
segments have less chance of being unmatched. This reflects
the fact that long segments are less likely to vanish than shorter
ones. The cost d(bLi ,b

R
j ) of matching the ith border of BL

with the jth border of BR is defined differently depending
on whether the two borders have the same modality or not.
When the borders have different modalities, the cost is set to
∞, to forbid their matching, as it is desirable to prevent the
association of a foreground segment with a background one.
In contrast, when the borders have the same modalities, the
distance cost d(bLi ,b

R
j ) is defined to promote the associations

that are supported by the prior {Bαp}p∈[0;P ]. To account for
the deformation of the reference silhouette when it is projected
to the latent space, we further decompose d(bLi ,b

R
j ) into

two parts. The first part considers each reference view inde-
pendently and measures, in each view, the distance between

the actual and prior borders. It is denoted h(b,b′) for two
(actual and prior) borders b and b′ belonging to the same
epipolar line. The second part, denoted g(bα0

k ,bαP
n ), estimates

how well the association of two prior borders in the left and
right viewpoints (corresponding to α0 and αP , respectively),
is supported by the intermediate prior borders (0 < αp < 1).
Eventually, the cost d(bLi ,b

R
j ) of matching the ith border of

BL with the jth border of BR is defined as:

d(bLi ,b
R
j ) = min

k,n

(
h(bLi ,b

α0

k ) + g(bα0

k ,bαP
n ) + h(bαP

n ,bRj )
)
,

(3)
which corresponds to the cost of the shortest path computed
in the directed graph connecting the left and right reference
borders through two intermediate layers, corresponding to left
and right priors. The cost d(bLi ,b

R
j ) is thus straightforward to

compute using the Dijkstra’s algorithm [47], as long as h(, )
and g(, ) are known. We discuss these distances below.

In the left view, the distance h(bLi ,b
α0

k ) between the ith

left reference border, and the kth border of Bα0 is defined to
be the normalized Hamming distance between the reference
and prior ELS, when bLi and bα0

k are aligned3. Because
Sα0 and SL are seen from the same camera viewpoint, the
foreshortening effect does not influence the lengths of their
epipolar segments, making the Hamming distance relevant due
to this one-to-one pixel correspondence. In the right view, the
distance h(bαP

n ,bRj ) between the nth prior border in BαP and
the jth reference border in BR, is defined analogously.

Then, in order to define the cost g(, ) of associating two
borders between the first and last priors, we assume that the
transition between the two borders should ideally follow a
linear displacement between the reference views. It means
that the displacement should be proportional to the variable
α defining the normalized distance to the left view. With
rectified cameras, the displacement proportionality assumption
is strictly verified when the silhouette borders correspond
to the same physical 3D point [10], independently of the
viewpoint. In other cases, since the actual 3D point supporting
the silhouette border generally does not move a lot when

3After alignment, the two ELSs generally do not fully overlap. Hence, the
Hamming distance is computed on the part of the epipolar line where the two
strings of ELS pixels overlap, and the normalization consists in dividing the
distance by the length of this overlap.
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the viewpoint changes, the assumption is also approximately
valid. Under this assumption, we define g(, ) to reflect the
discrepancy between the actual and the ideal linear displace-
ment. In practice, for bα0

k and bαP
n , this discrepancy, denoted

g(bα0

k ,bαP
n ), is measured as the sum over the intermediate

views (p ∈ {1, · · · , P − 1}) of the distances (normalized by
the width of the image) between the linear interpolation of
bα0

k and bαP
n in the intermediate view αp and the closest

prior borders having the same modality in Bαp . This distance
is illustrated with a green color code and for one intermediate
view in Figure 4(c). A detailed formal definition of g(, ) is
provided in [50].

C. Appearing/vanishing trajectories
We now study how unmatched borders move while going

from one reference view to the other. In practice, since the
displacement of a border along the EPI is assumed to be
proportional to the normalized distance α [10], we only have
to evaluate the corresponding coefficient of proportionality,
called border displacement slope in the rest of the paper. In
our new model, the unmatched border displacement slopes are
estimated as a function of the ELS priors, in three steps.

First, the prior borders that correspond to occluded segments
are identified as the ones that are sufficiently far from the linear
interpolation of matched borders (i.e., farther than 5% of the
image width in our experiments). We name them occluded
prior borders (dark red borders in Figure 5(a)), and group
them in two distinct sets according to their modality. Each
set is processed independently. Given the simplicity of the
criterion adopted to identify occluded prior borders, each set
might include false positives.

Hence, the second step of our approach considers a
RANSAC-based procedure [51] to fit linear vanishing trajecto-
ries to each set of occluded prior borders. At each RANSAC
iteration, two occluded prior borders are randomly selected
to define a linear border displacement model. The occluded
prior borders that are close enough (in our experiments,
5% of the width of the image) to the trajectory model are
considered to be inliers. The linear model that maximizes the
amount of inliers is kept, and its inliers are removed from the
corresponding set of occluded prior borders, before subsequent
applications of RANSAC. This simple greedy algorithm works
well in practice, due to the relatively small number of outliers
in the set of occluded prior borders. The outcome of the
RANSAC-based fitting procedure is illustrated in Figure 5(b).

Finally, in a third step, the displacement slopes associated
with those trajectories are assigned to the unmatched borders
in the reference views (Figure 5(c)). The cost of assigning a
trajectory to a reference border is simply defined to be the
L1 distance between the border and the position defined by
the trajectory in the reference view. The assignment problem
is then solved using the Hungarian algorithm [52], so as to
assign one and only one trajectory to each unmatched border
while minimizing the sum of assignment costs.

V. VIEW SYNTHESIS

This section describes how the intermediate view epipolar
lines are synthesized based on the matching of reference sil-

houette epipolar borders computed in Section IV. For occluded
epipolar segments, we propose to propagate the texture from
the reference view in which the segment is visible, to the van-
ishing point, using a linear morphing strategy (Section V-A).
For pairs of matched silhouette segments, two strategies are
envisioned and compared in our experiments. The first one
consists in a simple linear view morphing (Section V-B).
The second one is based on a pixel-wise pixel association
that is computed under strict ordering constraint assumption
(Section V-C).

A. Texture occlusion

Let y denote the EPI index, and (xv, αv) denote the point
in the EPI where the occluded segment vanishes, such as
illustrated at the intersection of the two bold black lines in
Figure 5(c). The linear morphing reconstructs the segment in
view α as:

Iα

(
α

αv
· (xv − xL) + xL, y

)
= IL(xL, y)

if the vanishing epipolar line segment belongs to the left
reference image (occlusion), or as:

Iα

(
(α− 1) · (xv − xR)

αv − 1
+ xR, y

)
= IR(xR, y)

if the vanishing segment belong to the right reference image
(disocclusion). In these equations, xL and xR denote the
position along the epipolar line in the left and right views,
respectively. Their possible values are defined to cover the
support of the occluded segment.

B. View morphing

The morphing-based combination of textures relies on
epipolar rectification to synthesize the intermediate textures
by linear interpolation of the reference textures. Between two
matched segments, the texture is defined as [32]:

Iα(xα, y) = (1− α) · IL(xL, y) + α · IR(xR, y) (4)

with y denoting the EPI index, and xL denoting the ordinate
of a pixel in the left view. xα and xR are computed as follows:

xα = (1− α) · xL + α · xR (5)

xR =
l(sRj )

l(sLi )
·
(
xL − p(bLi )

)
+ p(bRj ) (6)

with sLi denoting the epipolar line segment including xL and
sRj denoting the epipolar line segment matched to sLi . Then
p(bLi ) is the position of the left border of the epipolar line
segment including xL and p(bRj ) defines the position of the
corresponding matched border.

C. Ordering preservation

The ordering constraint assumes that the left-right relation
between the projection of 3D points belonging to the same
epipolar plane is preserved when changing the observer point
of view. It is not strictly valid, especially in a wide-baseline
stereo setup, but it is usually valid within pairs of matched
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(a) (b) (c) (d)

Fig. 5: As detailed in Section IV.C, the vanishing trajectories are estimated by (a) identifying the so-called occluded prior
borders (in dark red, with light gray lines depicting matched borders trajectories), (b) fitting linear trajectories to these prior
borders, and (c) associating the slopes of these trajectories (dotted lines) with the occluded reference borders (solid lines).
Finally, the EPI of the object silhouette is reconstructed by (d) adding the vanishing trajectories to the set of trajectories
describing the transitions between the associated reference borders.

segments. Under this assumption, the problem of associating
the pixels of a pair of matched epipolar segments can be
formulated based on the Needleman-Wunsch algorithm and
solved using a dynamic programming approach, as detailed in
[37]. Once the pixels have been associated, the interpolation
of an intermediate segment is straightforward, and reads:

Iα(xα, y) = (1− α) · IL(xL, y) + α · IR(xR, y) (7)

with xL and xR denoting the x coordinates of a pair of
pixels associated between two matched epipolar segments, and
y denoting the epipolar line index. The reconstructed pixel
abscissa xα is defined by (5).

VI. RESULTS

In this section, we demonstrate the performance of our
approach on well-known datasets, namely the synthetic Kung-
Fu Girl sequence [53] and the real Ballet sequence [40]. Other
validations on the Dino dataset [54] are presented in [50].
Although these multiview datasets contain numerous images
acquired by multiple (small-baseline) cameras, we consider
only a pair of widely separated cameras from these sets to learn
our shape priors model and to reconstruct the intermediate
views. In practice, only a small number of training samples
(typically forty to sixty) is required. They all correspond to
previous observations of the object moving in front of a single
reference view. To evaluate our method, for each dataset, we
present five intermediate views sampled uniformly in-between
the left and right reference views. The videos showing the
continuous transition from the left to the right cameras, as
well as the source code of our implementation, are provided
at http://infoscience.epfl.ch/record/200492.

A. The Kung-Fu Girl dataset

For the Kung-Fu Girl dataset, we have selected two wide-
baseline cameras separated by an angular difference of 45◦.
They correspond to the cameras b05 and b07 in the dataset,
and the 120th frames of those two cameras are considered
as the reference ones. The view captured by the left (or right)
camera is shown on the left (respectively right) of the first row
in Figure 6. The image shown in-between corresponds to the
ground-truth captured by a camera situated approximatively at

the middle (α ' 0.5) in-between these two reference views.
The second row in Figure 6 represents the intermediate views
generated based on a conventional visual-hull reconstruction
[14][31]. The numerous artifacts in the reconstructed interme-
diate views reveal the limitations of such a straightforward
model-based approach in our wide-baseline stereo.
The third row in Figure 6 represents the intermediate views
generated based on the dense (pixel) correspondence between
corresponding epipolar lines obtained by dynamic program-
ming [37] [55], with matching cost set to the l2-norm of the
pixels’ colors and the skipping penalty u(.) arbitrarily set to
0.5. Two kinds of artifact can be observed in these recon-
structed views. First, they are topologically incoherent. This
can be observed between the legs of the Kung-Fu girl, near her
neck, and on her left hand, where some parts separate from her
body. Second, holes appear in the reconstructed intermediate
views. This artifact, caused by the foreshortening effect, is
generally avoided by imposing a smooth disparity/depth-map
[29], at the cost of increased complexity.
To impose smoothness along the epipolar lines explicitly,
as shown in the 4th row of Figure 6, we use epipolar line
segments as matching elements. The method extends that of
[37] by considering epipolar line segments (and not pixels)
to be basic image elements. It corresponds to the approach
we introduced in Section IV-B, but without prior silhouettes
knowledge. Hence, each epipolar border is matched by NW
[55], considering that d(bLi ,b

R
j ) = h(bLi ,b

R
j ) (instead of

Equation 3). We observe in Figure 6 that the reconstructed
intermediate views are smoother but still exhibit some topo-
logically incoherent transitions (see head and legs).
To guide the reconstruction of the EPIs in such a way that they
provide topologically coherent intermediate views, a latent
space has been learned from sixty silhouettes of the Kung-
Fu girl captured by each of the two wide-baseline cameras
(i.e., b05 and b07), at 30 time instants uniformly sampled
between the first and the hundredth frames. These silhouettes
have been described using seventy elliptic harmonics. The fifth
row in Figure 6 illustrates this learned latent space.
The advantage of considering these priors is illustrated in the
last row in Figure 6, where intermediate views have been
generated by the method proposed in this paper, using linear

http://infoscience.epfl.ch/record/200492
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view morphing for texture synthesis (Section V-B). Only five
intermediate priors have been used to reconstruct the EPIs, i.e.
P = 4. The intermediate views reconstructed by our method
offer a topologically coherent transition of the Kung-Fu girl
from the left to the right reference view.

B. The Ballet sequence

The second sequence, called Ballet [40], has been cap-
tured using eight cameras placed along a 1D arc, spanning
about 30◦ end-to-end. While two neighboring cameras in
this array constitute a small-baseline stereo pair, the outer
cameras represent a wide-baseline configuration, with strong
self-occlusions and foreshortening effects between the two
external viewpoints (especially on the dancer’s arms). For
this sequence, we visually compare the images interpolated
with different methods, but also provide quantitative values
derived from the comparison between real and interpolated
images. The covering percentage measures the fraction of the
pixels in the real foreground image that is covered by the
interpolated image. The PSNR is computed on this covered
area only. Both values are averaged on the intermediate views
that are available in the dataset. Those quantitative metrics
should however be treated with caution due to the fact that the
images that are available in the Ballet dataset (and that have
been used as a ground truth) have been captured by cameras
that are distributed along an arc of a circle, and not along the
baseline. Hence, for each camera view in the Ballet dataset, we
have computed the PSNR between the image captured by the
real camera, and the image interpolated at the position along
the baseline that is the closest to the real camera position.

In Figure 7, we compare the images reconstructed at in-
termediate viewpoints by five methods, using only the two
extreme wide-baseline reference views (in contrast to the
use of the small-baseline multiview pairs presented in [40]).
The images presented in Figure 7 correspond to frame 30.
In the first row, the intermediate views are generated by
view morphing, based on multiple depth maps as proposed
in [40]4. Since the depth map estimated from the extreme
wide-baseline views is very poor, we provide the images
reconstructed from the textures in the two extreme views,
based on the depth maps computed with neighboring cameras
(small-baseline configuration). Even with this additional infor-
mation, the small depth inaccuracies (equivalently weak pixel
correspondences) lead to merging non-corresponding textures,
i.e., ghosting artifacts. The second row in Figure 7 illustrates
the intermediate views obtained by a state-of-the-art (narrow-
baseline) stereo method [56] top-ranked in February 2015 in
the well-known Middlebury Stereo Evaluation [57] [58] [55].
By combining a cost-filtering approach, especially adapted to
manage the occlusions, with a global (fully connected Markov
Random Field) optimization, this method achieves impressive
results on small-baseline stereo setups. However, as expected,
the strong geometrical and photometric changes, as well as the
foreshortening effects make this algorithm pretty vulnerable in

4The pixel correspondences are obtained by projection of the pixels of one
reference view at the depth indicated by the depth map, and back-projection
of these 3D points in the other reference view.

our wide-baseline stereo setup. In the third row, we use only
the external views and test wide-baseline stereo matching by
applying the Needleman-Wunsch algorithm [55] to pixels, as
done in [37]. Despite the high PSNR, it produces visually
subpar results. We observe that strong foreshortening effects
produce holes in the reconstructed intermediate views. By
applying [55] to the segment representation, we find dense
correspondences, but topological inconsistencies subsist (see
fourth row in Figure 7). The last row in Figure 7 illustrates
the result obtained by our complete method using silhouette
priors and morphing-based texture interpolation. The latent
space has been learned on the silhouettes captured by the
same wide-baseline stereo pair (camera 0 and camera 7)
between the 50th and 90th frames. These silhouettes have been
described with fifty harmonics of Elliptic Fourier Descriptors,
and six intermediate priors are used to drive the epipolar
segment matching (P=6). We observe that our method prevents
severe artifacts (holes or topologically inconsistent matching)
in the interpolated image. We however observe that deriving
the inner texture from Equation (4) might result in blurry
ghosting artifacts, caused by wrong pixel associations between
the matched segments. This explains the relatively small
PSNR value observed in the last row of Figure 7, compared
to the third row (using [37] on complete epipolar lines).
To convince the reader that a more accurate inner texture
interpolation would mitigate this issue, Figure 8 compares the
images reconstructed using the morphing-based combination
of inner texture (as described in Section V-B) with the ones
obtained by the approach presented in Section V-C, which
basically uses [37] between associated segments rather than
complete lines. We observe that, indeed, finer association of
inner pixels significantly improves the sharpness of edges in
the reconstructed images. It also increases the PSNR much
beyond the values obtained in Figure 7. Overall, the PSNR
and covering values presented in the second line of Figure 8
reveal that our method outperforms the previous art. The gains
in PSNR, compared to the methods in Figure 7, range from
10 to 6 dB. Moreover, the artifacts appearing in the third row
of Figure 7, which uses pixel-wise association [37] over entire
epipolar lines (instead than within the segments matched by
our method), confirm that our proposed matching of silhouette
epipolar segments provides a worthwhile pre-processing step,
preventing the failure of conventional pixel-based matching
techniques. Other inner texture interpolation methods than [37]
could obviously be envisioned to follow this pre-processing
step, e.g., based on the floating textures concept [59].

C. Discussion

Our method appears to generate topologically coherent
intermediate views, due to the additional silhouette prior
obtained from the latent space. It also deals efficiently with
the foreshortening effect, as for example observed from the
chest of the dancer, which is slanted in the left view but
almost fronto-planar in the right one. Finally, to the best of the
authors’ knowledge, this paper is the first one to interpolate
occluded parts in intermediate views explicitly, as shown by
the Kung-Fu girl’s left shoulder and the space between the
dancer’s legs. Next to these very encouraging results, two
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Fig. 7: Comparison between the interpolated intermediate views generated based on matching of layered representation [40]
(first row), which exploits intermediate depth maps in addition to external views; a state-of-the-art narrow-baseline method
[56] that is top-ranked in the Middlebury Stereo Evaluation [57] (second row); dynamic programming on pixels [37] (3rd row);
dynamic programming on our proposed epipolar line segment representation (4th row); and our method (5th row).
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limitations of our approach, however, deserve to be mentioned.
The first one can be observed on the fingers of the dancer’s
right hand in Figure 7, which separate from her right hand
when the viewpoint changes from the left to the right reference
view, showing a topologically incoherent transition. This is
due to the limited accuracy of the priors, determined from
a low-dimensional space representing the approximations of
training shapes as a set of N smooth harmonics (ellipses).
When high frequency details, such as the dancer’s fingers,
are not represented by the priors, their matching cannot be
properly driven, and their transition may become topologically
incoherent. The second limitation is related to the fact that,
despite providing a smooth and plausible transition between
the views, there is no guarantee that the shortest geodesic
path between the two reference views corresponds to the
true evolution of the object silhouette across viewpoints. In
particular, the proposed method could encounter difficulties for
a combination of object and acquisition setup that produces
the same rectified silhouette in both reference views (same
point on the latent space), while inducing different silhouettes
in the intermediate views. This case is reasonably unlikely
for complex objects. However, a possible path to address
those hypothetical challenging cases could be to extend the
EFD features with features capturing the deformation of the
silhouette in a temporal neighborhood. Finally, in presence of
multiple objects, attention should be paid to the separation
of the foreground silhouette into distinct object silhouettes,
and to the possible interaction between them. This question is
tightly connected to the application scenario at hand, and is
beyond the scope of our paper. Also regarding the practical
deployment of our method, we note that the processing time
of our algorithm (Matlab implementation, code available on
line at http://infoscience.epfl.ch/record/200492, Intel I5 CPU
2.4GHz and 8Gb of RAM) shows encouraging performance:
on average 4.2s to describe a 768×1024 image in epipolar line
segments, 0.06s to match all the epipolar lines independently,
and 0.16s to render an intermediate view. Since the epipolar
lines are processed independently, real-time implementation is
within reach, e.g., based on GPU parallelization.

VII. CONCLUSIONS

This paper interpolates intermediate views between two
cameras in wide-baseline configurations. Our method relies
on learned information about the silhouettes of an object
in the intermediate views to guarantee consistency between
the synthesized silhouettes and the ones present in the two
reference viewpoints. We learn this prior information from
previous observations of the object moving in front of the
two wide-baseline cameras. The learned prior is then exploited
to determine the 1D transformation of epipolar line segments
when moving from one view to the other. Although the coher-
ence is imposed independently on each epipolar line, the fact
that the 1D constraints are derived from 2D priors promotes
consistency across epipolar lines. We then demonstrate that
this new framework not only has the advantage of generating
consistent and smooth virtual transitions of correspondences
between the viewpoints, but it can also handle the vanishing

of occluded informations. Finally, we have shown that our
method outperforms state-of-the-art view interpolation meth-
ods by generating topologically coherent intermediate views of
an object, despite occlusions and severe foreshortening effects
that are inherent in wide-baseline camera settings.
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