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Wide-baseline object interpolation using shape prior
regularization of epipolar plane images

Cédric Verleysen, Thomas Maugey, Pascal Frossard and Christophe De Vleeschouwer.
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Fig. 1: Intermediate views are generated from only two reference views (a). For that purpose, our method derives intermediade
silhouette shapes between the reference silhouettes (b) from a Gaussian Process latent variable model, typically learnt from
a set of images previously captured by the same two reference cameras. It then exploits the resulting shape priors to match
epipolar silhouette segments between the views, thereby reconstructing Epipolar Plane Images (EPIs) and the continuum of
views associated with the Epipolar Plane Image Volume, obtained by aggregating the EPIs (c).

Abstract—We consider the synthesis of intermediate views of
an object captured by two widely spaced calibrated cameras.
Based only on those two views, our paper reconstructs the
object Epipolar Plane Image Volume [1] (EPIV), which describes
the object when moving the synthetic viewpoint in-between the
two reference cameras. This problem is challenging when the
cameras are far apart because occlusions and the foreshortening
effect induce significant differences between the two reference
views. Our main contribution consists in disambiguating this
ill-posed problem by making interpolated views consistent with
an object shape prior. This prior is learnt from the object
silhouettes segmented in images captured by the two reference
views. It consists of a nonlinear shape manifold representing the
plausible silhouettes of the object described by Elliptic Fourier
Descriptors. Dynamic programming is then used to associate the
epipolar silhouette segments between the two reference views
while minimizing the distance between the linearly interpolated
silhouettes and the prior. Eventually, conventional (non-)linear
interpolation methods are considered to synthesise the texture
in intermediate epipolar silhouette segments. Experiments on
synthetic and natural images show that the proposed method
preserves the object topology in intermediate views while dealing
effectively with the self-occluded regions and the severe foreshort-
ening effect associated with wide-baseline camera configurations.

Index Terms—Wide-baseline, epipolar plane image, light field,
view interpolation, free viewpoint, shape priors.

I. INTRODUCTION

Virtual view synthesis aims at rendering images of a real
scene from different viewpoints than the ones acquired by the
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cameras. Our paper restricts the synthesis problem to the inter-
polation of images of a dynamic object observed by a virtual
camera positioned at an arbitrary point along the wide baseline
connecting two reference cameras. The graceful transition in
synthetic views between two reference viewpoints is a feature
greatly in demand, especially in the field of video production
[2]. For example, in the rendering of cultural and sport events,
conventional acquisition systems switch abruptly between the
cameras, making the viewer uncomfortable. By generating
a graceful transition between the reference viewpoints, view
interpolation gives the ability to understand how the rendered
viewpoint changes, i.e., the feeling of being “inside the scene”.

To synthesise intermediate views in-between reference cam-
eras, state-of-the-art methods generally decompose the scene
into its background and its dynamic foreground objects and re-
construct them independently [3]. The still background 3D ge-
ometry is typically acquired based on state-of-the-art active 3D
acquisition systems [4] [5], or estimated based on piecewise
planar 3D geometry approximations [6] [7] [8] [9]. Hence, the
interpolation of dynamic foreground objects situated relatively
close to the pair of cameras is the most complex question
among both [10] [11]. The fundamental issues encountered to
reconstruct a foreground object lie in (1) the availability of
only two reference views and (2) the object’s proximity to the
cameras compared with the distance between those cameras.
The first factor prevents dense 3D estimation, while the second
causes many projective discrepancies between the two views
(occlusions, foreshortening effects), which again hamper the
computation of dense correspondences and lead to holes in the
interpolated views [11].
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This paper assumes that the object silhouette can be ex-
tracted from the reference views1, as generally assumed by
state-of-the-art foreground synthesis methods [13] [14] [8].
Based only on two very different views captured by a pair of
wide-baseline cameras, such as the ones shown in Figure 1(a),
our scheme reconstructs intermediate views of the object along
the baseline in the form of an Epipolar Plane Image Volume
[1] (see Figure 1(c)). The specifity of our method lies in
the fact that it regularizes the Epipolar Plane Images (EPIs)
reconstruction based on a sequence of plausible intermediate
object silhouettes (see Figure 1(b)). This sequence is derived
from a low-dimensional manifold that is learnt from the
previous observations of the dynamic object moving in front
of the wide-baseline stereo pair. Given the sequence of silhou-
ette priors, dynamic programming is considered to associate
the epipolar silhouette segments between the two reference
views while minimizing the distance between the linearly
interpolated intermediate silhouettes and their respective prior.
Silhouette segment textures are then synthesised using con-
ventional methods. Interestingly, the priors are used not only
to disambiguate the association, but also to determine how
occluded parts vanish/appear while moving from one reference
view to the other. This gives our work the unique ability
to reconstruct visually pleasant and topologically consistent
images in presence of the significant self-occlusions and the
severe foreshortenings inherent to wide baselines.

The rest of our paper is organized as follows: Section II
surveys the recent advances in virtual view reconstruction, and
identifies the limitations of earlier methods in our envisioned
wide-baseline stereo acquisition setup. Section III introduces
our proposed Epipolar Plane Images interpolation formalism.
Section IV explains how to capture and embed a prior about
the plausible silhouettes of the object in a low-dimensional
silhouette manifold, which can be exploited to constrain the
reconstruction of the EPIs between two reference images, as
detailed in Section V. The view synthesis process is described
in Section VI. Section VII then validates our framework by
generating topologically valid intermediate views on both real
and synthetic images captured by two cameras with very
different viewpoints. The advantages induced by shape priors
are further demonstrated by comparing our method with a set
of conventional and state-of-the-art approaches.

II. RELATED WORK AND CHALLENGES

View synthesis methods are generally categorized into two
groups: model-based rendering and image-based rendering.

In model-based rendering, a 3D shape model of the observed
scene is reconstructed explicitly from multi-view images.
Adequate texture is then mapped on the mode, and projected
onto any arbitrary viewpoint. Methods such as projective grid
space [15] [16], visual-hull [17] [18] [19] [20], 3D model
adjustment [21], and shape from video [13] belong to this
category. These methods have the advantage of synthesising
intermediate views representing the actual 3D scene. However,
the quality of the virtual view is highly dependent on the

1In this paper, the foreground is extracted by thresholding the L2 color
distance with a Gaussian mixture model of the background [12].

accuracy of the estimated 3D model [22]. To obtain an accurate
3D model, model-based rendering methods therefore rely on a
dense coverage of the scene, which requires a large number of
precisely calibrated video cameras [23]. The trade-off between
the accuracy of the reconstruction and the number of cameras
is often relaxed when the distance between the object and
the reference cameras is great compared with the baseline
distance separating these cameras [24]. In this particular case,
a simple (set of) planar model(s) (called billboards) enables
one to generate realistic intermediate views of the object.
However, when the distance to the scene decreases, planar
proxies become insufficient to approximate the 3D of the
object [8]. This makes model-based rendering inappropriate to
render close (dynamic) scenes between wide-baseline cameras.

In contrast, image-based rendering (IBR) methods [25] cre-
ate the virtual view directly in the image colour space without
explicit reconstruction of a 3D piecewise smooth surface. Such
methods are further classified into arbitrary-view and baseline
interpolation approaches. On the one hand, arbitrary-view IBR
approaches determine the pixel colour values of each virtual
view in a way that is geometrically and/or photometrically
consistent with N ≥ 2 reference views. These methods focus
on optimising multiple depth maps (either the ones of the
virtual views [14] or those of the reference views [8]) and/or
the virtual image’s colour [26]. However, the dense estimation
of a depth map is possible only when all the 3D points
corresponding to a pixel in the reconstructed view are observed
with at least two reference views. This requires a sufficiently
dense coverage of the scene with many cameras. On the
other hand, baseline interpolation approaches determine region
correspondences or pixel correspondences (disparity) between
only two reference views and generate the intermediate views
by interpolation [27] or morphing [28]. They are restricted
to the reconstruction of images on the baseline between
a pair of reference cameras, generally for small-baseline
configurations, and rely on dense correspondence between
the views. This trend culminates in light-field reconstruction
approaches [1], which require tens or hundreds of narrow-
baseline2 cameras/lenses [29] to determine a continuous (sub-
pixel) correspondence between the reference views. So far,
image-based rendering techniques have thus been restricted to
dense acquisition setups, where many images of the same 3D
scene are captured by cameras that are close to each other
compared with their distance to the 3D scene. To the best of
our knowledge, no image-based rendering method has been
able to provide effective synthesis with a wide-baseline setup
composed of only two reference cameras.

The main source of failure in wide-baseline stereo rendering
lies in the strong geometrical deformations (including occlu-
sions) induced by the projections. More specifically:

• The foreshortening effect causes a distance or an object to
appear shorter/wider than it is because it is angled toward
the viewer. As a consequence, a given 3D object will
be represented by a totally different number of pixels in
different views. This implies that finding correspondences

2The reference views are separated by a few microns (microlens arrays) to
a few centimetres in narrow-baseline setups.
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with fixed-template matching methods fails [30]. The
same holds when a pixel correspondence is optimised
by graph-cut [31], belief propagation [32], or dynamic
programming [33] approaches, which generally enforce
the pixel uniqueness constraint, i.e., a pixel in an image
corresponds to at most one pixel in another image.

• The self-occlusion effect occurs when part of an object
hides another region of the same object. It drastically
limits the correspondence-based interpolation methods
[28] in a wide-baseline configuration.

• The lack of non-ambiguous correspondences induced
by the large difference in viewpoints results in sparse
disparity/depth maps, leading to large holes in the recon-
structed intermediate view. Multiple methods exist to fill
in these holes [34] [35] [36], but they are based either on
globally non-valid hypothesis (e.g., holes should contain
patterns that are visible in the non-occluded parts) or on
computationally expensive (post-)processing [37].

Our work addresses these issues explicitly by computing
correspondences between image segments (from which dense
correspondences can be inferred), and by constraining those
correspondences to be consistent with a plausible deformation
of the projected object silhouette between the reference views
(thereby dealing with occlusion of segments, or their shrink-
age/elongation due to the foreshortening effect).

III. WIDE-BASELINE INTERPOLATION ALGORITHM

This paper adopts an Epipolar Plane Image (EPI) formalism
to reconstruct the image of a foreground object between two
widely spaced cameras. The images between the reference
viewpoints are described by the object Epipolar Plane Image
Volume [38] [39] (EPIV), which is obtained by arranging in
a 3D stack the images captured by a dense array of cameras
that are distributed uniformly along the baseline with their
image plane coplanar and vertically aligned. This implies
epipolar rectification [40] of the images, which associates
each horizontal line in one image with rows with the same
ordinate in the other images, as illustrated in Figure 2. As
a consequence, two corresponding pixels belong to the same
horizontal plane in the EPIV and any transverse cross-section
of this 3D cube, i.e., each EPI (see Figure 1(c)) describes
how the pixels of one epipolar line in a view move to
the other view. The light field theory [1] states that these
transitions are always linear and their slopes are inversely
proportional to the scene’s depth. The EPVI is rich and
includes depth information. However, its estimation has been
limited so far to very narrow-baseline setups. We adopt a new
object-based approach to reconstruct the EPIV, as illustrated
in Figure 2. After epipolar rectification of the reference views,
the shape of the foreground object is described by a sequence
of background/foreground segment along each epipolar line in
each view. Our contribution primarily aims at matching those
segments between the two reference images, and using this
information to guide EPI synthesis. Therefore, we :

1) learn a low-dimensional silhouette manifold to describe
prior plausible transformations of the object silhouette
when changing the viewpoint along the baseline (see
Figure 2, left side). In absence of intermediate cameras,

the training set is composed of silhouettes of the object
moving in front of the stereo pair.

2) locate, in this low-dimensional space, the silhouettes
observed at the interpolation time in the reference views,
and interpolate on the manifold a sequence of silhouettes
that likely represents the deformation of the object sil-
houette between the reference views.

3) use this sequence of plausible silhouettes to define how
the object silhouette epipolar foreground segments are
transformed (i.e., through scaling/translation/vanishing)
between the two reference views (Figure 2, right side),
and reconstruct the intermediate silhouette segments by
mapping texture on the foreground epipolar segments.

The different components of our novel view interpolation
algorithm are described in detail in the next sections.

IV. OBJECT SILHOUETTE PRIORS

This section derives a sequence of object silhouettes that
defines a priori a plausible transition from the left reference
silhouette to the right one. This sequence is used in Section V
to regularize the reconstruction of the EPIV.

The main challenge of our approach lies in the definition
of a low-dimensional space that ensures that the interpolation
step results in a smooth and topologically coherent sequence of
silhouette priors. As detailed below, our work learns this space
from a set of silhouette samples. These samples should ideally
describe how the object silhouette evolves in intermediary
views as the viewpoint is moved along the baseline. They
should thus be derived from intermediate view observations.
However, since such observations are not available in many
practical cases (i.e., because only the images captured by the
stereo pair are available), all our experiments instead learn the
manifold from a set of silhouettes that have been previously
observed by one of the reference views. Thereby, we implicitly
assume that the silhouettes of the object moving in front of a
reference view are representative of the silhouettes observed
when a camera is moved between the two reference views.

To learn and exploit the low-dimensional manifold from
this set of silhouette samples, we follow the pioneering ap-
proach of [41, 42]: we first describe the silhouette based on
Elliptic Fourier Descriptors (Section IV-A), map those high-
dimensional features to a lower dimensional latent space (Sec-
tion IV-B), and builds on the resulting manifold to interpolate
and register a sequence of plausible silhouettes between the
reference views (Section IV-C and IV-D, respectively).

A. High-dimensional silhouette description

We use Elliptic Fourier Descriptors (EFD) [43] to associate
a high-dimensional feature vector with each silhouette. There-
fore, the silhouette contour is first represented as a sequence of
2D coordinates (x(t), y(t)) in a 2D referential with arbitrary
origin but the X direction of which is aligned with rectified
epipolar lines. The origin of the contour is selected arbitrar-
ilyto be the point with the smallest x-coordinate among the
ones having the same y-coordinate as the silhouette’s centre
of mass. Given those definitions, Elliptic Fourier Descriptors
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Fig. 2: The reconstruction of Epipolar Plane Images (EPIs) is regularized by incorporating prior knowledge about the
deformations of the object silhouette. This knowledge is learnt from previous observations of the object by (one of) the
two reference views and is captured by a a low-dimensional Gaussian Process latent space, from which intermediate 2D prior
silhouettes can be extracted in-between the projected reference ones (left part of the figure, each point of the 2D latent space
represents a silhouette, and warmer colours indicate a higher ’plausibility’). These intermediate 2D priors are then adequately
placed in the EPIV (middle part of the figure) and converted into a set of 1D priors to disambiguate the matching of epipolar
silhouette segments between the reference epipolar lines, and thereby the reconstruction of the EPI (right part).

then represent the shape of a silhouette as a sum of N elliptic
harmonics, based on:

x(t) = a0 +

N∑
n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
where T is the perimeter of the contour and:

a0 =
1

T

K∑
p=1

( ∆xp
2∆tp

(t2p − t2p−1) + ξp (tp − tp−1)
)

an =
T

2n2π2

K∑
p=1

(∆xp
∆tp

(
cos

2πntp
T
− cos

2πntp−1
T

))
bn =

T

2n2π2

K∑
p=1

(∆xp
∆tp

(
sin

2πntp
T
− sin

2πntp−1
T

))
where

ξp =

p−1∑
j=1

∆xj −
∆xp
∆tp

p−1∑
j=1

∆tj

with K being the number of sampling points in the con-
tour, tp the curvilinear coordinates on the shape, xp the
abscissa projection of tp, ∆xp = xp − xp−1, and ∆tp =√

(∆xp)2 + (∆yp)2. The second coordinate of the shape
contour, y(t), is defined completely analogously in terms of
coefficients c0, cn, and dn by replacing ∆xp with ∆yp. To
make the silhouette features’ translation invariant, we ignore
a0 and c0 and describe the shape of an object silhouette as
a high dimensional feature vector composed of N sets of
harmonic coefficients (an, bn, cn, dn). Note that scale invari-
ance naturally results from the normalization of the curvilinear
coordinate t by the contour perimeter T.

B. Low-dimensional silhouette manifold

We then map M instances of high-dimensional EFD feature
vectors to a low-dimensional latent space that represents the
different plausible silhouettes. We use a nonlinear dimen-
sionality reduction technique called Gaussian Process Latent
Variable model (GPLVM) [44]. This technique is used because

GPVLM enables one to work in low dimension while still
capturing most of the shape variability.

More specificallyl, GPLVM considers that each dimension
of the data samples results from a Gaussian process and
represents those samples in a lower dimensional embedded
space known as the latent space. Hence, GPLVM describes a
data set Y = [y1, · · · ,yM ]T composed of M original data
points (e.g., M reference silhouettes represented with EFD)
collected in a D dimensional space (D = 4 ·N here), with a
lower dimensional set of latent variables X = [x1, · · · ,xM ]T ,
where each variable is a latent point of dimensionality d, with
d << D (d = 2 in our case).

Given a definition of the covariance kernel in the latent
space, GPLVM determines how the latent points X associated
with the training data samples Y should be distributed so as to
maximise the likelihood P (Y|X,θ) of the observed training
samples, with θ denoting the kernel parameters. As in [45],
this likelihood is defined as the product of D separate Gaussian
processes having the same shared covariance/kernel function.
Sharing the covariance function leads to an a posteriori shared
level of uncertainty (=variance) in each process. This permits
to associate a precision with each point in the latent space,
where the precision is defined as the inverse of the (shared)
variance of the D posterior Gaussian distributions resulting
from the projections of the latent point in the D-dimensional
data space. A small precision corresponds to a large variance
and thus to an ambiguous mapping. By contruction of the
latent space model, which aims at maximising the likelihood of
training data samples, high precision latent points correspond
to shapes that are well represented in the training set. In our
paper, we visualize the precision by varying the colour of the
latent space pixels. Warmer, e.g., red, (colder, e.g., blue) pixels
correspond to higher (smaller) precision and are more (less)
likely to generate a valid shape, i.e., a shape that is similar to
the training samples (see Figure 2).

In its native formulation, GPLVM ensures that points that
are close in the latent space remain close in the data space.
Equivalently, it keeps the points that are far apart in the data
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space apart in the latent space. However, it does not guarantee
that points that are close in the data space will also be close in
the latent space. To push GPLVM to preserve local distances,
we impose back-constraints in the computation of the latent
variables by forcing the form of the mapping from the data
space to the latent space [46]. As a result, the learnt latent
space becomes more adapted to our interpolation purpose,
since it guarantees that the transition between two close points
in the latent space maps to a smooth and topologically coherent
silhouette transition in the high-dimensional space.

As an example, in the left part of Figure 2, GPLVM has
learnt a 2-dimensional latent space from a set of M = 150
shapes of silhouettes captured on video sequence representing
hands’ gestures and described by thirty-five elliptic harmonics.
The colour map in Figure 2 represents the precision of this
learnt latent space, where the regions with the warmest colours
are more likely to represent the shape of a hand.

C. Interpolating intermediate silhouettes on the manifold

To derive a sequence of plausible 2D silhouettes between
the reference views, we first project the left and right reference
silhouettes on the latent space (points 1 and 6 in the left part of
Figure 2), based on the smooth mapping function introduced
to force the preservation of local distance from data to latent
space [46]. We then use a shortest path algorithm to interpolate
a plausible transition between these low-dimensional reference
silhouettes, and obtain the corresponding high-dimensional
silhouette prior by projecting some (uniformly sampled) points
of this path from the latent space to the image spaces. The
black silhouettes in the left part of Figure 2 illustrate the
silhouettes obtained by back-projection (from the latent space
to the shape space) of the points represented in white in the
latent space (learnt object manifold).

More precisely, the path connecting the two reference
silhouettes in the latent space is obtained by computing, in
a discretized latent space, the shortest geodesic path between
the two reference latent points (white path in Figure 2). This
path is computed using the Dijkstra’s algorithm [47]. Each
node in the graph corresponds to a point in the discretized
latent space, and edges connect neighbouring nodes only,
with the cost cij between two neighboyring nodes i and j
being defined to be inversely proportional to the precision of
node j (cij = − log(precisionj + ε), where ε avoids numerical
instabilities). By GPLVM construction, a short sequence of
high-precision neighbours in the latent space corresponds to
a sequence of silhouettes that is (i) highly likely, in the sense
that the silhouettes correspond to high precision latent points,
and (ii) topologically consistent, in the sense that consecutive
silhouettes differ from each other only slightly. In so doing, we
obtain a smooth sequence of silhouettes that likely corresponds
to the sequence observed when moving the viewpoint from
one reference view to the other (reconstruction scenario), or
when the 3D objet moves with respect to a single viewpoint
(learning scenario). In general, there is no strict guarantee
that the intermediate silhouettes derived from the latent space
correspond to the actual ones. In practice, however, the similar-
ities between the actual and GPLVM interpolated silhouettes
have been confirmed in all our experiments and are highly

likely in most realistic practical cases, where the silhouettes
observed from two distinct viewpoints are different3.

D. Registering the silhouette priors with the reference ones

The set of prior foreground silhouettes derived hereabove
represents a smooth and topologically consistent interpolation
between the projections of the two reference silhouettes on
the latent space. However, due to the translation and shape
invariance of the shape features (see Section IV.A), these priors
describe the 2D shapes of the silhouettes up to a scaling and
translation. To exploit them during the EPIV reconstruction,
we have thus to register them in the EPIV approximately. This
alignment is performed in three consecutive steps by:

1) Translating the oriented prior shapes in such a way that
their centres of mass coincide with the linear interpolation
of the centres of mass of the two reference silhouettes,

2) Scaling the translated and orientated prior shapes based
on the linear interpolation of the height of the object
between the two reference silhouettes.

Figure 1(b) and Figure 3(a) show examples of registered
prior shapes, sampled along the manifold shortest path in
proportion to their distance to the reference cameras. The next
section explains how to exploit this prior knowledge to match
the epipolar silhouette segments betwen the reference views.

V. TRANSFORMATIONS OF EPIPOLAR LINE SEGMENTS

This section explains how the sequence of 2D silhouette
priors help in estimating how the epipolar line silhouette seg-
ments evolve between the reference views, thereby supporting
EPI reconstruction, as illustrated in the right side of Figure 2.

Due to the epipolar rectification of the reference images,
the set of possible geometric transformations of an epipolar
line silhouette segment is restricted to the combination of
an horizontal translation, a 1D scaling, and a potential split-
up or merge with other epipolar line silhouette segments. In
the following text, without loss of generality, we represent
those combined transformations based on the displacement and
potential fusion of the segments’ borders.

We first introduce some notations.
Let S = [s1, s2, · · · , sS ] denote a sequence of consecutive

foreground and background epipolar line segments defined
along a rectified epipolar line as illustrated on one of the blue
or red lines of Figure 3(a). For more clarity, in the figures
these reference (blue) and prior (red) epipolar line segments
will be represented as a front view, as shown in Figure 3(b).
The number of segments constituting the rectified epipolar
line is denoted by S = |S|. Each segment sk ∈ S (with
k ∈ {1, 2, · · · ,S}) is characterized by a binary value, denoted
v(sk), depending on whether it corresponds to foreground (1)
or background (0) information, and by its normalized length
l(sk) relative to the length of the entire sequence S.

We associate a sequence of epipolar borders B =
[b0,b1, · · · ,bS ] with each sequence S, where bk−1 and

3When the same silhouette is observed in distinct camera viewpoints,
multiple sequences of intermediate silhouettes may connect two identical
pairs of reference silhouettes, because these identical pairs are observed from
distinct viewpoints. In those cases, the GPLVM shortest path captures the
shortest latent-space sequence only, and fails in capturing the others.
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Fig. 3: (a) Prior information about the plausible deformations of the object silhouette is used to determine the cost of matching
the left epipolar border b0

1 to the right epipolar border b1
1 (b). This cost is defined by minimising the sum of (c) the cost f

of moving from a reference border to a prior one and (d) the discrepancy g with the prior (see the text for details)).

bk represent the beginning and the end, respectively, of the
segment sk (∀k ∈ {1, · · · ,S}). The position of a border
is then defined as p(bk) =

∑k
x=0 δ(x > 0) · l(sx), with

k ∈ {0, 1, · · · ,S} and δ(.) being the Kronecker function. The
modality m(bk) of the border bk defines its type of transition
(foreground to background or background to foreground), i.e.,
m(bk) = v(sk) if k ∈ {1, 2, · · · ,S}, and m(b0) = 0.

To determine how the 2D object silhouette, which is repre-
sented in each EPI by a set of epipolar borders, evolves when
changing the viewpoint, we proceed in two steps:

1) We identify and match the reference epipolar borders
(blue borders in Figure 3(a)) that have a corresponding
border in the other reference view. This is done by intro-
ducing an original cost-function to drive the matching
process in a way that is consistent with the available
silhouette priors (see Section V-A).

2) We then approximate the vanishing trajectories of all the
unmatched borders in a way that is consistent with the
prior information (see Section V-B).

These two steps are described in detail below.

A. Matching epipolar borders

For a given EPI, let B0 and B1 denote the two sequences of
reference epipolar borders that delimit the epipolar segments
of the left and right reference silhouettes, respectively. Thus, as
illustrated on Figure 3(b), b0

i refers to the ith epipolar border
in the first reference view (starting at index 0). Similarly, b1

j

is the jth epipolar border in the second reference view.
We match pairs of borders with the standard algorithm of

Needleman and Wunsch [48], but have to adapt its underlying
cost functions to account for our problem specificities.

The Needleman and Wunsch (NW) algorithm, which was
initially introduced by Levenstein[49] to measure the minimal
number of edits (i.e., insertions, deletions or substitutions)
between two strings, has been used extensively to compare
sequences of characters [48]. Given an alphabet of characters
C and a measure of dissimilarity d(., .) between any pair
of characters in C, the NW algorithm aligns two sequences
of characters in a way that (1) preserves the order of the
characters within each sequence [50], (2) matches the most
similar characters together by minimising the sum of dissimi-
larities between them, and (3) tolerates unmatched characters

at the cost of some skipping penalty u(.). Its optimisation
scheme, which determines the associations and unmatched
characters based on the matching cost d(., .) and skipping
cost u(.), is described in the supplementary material (http:
//infoscience.epfl.ch/record/200492).
We now define the borders’ matching and skipping costs
(d(., .) and u(.), respectively), so as to take advantage of the
available intermediate prior silhouettes. In particular, we want
to ensure that:
• long segments are less likely to vanish than shorter

ones. In other words, borders that delimit long reference
epipolar segments have less chance of being unmatched.
Therefore, the skipping cost u(bk) of the reference border
bk is defined to be equal to max (l(sk), l(sk+1));

• reference borders are unmatched by pairs of consecutive
borders, so that their skipping can be interpreted as
a vanishing/appearing segment. Since, by definition, a
border separates two segments having different fore-
ground/background values, the modes of consecutive
borders are different. Skipping borders by pairs is thus
equivalent to constraining each border to match borders
having the same modality only. Hence, the distance
between two borders with different modalities in two
camera views should be set to ∞.

• the matching of reference borders between the two ref-
erence views shall be consistent with the prior that is
available about the plausible deformation of the silhouette
between the two views. The rest of this section explains
how this is achieved through proper definition of the dis-
tance metric d(., .) between borders of the same modality.

Let us recall that the silhouette priors are represented by
a sequence of P + 1 foreground images, in which the pth

image, with p ∈ [0;P ], describes a priori the silhouette
of the object as observed at a relative intermediate position
αp = p

P between the left and the right reference views.
Those P + 1 silhouette priors thus represent a priori a
linear sampling of the continuous smooth transformation of
the silhouette from the left to the right reference views. As
illustrated in Figure 3(a) and (b), they provide, for a given
epipolar line, a set of intermediate sequences of segments
{Sα0 , · · · ,Sαp , · · · ,SαP } and their associated sequences of
borders {Bα0 , · · · ,Bαp , · · · ,BαP }. We define the cost of
matching a border in B0 with a border in B1 by measuring

http://infoscience.epfl.ch/record/200492
http://infoscience.epfl.ch/record/200492


7

how this matching is in line with the prior sequences Bαp

(with p ∈ [0;P ]).
To account for the fact that the alignment of the prior silhou-

ettes in the EPIV is prone to a translation error (as discussed
in Section IV-D), we decompose the cost of matching the ith

border of B0 with the jth border of B1, i.e., d(b0
i ,b

1
j ) into two

metrics. The first metric measures the quality of the alignment,
in each reference view, between the prior and the reference
borders. It is defined to be independent of a global and rigid
translation of the prior. The second metric estimates how well
the association of two prior borders that are extracted from
the left and right viewpoints (corresponding to α0 and αP ,
respectively), is supported by the intermediate prior borders
(0 < αp < 1).

Specifically, the first metric, illustrated in Figure 3(c),
quantifies the likelihood of matching each reference epipolar
border of B0 (respectively B1) with each of the prior bor-
ders of Bα0 (respectively BαP ) observed from a reference
viewpoint. To define the associativeness f(b0

i ,b
α0

k ) between
the ith reference border of B0, i.e., b0

i , and the kth border
of Bα0 , i.e., bα0

k , we rely on the fact that two borders
are likely to be in correspondence when they have similar
neighbourhoods. Because Sα0 and S0 are seen from the same
camera viewpoint, the foreshortening effect does not influence
the lengths of their epipolar segments. This cost can be
measured by the complementary of the normalised Hamming
correlation (detailed in the supplementary material), i.e., the
number of positions at which the reference and prior sequences
have identical values when they are aligned on the borders of
interest. We highlight the fact that this metric is invariant to a
rigid translation and is thus adapted to consider the translation
error-prone prior. The metric f(bαP

l ,b1
j ) to match the lth prior

border in BαP with the jth reference border in B1, observed
in the other reference view, is defined analogously.

The second metric evaluates the cost of associating a border
of the first prior Bα0 with a border of the last prior BαP ,
as illustrated in Figure 3(d). We assume a linear displace-
ment between two corresponding borders, meaning that the
displacement is proportional to α. With rectified cameras,
the linearity is strictly verified when the silhouette borders
correspond to the same physical 3D point [39], independently
of the viewpoint. In other cases, since the actual 3D point
supporting the silhouette border generally does not move a lot
when the viewpoint changes, the linearity assumption is also
reasonably valid. Hence, we evaluate the discrepancy between
a linear displacement and the actual transformations given by
the priors Bαp (with p ∈ {1, · · · , P−1}). Formally, we define
the prior deformation cost g(bα0

k ,bαP

l ) of matching the kth

border of Bα0 with the lth border of BαP to be the sum of
the L1 interpolation residues, i.e., the distance between the
linear interpolation of bα0

k and bαP

l in the intermediate views
αp and the closest prior borders having the same modality
in Bαp (with p ∈ {1, · · · , P − 1}. This is illustrated with
green colour codes in Figure 3(d). The formal derivation of the
prior deformation cost g(bα0

k ,bαP

l ) is given in supplementary
material.

Finally, the cost d(b0
i ,b

1
j ) of matching the ith border of B0

with the jth border of B1 is defined as:

d(b0
i ,b

1
j ) = min

k,l

(
f(b0

i ,b
α0

k ) + g(bα0

k ,bαP

l ) + f(bαP

l ,b1
j )
)

(1)
where the minimum is determined by the Dijkstra’s algorithm
[47]. By definition, a small d(b0

i ,b
1
j ) reflects the existence

of a prior border that moves smoothly while going from one
extreme prior view to the other (i.e., small g(bα0

k ,bαP

l )), and
good coherence between the prior and the actual reference
borders in each reference view (i.e., small f(b0

i ,b
α0

k ) and
f(bαP

l ,b1
j ) values). Thereby, a small d(b0

i ,b
1
j ) promotes the

matching of the borders b0
i and b1

j .
Using d(b0

i ,b
1
j ) and u(b0

i ), the NW algorithm determines
the optimal border associations and identifies (pairs of) un-
matched borders.

B. Appearing/vanishing trajectories

We now present an original method to handle vanishing tra-
jectories of unmatched borders. This is equivalent to analysing
how occluded parts vanish or appear when changing the
viewpoint, which is rather unique in the related literature.
An occluded epipolar segment is defined by two consecutive
occluded epipolar borders, and we know from border matching
in which reference view the occluded epipolar segment is
visible. In the following description, we consider the vanishing
when moving from this view to the other and assume that
the learnt latent space embeds an instance of vanishment of
this occluded part. As illustrated in Figure 4, our method
estimates from the prior the speed at which each occluded
segment shrinks (vanishes) when changing the viewpoint.
Since the borders’ displacements along the EPI are assumed
to be proportional to α [39], we have only to evaluate the two
constant border displacement speeds and propagate this prior
information to the occluded reference segments. This is done
as follows:

1) identifying the prior borders that correspond to a segment
that is subject to occlusion. We name them occluded prior
borders (dark red borders in Figure 4(a)).

2) fitting linear trajectories to these prior borders (Fig-
ure 4(b)).

3) assigning the slopes (vanishing speeds) of those linear
trajectories to the corresponding occluded reference bor-
ders (Figure 4(c)).

We present each of these steps in detail in the following
paragraphs.

1) Identification of prior borders defining the occluded
prior segments: Obviously, only the prior borders that do not
support one of the associations/matchings of reference borders
computed by the algorithm presented in Section V-A should
be considered to explain the vanishing of occluded segments.
Hence, we first select as occluded prior borders the prior
borders that are sufficiently far from the linear trajectories
followed between the pairs of associated reference borders or,
more specifically, between their corresponding priors Bα0 and
BαP at the reference viewpoints. In our experiments, we used
a simple heuristic threshold, set to 5% of the image width,
to decide whether a prior border was sufficiently far from the
linearly interpolated trajectories. This may, however, lead to
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Fig. 4: The vanishing trajectories are estimated by (a) identifying the occluded prior borders (in dark red), (b) fitting linear
trajectories to these prior borders, and (c) associating the slopes of these trajectories (dotted lines) with the occluded reference
borders (solid lines). Finally, the EPI of the object silhouette is reconstructed by (d) adding the vanishing trajectories to the
set of trajectories describing the transitions between the associated reference borders.

many false positives. Hence, the following section proposes
a robust way to estimate the vanishing/appearing paths from
this initial set of occluded prior borders.

2) Robust fitting of linear trajectories: This section shows
how to determine the linear trajectories of the l occluded
reference borders from an imperfect set of prior occluded
borders. Specifically, the set of l occluded reference borders
can be divided into l0 occluded reference borders representing
a transition from foreground to background (i.e., having a
mode value of 0) and l1 borders representing a transition
from background to foreground, such that l0 + l1 = l. Hence,
we propose to divide the set of prior occluded borders into
two sets, based on their modes. Then, l0 linear trajectories
(respectively l1 linear trajectories) are estimated on the subset
of occluded prior borders having a mode of 0 (respectively 1).
This is done by applying the RANSAC algorithm [51] l0 times
(respectively l1 times) sequentially, i.e., by estimating a linear
trajectory on the subset of occluded prior borders of mode 0
(respectively 1), removing the prior borders that are inlier to
this estimated model, estimating a new linear trajectory on this
new subset, and so on.

At each RANSAC iteration, two borders are randomly
selected from the set of occluded prior borders and the linear
trajectory passing through these borders is estimated. All the
prior borders located in a small and conservative L1 distance
(e.g., 5% of the width of the image) are considered inliers to
the trajectory model. This simple greedy algorithm works well
in practice, due to the relatively small number of outliers in the
set of occluded prior borders. The linear model that maximises
the amount of inliers is considered to be the optimal model of
the lthi sequential application of RANSAC.

3) Assignment of linear trajectories to the reference oc-
cluded borders: We want to assign the trajectories computed
from the prior occluded borders to the unmatched borders in
the reference views so as to transfer their slopes, i.e., the
constant speeds at which the borders move along the EPI
when the viewpoint index α changes. The process is illustrated
in Figure 4(c). The cost of assigning a prior trajectory to
a reference border is simply defined to be the L1 distance
between the border and the position defined by the trajectory
prior in the reference view (compensated by a linear interpo-
lation of the translation error indicated by the matches of the

NW algorithm). The assignment problem is then solved using
the Hungarian algorithm [52], so as to assign one and only
one trajectory to each unmatched border while minimising the
sum of assignment costs. Finally, as illustrated in Figure 4(d),
these vanishing trajectories are added to the set of trajectories
describing the transitions between the associated reference
borders to form the EPI of the object silhouette.

VI. VIEW SYNTHESIS

This section describes how the intermediate view epipolar
lines are synthesised based on the matching of reference
silhouette epipolar borders.

For occluded epipolar segments, we simply propose to
propagate the texture from the reference view, in which the
segment is visible, to the vanishing point, using a linear
morphing strategy, as described in Section VI-A.

For pairs of matched silhouette segments, we synthesise the
intermediate segment by combining the textures of matched
epipolar segments. Texturing an intermediate view by com-
bining the textures of its corresponding elements in reference
views has been thoroughly investigated [28] [53]. By favouring
the piecewise smoothness of the intermediate texture, most of
these previous methods make it possible to generate pleasant
intermediate views despite corrupted matches. In our case, to
validate our contribution, i.e., the estimation of the geomet-
ric transformations of the epipolar line segments, fairly, we
primarily rely on simple linear view morphing [28], so that
any wrong association results in highly noticeable discon-
tinuities in reconstructed images. This method is described
in Section VI-B. To complete our validation and to show
that our method can benefit from more accurate solutions to
combine the textures of matched segments, Section VII also
presents the result obtained based on a non-linear pixel-wise
association betwen the matched segments when assuming the
strict preservation of the order of pixels associated between
the pairs of matched epipolar segments. This effective way of
combining the textures is presented in Section VI-C.

A. Texture occlusion

The texture of an occluded segment is propagated to in-
termediate views based on the linear interpolation of pixels’
positions between the reference view (where the occluded
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segment is visible) and the segment’s vanishing point, as deter-
mined by the intersection (xv, αv) of the vanishing trajectories
surrounding this occluded segment. Formally, this synthesis is
thus defined as follows:

Iα(
α

αv
· (xv − x1) + x0, y) = I0(x0, y)

if the vanishing epipolar line segment belongs to the left
reference image (occlusion), or

Iα(
(α− 1) · (xv − x1)

αv − 1
+ x1, y) = I1(x1, y)

if the vanishing segment belong to the right reference image
(disocclusion).

B. View morphing

The morphing-based combination of textures relies on
epipolar rectification to synthesise the intermediate textures
by linear interpolation of the reference textures. Between two
matched segments, the texture is defined as:

Iα(xα, y) = (1− α) · I0(x0, y) + α · I1(x1, y)

with I0 and I1 the rectified reference images, Iα the recon-
structed intermediate image, x0 the x coordinate of a pixel
of I0, and y its fixed ordinate (studied scanline). The pixel
abscissa values xα and x1 are computed as follow:

xα = (1− α) · x0 + α · x1

x1 =
l(s1j )

l(s0i )
·
(
x0 − p(b0

i )
)

+ p(b1
j ) (2)

with s0i denoting the epipolar line segment including x0 and
s1j denoting the epipolar line segment matched to s0i . Then
p(b0

i ) is the position of the left border of the epipolar line
segment including x0 and p(b1

j ) defines the position of the
corresponding matched border.

C. Ordering preservation

The ordering constraint assumes that the left-right relation
between the projection of 3D points belonging to the same
epipolar plane is preserved when changing the observers point
of view. It is not strictly valid, especially in a wide baseline
stereo setup, but it is usually valid within pairs of matched
segments. Under this assumption, the problem of associating
the pixels of a pair of matched epipolar segments can be
formulated based on the Needleman-Wunsch algorithm and
solved using a dynamic programming approach, as detailed in
[33]. Once the pixels have been associated, the interpolation
of an intermediate segment is straightforward, and reads:

Iα(xα, y) = (1− α) · I0(x0, y) + α · I1(x1, y)

with I0 and I1 the rectified reference images, Iα the recon-
structed intermediate image, x0 and x1 the x coordinates of
a pair of associated pixels between two matched epipolar
segments, and y its fixed ordinate (studied scanline). The
reconstructed pixel abscissa xα is xα = (1− α) · x0 + α · x1.

VII. RESULTS

In this section, we demonstrate the performance of our
approach on well-known datasets, namely the synthetic Kung-
Fu Girl sequence [54] and the real Ballet sequence [36].

Due to this article’s page limit, other validations on the
multi-view Dino dataset [55] are given in the supplementary
material. Although these multi-view datasets contain numerous
images acquired by multiple (small-baseline) cameras, we
consider only a pair of widely separated cameras from these
sets to learn our shape priors model and to reconstruct the
intermediate views. In particular, as explained in Section IV,
the silhouettes used for training are captured by one of the
reference cameras before the time at which the intermediate
views are generated. In practice, only a small number of
training samples (typically forty to sixty) is required. They
all correspond to previous observations of the object moving
in front of a single reference view.

To evaluate our method, for each dataset, we present five
intermediate views sampled uniformly in-between the left and
right reference views. The videos showing the continuous tran-
sition from the left to the right cameras, as well as the source
code of our implementation, are provided in the supplementary
material (http://infoscience.epfl.ch/record/200492).

To show the advantage of using epipolar line segments
as basis matching elements, we provide reconstructed views
when pixels are chosen as basis matching elements. To demon-
strate the benefit of the silhouette priors, we also provide the
views that have been reconstructed without silhouette priors
to disambiguate the epipolar segments’ matching. We also
compare the reconstructed intermediate views resulting from
our method with the ones obtained by three other conventional
and state-of-the-art methods.

A. The Kung-Fu Girl dataset

For the Kung-Fu Girl dataset, we have selected two wide-
baseline cameras separated by an angular difference of 45◦.
The view captured by the left (or right) camera) is shown on
the left (respectively right) of the first row in Figure 5. The
image shown in-between corresponds to the ground-truth one
captured by a camera situated approximatively at the middle
(α ' 0.5) in-between these two reference views.
The second row in Figure 5 represents the intermediate views
generated by a conventional visual-hull reconstruction [18] in
which the two foreground silhouettes are projected back in
the 3D world, forming two cones whose intersection defines
the 3D boundary of the object. The intermediate views are
obtained by projecting and texturing this 3D model onto an
arbitrary viewpoint [27]. The reconstructed intermediate views
show perfectly the limitations of model-based approaches in
our wide-baseline stereo, namely the requirement of observing
the object with a large number of reference cameras to avoid an
imprecise 3D model, leading to corrupted intermediate views.
The third row in Figure 5 represents the intermediate views
generated when morphing [28] a dense (pixel) correspondence
obtained by dynamic programming [33] [50] on corresponding
epipolar lines. The matching cost is simply defined as the l2-
norm of the pixels’ colours and the skipping penalty u(.) is
arbitrarily set to 0.5. Two kinds of artefact can be observed in

http://infoscience.epfl.ch/record/200492
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Fig. 5: Instead of projecting an estimated 3D model [18] (second row) or determining a dense (pixel) match (third row), epipolar
line segments are used as basic matching elements (fourth row). In the last row, our method regularizes the epipolar segments’
matching so that the shapes of the intermediate silhouettes are topologically consistent with the plausible deformations of the
object silhouette, as learnt and described by a low-dimensional latent space (fifth row).
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these reconstructed views. First, they are topologically inco-
herent. This can be observed between the legs of the Kung Fu
girl, near her neck, and on her left hand, where some members
separate from her body. This is due to the ill-posedness of
the wide-baseline matching problem, leading to wrong pixel
correspondences. Second, because the resulting matching is
not smooth, holes appear in the reconstructed intermediate
views. This artefact, caused by the foreshortening effect, is
generally avoided by imposing a smooth disparity/depth-map
[25], although this slows the matching process.
To impose smoothness along the epipolar lines explicitly,
as shown in the 4th row of Figure 5, we use epipolar line
segments as matching elements. The method extends that of
[33] by considering epipolar line segments (and not pixels)
to be basic image elements. It corresponds to the approach
we introduced in Section V-A, but without prior silhouettes
knowledge. Hence, each epipolar border is matched by NW
[50], only considering the f(., .) terms in the definition of
d(b0

i ,b
1
j ) (see Equation 1). We observe in Figure 5 that the

reconstructed intermediate views are smoother but still exhibit
some topologically incoherent transitions (see head and legs).
To regularize the reconstruction of the EPIs in such a way
that they provide topologically coherent intermediate views, a
latent space representing plausible silhouettes of the Kung-Fu
girl has been learnt on a total of sixty silhouettes captured by
the two wide-baseline cameras, and observed uniformly in a
time-window starting from the first frame of the sequence to
twenty frames before the required transition. These silhouettes
have been described using seventy elliptic harmonics. The fifth
row in Figure 5 illustrates this latent space.
The advantage of considering these priors is illustrated in the
last row in Figure 5, where intermediate views have been
generated by the method proposed in this paper, using linear
view morphing for texture synthesis (Section VI-B). Only five
intermediate priors have been used to reconstruct the EPIs.
We observe that the intermediate views reconstructed by our
method show a topogically coherent transition of the Kung-Fu
girl from the left to the right reference view.

B. The Ballet sequence

The second sequence, called Ballet [36], has been captured
using eight cameras placed along a 1D arc spanning about
30◦ end-to-end. While two neighbouring cameras in this
array constitute a small-baseline stereo pair, the outer cameras
represent a wide-baseline configuration. Indeed, because of the
small depth of the foreground dancer, strong self-occlusions
and foreshortening effects can be observed between these
two external viewpoints (especially on the dancer’s arms). In
Figure 6, we compare the images reconstructed at intermediate
viewpoints by five methods, using only the two wide-baseline
reference views (in contrast to the use of the small-baseline
multi-views pairs, as done in [36]). In the first row, the
intermediate views are generated by view morphing, based on
multiple depth maps as proposed in [36]4. Since the depth map
estimated from the extreme wide-baseline views is very poor,

4The pixel correspondences are obtained by projection of the pixels of one
reference view at the depth indicated by the depth map, and back-projection
of these 3D points in the other reference view.

we provide the images reconstructed from the textures in the
two extreme views, based on the depth maps computed with
neighbouring cameras (small-baseline configuration). Even
with this additional information, the small depth inaccuracies
(equivalently weak pixel correspondences) lead to merging of
non-corresponding textures, i.e., ghosting artefacts. The second
row in Figure 6 illustrates the intermediate views obtained by
a state-of-the-art stereo method [56] top-ranked in February
2015 in the well-known Middlebury Stereo Evaluation [57]
[58] [50]. By combining a cost-filtering approach, especially
adapted to manage the occlusions, with a global (fully con-
nected Markov Random Field) optimisation, which imposes
the smoothness of the disparity map, their method achieves
impressive results on small-baseline stereo setups. However,
as expected, the strong geometrical and photometric changes,
as well as the foreshortening effects affecting our wide-
baseline stereo setup make this algorithm pretty vulnerable,
especially due to the oversmoothing of the disparity map.
In the third row, we use only the external views and test
wide-baseline stereo matching by applying the Needleman-
Wunsch algorithm (dynamic programming [50]) to pixels, as
done in [33]. We observe that the strong foreshortening effect
produces holes in the reconstructed intermediate views. By
applying dynamic programming to the segment representation,
we find dense correspondences, but topological inconsistencies
subsist (see fourth row on Figure 6). The last row in Figure 6
illustrates the result obtained by our complete method using
silhouette priors and morphing-based texture interpolation (as
described in Section VI-B). The latent space has been learnt
on forty silhouettes observed by the two outermost cameras in
a time-window twenty frames away from the transition time.
These silhouettes have been described with fifty harmonics of
Elliptic Fourier Descriptors, and six intermediate priors are
used to drive the epipolar segment matching.

C. Discussion

Our method appears to generate topologically coherent
intermediate views, thanks to the additional silhouette prior
obtained from the latent space. It also deals efficiently with the
foreshortening effect, as can for example be seen in Figure 6
on the front part of the chest of the dancer, which is slanted
in the left view but almost fronto-planar in the right one.
Finally, to the best of the authors’ knowledge, this paper
is the first one to interpolate occluded parts in intermediate
views explicitly, as shown by the Kung-Fu girl’s left shoulder
(Figure 5) and the space between the dancer’s legs (Figure 6).
Next to these very encouraging results, two limitations of our
approach, however, deserve to be mentioned. The first one can
be observed on the reconstructed fingers of the dancer’s right
hand in Figure 6. Indeed, when the viewpoint changes from
the left to the right reference view, her fingers separate from
her right hand, showing a topologically incoherent transition.
This is due to the limited accuracy of the priors, determined
from a low-dimensional space representing the approximations
of training shapes as a set of N smooth harmonics (ellipses).
When high frequency details, such as the dancer’s fingers,
are not represented by the priors, their matching can not be
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Fig. 6: Comparison between the interpolated intermediate views generated based on matching of layered representation [36]
(first row), which exploits intermediate depth maps in addition to external views; a state-of-the-art method [56] that is top-ranked
in the Middlebury Stereo Evaluation [57] (second row); dynamic programming on pixels [33] (3rd row); dynamic programming
on our proposed epipolar line segment representation (4th row); and our method (5th row).
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regularized, and their transition may become topologically
incoherent.

The second weakness of our method comes from the choice
of a morphing-based inner texture combination method. Deriv-
ing the correspondences between inner pixels directly from the
knowledge of the matches of the epipolar segments’ borders,
as defined by Equation (2), might result in wrong matches
of the inner pixels if the surface described by this epipolar
line segment is not planar. This limitation can be observed
on the pixels representing the face of the dancer. Their wrong
association results in a blurry ghosting artefact. To convince
the reader that a more accurate inner texture interpolation
would mitigate this issue, Figure 7 compares the images
reconstructed using the morphing-based combination of inner
texture with the ones obtained by the approach presented in
Section VI-C, which strictly forces ordering preservation while
associating the inner pixels of two matched epipolar segments,
using the dynamic programming approach initially described
for whole epipolar lines in [33]. We observe that, indeed, finer
association of inner pixels significantly improves the sharpness
of edges in the reconstructed image. Moreover, when consid-
ering the artefacts appearing in the third row of Figure 6, we
conclude that our proposed matching of silhouette epipolar
segments provides a worthwhile step, preventing the failure
of conventional pixel-based matching techniques. Alternative
inner texture interpolation could obviously be envisioned, e.g.,
based on the floating textures concept [53].

Finally, we note that the processing time of our algo-
rithm (Matlab implementation, code available on line at http:
//infoscience.epfl.ch/record/200492, Intel I5 CPU 2.4GHz and
8Gb of RAM) shows encouraging performances: on average
4.2s to describe a 768×1024 image in epipolar line segments,
0.06s to match all the epipolar lines independently, and 0.16s
to render an intermediate view. Moreover, because the epipolar
lines are processed independently, real-time implementation is
within reach, e.g., based on GPU parallelisation.

VIII. CONCLUSIONS

This paper has proposed a novel interpolation technique
for intermediate view synthesis between cameras in wide-
baseline configurations. Our method relies on prior informa-
tion about the silhouettes of objects in the intermediate views
to guarantee consistency between the synthesised silhouettes
and the ones present in the two reference viewpoints. As a
first contribution, we propose to learn this prior from earlier
observations of the object moving in front of one of the
cameras in the reference stereo pair. This is done by reducing
the dimensionality of Elliptic Fourier Shape Descriptors. The
learnt prior is then exploited to determine the 1D transforma-
tion of epipolar line segments when moving from one view to
the other. Although the coherence is imposed independently
on each epipolar line, the fact that the 1D constraints are
derived from 2D priors promotes consistency across epipolar
lines. As a second contribution, we demonstrate that this new
framework not only has the advantage of generating consistent
and smooth virtual transitions between the viewpoints where
correspondences can be found in the two basis images, but can
also handle the vanishing of occluded informations. Finally, we

have shown that our method outperforms state-of-the-art view
interpolation methods by generating topologically coherent
intermediate views of an object, despite the occlusions and
severe foreshortening effect that are inherent to wide baselines.
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