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Conventional vision-based robotic systems that must operate quickly require high video
frame rates and consequently high computational costs. Visual response latencies are
lower-bound by the frame period, e.g., 20 ms for 50 Hz frame rate. This paper shows how
an asynchronous neuromorphic dynamic vision sensor (DVS) silicon retina is used to build
a fast self-calibrating robotic goalie, which offers high update rates and low latency at
low CPU load. Independent and asynchronous per pixel illumination change events from
the DVS signify moving objects and are used in software to track multiple balls. Motor
actions to block the most “threatening” ball are based on measured ball positions and
velocities. The goalie also sees its single-axis goalie arm and calibrates the motor output
map during idle periods so that it can plan open-loop arm movements to desired visual
locations. Blocking capability is about 80% for balls shot from 1 m from the goal even with
the fastest-shots, and approaches 100% accuracy when the ball does not beat the limits of
the servo motor to move the arm to the necessary position in time. Running with standard
USB buses under a standard preemptive multitasking operating system (Windows), the
goalie robot achieves median update rates of 550 Hz, with latencies of 2.2 ± 2 ms from ball
movement to motor command at a peak CPU load of less than 4%. Practical observations
and measurements of USB device latency are provided1.

Keywords: asynchronous vision sensor, address-event representation, AER, high-speed visually guided robotics,
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INTRODUCTION
The notion of a “frame” of video data is embedded in machine
vision. High speed frame-based vision is expensive because it is
based on a series of pictures taken at a constant rate. The pix-
els are sampled repetitively even if their values are unchanged.
Short-latency vision problems require high frame rate and pro-
duce massive amount of input data. At high frame rate, few CPU
instructions are available for processing each pixel. For example,
a VGA 640 × 480 pixel image sensor at 1 kHz frame rate deliv-
ers data at a rate of 307 M pixels/s, or a pixel every 3.3 ns. At
usable instruction rates of 1 GHz a computer would only be able
to dedicate 3 instructions per pixel to processing this informa-
tion. This high data rate, besides requiring specialized computer
interfaces and cabling (Wilson, 2007), makes it expensive in terms
of power to deal with the data, especially in real time or embed-
ded devices. Specialized high-frame-rate machine vision cameras
with region of interest (ROI) or binning (sub-sampling) capabil-
ities can reduce the amount of data significantly, but the ROI and
binning must be controlled by software and the ROI is limited
to a single region, reducing its usefulness for tracking multiple
objects. Tracking a single object requires steering the ROI to fol-
low the object. The latency of this ROI control must be kept
short to avoid losing the object and ROI control can become quite
complex to implement. Ref. (Graetzel et al., 2006), for example,

1During this work the authors were with the Inst. of Neuroinformatics,
Winterhurerstr. 190, UNI-ETH Zurich, CH-8057 Zurich, Switzerland., e-mail:
tobi@ini.uzh.ch, phone: +41(44) 635-3038.

describes a fruit-fly wing-beat analyzer that uses Kalman filtering
to move the ROI in anticipation of where it should be accord-
ing to the Kalman filter parameters, and even to time-multiplex
the ROI between different parts of the scene. The computer must
process all the pixels for each ROI or binned frame of data and
ROI control latencies must be kept short if the object motion is
not predictable.

By contrast, in the camera used for this paper, data are gen-
erated and transmitted asynchronously only from pixels with
changing brightness. In a situation where the camera is fixed
and the illumination is not varying only moving objects gener-
ate events. This situation reduces the delay compared to waiting
for and processing an entire frame. Also, processor power con-
sumption is related to the scene activity and can be reduced
by shorter processing time and longer processor sleep phases
between processing cycles.

This paper describes the results of experiments in low-latency
visual robotics using an asynchronous dynamic vision sensor
(DVS) (Lichtsteiner et al., 2006, 2007) as the input sensor, a stan-
dard PC as the processor, standard USB interfaces, and a standard
hobby servo motor as the output.

Specifically, this paper demonstrates that independent pixel
event data of a DVS are well-suited for object tracking and real-
time visual feedback control. The simple but highly efficient
object-tracking algorithm is implemented on a general purpose
CPU. The experiments show that such a robot, although based
on traditional, cheap, ubiquitous PC components like USB and
a standard preemptive operating system (Windows) a simple
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programmable Java control application achieves reaction times
on par with high speed conventional machine vision hardware
running on dedicated real-time operating systems consuming the
resources of an entire computer.

This paper expands on a brief conference report (Delbruck
and Lichtsteiner, 2007) by including the new feature of self-
calibration, more detailed descriptions of the algorithms, and
new measurements of performance and latency particularly relat-
ing to USB interfaces. Other related work that has integrated
an event-based neuromorphic vision sensor in a robot includes
CAVIAR, a completely spike-hardware based visual tracking sys-
tem (Serrano-Gotarredona et al., 2009), a pencil balancing robot
using a pair of embedded-processor DVS cameras (Conradt et al.,
2009a), which was first prototyped using two DVS cameras
interfaced by USB (Conradt et al., 2009b), a demonstration of
real-time stereo distance estimation computed on an FPGA with
2 DVS cameras (Domínguez-Morales et al., 2012), an embed-
ded FPGA-based visual feedback system using a DVS (Linares-
Barranco et al., 2007), and a micro gripper haptic feedback system
(Ni et al., 2013) which uses a DVS as one of the two input sensors.

MATERIALS AND METHODS: GOALIE ARCHITECTURE
The application presented here is a self-calibrating soccer goalie
robot (Figure 1). The robotic goalie blocks balls shot at a goal
using a single-axis arm with only a single degree of freedom.
Figure 1 shows our goalie robot hardware architecture. Players
attempt to score by shooting balls at the goal (either by rolling or
flicking with their fingernails) and the goalie robot tries to block
all balls from entering the goal. Only balls that roll or slide along
or near the table surface can be blocked and this limitation is what
enables the solution to the blocking problem without stereo vision
or some other means of determining the height of the ball over
the table. The fact that the balls move along the surface of the
table means that their 3D position can (implicitly in this applica-
tion) be determined from the ball’s 2D image position. The goalie
is self-calibrating i.e., by visual observation it learns the motor
control to arm position relationship. When turned on the goalie
is one of 4 distinct states. In the active state, the goalie has deter-
mined that a ball is approaching the goal that can be blocked and
tries to block it. Between balls, the goalie is relaxed to the middle
position. When no definite balls have been seen for a few sec-
onds, the goalie enters sleeping state where it does not respond to
every movement in the scene. This state reduces apparently spas-
tic movements in response to people walking by, hands, etc. After
several minutes in sleeping state the goalie enters the learning in
which it recalibrates itself. The goalie wakes up from sleeping to
become active when it again sees a definite ball.

The rest of this section will describe the individual compo-
nents of the system.

DYNAMIC VISION SENSOR
Conventional image sensors see the world as a sequence of frames,
each consisting of many pixels. In contrast, the DVS is an example
of a sensor that outputs digital address events (spikes) in response
of temporal contrast at the moments that pixels see changing
intensity (Lichtsteiner et al., 2006, 2007; Delbruck et al., 2010)
(Figure 2). Like an abstraction of some classes of retinal ganglion

FIGURE 1 | Goalie robot illustration and a photo of the setup, showing

the placement of vision sensor, goalie arm, and goal. The white or
orange balls have a diameter of 3 or 4 cm and are viewed against the light
brown wood table. The reflectance ratio between balls and table is about
1.3. The retina view extends out to 1 m from the goal line. The goalie hand
is 5 cm wide and the goal is 45 cm wide.

cell spikes seen in biology, each event that is output from the
DVS indicates that the log intensity at a pixel has changed by an
amount T since the last event. T is a global event threshold which
is typically set to about 15% contrast in this goalie robot applica-
tion. In contrast to biology, the serial data path used requires the
events to carry address information of what pixels number has
changed. The address encodes the positive or negative brightness
changes (ON or OFF) with one bit and the rest of the bits encode
the row and column addresses of the triggering pixel. This repre-
sentation of “change in log intensity” encodes scene reflectance
change, as long as the illumination is constant over time, but
not necessarily over space. Because this computation is based on
a compressive logarithmic transformation in each pixel, it also
allows for wide dynamic range operation (120 dB, compared with
e.g., 60 dB for a high quality traditional image sensor).

This neuromorphic abstraction of the transient pathway seen
in biology turns out to be useful for a number of reasons. The
wide dynamic range means that the sensor can be used with
uncontrolled natural lighting, even when the scene illumination
is non-uniform and includes strong shadows, as long as they are
not moving. The asynchronous response property also means
that the events have the timing precision of the pixel response
rather than being quantized to the traditional frame rate. Thus,
the “effective frame rate” is typically several kHz and is set by
the available illumination which determines the pixel bandwidth.
The temporal redundancy reduction reduces the output data rate
for scenes in which most pixels are not changing. The design of
the pixel also allows for uniformity of response: the mismatch
between pixel contrast thresholds is 2.1% contrast and the event
threshold can be set down to 10% contrast, allowing the device
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FIGURE 2 | Characteristics of the dynamic vision sensor (Tmpdiff128).

(A) the dynamic vision sensor with its lens and USB2.0 interface. (B) A die
photograph. Pixels generate address-events, with the address formed from
the x, y, location and ON or OFF type (C) an abstracted schematic of the
pixel, which responds with events to fixed-size changes of log intensity. (D)

How the ON and OFF events are internally represented and output in
response to an input signal. Figure adapted from Lichtsteiner et al. (2006).

to sense real-world contrast signals rather than only artificial high
contrast stimuli. The vision sensor has integrated digitally con-
trolled biases that minimize chip-to-chip variation in parameters
and temperature sensitivity. Equipped with an USB2.0 high-speed
interface, the DVS camera delivers the time-stamped address-
event representation (AER) address-events to a host PC with
timestamp resolution of 1 us.

EVENT-DRIVEN TRACKING ALGORITHM
Events from the DVS are processed inside jAER, an open-source
Java software infrastructure for processing event-based sensor
outputs (2007). The goalie implementation consists of about 3 k
non-comment lines of code. The goalie software implementation
is open-sourced in jAER.

The ball and arm tracker is an event-driven cluster tracker
described briefly in (Lichtsteiner et al., 2006; Litzenberger
et al., 2006) (Figure 3) and further enhanced in this work.
This algorithm is inspired by the mean-shift approach used in

FIGURE 3 | Snapshot of action showing 128 events (all events within

2.9 ms) from the vision sensor. It shows 5 tracked objects (the middle 3
are real balls, the top one is the shooter’s hand, and the bottom object is the
goalie arm). The Attacking ball rolling toward the goal (and being blocked) is
marked with a circle; other balls are tracked but ignored. The thin squares
represent potential clusters that have not received sufficient support. The
velocity vectors of each ball are also shown as a slightly thicker line and
have been computed by least squares linear regression over the past 10
packets of events. The goalie arm is being moved to the left bar and the
presently tracked location of the arm is shown as a light bar inside the arm
cluster. The state of the goalie is indicated as “active” meaning a tracked
ball is being blocked. The balls generate average event rates of 3–30 keps
(kilo events per second). The mean event rate for this packet was 44 keps.

frame-based vision (Cheng, 1995; Comaniciu and Ramesh, 2000).
Each “cluster” models a moving object as a source of events.
Visible clusters are indicated by the boxes in Figure 3. Events
that fall within the cluster move the cluster position, and a clus-
ter is only considered supported (“visible”) when it has received
a threshold number of events. Clusters that lose support for a
threshold period are pruned. Overlapping clusters are merged
periodically at 1 ms intervals. Cluster positions are updated by
using a mixing factor that mixes the old position with the new
observations using fixed factors. Thus, the time constant gov-
erning cluster position is inversely proportional to the evidence
(event rate).

The advantages of the cluster tracker are:

(1) There is no frame correspondence problem because
the events continuously update the cluster locations during
the movement of the objects, and the faster the objects move,
the more events they generate.

(2) Only pixels that generate events need to be processed.
The cost of this processing is dominated by the search
for the nearest existing cluster, which is a cheap operation
because there are only a few clusters.

(3) Memory cost is low because there is no full frame memory,
only cluster memory, and each cluster requires only a few
hundred bytes of memory.
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In the goalie application the objects have a known size and roll
on a flat surface so tracked clusters have an image space radius
determined by their perspective location in the scene.

The algorithm runs on each packet of combined events
received from USB transmission, typically 128 (or fewer):

(1) Pruning: Iterate over all existing clusters, pruning out those
clusters that have not received sufficient support. A cluster is
pruned if it has not received an event to support it within a
given time, typically 10 ms in this application.

(2) Merging: Iterate over all clusters to merge overlapping clus-
ters. This merging operation is necessary because new clus-
ters can be formed when an object grows larger as it
approaches the vision sensor. For each cluster rectangle that
overlaps the rectangle of another cluster, merge the two clus-
ters into a new cluster and discard the previous clusters. The
new cluster takes on the history of the older two clusters and
its position is the weighted average of the locations of the
source clusters. The averaging is weighted by the number of
events in each source cluster. This weighting reduces the jit-
ter in the cluster location caused by merging. This iteration
continues as long as there are overlapping clusters.

(3) Positioning: For each event, find the nearest cluster that con-
tains the event. The predicted location of each cluster that is
considered in this step is computed using its present cluster
location combined with the present cluster velocity estimate
and the time between this event and the last one that updated
the cluster. This way, an event can be in a cluster’s predicted
location even if it is not inside the last location of the cluster.

(a) If the event is within the cluster, add the event to the
cluster by pushing the cluster a bit toward the event and
updating the last event time of the cluster. The new clus-
ter location �xn+1 is given by mixing the predicted value of
the old location (�xn + �v�t), where �v is the cluster veloc-
ity and �t is the time between this event and the last one
that updated this cluster, with the event location �eusing
an adjustable mixing factor α ≈ 0.01:

�xn + 1 = (1 − α)(�xn + vn�t) + α�e

This step implements a predictive tracker by giving
clusters a kind of momentum that helps keep clusters
attached to rapidly moving objects even if they emit few
events. If the present event appears at the predicted loca-
tion of the cluster, the clusters location is only modified
to the predicted location. Events from the leading edge of
the object pull the cluster forward and speed it up, while
events at the cluster’s trailing edge pull the cluster back
and slow it down.

(b) If the event is not in any cluster, seed a new cluster if there
are spare unused clusters to allocate. The goalie typically
uses 20 potential clusters.

A cluster is not marked as “visible” until it receives a certain
number of events (typically 10 in the goalie) and is moving at
a minimum speed (typically 20 pixels/s in the goalie).

The goalie robot determines the ball object as the cluster that
will next hit the goal line, based on the cluster positions and
velocities. The ball cluster’s location and velocity measurement
are used to position the servo to intercept the ball. If there is no
threatening ball, the goalie relaxes.

Accurate and rapid measurement of cluster velocity is impor-
tant in the goalie application because it allows forward prediction
of the proper position of the arm. A number of algorithms
for estimating cluster velocity were tried. Low-pass filtering the
instantaneous cluster velocity estimates that come from the clus-
ter movements caused by each event is cheap to compute, but was
not optimal because the lowpass filter takes too long to settle to an
accurate estimate. The method presently used is a “rolling” least
squares linear regression on the cluster locations at the ends of
the last N packets of events. This method is almost as cheap to
compute because it only updates least-squares summary statistics
by adding in the new location and removing the oldest location,
and it instantaneously settles to an “optimal” estimate. A value of
N = 10 computes velocity estimates over about the last 10–30 ms
of ball location.

GOALIE SELF-CALIBRATION
In an earlier version of the goalie (Delbruck and Lichtsteiner,
2007) the arm position was specified by adjustable “offset” and
“gain” parameters that mapped a motor command to a certain
arm position. It was difficult to calibrate this goalie accurately and
every time the aim of the vision sensor was adjusted or moved
accidentally (the goal bounces around quite a bit due to the arm
movements) laborious manual calibration had to be done again.
The goalie arm was also not visible to the goalie and so there was
no straightforward way for the goalie to calibrate itself. In the
present goalie, the orientation of the arm was changed so that it
swings on a horizontal plane rather than hanging like a pendu-
lum and used a wide angle lens (3.6 mm) that allows the vision
sensor to see both incoming balls and the goalie’s hand. The hori-
zontal arm orientation has the additional advantage that it allows
the goalie to block corner shots much better.

Goalie calibration occurs in the learning state. When active,
the arm position is tracked by using a motion tracker like the
ball tracker but with a single cluster sized to the size and aspect
ratio of the arm (Figure 3). The x position of the arm tracker is
the arm coordinate in image space. The motor is controlled in
coordinates chosen in software to span [0-1] units. The calibra-
tion algorithm has the following steps demonstrated by the data
shown in Figure 4:

(1) The present calibration is checked by randomly placing the
arm in 5 pixel positions (using the current calibration param-
eters to determine the mapping) and measuring the actual
arm position in pixel coordinates. If the average absolute
error is smaller than a threshold (typically 5 pixels) calibra-
tion is finished. In the situation shown in Figure 4A, the
calibration is initially very incorrect, and learning is initiated.

(2) If calibration is needed, the algorithm places the arm in ran-
domly chosen motor positions within a range specified in
a GUI interface to be in roughly in the center of the field
of view. (The GUI allows interactive determination of the
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FIGURE 4 | Goalie self-calibration. (A) Desired and actual arm position
before and after calibration (the desired positions are the inverse mapping
from motor commands in the allowed physical range to the pixel space). (B)

Example measured arm positions vs. servo command used for least
squares linear regression calibration.

servo motor limits). For each placement position, the actual
pixel position is measured from the arm tracker. Typically
20 points are collected. A least-squares linear regression then
determines the linear mapping from desired pixel position
to motor position (Figure 4B). The algorithm then goes
back to step 1. In Figure 4A, the calibration is checked after
fitting and is satisfactory, so the calibration algorithms is
terminated.

Calibration typically achieves accuracy within 2–5 pixels over the
entire range. The linear approximation sin(x) = xnear x = 0 was
sufficiently accurate that it was not necessary to account for the
sinusoidal relation between servo command and location of the
arm across the goal.

USB INTERFACES AND SERVO CONTROL
Both the vision sensor and the servo controller use the Java
interface provided by the Thesycon Windows USB driver develop-
ment kit for Windows (www.thesycon.de). The servo commands
are sent to the microcontroller in a separate writer thread that
takes commands placed in a queue by the retina event process-
ing thread. This decoupling allows for full speed USB 2.0 event
processing although servo controller commands are transmit-
ted using USB full-speed protocol at 12 Mbps (Axelson, 2001).
The servo motor control command rate is 500 Hz, because each
command requires 2 polls from the host controller and the min-
imal possible USB2.0 full-speed polling interval of 1 ms. The
command queue length is set to one to minimize latency. New
commands replace old ones if they have not yet been transmitted.
Likewise, the incoming DVS events are transmitted in 128-event
(or smaller) blocks and processed in a high priority thread that
runs independently from the GUI or rendering threads. The DVS
uses a USB2.0 high-speed interface with a data rate of 480 Mbps
and a polling interval of 128 us. The USB interface threads were
set to high priority, with highest priority given to the servo writ-
ing thread. Java’s maximum priority is equivalent to Windows
TIME_CRITICAL priority (Oaks and Wong, 2004).

A HiTec HS-6965 MG digital servo moves the goalie arm. This
$120 hobby digital servo accepts pulse-width modulation (PWM)
input up to at least the183 Hz frequency that we used and is rated

to rotate 60◦ with no load in 100 ms. It can move the 40 cm long
20 g mass arm across the goal in about 100 ms and is slightly
(∼10%) underdamped with the goalie arm as only load. Other
fast servos can be severely underdamped and actually oscillate
(e.g., the Futaba S9253). The remaining overshoot with the HiTec
servo is enough that the servo occasionally overshoots its intended
location enough that the ball is not blocked.

A custom board based on the Silicon Labs C8051F320 USB2.0
full-speed microcontroller (www.silabs.com) interfaces between
the PC and the servo motor. The microcontroller accepts com-
mands over a USB bulk endpoint (Axelson, 2001) that program
the PWM output width. The servo motor is powered directly
by the 5V USB VBUS and 0.5F of ultracapacitor on the con-
troller board helps to ballast the 5V USB VBUS voltage. The servo
controller design is open-sourced in jAER (2007).

The servo arm is constructed from a paint stirrer stick with a
balsa wood “hand” glued to its end. A goal of this project was to
make this hand as small as possible to demonstrate the precision
of tracking. The hand width used in this study was about 1.5 times
the ball width (Figure 1).

RESULTS
Ordinarily a good shooter can aim most of the shots within the
goal; thus a good shooter can potentially score on most shots. In
a trial with several experienced shooters who were told they could
take as much time as they needed to shoot, it required an aver-
age of 40 shots to score 10 goals. This means that each ball had to
be shot about 4 times to score once, representing a shot success
rate of 25%. A post experiment analysis of the data showed that
the shooters could potentially have scored on 75% of their shots,
with the rest of the shots representing misses wide of the goal
(the shooters were intentionally aiming at the corners of the goal).
Therefore, they had 30 shots on the goal and the goalie blocked 20
of these shots. The missed blocks consisted of a mixture of shots
were not blocked for three reasons, ranked from highest to lowest
occurrence: (1) they were so hard that they exceeded the ability
of the servo to move the arm to the correct position in time; (2)
tracking noise so that the arm position was not correctly com-
puted well-enough; (3) servo overshoot, where the servo tries to
move the arm to the correct position but because of the under-
damped dynamics, the arm momentarily overshoots the correct
position, allowing the ball to pass by.

The cluster tracker algorithm is effective for ignoring dis-
tracters In Figure 3 four balls are simultaneously tracked. The
topmost “ball” is probably the shooter’s hand. Two balls are
rolling away from the goal and are thus ignored. One is approach-
ing the goal and the arm is moving to block it, based on the
ball’s position and velocity. Ignoring the many distracters would
be impossible using a simpler method of ball tracking, such as
median event location. Figure 5 shows the dynamics of a single
blocking event for a ball that was shot quite fast, so that that it
covers the distance from the top of the scene to the goal in about
100 ms. During the ball’s 100 ms approach, about 50 packets of
events, and thus samples of the ball position (“ballx” and “bally”),
are captured by the tracker. The bounce off the arm is visible as
the inflection in bally. The “desired arm position” is shown also
as a function of time and is computed from ballx, bally, and the
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FIGURE 5 | Single shot dynamics. (A) 2D histogram of spike activity
caused by balls and goalie arm over 160 ms. (B) Time course of blocking
one ball.

ball x and y velocities (not shown). The ball velocities are esti-
mated by rolling linear regressions over the past 10 ball position
samples for ballx and bally vs. time. The “actual arm position”
is the position of the arm as measured by the arm tracker and
it can be seen that the arm requires about 80 ms to move to the
correct blocking position and also exhibits about 10% overshoot
which is due to slight under-damping in the servo’s controller.
The response latency is dominated by the arm movement and
the delay between knowing the desired arm position and the
initiation of arm movement.

Events are processed by the goalie software at a rate of 2 Meps
(million events per second) on a 2.1 GHz Pentium M laptop run-
ning Windows XP, Java JVM version 1.6. During typical goalie
operation, the average event rate is 20 keps, varying between
<1 keps when idle to a maximum of 100 keps during active
10 ms windows of time. For buffers of 128 events processing the
goalie code requires about 60 us. Figure 6B shows a histogram
of processing intervals as recorded on the host PC using Java’s
System.nanoTime(). The median interval is 1.8 ms (the peak in the
histogram at 10 ms is caused by forced transfers of data from the
vision sensor at 100 Hz rate even when the USB FIFOs have not
filled). During processing the computer’s CPU load never rises
over 4% (Figure 6D).

In this system sensor-to-computer latency is dominated by
the USB FIFO filling time. The vision sensor pixel latency is
inversely proportional to illumination (Lichtsteiner et al., 2007)
and is about 100 us at normal indoor office illumination levels
of 500 lux. A single ball that produces events at a peak rate of
100 keps causes a device-side 128-event USB packet about every
1 ms, although bursts of events can cause USB transfers that are
received as often as every 128 us, the minimum USB2.0 high-
speed polling interval. Increased retina activity (caused, say, by
the arm movement) actually reduces this latency, but only because
the USB device FIFO buffers are filled more rapidly. We used host
side USB packet sizes of 256 events to match the maximum 500 Hz
rate of writing commands to the servo motor, and the distribution
of packet sizes reflects this (Figure 6C).

To measure latency, an artificial stimulus consisting of a flash-
ing LED was set up so that it could be activated in bursts to
mimic an instantaneously appearing ball. The servo controller
was programmed to toggle an output pin when it received

FIGURE 6 | Statistics. (A) Latency measurements. Stimulus was flashing
LED turned on at time 0. (B) Host packet processing interval distribution
during normal operation while goalie is under attack. (C) Histogram of
number of events per packet during normal operation. (D) Processor load
during normal operation (2 balls/second attack).

a servo motor command. The start of PWM output from
the servo controller and the actual start of motor movement
were measured. (The motor movement was measured from the
power supply drop on the servo power supply). The measured
median latency of 2.2 ms between the beginning of the LED
flashing and the microcontroller output is the response latency
leaving out the latency of the random PWM phase and the
servo motor (Figure 6A). This latency was achieved by setting
the servo controller USB2.0 full speed interrupt polling inter-
val to 1 ms in the device’s USB descriptor (Axelson, 2001);
using the default polling interval of 10 ms resulted in sub-
stantially higher median latency of 5.5 ms that varied approx-
imately bi-modally between 3 and 10 ms. The total latency
for actuating the motor (5–15 ms) is dominated by the vari-
able delay of PWM phase. The 183 Hz servo pulse frequency
used in the robot has a period of 5.5 ms. A custom servo
which directly accepted USB commands could reduce servo
latency to about 1–2 ms, the delay to send a single USB1.1
command.

CONCLUSION
The main achievement of this work is the concrete demonstra-
tion of a spike-event driven hybrid of a neuromorphic-sensor
coupled to conventional procedural processing for low latency
object tracking, sensory motor processing, and self-calibration.
Secondary achievements are developments of robust and high
speed event-based object tracking and velocity estimation algo-
rithms. This paper also reports practical observations on the use
of USB interfaces for sensors and actuators.

The goalie robot can successfully block balls even when these
are low contrast white-on-gray objects and there are many back-
ground distracters. Running with standard USB buses for vision
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sensor input and servo-motor output under a standard preemp-
tive multitasking operating system, this system achieves median
update rates of 550 Hz, with latencies of 2.2 ± 2 ms from ball
movement to motor command at a peak CPU load of less
than 4%.

A comparable system based on using a standard image sen-
sor would require a frame rate of at least 500 Hz. At the same
spatial resolution (16 k pixels), a computer would need to con-
tinuously process 16 MBps of raw pixel information (with an
8-bit sensor output) to extract the basic visual information about
changing pixels. Although this computation is certainly possi-
ble, the scaling to higher resolution is very unfavorable to the
frame-based approach. Increasing the resolution to VGA resolu-
tion (640 × 480) at 1 kHz, for instance, would require processing
307 MBps, about 3 times the effective capacity of a high speed
USB 2.0 interface and would allow only 3.3 ns per pixel of process-
ing time. A VGA-sized DVS would generate about 18 times more
data than the 128 × 128 sensor used for this paper if the objects
filled a proportionally larger number of pixels, but even then
the processing of the estimated 400 keps from the sensor would
barely load a present-day’s microprocessor CPU load and would
be within the capabilities of modestly-powered embedded proces-
sors. As demonstrated by this work and other implementations
(Linares-Barranco et al., 2007; Conradt et al., 2009a; Domínguez-
Morales et al., 2012; Ni et al., 2013), the use of event-driven
sensors can enable faster and lower-power robots of the future.
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