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Abstract

We present a methodology for identifying patients who
have experienced Paroxysmal Atrial Fibrillation (PAF)
among a given subject population. Our work is intended
as an initial step towards the design of an unobtrusive
portable system for concurrent detection and monitoring
of chronic cardiac conditions.

The methodology comprises two stages: off-line train-
ing and on-line analysis. During training the most signif-
icant features are selected using machine learning meth-
ods, without relying on a manual selection based on pre-
vious knowledge. Analysis is done in two phases: feature
extraction and detection of PAF patients. Light-weight al-
gorithms are employed in the feature extraction phase, al-
lowing the on-line implementation of this step on wear-
able sensor nodes. The detection phase employs tech-
niques borrowed from the field of failure prediction. While
these algorithms have found extensive application in di-
verse scenarios, their application to automated cardiac
analysis has not been sufficiently investigated to date.

The proposed methodology is able to correctly classify
68% of the test records in the PAF Prediction Challenge
database, performing comparably to state of the art off-
line algorithms. Nonetheless, the proposed method em-
ploys embedded signal processing for the critical feature
extraction step, which is executed on resource-constrained
body sensor nodes. This allows for a real-time and energy-
efficient implementation.

1. Introduction

Wireless Body Sensor Nodes (WBSNs) are low-power
devices able to capture bio-signals, such as electrocar-
diograms (ECGs), for an extended period of time. Data
recorded by these devices is of paramount clinical impor-
tance in the assessment of numerous heart-related condi-
tions. Among them, the prediction of Paroxysmal Atrial
Fibrillation (PAF) episodes and the risk stratification of
PAF-prone patients is particularly challenging, as it re-
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Figure 1. Application scenario: a WBSN performs ECG
feature extraction, while a local hub predicts/detects dan-
gerous cardiac episodes.

quires an analysis before the episodes to allow timely med-
ical assistance. Real-world solutions must also take into
account the constrained resources (e.g. battery, computa-
tional power, memory) of wearable devices, striving for
optimized light-weight algorithms.

In this paper, we describe a methodology for identifica-
tion of PAF patients and discuss experimental results. The
considered scenario is shown in Figure 1. The wearable
device monitors the ECG of a patient, filters the acqui-
sitions and extracts relevant features. These features are
further elaborated on by a local hub (e.g. a smartphone)
which performs a predictive assessment of the PAF risk of
the subject. Results are then transmitted to a remote server
and/or displayed locally for medical evaluation. The illus-
trated distributed system minimizes the transmission band-
width from the WBSN to the local hub because only rele-
vant features are transmitted over the power-hungry trans-
mission link, as opposed to the full set of acquired data
[1]. The illustrated distributed environment requires care-
fully tailored algorithms to perform the different applica-
tion phases. While effective methodologies for PAF pre-
diction are proposed in the literature, they either employ
computationally complex algorithms to derive classifica-
tion features (bispectrum and non-linear features in [2])
or a variety of sensors to acquire multiple bio-signals in
addition to ECG (e.g., blood pressure and pulse oxime-
try in [3]), thus negatively impacting the wearability of
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Figure 2. Methodology for designing the classification.

the resulting systems. Our framework instead only con-
siders the time-domain characteristics of each heartbeat,
extracted from ECG acquisitions. These features are col-
lected using the methodology proposed in [4], which can
be executed on low-power platforms with reduced memory
(tens of KBytes) and clock speed (few MHz).

The remaining part of this paper is organized as follows:
Section 2 explains the proposed methodology. Section 3
discusses obtained results while Section 4 concludes the
paper.

2. Detection Methodology

As shown in Figure 2, the design of classification algo-
rithms for PAF prediction is divided in a training and a test-
ing phase. Both phases are performed off-line on different
sets of recorded data. The same classification algorithms
used in testing are also used in the final on-line applica-
tion, which execute within the computational constraints
imposed by the application scenario described in Figure 1.

Four main steps are performed during the training phase:
feature extraction, system observation, feature selection
and model estimation [5]. All time-domain parameters
derived from the feature extraction step (e.g., the peak
and boundary of the characteristic waves composing each
heartbeat) are evaluated in the system observation phase to
discover correlations among them. A subset of features is
then selected based on their significance as predictors of
PAF. Finally, during model estimation different classifica-
tion algorithms and selected features are employed to dis-
criminate ECG records of PAF and non-PAF subjects. The
resulting trained predictor is then employed during the test
phase.

In the remaining part of this section, we explain in detail
how the four steps introduced above are performed.

2.1. Feature Extraction

Data used in our experiments are taken from the PAF
Prediction Challenge database [6]. Half of the records
present in the database are acquired from patients prone
to PAF (either immediately before fibrillation or at a time
distant from a fibrillation), the other half from healthy sub-
jects. No records of ongoing PAFs are considered, as we
aim at discerning PAF-prone patients before the occur-
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Figure 3. Fiducial points of a ECG heartbeat.

rence of a fibrillation. The database provides a training
set, consisting of 50 records of PAF patients and 50 records
of healthy subjects and a test set of 50 records. Excerpts
are 30 minutes long, concurrently acquired from two leads.
The challenge considered in this paper is to distinguish be-
tween subjects that experienced PAF in the past (group A)
and others that did not (group N).

Before feature extraction, the database is pre-processed
using the morphological filtering technique described in
[4]. Morphological filtering allows to retain useful infor-
mation from acquired signals while effectively eliminat-
ing noise originating from multiple sources such as low-
frequency baseline wandering (due to respiration and per-
spiration) and higher-frequency components (due to mus-
cular activity). The implementation is optimized for the
execution on resource-constrained embedded devices, only
requiring 4KB of memory and 15% of the duty cycle of a
state of the art WBSN running at 6MHz [4]. A further
step to enhance the quality of the acquired data is to com-
bine signals from different inputs (leads) before the fea-
ture extraction step. In this study, we employ a Root Mean
Square (RMS) combination of the two signals provided in
the PAF-prediction database.

An initial set of features is then derived from the record-
ings focusing on time-domain characteristics, which are
calculated on-node with little computational effort. The
employed algorithm, based on the Digital Wavelet Trans-
form (DWT) [4], retrieves the interval between two suc-
cessive heartbeats (R-R interval) and the fiducial points of
each heartbeat: the start, peak and end of each character-
istic wave (Figure 3). Similarly to the filtering step, DWT
delineation is also executed directly on WBSNs, requiring
18KB of memory and 5% of the duty cycle of the target
platform [4]. Delineation is performed both on the two in-
dividual signals provided by the PAF prediction database
and on their RMS combination. Only delineated points are
transmitted to the local hub, greatly reducing the transmis-
sion bandwidth over the energy-hungry wireless link.

The presence and position of fiducial points drives the
construction of a comprehensive feature set. For each
heartbeat, we consider the presence or absence of the P and
T waves. We also include in the feature set the duration of
each wave and the inter-wave intervals, as well as the dis-



tance between two consecutive heartbeats. Furthermore,
we consider the amplitude of each wave, in terms of area of
the waves and height of their peaks. The feature set is fur-
ther enriched by aggregating the retrieved data at different
resolutions. For each of the parameters described above,
we calculate their mean and standard deviation, both from
the start of the record and considering sliding windows of
5, 50, 150, 200 and 250 heart-beats. Moreover, we anno-
tate the pNN20 and pNN50 metrics, which are the propor-
tions of successive heart-beat intervals differing more than
20 and 50 ms with respect to all detected heartbeats.

2.2. System Observation, Feature Selection
and Model Estimation

After feature extraction, the features described in Sec-
tion 2.1 are observed and analyzed, with the goal of dis-
covering the most significant ones for discerning PAF and
non-PAF subjects. Limiting the number of features allows
not only to lower the computational complexity of the de-
tection/prediction algorithms, but in many cases also in-
creases their accuracy by filtering out misleading param-
eters. A classifier on single records is used, as shown in
Figure 2. In the following Subject Classification, subjects
are classified as PAF patients (group A) or not (group N)
depending on the percentage of anomalous records.

Classifiers require a training phase. In our case, as a first
step of this process we identify records in the training set
that have peculiar characteristics, which can be connected
to PAF patients. To mark these records for training, we use
an algorithm for anomaly detection named Local Outlier
Factor (LOF) [7]. In contrast to other anomaly detection
techniques that classify records just as outliers or not, LOF
gives an “outlier score” for each record, measuring its lo-
cal deviation with respect to its neighbors. LOF scores are
used to mark characteristic anomalous records of PAF pa-
tients. All the other records are marked as regular. The
classifiers are then trained to discern between annotated
records.

Different methods are considered to reduce the set of
significant features used in the classifiers: Correlation At-
tribute Evaluation, Gain Ration Attribute Evaluator and
Info Gain Attribute Evaluator [8]. The selected features
extracted from the training set are then employed to train
different classification algorithms (J48, Multilayer Per-
ceptron, JRip, Logistic Regression, Naive Bayes, OneR,
PART, Random Forest, REPTree and SVM) [8] for a com-
parative evaluation. Once training is completed, these clas-
sifiers are used to classify anomalous records in a different
data set. By counting the percentage of anomalous records,
subjects can be classified as belonging to group A or N.
The considered threshold is decided empirically during the
training phase.
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Figure 4. Histogram of anomalies detected in group A
(PAF-prone) and group N (healthy) subjects.

Table 1. Most significant features ranked by relevance

Relevance Feature name
0.568169 Presence/absence of P and T waves
0.243048 Duration of the QRS complex (avg. on 50 heartbeats)
0.241538 Duration of the QRS complex (avg. on 100 heartbeats)
0.240357 Start of QRS complex
0.237312 Duration of P wave (avg. on 200 heartbeats)
0.236797 Duration of P wave (avg. on 150 heartbeats)
0.233854 Duration of QRS complex (avg. on 150 heartbeats)
0.232693 Duration of P wave (avg. on 250 heartbeats)
0.229858 Duration of P wave (avg. on 100 heartbeats)
0.223869 Duration of QRS complex (avg. on 150 heartbeats)

3. Experimental Results

The annotation of training data as well as the training
of classifiers, the feature selection and finally, the clas-
sification itself is performed using the Weka toolset [9].
Weka supports all previously mentioned algorithms, either
directly or by means of external plugins. The LOF algo-
rithm follows the implementation described in [7].

The distribution of obtained LOF scores for healthy sub-
jects and PAF patients is shown in the histogram of Figure
4. It shows the normalized number of records assigned to
a specific LOF score. The distribution of scores is differ-
ent for the two cases. We are interested in the records that
are outliers for PAF-prone (group A) subjects. Therefore,
based on the observed clusters in Figure 4, we consider the
records with an LOF score between 4.1 and 7.3 as abnor-
mal.

Among the feature selection methods mentioned in Sec-
tion 2.2, the best results are obtained by Correlation At-
tribute Evaluation. This algorithm measures the correla-
tion between each attribute and the considered class. By
means of this method, the features have been ranked by rel-
evance and the ten most relevant ones have been selected



Table 2. Accuracy of the J48 and Multilayer Perceptron
Classifiers

J48 Multilayer
Perceptron

Correctly classified subjects 34/50 (68%) 34/50 (68%)
Correctly classified group A subjects 20/28 (71%) 19/28 (68%)
Precision on group N subjects 0.64 0.63
Recall on group N subjects 0.64 0.68
Precision on group A subjects 0.71 0.73
Recall on group A subjects 0.71 0.68

out of the 95 available ones (see Table 1). By changing
the number of selected features, the trade-off between ac-
curacy and computational resources required by the clas-
sification algorithm can be tuned. The threshold on the
number of anomalous records that is required to identify a
subject as belonging to group A has been set to 2% empir-
ically by testing different thresholds between 1 and 10%:
the ones above 2% provide decreased precision, while the
ones below 2% provide decreased recall.

The best performing classifiers with respect to the num-
ber of correctly classified data are J48 and MultilayerPer-
ceptron. The classification results for these classifiers are
shown in Table 2. Our approach has a classification perfor-
mance of 68% in the two cases considered, which is in line
with other state of the art methods [10]. The main advan-
tage of the developed framework lies in the on-node im-
plementation of the feature extraction step, which greatly
decreases the energy requirements of the sensor nodes by
decreasing its transmission bandwidth, leading to a power-
efficient implementation. The proposed system is there-
fore suitable for unobtrusive long-term monitoring, paving
the way for novel and more efficient solutions in e-health
monitoring systems and personalized healthcare.

4. Conclusions

We described how a machine learning approach derived
from failure prediction methods can be used in the scenario
of PAF risk assessment. Our approach has the following
benefits: First, it is able to assess the predictive value of
multiple complex parameters as PAF markers. Second, the
correlation between features can be detected, effectively
pruning the feature set by retaining only the most signif-
icant ones. Third, the proposed framework is realized on
systems based on wireless body sensor nodes, by employ-
ing an embedded DSP for morphological ECG filtering
and DWT delineation. Experimental evidence shows that
the accuracy of our on-line approach is in line with off-line
state of the art methods.
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