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Wide-baseline object interpolation using shape prior
regularization of epipolar plane images
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Fig. 1: Two reference views (a) are available to generate intermediate views (b). For that purpose, our method estimates the
Epipolar Plane Image Volume (c) made of the set of Epipolar Plane Images (d).

Abstract—This paper considers the synthesis of intermediate
views of an object captured by two calibrated and widely spaced
cameras. Based only on those two very different views, our
paper proposes to reconstruct the object Epipolar Plane Image
Volume [1] (EPIV), which describes the object transformation
when continuously moving the viewpoint of the synthetic view
in-between the two reference cameras. This problem is clearly
ill-posed since the occlusions and the foreshortening effect make
the reference views significantly different when the cameras are
far apart. Our main contribution consists in disambiguating this
ill-posed problem by constraining the interpolated views to be
consistent with an object shape prior. This prior is learnt based
on images captured by the two reference views, and consists in a
nonlinear shape manifold representing the plausible silhouettes of
the object described by Elliptic Fourier Descriptors. Experiments
on both synthetic and natural images show that the proposed
method preserves the topological structure of objects during the
intermediate view synthesis, while dealing effectively with the
self-occluded regions and with the severe foreshortening effect
associated to wide-baseline camera configurations.

Index Terms—Wide-baseline matching, image-based render-
ing, epipolar plane image, light-field, view interpolation, free-
viewpoint, shape priors.

I. INTRODUCTION

Virtual view synthesis aims at rendering images of a real
scene from different viewpoints than the ones acquired by
the cameras. Our paper restricts the general arbitrary view
synthesis problem to the interpolation of images observed
by a virtual camera located in an arbitrary position along
the baseline connecting two reference cameras. The graceful
transition between two reference viewpoints is a demanded
feature, especially in the field of video production [2]. For
example, in the rendering of cultural or sport events, con-
ventional acquisition systems switch abruptly between the
cameras, making the viewer uncomfortable. By generating
a graceful transition between the reference viewpoints, view
interpolation gives the ability to understand how the rendered
viewpoint changes, i.e., the feeling of being “inside the scene”.

To synthesize intermediate views in-between reference
cameras, state-of-the-art methods generally decompose the

scene into its background and its dynamic foreground objects,
and reconstruct them independently [3]. The interpolation
of dynamic foreground object, situated relatively close
to the pair of cameras, is the most complex question
among both [4] [5], because the background can be easilly
reconstructed through trivial projection of its 3D geometry
[6]. Typically, the background 3D geometry can reasonnably
be acquired, based on state-of-the-art active 3D acquisition
systems [7] [8] if it is still, or based on piecewise planar
3D geometry approximations [9] [6] [10] when it is far
from the cameras. The fundamental issues encountered to
reconstruct a foreground object lie in (1) the availability of
only two reference views, and (2) the object proximity to the
cameras, compared to the distance between those cameras.
The first factor prevents dense 3D estimation for the dynamic
object, while the second causes many projective discrepancies
between the two views (occlusions, foreshortening effects,
etc.), which hamper the computation of dense correspondences
and lead to holes in the interpolated views [5].

This paper focuses on the reconstruction of foreground
objects and assumes that the object silhouette can be extracted
from the reference views1, as generally assumed by state-of-
the-art foreground synthesis methods [12] [13] [6]. Based only
on two very different views captured by a pair of wide-baseline
cameras, such as the ones shown in Figure 1(a), our scheme
reconstructs intermediate views (see Figure 1(b)) along the
baseline by reconstructing the object’s Epipolar Plane Image
Volume [1] (see Figure 1(c)), composed on the set of Epipolar
Plane Images (see Figure 1(d)).
The specificities of the proposed method lies in the regular-
ization of the ill-posed reconstruction of the Epipolar Plane
Images (EPIs) based on a sequence of plausible intermediate
object silhouettes. As illustrated in Figure 4, this sequence
is derived from a low-dimensional manifold, learnt from the

1In this paper, the foreground is generally extracted based on a simple
thresholding of the L2 color distance with a gaussian mixture model of the
background [11].
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previous observations of the dynamic object by the wide-
baseline stereo pair. Interestingly, the priors are used not
only to disambiguate the matching, but also to determine
how occluded parts vanish/appear while moving from one
reference view to the other. To the best of our knowledge,
our paper is the first one to reconstruct topologically consistent
images from only two widely separated cameras, even for their
occluded parts, while dealing effectively with the self-occluded
regions and with the severe foreshortening effect associated to
wide-baseline camera configurations.

The rest of our paper is organized as follows. Section II
surveys the recent advances in virtual view reconstruction, and
identifies the limitations of earlier methods in our envisioned
wide-baseline stereo acquisition setup. Section III introduces
our proposed Epipolar Plane Images interpolation formalism.
Section IV explains how to capture and embed a prior about
the plausible silhouettes of the object in a low-dimensional
silhouette manifold, which can be exploited to constraint the
reconstruction of the EPIs between two reference images, as
detailed in Section V. The view synthesis process is described
in Section VI. Section VII then validates our framework by
generating topologically valid intermediate views on both real
and synthetic images, captured by two cameras with very
different viewpoints. The advantages induced by shape priors
are further demonstrated by comparing our method with a set
of conventional and state-of-the-art approaches.

II. RELATED WORK AND CHALLENGES

The view synthesis techniques are generally categorized into
two groups in the literature, namely model-based rendering
and image-based rendering.

In model-based rendering, a 3D shape model of the observed
scene is explicitly reconstructed from multi-view images. Ade-
quate texture is then mapped on the model, and projected onto
any arbitrary viewpoint. Methods such as projective grid space
[14] [15], visual-hull [16] [17] [18] [19], 3D model adjustment
[20], and shape from video [12] belong to this category. Those
methods have the advantage to synthesize intermediate views
representing the actual 3D scene. However, the quality of
the virtual view is highly dependent on the accuracy of the
estimated 3D model [21]. To obtain an accurate 3D model,
the model-based rendering methods therefore rely on a dense
coverage of the scene, which requires a large number of
precisely calibrated video cameras [22]. The trade-off between
the accuracy of the reconstruction and the amount of cameras
is often relaxed when the distance between the object and
the reference cameras is important compared to the baseline
distance separating these cameras [23]. In this particular case,
a simple (set of) planar model(s) (called billboards) permits to
generate realistic intermediate views of the object. However,
when the distance to the scene decreases, planar proxies
become insufficient to approximate the 3D of the object [6].
This makes model-based rendering inappropriate to render
close (dynamic) scenes between wide-baseline cameras.

In contrast, image-based rendering (IBR) methods [24] cre-
ate the virtual view directly in the image color space without
explicit reconstruction of a 3D piecewise smooth surface. Such
methods are further classified into arbitrary-view and baseline

interpolation approaches. On the one hand, arbitrary-view IBR
approaches determine the pixel color values of each virtual
view in a way that is geometrically and/or photometrically
consistent with N ≥ 2 reference views. These methods focus
on optimizing multiple depth maps (either the ones of the
virtual views [13], or the ones of the reference views [6])
and/or the virtual image’s color [25]. However, the dense
estimation of a depth map is only possible when all the 3D
points corresponding to a pixel in the reconstructed view are
observed with at least two reference views. This requires a
sufficiently dense coverage of the scene with many cameras.
On the other hand, baseline interpolation approaches determine
region correspondences or pixel correspondences (disparity)
between only two reference views and generate the interme-
diate views by interpolation [26] or morphing [27]. They are
restricted to the reconstruction of images on the baseline be-
tween a pair of reference cameras, generally for small-baseline
configurations, and rely on dense correspondence between the
views. This trend culminates with light-field reconstruction
approaches [1], which require tens or hundreds of narrow-
baseline2 cameras/lenses [28] to determine a continuous (sub-
pixel) correspondence between the reference views. So far,
image-based rendering techniques have thus been restricted to
dense acquisition setups, where many images of the same 3D
scene are captured by cameras that are close to each other,
compared to their distance to the 3D scene. To the best of
our knowledge, no image-based rendering method has been
able to provide effective synthesis with a wide-baseline setup
composed of only two reference cameras.

The main reason for the failure of rendering methods in
wide-baseline stereo setups is that the more different the
viewpoints, the more important the geometrical deformations
(including projective distortions and occlusions), and the more
difficult it is to find correspondences between images from
different cameras. More precisely, the three following issues
are specific to wide-baseline configurations:
• The foreshortening effect causes a distance or an object

to appear shorter/wider than it is because it is angled
toward the viewer (see Figure 2). Because the compaction
ratio depends on the viewpoints, a given 3D object will
be represented by a totally different number of pixels in
different views.

Fig. 2: Illustration of the foreshortening effect. The pro-
jection of the object S is more compact in O′ than in O.

This implies that finding correspondences with fixed-
template matching methods fails [29]. The same holds

2The reference views are separated from a few microns (microlens arrays)
to a few centimeters in narrow-baseline setups.
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when a pixel correspondence is optimized by graph-
cut [30], belief propagation [31], or dynamic program-
ming [32] approaches, which generally enforce the pixel
uniqueness constraint, i.e., a pixel in an image corre-
sponds to at most one pixel in another image.

• The self-occlusion effect occurs when a part of an object
hides another region of the same object. Parts of the
object can thus be observed in only one of the camera
views, so that no correspondence can be found with the
other reference views. This problem drastically limits
the correspondence-based interpolation methods [27] in
a wide-baseline configuration.

• The lack of sparse correspondences and non-ambiguous
correspondences induced by the large difference in view-
points results in sparse disparity/depth maps, leading
to large holes in the reconstructed intermediate view.
Multiple methods exist to fill in these holes [33] [34] [35],
but they are either based on globally non-valid hypothesis
(e.g., holes should contain patterns that are visible in the
non-occluded parts), or on computationally expensive
(post-)processing [36].

Our proposed method explicitly addresses those issues by
computing correspondences between a continuous set of image
segments (from which dense correspondences can be inferred,
e.g., through linear interpolation), and by constraining those
correspondences to be consistent with a plausible deforma-
tion of the projected object silhouette between the reference
views (guides the occlusion of segments, or their shrink-
age/elongation due to the foreshortening effect).

III. WIDE-BASELINE INTERPOLATION ALGORITHM

This paper adopts an EPI interpolation formalism to recon-
struct the image of a foreground object between two widely
spaced cameras. As depicted in Figure 1, the transformations
of images between different viewpoints can be described by
the object Epipolar Plane Image Volume [37] [38] (EPIV)
(see Figure 1(c)). By definition, an EPIV is obtained by
arranging in a 3D stack the images captured by a dense
array of cameras that are uniformly distributed along a line
with their image plane coplanar and vertically aligned. This is
performed through epipolar rectification [39] of the reference
images, which associates each horizontal line in one image
to a row with the same ordinate in the other image, as
illustrated in Figure 3. Roughly speaking, it implies that two
corresponding pixels must belong to the same horizontal plane
in the EPIV, and that any transverse cross-section of this
3D cube, i.e., an Epipolar Plane Image (EPI) (see Figure
1(d)), describe how the pixels of one epipolar line in a view
move to the other view. The light field theory [1] states that
these transitions are always linear and that their slopes are
inversionally proportional to the scene’s depth. The EPIV is
much richer than the depth information generally estimated
by state-of-the-art wide-baseline stereo methods. Indeed, the
EPIV additionally englobes the appearing/vanishment of oc-
cluded parts. However, its estimation has been limited so far
to very narrow-baseline setups, which only permits to generate
intermediate views in a very narrow range.

0 101 00 1 0

Synthesized view

0 101 0

Silhouette

priors

Epipolary rectified reference views

Description as epipolar line segments

Estimation of the epipolar segments 1D transformations

Reconstruction of the intermediate silhouette segments

and texture mapping

Fig. 3: Our view interpolation method overview: foreground
object silhouette segments are matched between the epipolar
lines of two reference views, based on the prior about plausible
silhouettes in intermediate views.

We adopt a new object-based approach to reconstruct the
EPIV. After epipolar rectification of the reference views, we:

1) Learn a low-dimensional silhouette manifold. It describes
prior plausible transformations of the object silhouette
when changing the viewpoint along the baseline (see
Figure 4, left side).

2) Use a sequence of plausible silhouettes to define how the
object silhouette epipolar line segments are transformed
(i.e., through scaling/translation/vanishing) between the
two reference views (Figure 4, right side).

3) Interpolate object textures based on the transformations,
vanishments or appearance of the silhouette epipolar line
segments.

The different blocks of our novel view interpolation algorithm
are despicted in Figure 3 and described in details in the next
sections.

IV. OBJECT SILHOUETTE PRIORS

This section describes the construction of priors on the plau-
sible deformations undergone by an object silhouette during
a viewpoint change. It aims at providing a sequence of ap-
proximated object silhouettes that defines a priori a plausible
transition from the left reference silhouette to the right one.
This sequence is then used to regularize the reconstruction of
the set of EPIs.
We propose to generate these silhouette priors in four steps:

1) Learning a low-dimensional space representing the plau-
sible silhouettes of the object.

2) Locating, in this low-dimensional space, the silhouettes
observed in the reference views.

3) Interpolating, in this low-dimensional space, a sequence
of low-dimensional silhouettes that likely represent the
deformation of the object silhouette in-between the ref-
erence views.

4) Converting these low-dimensional intermediate silhouette
representations into high-dimensional images for view
synthesis.
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Fig. 4: We propose to regularize the ill-posed problem of reconstructing the set of EPIs by incorporating prior knowledge
about the plausible deformations of the object silhouette. This prior knowledge is learnt beforehand and is described by a
low-dimensional space, from which intermediate 2D prior silhouettes can be extracted in-between the projected reference ones
(left part on the figure, each point of this manifold represents a silhouette, while the color scale refers to the confidence about
its plausibility). These intermediate 2D priors are then adequately placed in the EPIV (middle part of the figure) and are
converted into a set of 1D priors to disambiguate the reconstruction of the set of EPIs (right part).

The main challenge of our approach lies in the definition
of a low-dimensional space that ensures that the interpolation
step results in a smooth and topologically coherent sequence of
silhouette priors. We propose to follow the approach of [40],
by splitting the low-dimensional manifold construction into
two parts: the first part describes the shape of a silhouette as a
set of high-dimensional features, and the second part maps
those high-dimensional descriptors to a lower dimensional
latent space. The different steps of the construction of the prior
silhouettes are described in detail in the rest of this Section.

A. High-dimensional silhouette description

We first propose to use Elliptic Fourier Descriptors (EFD)
[41] as high-dimensional features for object silhouettes. El-
liptic Fourier Descriptors represent the shape of a silhouette,
given as a set of 2D coordinates (x(t), y(t)), as a sum of N
elliptic harmonics, based on:

x(t) = a0 +

N∑
n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
where T is the perimeter of the contour and:

a0 =
1

T

K∑
p=1

( ∆xp
2∆tp

(t2p − t2p−1) + ξp (tp − tp−1)
)

an =
T

2n2π2

K∑
p=1

(∆xp
∆tp

(
cos

2πntp
T
− cos

2πntp−1
T

))
bn =

T

2n2π2

K∑
p=1

(∆xp
∆tp

(
sin

2πntp
T
− sin

2πntp−1
T

))
where

ξp =

p−1∑
j=1

∆xj −
∆xp
∆tp

p−1∑
j=1

∆tj

with K being the number of sampling points in the con-
tour, tp the curvilinear coordinates on the shape, xp the
abscissa projection of tp, ∆xp = xp − xp−1 and ∆tp =√

(∆xp)2 + (∆yp)2. The second coordinate of the shape
contour, y(t), is defined completely analogously in terms of

coefficients c0, cn and dn, by exchanging ∆xp by ∆yp. Each
harmonic is thus described by four coefficients, which have
an intuitive geometrical interpretation: an (bn) corresponds to
the projection on the X axis of the semi-major (minor) axis
of the nth elliptic harmonic and cn (dn) to their projections on
the Y axis. We thus propose to describe the shape of an object
silhouette as a high dimensional feature vector, composed of
N sets of harmonic coefficients (an, bn, cn, dn).

B. Learning a silhouette manifold using GPLVM

We then map M instances of high-dimensional EFD feature
vectors to a low-dimensional latent space that represents the
different plausible silhouettes. We use a nonlinear dimen-
sionality reduction technique called Gaussian Process Latent
Variable model (GPLVM) [42]. This technique is used because
the shape spaces are often nonlinear. Moreover, since GPVLM
makes no assumption about the distribution of the latent space,
it permits to work with a low dimension, while still capturing
most of the shape variance.

In more details, GPLVM represents a data set Y =
[y1, · · · ,yM ]T , composed of M original data points (e.g.,
M reference silhouettes represented with EFD) collected in
a D dimensional space (D = 4 · N here), with a lower
dimensional set of latent variables X = [x1, · · · ,xM ]T ,
where each variable is a latent point of dimensionality d, with
d << D. GPLVM can be considered as a generalization of the
probabilistic PCA [43] to less restrictive covariance functions,
by replacing the inner product kernel with nonlinear functions.
Generally, the popular radial basis function kernel is used
for the nonlinear mapping. GPLVM represents this mapping
as a Gaussian process and determines the parameters of the
mapping function in such a way that the distribution of the
corresponding target data can be optimally approximated as
a normal distribution. This mapping is optimised from the
latent space to the original data space. As a result, GPLVM
keeps apart in the latent space the points that are far apart
in the data space, but nothing guarantees that points that are
close in the data space will also be close in the latent space.
Hence, to push GPLVM to also preserve local distances, we
impose back-constraints [44] in the computation of the latent
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variables. In particular, we constrain each latent variable to
be a smooth mapping from its high-dimensional counterpart.
As a result, the learnt latent space becomes more adapted to
our interpolation purpose, since it guarantees that the transition
between two close points in the latent space maps to a smooth
and topologically coherent silhouettes transition in the high-
dimensional space.

As an example, on the left part of Figure 4, the GPLVM
optimization has learnt a 2-dimensional latent space from a
set of M = 150 shapes of silhouettes captured on video
sequence representing hands’ gestures and described by 35
elliptic harmonics. The colormap of Figure 4 represents the
optimum approximation precision of this learnt latent space
(computed as the certainty in the positions of the reprojected
low-dimensional points X in the data space including Y [42]),
where the regions with the warmest colors are more likely to
represent the shape of a hand.

The set of silhouettes used for training are captured by
one of the reference cameras before3 the time at which the
intermediate view synthesis is generated. In practice, the
approach only requires a small amount of training samples;
around 100 samples are used on average in our validation.

C. Interpolating intermediate silhouettes on the manifold

To obtain a sequence of plausible 2D silhouettes between
the reference views, we first project the left and right reference
silhouettes on the latent space (points 1 and 6 on the left part
of Figure 4), based on the mapping function learnt by GPLVM
[42]. Then, we use a shortest path algorithm to interpolate a
plausible transition between these low-dimensional reference
silhouettes, and obtain the corresponding high-dimensional
silhouette prior by back-projection of this path, from the latent
space to the image space. The black silhouettes on the left of
Figure 4 illustrates the silhouettes obtained by back-projection
(from the latent space to the shape space) of the latent points
represented in white, on the left part of the figure. More
precisely, because the transition in the intermediate views
must represent the motion of a 3D object, we constrain it
to the latent points for which the approximation precision
is the highest. Practically, the shortest geodesic path (white
path in Fig. 4) is computed using Dijkstra’s algorithm [45]
with a transition cost cij from node i to j that is inversely
proportional to the precision of j (cij = − log(precisionj + ε),
where ε avoids numerical instabilities).

D. Registering the silhouette priors with the reference ones

The set of prior foreground silhouettes obtained in the pre-
vious section represent a smooth and topologically consistent
interpolation between the projections of the two reference
silhouettes on the latent space. However, these priors describe
the 2D shapes of the silhouettes, but not their position, scale
and rotation. To exploit them during the EPIV reconstruction,
we have thus to approximatively register them in the EPIV.
This alignment is performed in three consecutive steps by:

1) Orientating the prior shapes with respect to the silhou-
ettes observed in the reference views. The orientation

3The actual time-windows used in our validation are specified in Sec. VII.

of each silhouette is approximated by the angle of the
first principal component of its PCA decomposition. Each
shape is then rotated in such a way that its relative angle
coincides with the linear interpolation of the angles of
the two reference silhouettes.

2) Translating the oriented prior shapes, in such a way that
their centers of mass coincide with the linear interpolation
of the centers of mass of the two reference silhouettes.

3) Scaling the translated and orientated prior shapes, based
on the linear interpolation of the height of the object
between the two reference silhouettes.

Figure 5(a) shows some aligned versions of the prior shapes
(in white) extracted from a linear sampling along the shortest
path in a latent space representing a dinosaur. As illustrated
by the red segments on this figure, the resulting silhouette
priors provide, for a given epipolar line, a set of silhouette
borders. Hence, they describe a priori a smooth transition
of the reference epipolar line segments, up to the alignment
inaccuracies between the blue and red segments. In the fol-
lowing sections, those alignment inaccuracies are considered
explicitely by using translation-robust metrics when comparing
the reference epipolar line segments with the prior ones.

V. TRANSFORMATIONS OF EPIPOLAR LINE SEGMENTS

This section explains how to disambiguate the ill-posed
reconstruction of the object EPIs based on a sequence of
2D silhouette priors, as obtained in the previous section. As
illustrated on the right side of Figure 4, our approach estimates
how the object epipolar line segments evolve when moving
the viewpoint from one reference view to the other. Due
to the epipolar rectification of the reference images, the set
of possible geometric transformations of a foreground (back-
ground) epipolar line segment is restricted to the combination
of an horizontal translation, a 1D scaling and a potential
split-up or merge with other foreground (background) epipolar
line segments. In the following, without loss of generality,
we represent those combined transformations based on the
displacement and potential fusion of the segments’ borders.
We first introduce some notations.

Let S = [s1, s2, · · · , sS ] denote a sequence of consecutive
foreground and background epipolar line segments, defined
along a rectified epipolar line as illustrated on one of the blue
or red lines of Fig. 5(a). For more clarity, in the following,
these reference (blue) and prior (respectively red) epipolar line
segments will be represented as a front view, as shown in
Figure 5(b). The number of segments constituting the rectified
epipolar line is denoted by S = |S|. Each segment sk ∈ S
(with k ∈ {1, 2, · · · ,S}) is characterized by a binary value,
denoted v(sk), depending if it corresponds to foreground (1)
or background (0) information, and by its normalized length
l(sk), relative to the length of the entire sequence S.

We associate a sequence of epipolar borders B =
[b0,b1, · · · ,bS ] to each epipolar sequence S, where bk−1
and bk respectively represent the beginning and the end of
the epipolar segment sk (∀k ∈ {1, · · · ,S}). The position of a
border is then defined as p(bk) =

∑k
x=0 δ(x > 0) · l(sx), with

k ∈ {0, 1, · · · ,S} and δ(.) being the Kronecker function. The
modality m(bk) of the border bk defines the kind of transition
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Fig. 5: (a) Prior information about the plausible deformations of the object silhouette is used to determine the cost of matching
the left epipolar border b0

1 to the right epipolar border b1
1 (b). This cost is defined by minimizing the sum of (c) the cost f

of moving from a reference border to a prior one and (d) the discrepancy g with the prior (see the text for details)).

(foreground to background or background to foreground) that
it supports, i.e., m(bk) = v(sk) if k ∈ {1, 2, · · · ,S}, and
m(bk) = 0 otherwise.

To determine how the 2D object silhouette, represented in
each EPI by a set of epipolar borders, evolves when changing
the viewpoint, we proceed in two steps:

1) We identify and match the reference epipolar borders
(blue borders in Figure 5(a)) that have a corresponding
border in the other reference view. This is done by intro-
ducing an original cost-function to drive the matching
process in a way that is consistent with the available
silhouette priors (see Section V-A).

2) We approximate the vanishing trajectories of all the
unmatched borders in a way that is consistent with the
prior information (see Section V-B).

These two steps are described in details below.

A. Matching epipolar borders

For a given EPI, let B0 and B1 denote the two sequences of
reference epipolar borders that delimit the epipolar segments
of the left and right reference silhouettes, respectively. Thus,
as illustrated on Fig. 5(b), b0

i refers to the ith epipolar border
in the first reference view (starting at index 0). Similarly,
b1
j is the jth epipolar border in the second reference view.

We match pairs of borders with the algorithm of Needleman
and Wunsch [46] and adapt its underlying cost functions to
account for our problem specificities.

The Needleman and Wunsch (NW) algorithm has been
extensively used to compare sequences of characters [46].
Given an alphabet of characters C, and a measure of dis-
similarity d(., .) between any pair of characters in C, the
NW algorithm aligns two sequences of characters in a way
that (1) preserves the order of the characters within each
sequence [47], (2) matches the most similar characters together
by minimizing the sum of dissimilarities between matched
characters and (3) tolerates unmatched characters at the cost
of some skipping penalty u(.). Its optimization scheme, which
determines the associations and unmatched characters based
on the matching cost d(., .) and skipping cost u(.), is described
in the supplementary material4.

4http://infoscience.epfl.ch/record/200492

We now define the borders matching and skipping costs (d(., .)
and u(.) respectively), so as to capture the specificities of
our problem, as well as to take advantage of the available
intermediate prior silhouettes. In particular, we want to ensure
that:
• long segments are less likely to vanish than shorter

ones. In other words, borders that delimit long reference
epipolar segments have less chance to be unmatched.
Therefore, the skipping cost u(bk) of the reference border
bk is defined to be equal to max (l(sk), l(sk+1));

• reference borders are unmatched by pairs of consecutive
borders, so that their skipping can be interpreted as
a vanishing/appearing segment. Since, by definition, a
border separates two segments having a different fore-
ground/background value, the modes of consecutive bor-
ders are different. Skipping borders by pairs is thus equiv-
alent to constraining each border to only match borders
having the same modality. Hence, the distance between
two borders with different modality in two camera views
should be set to ∞.

• the matching of reference borders between the two ref-
erence views shall be consistent with the prior that is
available about the plausible deformation of the silhouette
between the two views. The rest of this section explains
how this is achieved through proper definition of the dis-
tance metric d(., .) between borders of the same modality.

Recall that the silhouette priors are represented by a se-
quence of P + 1 foreground images, in which the pth im-
age, with p ∈ [0;P ], describes a priori the silhouette of
the object as observed at a relative intermediate position
αp = p

P between the left and the right reference views.
Those P + 1 silhouette priors represent thus a priori a
linear sampling of the continuous smooth transformation of
the silhouette from the left to the right reference views. As
illustrated in Figure 5(a) and (b), they provide, for a given
epipolar line, a set of intermediate sequences of segments
{Sα0 , · · · ,Sαp , · · · ,SαP } and their associated sequences of
borders {Bα0 , · · · ,Bαp , · · · ,BαP }. We define the cost of
matching a border in B0 with a border in B1 by measur-
ing how it is in-line with the prior sequences Bαp (with
p ∈ [0;P ]).

To account for the fact that the alignment of the prior silhou-
ettes in the EPIV is prone to a translation error (as discussed

http://infoscience.epfl.ch/record/200492


7

in Section IV-D), we decompose the cost of matching the ith

border of B0 with the jth border of B1, i.e., d(b0
i ,b

1
j ), into two

metrics. The first metric measures the quality of the alignment,
in each reference view, between the prior and the reference
borders. It is defined to be independent of a global and rigid
translation of the prior. The second metric estimates how well
the association of two prior borders that are extracted from
the left and right viewpoints (corresponding to α0 and αP
respectively), is supported by the intermediate prior borders
(0 < αp < 1).

Precisely, the first metric, illustrated in Fig. 5(c), quantifies
the likelihood of matching each reference epipolar border of
B0 (respectively B1) with each of the prior borders of Bα0

(respectively BαP ) observed from a reference viewpoint. To
define the associativeness f(b0

i ,b
α0

k ) between the ith reference
border of B0, i.e., b0

i , and the kth border of Bα0 , i.e.,
bα0

k , we rely on the fact that two borders are likely to be
in correspondence when they share similar neighborhood.
Because Sα0 and S0 are seen from the same camera viewpoint,
the foreshortening effect does not influence the length of their
epipolar segments. This cost can be measured by the comple-
mentary of the normalized Hamming correlation (detailed in
the supplementary material), i.e., the number of positions in
which the reference and prior sequences have identical values
when they are aligned on the borders of interest. We highlight
the fact that this metric is invariant to a rigid translation and is
thus adapted to consider the translation error-prone prior. The
metric f(bαP

l ,b1
j ) to match the lth prior border in BαP with

the jth reference border in B1, observed in the other reference
view, is defined analogously.

The second metric evaluates the cost of associating a border
of the first prior Bα0 with a border of the last prior BαP ,
as illustrated on Fig. 5(d). We assume a linear displacement
between two corresponding borders. With rectified cameras,
the linearity is strictly verified when the silhouette borders
correspond to the same physical 3D point [38], independently
of the viewpoint. In other cases, since the actual 3D point
supporting the silhouette border generally does not move a lot
when changing the viewpoint, the linearity assumption is also
reasonably valid. Hence, we evaluate the discrepancy between
a linear displacement and the actual transformations given by
the priors Bαp (with p ∈ {1, · · · , P−1}). Formally, we define
the prior deformation cost g(bα0

k ,bαP

l ) of matching the kth

border of Bα0 with the lth border of BαP , to be the sum of
the L1 interpolation residues, i.e., the distance between the
linear interpolation of bα0

k and bαP

l in the intermediate views
αp, and the closest prior borders having the same modality in
Bαp (with p ∈ {1, · · · , P − 1}. This is illustrated with green
color codes in Figure 5(d). The formal derivation of the prior
deformation cost g(bα0

k ,bαP

l ) are given in supplementary
material.

Finally, the cost d(b0
i ,b

1
j ) to match the ith border of B0

with the jth border of B1 is defined as:

d(b0
i ,b

1
j ) = min

k,l

(
f(b0

i ,b
α0

k ) + g(bα0

k ,bαP

l ) + f(bαP

l ,b1
j )
)

(1)
where the minimum is determined by the Dijkstra’s algorithm
[45]. By construction, a small d(b0

i ,b
1
j ) reflects the existence

of a prior border that moves smoothly while going from one
extreme prior view to the other (i.e., small g(bα0

k ,bαP

l )), and
a good coherence between the prior and the actual reference
borders in each reference view (i.e., small f(b0

i ,b
α0

k ) and
f(bαP

l ,b1
j ) values). Thereby, a small d(b0

i ,b
1
j ) promotes the

matching of the borders b0
i and b1

j .
Using d(b0

i ,b
1
j ) and u(b0

i ), the NW algorithm determines
the optimal borders associations, and identifies (pairs of)
unmatched borders.

B. Appearing/vanishing trajectories

We now present an original method to handle vanishing
trajectories of unmatched borders. This is equivalent to ana-
lyzing how occluded parts vanish or appear when changing
the viewpoint. As one of the most original contribution of
this paper, we now show that it is possible to estimate how
occluded parts vanish/appear when changing the viewpoint
in-between the reference views. Since we know in which
reference view the occluded epipolar segment5 is visible, we
consider the vanishing when moving from this view to the
other, and assume that the learnt latent space embeds an
instance of vanishment of this occluded part. As illustrated
in Figure 6, our method estimates, from the prior, the speed
at which each occluded segment shrinks (vanishes) when
changing the viewpoint. Since the borders displacements along
the EPI are linearly proportional to α [38], we only have
to evaluate the two constant border displacement speeds and
propagate this prior information to the occluded reference
segments. This is done as follows:

1) Identifying the prior borders that correspond to a segment
that is subject to occlusion. We name them occluded prior
borders (dark red borders in Fig. 6(a)).

2) Fitting linear trajectories to these prior borders (Fig. 6(b)).
3) Associating the slope (vanishing speed) of each of these

linear trajectory to one of the occluded reference border
(Fig. 6(c)).

We present each of these steps in detail in the following.
1) Identification of prior borders defining the occluded

prior segments: Obviously, only the prior borders that do not
support one of the association/matching of reference borders
computed by the algorithm presented in Section V-A should
be considered to explain the vanishing of occluded segments.
Hence, we first select as occluded prior borders the prior
borders that are sufficiently far from the linear trajectories
followed between the pairs of associated reference borders,
or more specifically between their corresponding priors Bα0

and BαP at the reference viewpoints. In our experiments, we
have used a simple heuristic threshold, set to 5% of the image
width, to decide whether a prior border is sufficiently far from
the linearly interpolated trajectories. This may however lead
to many false positive. Hence, the following section proposes
a robust way to estimate the vanishing/appearing paths from
this initial set of occluded prior borders.

5An occluded epipolar segment is defined by two consecutive occluded
epipolar borders.
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Fig. 6: The vanishing trajectories are estimated by (a) identifying the occluded prior borders (in dark red), (b) fitting linear
trajectories to these prior borders and (c) associating the slope of these trajectories (dotted lines) to the occluded reference
borders (plain lines). Finally, by (d) adding the vanishing trajectories to the set of tranjectories describing the transitions
between the associated reference borders, the EPI of the object silhouette is reconstructed.

2) Robust fitting of linear trajectories: This section shows
how to determine the linear trajectories of the l occluded
reference borders from an imperfect set of prior occluded
borders. Precisely, the set of l occluded reference borders can
be divided into l0 occluded reference borders representing
a transition from foreground to background (i.e., having a
mode value of 0) and l1 borders representing a transition
from background to foreground, such that l0 + l1 = l. Hence,
we propose to divide the set of prior occluded borders into
two sets, based on their modes. Then, l0 linear trajectories
(respectively l1 linear trajectories) are estimated on the subset
of occluded prior borders having a mode of 0 (respectively 1).
This is done by sequentially applying l0 times (respectively l1
times) the RANSAC algorithm [48], i.e., by estimating a linear
trajectory on the subset of occluded prior borders of mode 0
(respectively 1), removing the prior borders that are inlier to
this estimated model, estimating a new linear trajectory on
this new subset, and so on. At the each RANSAC iteration,
two borders are randomly selected from the set of occluded
prior borders, and the linear trajectory passing through these
borders is estimated. All the prior borders located in a small
and conservative L1 distance (e.g., 5% of the width of the
image) are considered as inliers to the trajectory model. This
simple greedy algorithm appears to work well in practice, due
to the relatively small amount of outliers in the set of occluded
prior borders. The linear model that maximizes the amount of
inliers is considered as the optimal model of the lthi sequential
application of RANSAC.

3) Assignment of linear trajectories to the reference oc-
cluded borders: We want to assign the trajectories computed
from the prior occluded borders to the unmatched borders
in the reference views, so as to transfer their slope, i.e., the
constant speed at which the borders move along the EPI when
the viewpoint index α changes. The process is illustrated in
Figure 6(c). The cost of assigning a prior trajectory to a refer-
ence border is simply defined to be the L1 distance between
the border and the position defined by the trajectory prior in
the reference view (compensated with a linear interpolation
of the translation error indicated by the matches of the NW
algorithm). The assignment problem is then solved using the
Hungarian algorithm [49], so as to assign one and only one
trajectory to each unmatched border while minimizing the

sum of assignment costs. Finally, as illustrated on Fig. 6(d),
these vanishing trajectories are added to the set of trajectories
describing the transitions between the associated reference
borders to form the EPI of the object silhouette.

VI. VIEW SYNTHESIS

This section describes how a view is synthesized based on
the estimation of the trajectories followed by the reference
epipolar borders. We propose to synthesize the intermediate
views by combining the textures of matched epipolar line
segments and by propagating the texture of occluded line
segments from the reference view in which those segments
are visible.

Texturing an intermediate view by combining the textures of
its corresponding elements in the both views has been deeply
investigated in the past [27] [50]. By favoring the piecewise
smoothness of the intermediate texture, most of these state-
of-the-art methods permit to generate pleasant intermediate
views despite corrupted matches. In contrast, in order to fairly
validate our contribution, i.e., the estimation of the geometric
transformations of the epipolar line segments, we propose
to simply rely on view morphing [27], which is not robust
to corrupted matches. Indeed, it does not impose piecewise
smoothness of the texture, so that any wrong border match
results in highly noticeable discontinuities in textures.

More precisely, view morphing relies on epipolar rectifica-
tion to synthesize the intermediate textures by linear interpo-
lation of the reference textures, such as:

Iα(xα, y) = (1− α) · I0(x0, y) + α · I1(x1, y)

with I0 and I1 the rectified reference images, Iα the recon-
structed intermediate image, x0 the x coordinate of a pixel of
I0, y its fixed ordinate (studied scanline). The pixel abscissa
xα and x1 are computed as follow:

xα = (1− α) · x0 + α · x1

x1 =
l(s1j )

l(s0i )
·
(
x0 − p(b0

i )
)

+ p(b1
j )

with s0i denoting the epipolar line segment including x0,
s1j denoting the epipolar line segment matched to s0i . Then
p(b0

i ) is the position of the left border of the epipolar line
segment including x0, and p(b1

j ) defines the position of the
corresponding matched border.
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The proposed method propagates the texture for occluded
segments with a similar principle, although the interpolation
is done between a pixel in a reference view and the segment’s
vanishing point determined by the intersection (xv, αv) of the
vanishing trajectories surrounding this occluded segment. This
synthesis is defined as follows:

Iα(
α

αv
· (xv − x1) + x0, y) = I0(x0, y)

if the vanishing epipolar line segment belongs to the left
reference image (occlusion), or

Iα(
(α− 1) · (xv − x1)

αv − 1
+ x1, y) = I1(x1, y)

if the vanishing segment belong to the right reference image
(disocclusion). In contrast to conventional morphing strategies,
the synthesized images represent both the parts that are visible
in the two reference views, and the parts that are visible in a
single reference view.

VII. RESULTS

In this section, we demonstrate the performance of our
approach on well-known datasets, namely the synthetic Kung-
Fu Girl sequence [51] and the real Ballet sequence [35]. Due
to the page limit, other validations on the multi-view Dino
dataset [52] are given in the supplementary material. Although
these multi-view datasets contain numerous images acquired
by multiple (small-baseline) cameras, we only consider a pair
of widely separated cameras from these sets to learn our shape
priors model, and to reconstruct the intermediate views.

For each dataset, we interpolate five intermediate views
uniformly sampled in-between the left and right reference
views6. To show the advantage of using epipolar line segments
as basis matching element, we provide reconstructed views
when pixels are chosen as basis matching elements. To demon-
strate the benefit of the silhouette priors, we also provide the
views that have been reconstructed without silhouette priors
to disambiguate the epipolar segments matching. We also
compare the reconstructed intermediate views resulting from
our method with the ones obtained by three other conventional
and state-of-the-art methods.

A. The Kung-Fu Girl dataset

For the Kung-Fu Girl dataset, we have selected two wide-
baseline cameras separated by an angular difference of 45◦.
The view captured by the left camera (or right camera) is
shown on the left (respectively right) of the first row in
Figure 7. The image shown in-between corresponds to the ones
captured by a camera situated approximatively at the middle
(α ' 0.5) in-between these two reference views and represents
thus the ground-truth.
The second row in Figure 7 represents the intermediate views
generated by a conventional visual-hull reconstruction [17], in
which the two foreground silhouettes are projected back in
the 3D world, forming two cones whose intersection defines
the 3D boundary of the object. The intermediate views are

6We encourage the reader to refer to videos provided in the supplementary
material to observe the continuous transition from the left to the right cameras.

obtained by projecting and texturing this 3D model onto an
arbitrary viewpoint [26]. The reconstructed intermediate views
perfectly show the limitations of model-based approaches in
our wide-baseline stereo, namely the requirement of observing
the object with a large amount of reference cameras to avoid an
imprecise 3D model, leading to corrupted intermediate views.
The third row in Figure 7 represents the intermediate views
generated when morphing [27] a dense (pixel) correspondence
obtained by dynamic programming [32] [47] on corresponding
epipolar lines. The matching cost is simply defined as the L2

norm of the pixels’ colors and the skipping penalty u(.) is arbi-
trary set to 0.5. Two kinds of artefacts can be observed on these
reconstructed views. First, they are topologically incoherent.
This can be observed in-between the legs of the Kung Fu girl,
near her neck and on her left hand, where some members
get apart from her body. This is due to the ill-posedness of
the wide-baseline matching problem, leading to wrong pixel
correspondences. Second, because the resulting matching is
not smooth, holes appear in the reconstructed intermediate
views. This artefact, caused by the foreshortening effect, is
generally avoided by imposing a smooth disparity/depth-map
[24], at the price of a slow matching process.
To explicitly impose the smoothness along the epipolar lines,
in the 4th row of Figure 7, we use epipolar line segments
as matching elements. The method extends the one of [32]
by considering epipolar line segments (and not pixels) as
basic image elements. It corresponds to the approach we
have introduced in Section V-A, but without prior silhouettes
knowledge. Hence, each epipolar border is matched, by NW
[47], only considering the f(., .) terms in the definition of
d(b0

i ,b
1
j ) (see Equation 1). We observe in Figure 7 that

the reconstructed intermediate views are smoother, but still
exhibiting some topologically incoherent transitions, such as
shown at the level of her head.
To regularize the reconstruction of the EPIs in such a way
that they provide topologically coherent intermediate views,
a latent space representing plausible silhouettes of the Kung-
Fu girl has been learnt on a total of 60 silhouettes captured
by the two wide-baseline cameras, and observed uniformly in
a time-window starting from the first frame of the sequence
to 20 frames before the required transition. These silhouettes
have been described using 70 elliptic harmonics, and the fifth
row in Figure 7 illustrates this latent space.
The advantage of considering these priors is illustrated on
the last row in Fig. 7, where intermediate views have been
generated by the method proposed in this paper. Only 5
intermediate priors have been used to reconstruct the EPIs.
We observe that the intermediate views reconstructed by our
method shows a topogically coherent transition of the Kung-
Fu girl from the left to the right reference view.

B. The Ballet sequence

The second sequence, called Ballet [35], has been captured
using eight cameras placed along a 1D arc spanning about
30◦ end-to-end. While two neighbor cameras of this array
constitute a small-baseline stereo pair, the outer cameras
represent a wide-baseline configuration. Indeed, because of the
small depth of the foreground dancer, strong self-occlusions
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Fig. 7: Instead of projecting an estimated 3D model [17] (second row) or determining a dense (pixel) match (third row), epipolar
line segments are used as basic matching elements (fourth row). In the last row, our method regularizes the epipolar segments
matching so that the shapes of the intermediate silhouettes are topologically consistent with the plausible deformations of the
object silhouette, learnt and described by a low-dimensional latent space (fifth row).
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and foreshortening effects can be observed between these
two external viewpoints (especially on the dancer’s arms). In
Figure 8, we compare the reconstructed images at intermediate
viewpoints with five methods, using only the two wide-
baseline reference views (in contrast to the use of the small-
baseline multi-views pairs, as done in [35]). On the first row,
the intermediate views are generated by view morphing, based
on multiple depth maps as proposed in [35]7. Since the depth-
map estimated from the extreme wide-baseline views is very
poor, we provide the images reconstructed from the textures
in the two extreme views, based on the depth-maps computed
with neighbor cameras (small-baseline configuration). Even
with this additional information, the small depth inaccuracies
(equivalently weak pixel correspondences) lead to merging of
non-corresponding textures, i.e., ghosting artefacts. The second
row of Figure 8 illustrates the intermediate views obtained by
a state-of-the-art stereo method [53], top-ranked in February
2015 in the well-known Middlebury Stereo Evaluation [54]
[55] [47]. By combining a cost-filtering approach, especially
adapted to manage the occlusions, with a global (fully con-
nected Markov Random Field) optimization, which imposes
the smoothness of the disparity map, their method achieves
impressive results on small-baseline stereo setups. However, as
expected, the strong geometrical and photometric changes, as
well as the foreshortening effects affecting our wide-baseline
stereo setup make this algorithm pretty vulnerable, especially
due to the oversmoothing of the disparity map. In the third row,
we use only the external views and test wide-baseline stereo
matching by applying the Needleman-Wunsch algorithm (dy-
namic programming [47]) on pixels, as done in [32]. We
observe that the strong foreshortening effect produces holes
in the reconstructed intermediate views. By applying dynamic
programming on the segment representation, dense correspon-
dences have been found, but topological inconsistencies subsist
(see fourth row on Figure 8). Because of the ill-posed nature
of the problem, the lowest cost match does not necessarily
give the optimal match in terms of topological consistency of
the silhouette. The last row in Figure 8 illustrates the result
obtained by our complete method using silhouette priors. The
latent space has been learnt on 40 silhouettes observed by
the two outermost cameras in a time-window 20 frames away
from the transition time. These silhouettes have been described
with 50 harmonics of Elliptic Fourier Descriptors, and 6
intermediate priors are used to regularize the determination
of the segments’ transformations.

C. Discussion

In contrast to the previous methods, we obtain topologi-
cally coherent intermediate views, thanks to the additional
silhouette prior obtained from the latent space. Our method
also efficiently deals with the foreshortening effect that are
typical in wide-baseline configurations, as it can be seen on
the front part of the chest of the dancer, which is severly
slanted in the left reference view, while almost fronto-planar
in the right one. Finally, to the best author’s knowledge, this

7The pixel correspondences are obtained by projection of the pixels of one
reference view at the depth indicated by the depth-map, and back-projection
of these 3D points in the other reference view.

paper is the first one to infer the trajectories of occluded parts,
allowing to interpolate their content in intermediate views,
as shown by the left shoulder of the Kung-Fu girl or the
space in-between the legs of the dancer. Next to those very
encouraging results, two limitations of our approach however
deserve to be pointed. The first one can be observed on the
reconstructed fingers of the dancer’s right hand in Fig. 8.
Indeed, when changing the viewpoint from the left to the right
reference view, her fingers detach from her hand, showing a
topologically incoherent transition of her right hand. This is
due to the limited accuracy of the priors, determined from
a low-dimensional space representing the approximations of
training shapes as a set of N smooth harmonics (ellipses).
When the high frequencies details, such as the dancer’s fingers,
are not represented by the priors, their matching can not be
regularized, and their transition might become topologically
incoherent.

The second weakness of our method comes from the
choice of using epipolar line segments as matching units.
Indeed, while it permits to explicitely take into account the
foreshortening effect and the sparse correspondence problem,
the precise correspondence of their inner pixels is not known,
and can only be infered from the knowledge of the matches of
their borders. The simple linear interpolation of inner textures,
as detailed in Section VI, may result in wrong matches of
the inner pixels if the surface described by this epipolar line
segment is not planar. This limit can be observed on the
pixels representing the straps on the chest of the dancer, which
are not correctly matched by linearly interpolating inside the
(correctly matched) borders of the curved chest or on her face,
and results in the ghosting artefact. This artefact could be
reduced by generalizing the texture interpolation to convex
surfaces, e.g., based on floating textures [50].

Finally, we note that the processing time of our algorithm
(Matlab implementation, Intel I5 CPU 2.4GHz and 8Gb of
RAM) shows encouraging performances (on average 4.2s to
describe a 768×1024 image into epipolar line segments, 0.06s
to match all the epipolar lines independently and 0.16s to
render an intermediate view). Our code is available online (see
the supplementary material). Moreover, because the epipolar
lines are processed independently, real-time implementation is
within reach, e.g. based on GPU parallelisation.

VIII. CONCLUSION

In this paper, we have proposed a new and original inter-
polation technique for intermediate view synthesis between
cameras in wide-baseline configurations. We also notice that
although this coherence is imposed independently on each
epipolar line, the fact that these constrains are derived from 2D
priors favors consistency along the epipolar lines. Our method
relies on prior information about the silhouettes of objects
in the intermediate views to guarantee consistency between
the synthesized silhouettes and the ones present in the two
reference viewpoints. As a first contribution, these silhouette
priors are learnt by reducing the dimensionality of Elliptic
Fourier shape Descriptors, accumulated over a training set of
representations of the objects under consideration, typically
from earlier observations of the object moving in front of
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Fig. 8: Comparison between the interpolated intermediate views generated based on matching of layered representation [35]
(first row), which exploits intermediate depth maps in addition to external views, a state-of-the-art method [53] which is
top-ranked in the Middlebury Stereo Evaluation [54] (second row), dynamic programming on pixels [32] (3rd row), dynamic
programming on our proposed epipolar line segment representation (4th row) and our method (5th row).
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the wide-baseline camera pair. This additional information is
then exploited to determine the 1D transformation of epipolar
line segments when moving from one view to the other.
As a second contribution, this new framework has not only
the advantage of generating consistent and smooth virtual
transitions between the viewpoints where correspondences
can be found in the two basis images, but it can also
handle the vanishing of occluded informations. Finally, we
have demonstrated that our method outperforms state-of-the-
art view interpolation methods by generating topologically
coherent intermediate views of an object, despite the multiple
occlusions and severe foreshortening effect that are typical in
wide-baseline configurations.
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