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Abstract—Many daily tasks involve spatio-temporal coordi-
nation between two agents. Study of such coordinated actions
in human-human and human-robot interaction has received in-
creased attention of late. In this work, we use the mirror paradigm
to study coupling of hand motion in a leader-follower game. The
main aim of this study is to model the motion of the follower, given
a particular motion of the leader. We propose a mathematical
model consistent with the internal model hypothesis and the
delays in the sensorimotor system. A qualitative comparison of
data collected in four human dyads shows that it is possible to
successfully model the motion of the follower.

I. INTRODUCTION

Adaptability of the human motion control system is a well
studied fact. Adaptations is needed against external perturba-
tions such as change in load, internal dynamics, e.g., change
in muscle strength over time, or in sensory feedback guiding
the motion. Many studies have given a qualitative account of
the mechanisms behind such adaptations under perturbations
of force fields [1], distorted visual feedback [2] and changing
coordination patterns with another subject [3]. A common
result among these studies is that the subjects tend to re-learn
the task, over time, even in the presence of perturbations, and
to un-learn it slowly when the perturbation is removed.

In this paper we focus on developing an adaptive model for
quantitative and qualitative assessment of coordinated motion
generation in a “mirror game” [4], [5]. The mirror game is an
experimental paradigm for studying the interaction between
two subjects while they try to mirror each other’s motion (see
Fig. 1). Possible modalities in such a setup are Leader-Follower
(LF) or Joint Improvisation (JI). In this study we will focus
on the LF modality where one of the subjects is designated
to lead the motion and the other is instructed to synchronize
with the leader.

The rest of the paper is organized as follows. In the next
section, we review other models explaining adaptive motor
behavior in humans. In Section III we describe our setup
and the data collection procedure. Section IV describes our
mathematical model and we present the results in Section V.
Discussion and conclusion are presented in Section VI and
Section VII respectively.

II. RELATED WORK

There are a large number of activities that are characterized
by joint actions performed by a dyad of subjects. Although
there is a rich literature on characterizing motion and control

Fig. 1. Two subjects playing mirror game in leader-follower setup.

patterns in single subject experiments, joint actions have been
studied only lately. First, we review how adaptation has been
studied for subjects performing solo tasks. One line of research
has been dedicated to internal models and estimating the
sensory delay and its effect on the motor output. Smith pre-
dictor [6] is one such mechanism which maintains an internal
model of the dynamics combined with an estimate of sensory
delay. Results from [7], [2] also suggest the presence of a
delay component in the internal process for motion generation.
Kelso [8] derived a coupled oscillator based model to explain
the fact that in their finger-tapping experiments, anti-phase
motion falls into synchronized motion after a certain frequency.
Phase and frequency locking behaviors even in the absence of
visual feedback observed in [9] suggests some form of social-
memory. Several other studies [10], [11] have suggested that
the presence of a forward internal model might be to overcome
the effect of time delays.

Joint activities have been rarely studied, mainly due to the
lack of an experimental paradigm. Noy et. al. [4] adapted the
mirror-game - a fundamental practice in improvisational the-
ater - as an experimental system for studying joint interactions
between two subjects. In this paper, we use the same setup
to develop a mathematical model to explain the follower’s
behavior in the LF modality. We take the established delayed-
internal-model hypothesis and use tools from regression anal-
ysis and dynamical systems to realize our model. Our model
is consistent with the hypothesis that the adaptation in motor
behavior is a direct result of update in the internal model [11].
In other words, in the LF setting, the follower incrementally
builds a model of the leader’s motion and executes its own
motion by using forward prediction based on the internal
model. We also incorporate sensory delay in our model which
is hypothesized to be nullified by the forward prediction.
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Fig. 2. A sample of experimental recording from Leader-follower setup in mirror game. Arrows indicate noticeable patterns in the follower’s behavior.
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Fig. 3. Structural representation of the proposed cognitive mechanism and its relation to the neuroscientific view.

III. MATERIALS AND METHODS

The mirror game setup for this study is as follows. The
two subjects are seated facing each other with a set of parallel
strings passing between them (Fig. 1). On each string, we place
a ball that the subject can hold and move along the string. The
players are instructed to play the game such that the designated
follower should follow the designated leader’s hand motion
on the string. The leader is instructed to make ”rich” motions
(namely successive oscillations with variation in amplitude and
frequency) while taking into account the follower’s capacity to
follow (i.e. slow down when needed to allow the follower to
catch up). A total of eight subjects paired in four different
dyads participated in this study. Each dyad made three trials
at the game, each one lasting 60 seconds. The data consist of
the 1D end-effector positions (the two balls position on the
strings) recorded at a rate of 100 samples per second.

IV. PROPOSED MODEL

To model the behavior of the follower in this leader-
follower setup, we first take a qualitative approach. In Fig. 2,
one sample of leader-follower motion is illustrated. At the
beginning, the follower shows an expected delay in his
motion. Up to 15sec, the tracking is satisfactory until the
leader “suddenly” changes the location of the oscillation,
and the follower shows a tendency to oscillate according
to the last observed max and min points. This creates an
interesting pattern in the follower’s motion; i.e undershooting
and overshooting. These observations imply that the follower
uses an internal model which helps him/her to compensate
for the delay. This forward modeling, however, worsens the
tracking when the leader suddenly changes the dynamics
of the motion and hence no longer matches the follower’s
expected model. In this case, the follower must build again
an internal model of the leader’s motion. In the following, we

consider these observations to drive our modeling approach.

A. Internal model

In this section we propose a cognitive mechanism (Fig. 3)
to explain the follower’s hand motion; i.e. a mathematical
model which accurately describes the main qualitative features
of the data. Receiving the leader’s trajectory (xl(t)) as the
input, this cognitive mechanism generates the follower’s
trajectory (xf (t)) as the output. This mechanism can be
seen as three sub-systems placed in series: sensory system,
internal modeling, and the motor system. Physiological
sensory-motor systems have significant feedback delays. In
our proposed mechanism, this is represented by a delay in
the sensory sub-mechanism. The internal model plays the
role of the cerebellum in controlling for the timing of the
agent’s response. We adapt this internal model to the delayed
perceived motion (xl(t − ∆t)) and by forward integration,
we estimate the follower’s current position (x̃l(t)). This
estimation of current position is used as the set-point for the
motor system where the motor system is represented by a
2nd-order closed-loop control system.

Relying on the delayed sensory data (xl(t − ∆t)) and
using it as the set-point for the motor system limits human
tracking performance. In contrast, modeling the leader’s
motion and using this to predict the leader’s motion would
not only improve tracking performance, but also lower control
effort (no need to focus continuously our attention to visual
feedback). There are myriad of studies attesting that humans
benefit from these two aspects of forward modeling ([10],
[11]). In our cognitive mechanism, we use a dynamical
system to model and predict the leader’s motion; see Fig. 4.
The parameters of the dynamical system are updated by
using previous data-points falling into a memory window (of
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Fig. 4. Memory and delay as two fundamental model parameters. Memory
controls the amount of previous data being used for updating, while delay
controls prediction horizon.

length T ). Once the model is updated, it is used to predict
the current leader’s position based on the leader’s position
and velocity at t − ∆t. Memory length T and delay ∆t are
the model’s parameters. These parameters can be tuned to
achieve a desired behavior.

It is desirable to select a model of control which can
capture the qualitative properties of the data, while producing
dynamics close to humans. The oscillatory nature of the task
and the smoothness of human motion can be realized by a
2nd-order dynamical system of the form:

¨̃xl = a+ bx̃l + c ˙̃xl (1)

where the dynamical system parameters (a, b, and c) can
be updated to model the leader’s motion. Being linear with
respect to parameters is a great advantage for this model as
it enables us to use a simple learning method; i.e. Minimum-
Least-Square (LS) method. In this method, the regressor matrix
is

X =




1 xl(t−∆t) ẋl(t−∆t)
1 xl(t−∆t− dt) ẋl(t−∆t− dt)
...

...
...

1 xl(t−∆t− T ) ẋl(t−∆t− T )


 (2)

and the target vector is

y =




ẍl(t−∆t)
ẍl(t−∆t− dt)

...
ẍl(t−∆t− T )


 (3)

Therefore, using LS method, the parameter vector (p =
[a b c]T ) is calculated as follows:

p = (XTX)−1XT y (4)

Having the model parameters updated, we can integrate
forward to compensate the delay and predict the leader’s
current position (x̃l(t)). During forward integration, we can
saturate position, velocity, and acceleration based on the
assumption that these quantities are limited on the leader’s
side. These saturations prohibit the model from generating
fast, and unreasonable motions. Finally, the prediction
(x̃l(t)) is used as the desired trajectory for a 2nd-order
dynamical system where a hand-tuned PD-controller performs
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Fig. 5. Performance of our model to follow typical trajectories. The first
three trajectories cause singularity for the LS method. In these simulations,
we have dt = 0.01s, ∆t = .3s, T = .5, µ0 = 10, and α = 1. For discrete
PD controller, we have Kp = Kd = .5

satisfactorily; see Fig. 3.

Using LS method, we should consider multiple local
minimums case; i.e. singularities. To study this, we consider
different possible scenarios where the columns of the regressor
matrix (X) can have linear dependency:

• α1 + βxl = 0: constant position

• α1 + βẋl = 0: constant velocity

• αxl + βẋl = 0: 1st-order dynamics

To overcome this, we use damped (regularized) LS method
where we adaptively change the damping according to the
regressor matrix condition number:





κ(X) = λmax(X)
λmin(X)

µ = µ0(1− e−ακ(X))

p = (XTX + µI)−1XT y

(5)

One special case for our model is when a = b = c =
0 which means ẍ = 0. This leads to predictive First-Order-
Hold. Using damped LS pushes the solutions to this case which
works fine for the aforementioned singular cases when the
sampling time (dt) is small enough.

In Fig. 5, the performance of our method is tested for
typical trajectories; i.e. different dynamics of motion. In
Fig. 5a, we consider the constant position case. Based on the
delay, during the first 0.3 seconds of the simulation, we do
not have sensory input and it is not reasonable to move. After
0.3s, the model is updated and its prediction is tracked by
the 2nd-order dynamics motor system. Dealing with discrete
PD controller, we have a lag of 2 samples between prediction
and command generation by the model. For the constant
velocity case (Fig. 5b) and first-order dynamics (Fig. 5c),
the model performs satisfactorily. Having few data-points
in the beginning of each simulation makes the prediction
unreliable. Finally, in Fig. 5d, the proposed model is tested
against sinusoidal trajectory. It is interesting to note that
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Fig. 6. Extraction of temporal and spatial error from zero-velocity points.
Horizontal arrows show temporal errors and vertical arrows show spatial error.

this trajectory is dynamically consistent with our model, and
setting the damping in LS to zero will lead to p = [0 ω2 0]
where ω is the oscillation frequency. Moreover, Fig. 5 shows
that the proposed method can also follow the changes in the
motion dynamics; e.g. from oscillation to reaching.

V. RESULTS

In order to tune our model to human performance, espe-
cially to account for the observed overshoot and undershoot,
we focus on zero-velocity points. Two types of error can be
extracted from zero-velocity points: temporal error (as used
in [4]) and spatial error. For each zero-velocity point in
the follower’s trajectory, we consider the time-nearest zero-
velocity instant of the leader’s trajectory but with the same di-
rection (minimum or maximum); see Fig. 6. Then we calculate
temporal/spatial error based on the time/position difference.

With the features presented above, we study the human
performance in Fig. 7. Interestingly, for the temporal error,
most of the probability mass is present in the region with
positive error. This shows that the follower’s trajectory is
lagging most of the time. The distribution in the negative part
of temporal error shows that the follower sometimes changes
the direction of motion sooner than the leader. This, again,
speaks in favor of an internal model that guides the change in
motion direction. Another interesting property of this graph is
that almost all the delays are below 300ms. We can use this
observation and fix the delay in our model to ∆t = 300ms.

The distribution of spatial error is very close to a normal
distribution with mean 0.005m and standard deviation of
0.13m. Similar distributions can be achieved by tuning our
proposed model on the data-set. It is desirable to determine
a set of parameters that match best the model-follower and
human-follower distributions. To do this, we must extract
feature vectors from the temporal and spatial distributions.
We do this by counting the frequency of data-points in the
following bins.

Spatial
error [s]

0 0.05 0.1 0.15 0.2 0.25-0.05-0.1-0.15-0.2-0.25

2.6% 0.7% 1.5% 4.2% 11.6% 31.5% 27.8% 11.8% 3.9% 1.4% 1.1% 1.8%ws
h = [ ]

Temproal
error [s]

0 0.1 0.2 0.3 0.4 0.5-0.1-0.2-0.3-0.4-0.5

4.6% 0.6% 1.3% 2.9% 5.1% 7.2% 18.4% 36.1% 14.9% 3.6% 1.1% 4.1%wt
h = [ ]

1

Here, wth and wsh are the coarse representation of the temporal
and spatial error distribution for human performance. Same
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Fig. 7. Probability distribution of temporal and spatial error in zero-velocity
points for human follower in mirror game setup.
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Fig. 8. Grid search for delay and memory parameters. Statistical difference
between human and model follower in (left) temporal and (right) spatial error.
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Fig. 9. Probability distribution of temporal and spatial error at zero-velocity
points for model-follower in the mirror game setup with tuned parameters
(300ms for delay and 5s for memory).

feature vectors can be extracted for any model; i.e. wtm and
wsm. Having these feature vectors, to tune model parameters,
we can use the following cost function; i.e. Hellinger statistical
distance:

H(wh, wm) =
1√
2
‖ √wh −

√
wm ‖2 (6)

where wh and wm represent the human and model temporal
or spatial error distribution.

Now that we formalized our tuning problem as a multi-
objective optimization, we search for the best combination
of our model’s parameters; i.e. delay and memory. This
search is illustrated in Fig. 8. As it can be seen, these cost
functions are consistent with each other. Moreover they are
more sensitive to changes in the delay parameter than in
the memory parameter. The best choice for delay is 300ms
which is consistent with our previous hypothesis from Fig. 7.
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Fig. 10. Model performance for Leader-follower setup.

This delay is also in agreement with the previous studies in
human reaction time to changes in direction [12]. Having
300ms for delay, these cost functions are almost insensitive
to memory. Here, we pick 5s for memory where the cost
functions exhibits less sensitivity to the other parameter; i.e.
robustness.

The temporal and spatial error distribution of our model
with tuned parameters are illustrated in Fig. 9. As it can
be seen, the temporal and spatial error distribution graphs
are highly similar to those for human-follower in Fig. 7. In
both graphs, the maximum and cut-off delay (a point which
contains 90% of the temporal error distribution) are alike. In
both human and the model, the temporal distribution in the
negative part (where the follower switches direction sooner
than the leader) is also similar.

Fig. 10 shows the performance of the model on the
experimental data (leader’s trajectory). Our model’s output
matches the human-follower trajectory most of the time. It
however accounts relatively poorly for the overshoots and
undershoots. This is likely due to the fact that these are
caused by previous max and min points of trajectory and
our dynamical model can only model the offset (center of
oscillations). Improving our model to take these into account,
we might be able to create these pattern more accurately. In
the next section, we discuss some interesting extensions to our
model that can create more human-like over and undershoots.
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Fig. 11. Performance of the proposed method with delayed update for the
internal model.

VI. DISCUSSION

Here we discuss different approaches to create more drastic
over and undershoot behaviors. To test these approaches in a
more controlled situation, we consider a synthesized trajectory
for the leader; i.e. a sinusoidal trajectory (with frequency of
4rad/s and amplitude of 1m) which smoothly changes to a
different one (2rad/s and 2m).

Delay in updating: A delay can be added to the memory
window (as shown in Fig. 4) to have a outdated internal model.
This means instead of using the data in [t − ∆t − T t − ∆t]

interval, we use [t − ∆t − T − Tu t − ∆t − Tu] interval where
Tu controls the delay in updating. As shown in Fig. 11, by
increasing this parameter, the follower behavior will be more
similar to the observed motion for a longer time which creates
a more drastic undershoot.
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Fig. 12. Performance of the proposed method using nonlinear terms in
internal model dynamics.

Nonlinear terms: Using nonlinear terms in the internal
dynamics (Eq. 1) can improve under and overshooting. For
example using a nonlinear spring (¨̃xf = a + bx̃3f + c), pulls
far-displaced trajectories faster to the center of oscillation
compared to linear one. Performance of our method with
nonlinear spring is illustrated in Fig. 12. As it can be seen,
undershoots are more drastic compared to the linear spring and
the behavior around 5s is similar to human recovering; e.g.
undershoot around 27s in Fig. 10b. However, adaptation to
new trajectory is very slow compared to human performance.

Forced dynamical systems: In the proposed method, the
leader’s position and velocity is always being used for forward
prediction which imposes high control effort. Here, we propose
a more autonomous model. This method is developed upon
the assumption that human-follower switches between an au-
tonomous dynamics (internal model) and tracking. Therefore,
we propose the following dynamics.

ẍf (t) = f(xf (t)) + η(t)g(e(t)) (7)

In this model, f(x(t)) represents the internal dynamics which
can be adapted to the leader’s trajectory. Tracking of the
leader’s trajectory can be achieved by g(e(t)) where e(t) =
xl(t)−xf (t). Switching between relying on the internal model
and tracking is simulated by η(t). A simple choice for these
functions can be:




f(x(t)) = −kx(t)

g(e(t)) = Kpe(t) +Kdė(t)

η(t) =

{
1 if

∫ t
t−T |e(t)|dt > E

0 otherwise

(8)

Our choice of f(x) is the most simple oscillatory system as
well as PD-controller for tracking dynamics (g(e)). Switching
between internal model and tracking happens when the
integral of the error over last T seconds goes over a threshold
E. Performance of such dynamics for a sinusoidal trajectory
is shown in Fig. 13. The frequency and amplitude of this
reference trajectory is smoothly changing from 4rad/s to
1rad/s and from 1m to 2m. For this simulation, Kp = 60,
Kd = 15, T = 3s, and E = 1.5ms. Setting k = 16N/m
consistent with the trajectory is sufficient for good tracking
behavior until the leader changes its frequency and amplitude.
This sudden change in leader’s trajectory creates an error
between leader and follower which triggers the tracking
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Fig. 13. Switching between an autonomous internal dynamics and tracking.
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Fig. 14. Switching between anticipatory and compensatory behavior based
on the integration of the tracking error.

dynamics (η = 1); see Fig. 14. Reducing the error and tuning
k = 4N/m manually consistent with new frequency makes
the internal model sufficient for tracking. Transitory behavior
of this model is quite similar to human performance; e.g.
undershoot around 27s in Fig. 10b. Moreover, Fig. 14 shows
how the integration of error triggers the compensatory control
and how the absence of tracking error triggers back the
anticipatory control; i.e internal model. Switching between
anticipatory (f(x)) and compensatory (g(e)) control has been
proposed and studied in action coordination in groups and
individuals [13]. Evaluation of this model –forced dynamical
system– for the experimental data requires parameter tuning
which lays out of this paper scope.

VII. CONCLUSION

In this paper, we introduced a cognitive mechanism capable
of producing human-like motions for the mirror game setup.
We built this model based on qualitative assumptions and
observations from human data recordings. Moreover, using
quantitative methods, we tuned our model’s parameters to fit
the human data. We showed that simple dynamical models can
be used explain and reproduce the follower’s motion in the
LF setting of the mirror game. We also proposed a number
of avenues to improve the performance of the model, so as to
account for the adverse side-effects (overshoot and undershoot)
of forward models.
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