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The performance of high-temperature solar reactors incorporating porous ceramic materials that serve as
radiative absorbers and chemical reaction sites can be improved significantly by tailoring their pore
structure. We investigated the changes in their effective heat and mass transport properties with
increasing mass loading of porous ceramics fabricated by the replica method. We applied a methodology
consisting of the experimental characterization of the structure via 3D tomographic techniques coupled
to pore-level direct numerical simulations for the determination of the effective transport properties. This
approach was extended by using digital image processing on the structure data to allow for artificial
changes in the morphological characteristics – corresponding to actual variations in the fabrication
process. We derived transport correlations of porous ceria foam with varying mass loading, i.e. reticulate
to dense foams with porosity from 0.85 to 0.45. We observed that the correlations proposed in literature do
not accurately describe the behavior of low-porosity foams. The numerical findings of this study provide
guidance for pore-level engineering of materials used in solar reactors and other high-temperature heat
and mass transfer applications.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Porous ceramic materials exhibit favorable morphological,
mechanical, and transport properties when applied as absorbers
[1], heat exchangers [2], insulators [3], chemical reaction site,
and reactants [4], in a wide variety of high-temperature applica-
tions ranging from chemical processing, combustion, and filtering,
to solar reactor technology. The effective heat and mass transport
properties of these porous materials largely depend on their mor-
phology [5,6]. For example, solar reactors designed for thermo-
chemical water and CO2-splitting using porous, ceria-based redox
materials have shown an increase in the efficiency by a factor of
four when changing the material’s morphology from monolithic-
type geometry with lm-range pore size to a foam-type geometry
with mm-range pore size [1,4]. Thus, pore-level engineering of
materials can significantly improve the performance of solar
reactors.

Frequently, the effective transport properties of macroporous
media are approximated by empirical correlations or semi-empirical
and analytical models derived for simplified morphologies or unit-
cell structures. To predict the permeability of a porous medium,
approximations based on the semi-heuristic packed-bed model of
Carman and Kozeny [7] are used with a modified shape factor for
e.g. assemblies of parallel cylinders [8] and fibrous beds [9]. Another
drag flow approach was analytically derived by Ergun [10] for
packed columns. An alternative flow analysis considers the
Hagen–Poiseuille relation in a stack of tubes with diameters equal
to the pore size [5]. To predict the Dupuit–Forchheimer coefficient,
semi-empirical models based on Ergun’s equation (Ergun [10] and
Macdonald et al. [11]) and phenomenological correlations proposed
by Ward [12] and Cooke [13] are developed for packed beds. These
models exhibit an inverse proportionality to the permeability. The
tortuosity has mainly been investigated in porous sediment layers
by Archie [14], and Iversen and Jorgensen [15], who found
porosity-dependent empirical correlations, and by Weissberg [16],
and Boudreau and Meysman [17], who derived geometrical models
based on stacked spheres and disks, respectively. The volume
averaged interfacial heat transfer coefficient is commonly expressed
by correlations Nu = f(Re,Pr), as suggested by Wakao et al. [18].
Kuwahara et al. [19] modeled an uniform, 2D flow through a
periodic arrangement of isothermal square rods and fitted the
ztheoretically derived correlation to the heuristic model of Wakao
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Nomenclature

Symbols
A empirical fitting parameter in correlation of Calmidi and

Mahajan
A0 specific surface area (m2 m�3)
a free fitting parameter in Archie’s correlation
a0, a1, a2 constants in Eq. (1) (m2 m�3)
b geometrical model parameter in Weissberg correlation
b0, b1 constants in Eq. (2) (m)
c empirical fitting parameter of Iversen and Jorgensen
cp specific heat capacity at constant pressure (J kg�1 K�1)
d pore diameter (m)
d geometrical model parameter in Eq. (10)
e0, e1, e2, e3, e4, e5 constants in Eq. (11)
F Dupuit–Forchheimer coefficient (m�1)
f three-resistor model parameter
g0, g1 constants in Eq. (12)
h heat transfer coefficient (W m�1 K�1)
i phase indices
l length (m)
K permeability (m2)
k thermal conductivity (W m�1 K�1)
kK shape factor
m fitting parameter in Cooke’s correlation
n unit normal vector
n Fitting parameter in Cooke’s correlation Eq. (8) and

empirical fitting parameter in correlation of Calmidi
and Mahajan in Table 2

n
X

number of discretized angles
Nu Nusselt number
p pressure (Pa)
Pr Prandtl number
q heat rate (W)
r reflectivity
Re Reynolds number
T temperature (K)
u velocity vector (m s�1)
uD Darcean velocity (m s�1)
V volume (m3)
z Cartesian axis in main flow direction

Greek symbols
b extinction coefficient (m�1)
e Porosity
f dimensionless effective thermal conductivity
g dimensionless fluid thermal conductivity
j absorption coefficient (m�1)
k wavelength (m)
l dynamic viscosity (kg m�1 s�1)
ls cosine of reflection angle
q density (kg m�3)
r scattering coefficient (m�1)
s tortuosity
U scattering phase function
w scalar property (–)
W empirical fitting parameter for the extinction coefficient

models

Subscripts
b blackbody
e effective
f fluid
j counter
l local
lm logarithmic mean
mf mean fluid
r radiation
s solid
sf solid–fluid interface

Abbreviations
CT computed tomography
MC Monte Carlo
Nu Nusselt
Pr Prandtl
Re Reynold
REV representative elementary volume
RMS root mean square
RPC reticulate porous ceramic
RTE radiative transfer equation
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et al. Gunn [20] studied convective heat transfer in packed beds
with a stochastic model. Artificial unit-cell structures were mainly
used to study thermal conduction in porous materials. Bhattacharya
et al. [21] modeled a 2D structure as a field of hexagons with hexag-
onal nodes. Boomsma and Poulikakos [2] used 3D tetrakaidecahe-
dron cell elements with cubes at the intersection to derive an
analytical heat conduction correlation. Russell [22] and Loeb [23]
published theoretical models for the simple porous structure con-
sisting of equally sized void cubes distributed in the solid matrix.
Maxwell [24] derived a porosity dependent upper bound for the
effective thermal conductivity of a two-phase medium. A phenom-
enological correlation is provided by the three-resistor model of
Wyllie and Southwick [25]. Calmidi and Mahajan [26] determined
the effective thermal conductivity of aluminum foams empirically.
Two models used to predict the effective extinction coefficient are
based on geometrical optics for porous media consisting of a sus-
pension of mono-dispersed and independently scattering particles.
Hsu and Howell [27] considered spherical particles whereas Loretz
et al. [28] investigated multi-faced particles.

It is evident that these effective properties strongly depend on
the morphology. This is supported by theoretical derivation of
the effective transport properties by the volume averaging theory
[29], which indicates that the effective properties are a function
of the morphology of the porous medium, the bulk properties of
its phases, and the phase boundary conditions only. However, the
aforementioned empirical, semi-empirical, and analytical
correlations do not consider the exact morphology of complex
and stochastic porous materials and, consequently, provide less
accurate transport characteristics. Furthermore, they can only pro-
vide trends in the same class of materials when applied to pore-
level engineering of media. The incorporation of the exact structure
is therefore crucial for the accurate heat and mass transport char-
acterization and subsequent pore-level engineering for enhanced
transport.

Recently, coupled experimental–numerical techniques have
been proposed for accomplishing that. They use 3D imaging-based
techniques such as computed tomography, magnetic resonance
imaging, or focused ion beam, to obtain the exact structural infor-
mation of the porous media, which in turn is used in pore-level
numerical simulations to solve the governing conservation equa-
tions in the various phases of the porous media. In conjunction
with the volume averaging theory, the effective transport proper-
ties are then derived. Computed tomography (CT) has been one
of the preferred methods as it can offer non-destructive and non-
invasive techniques with relatively high resolution. Examples of
the CT-based methodology are the determination of the effective
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extinction and scattering coefficients and scattering phase function
of foams and packed beds consisting of semi-transparent [30,31]
and opaque solid phase materials [32,33], of the effective heat
conductivity and interfacial heat transfer coefficient of foams
[34,35] and packed beds [6], and of the effective permeability
and Dupuit–Frochheimer coefficient of fibrous materials [36],
foams [34,37], packed beds [6], and rock [38]. Further examples
include the determination of the tortuosity in sandstones [39]
and mechanical properties, such as Poisson’s ratio, bulk and
Young’s moduli of foams [40], packed beds [41], rock formations
[41], and biological structures [41].

Recently, imaging-based methodologies have been coupled to
digital image processing techniques to understand the influence
of the morphology on the transport properties [42–44]. Akolkar
et al. used mathematical morphology operations, i.e. dilation and
erosion with a spherical structural element, to understand the
influence of porosity on the absorptance [42] and fluid flow [44]
of a 1D slab made of densely-packed (porosity 0.33) to dispersed
(porosity 0.82) particulate media, and foam-like structures with
porosities of 0.72–0.95. Artificially generated morphologies with
varying porosities and bi-modal distributed pore sizes were used
by Haussener et al. to obtain guidelines for morphological tailoring
of such foams with enhanced transport characteristics [43].

In this paper, we present a detailed investigation on the influ-
ence of the mass loading of a foam-like ceramic structure on its
effective heat and mass transport properties. In contrast to two
similar studies by Akolkar et al. [42,44], we considered fabricable
foam samples with a broader range of porosities (0.85–0.45) exhib-
iting always a connected solid phase, and extend the characteriza-
tion to conductive and convective heat transfer. We use digital
image processing on the structure data to allow for artificial
changes in the morphological characteristics – corresponding to
actual variations in the fabrication process – and solve the conser-
vation equations at the pore-scale. Reticulated porous ceramic
(RPC) foams, made of ceria, are used as modeled foam materials
because of their application in solar thermochemical fuel process-
ing [4]. For a wide range of foam porosities (0.45–0.85), the mor-
phology-dependent effective transport properties are determined,
namely: the extinction coefficient, scattering phase function, ther-
mal conductivity, interfacial heat transfer coefficient, permeability,
Dupuit–Forchheimer coefficient and tortuosity. These properties
can be incorporated in continuum models to optimize the foam
structure for improved performance of the solar reactor, as exem-
plary done in [45]. The artificial-adapted RPC morphologies can be
fabricated by the replica method.

2. Problem statement and medium morphology

2.1. Problem statement and assumptions

The media considered in this study are statistically isotropic
and homogeneous macroporous [46] media composed of two
phases: (i) an isotropic and homogeneous, connected, rigid solid
phase, and (ii) an isotropic and homogeneous, moving fluid phase.
Specifically, the investigations were based on the foam-like ceram-
ics fabricated by the replica method [47]. A photography of a sam-
ple is shown in Fig. 1a. The template fabrication method uses a
skeletal sponge structure with, in our case, 10 pores per inch. This
polymeric sponge is immersed into a ceria slurry, impregnated,
and subsequently sintered in a furnace [4]. The resulting foam
exhibits hollow struts, as the polymeric sponge replica is burnt
away.

For simplicity, we assumed an opaque solid phase and transpar-
ent fluid phase, respectively. Ceria, the material of choice in our
study, showed only considerable bulk material absorption coeffi-
cients for wavelengths smaller than 500 nm [48], corresponding
to 25% of the solar irradiation spectrum. For larger wavelengths
ceria should be considered semitransparent and a more complete
set of effective radiative properties will be needed [31]. The Planck
mean absorption coefficient of the gas phase (e.g. air, CO, H2) was
orders of magnitude lower than the absorption of radiation at the
phase boundary supporting the assumption of a radiatively non-
participating fluid phase. Geometrical optics was assumed as the
smallest dimensions of the solid structure of approximately
0.4 mm (see details in Section 2.2) was significantly larger than
the wavelength range considered, i.e. pdstrut/k� 5. Diffraction
was neglected as for large particles it is predominantly in forward
direction within a small solid angle. Independent scattering was
assumed, in accordance with the independent/dependent scatter-
ing map of Tien et al. [49]. This assumption is most critical for
media with small clearance between the scattering structures,
small characteristic size to wavelength ratios, and small porosities,
i.e. for the low porosity cases in this study. The thermal conductiv-
ities of the fluid and the solid phases are assumed to differ by at
least 3–4 orders of magnitude, in accordance with typical gas
and ceramic conductivities at high temperatures. It is assumed that
conduction through the porous medium is not the limiting heat
transfer mode, i.e. the adapted Biot number (a Biot number
accounting for convective and radiative heat flux at the phase
boundary and uses the effective solid conductivity) is sufficiently
small.

The porous’ medias transport and its change due to pore-level
engineering will be characterized by effective properties. These
properties are defined based on the theory of volume averaging
[29], which spatially averages the governing conservation equa-
tions valid within each phase of the porous media throughout
the complete media volume. The resulting volume-averaged equa-
tions are closed by introducing the effective properties. In order to
reduce the computational expense and to simplify the approach,
the various transport characteristics will be obtained in a decou-
pled way. Recent theoretical derivations of the averaging of the
coupled conservation equations provide an in-depth understand-
ing of the effects of coupling, the contribution of the various heat
transfer modes for specific medium characteristics, and pathway
towards a numerical calculation of the additional closure terms
[50]. Nevertheless, the use of the coupled approach is beyond the
scope of this study.

2.2. Morphology of the porous media

2.2.1. Original and manipulated digital morphology
A porous ceria sample of 2.0 � 2.0 � 2.0 cm3 size and with 0.82

porosity, shown in Fig. 1.a, was measured by CT with a spatial
resolution of 35.7 lm. The resulting 8-bit matrix of absorption data
was segmented by the mode method [51] as the gray value
distribution exhibited a characteristic bimodal behavior.

In a preprocess, the foam was manipulated by a closing algo-
rithm [52], to fill the triangular channels in the foam’s struts
caused by the manufacturing process, as these hollow channels
in the struts could not be preserved in the subsequent digital mass
loading algorithm. Inherently, a smoothing of the solid surface
occurred with the closing, and the specific surface decreased by
30% and the porosity by 1.8%. The resulting foam structure,
depicted in Fig. 1b, served as the upper boundary for the
representative geometries with the highest porosity (e = 0.85).
Subsequently, the mass loading of the initial foam was varied by
applying a set of dilation algorithms [52] with spherical structuring
elements. In a dilation process, a layer of material is added to the
solid phase of the foam with a thickness equal to the radius of
the structuring sphere. The manipulated digital samples exhibited
porosities between 0.73 and 0.32, and were generated by
adding layers ranging from 0.14 mm to 0.57 mm in thickness.



Fig. 1. Representative foam structures: (a) photograph of the initial 10 pores per inch ceria foam, and (b) the rendering of the reconstructed CT data. (c) Photograph of ceria
foam after second coating with the ceria slurry, and (d) its digital equivalent, generated by a set of dilation algorithms. The experimentally determined porosities of (a) 0.82
and (c) 0.59 are corresponding to the digitally calculated values of (c) 0.85 and (d) 0.59.
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The isotropic nature of the initial foam geometry was preserved.
Furthermore, the generated samples were reproducible in reality
by applying multiple coatings of the ceria slurry on the initial foam
structure. Fig. 1c shows the manufactured equivalence (e = 0.59) of
the digitally generated foam of Fig. 1d (e = 0.59). Similar modifica-
tions of tomography data sets have previously been performed
[42,44]; however, foam structures within a broader range of poros-
ities were generated in the present study, representing realistic,
fabricable samples, and no erosion steps were applied that would
break the thin struts and lead to suspended solid fragments.

2.2.2. Morphological characterization
The morphology of the samples was quantified by calculating

the porosity, specific surface area, and mean pore diameter. The
porosity was defined as the ratio of the void volume to the total
volume of the medium (e = Vvoid/V) and was calculated based on
the segmented absorption matrix by summing over the number
of voxels assigned to the void phase divided by the total number
of voxels. The method was verified by a weighing experiment with
the unclosed, initial ceria foam (porosity experimental = 0.82 ±
0.01; porosity digital = 0.85). The specific surface (A0 = Ainterface/V)
for an isotropic porous media was determined by the two-point
correlation function [53]. The diameter of the largest sphere fitting
into a pore space characterized the pore size [54]; thus, a set of
opening algorithms [52] with spherical structuring elements of
increasing size, led to an opening pore size distribution and mean
pore diameter and were computed according to [37]. The calcu-
lated specific surface vs. the porosity of the various foam samples
is plotted in Fig. 2.a with the least square fitting parameters
a0 = 2277.8, a1 = 2533.0 and a2 = 262.3 (RMS = 0.5%).

A0 ¼ �a0e2 þ a1eþ a2 ð1Þ

The quadratic dependency was due to the predominance of convex
struts in highly porous foams, which increased their surface in each
dilation step until a maximum/optimum was reached, where the
structures merged into concave shapes and the specific surface
dropped with every added layer of material. The specific surface
area peaked with 966 m�1 at porosity = 0.56. Fig. 2b shows the
linear correlation between the mean pore diameter and the
porosity,

dmean ¼ b0eþ b1 ð2Þ

where b0 = 2.20 � 10�3 and b1 = 7.59 � 10�4 (RMS = 0.9%). Conse-
quently, the changes in morphologies of the foams considered in
the present study were solely characterized by the porosity.

A small peak in the pore size distribution around 0.2 mm was
associated to the characteristic size of the hollow channels in the
strut. Assuming an initial ceria layer thickness of 0.1 mm resulted
in the smallest observed structural dimension of 0.4 mm (=dstrut).



Fig. 2. (a) The specific surface area and (b) mean opening pore diameter as a function of sample porosity for the foam samples with varying mass loading. The specific surface
area peaks with 966.49 m�1 at porosity = 0.56. The specific surface area for the initial sample (porosity = 0.85) with hollow struts and no surface smoothing is indicated with
the cross symbol.
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The theory of the representative elementary volume (REV) was
applied to determine the minimum size for representative foam
samples [53]. Error bands for convergence were set to ±5% and
±7% in the porosity or specific surface area, respectively. For all
generated foam structures, these specifications were met for a
minimum REV edge length of 10.71 mm. Therefore, samples with
the dimension of 10.71 � 10.71 � 10.71 mm3, corresponding to
300 � 300 � 300 voxels, were used for the subsequent mass and
heat transfer simulations.
3. Methodology

The methodology used for the characterization of the effective
heat and mass transport properties follows previous studies
[33,53,35,37,32]. A very brief summary is given bellow.
3.1. Fluid flow

Darcy’s law with the Forchheimer extension results when spa-
tially averaging the Navier–Stokes equations in the fluid phase of
an isotropic medium [29]:

rhpif ¼ �hli
f

K
hui � Fqjhuijhui ð3Þ

The permeability, K, and Dupuit–Forchheimer coefficient, F, are
introduced as effective properties and determined using the same
type of computational domain (square duct with inlet and outlet
domains), boundary conditions, and meshing as in [37,33,55], i.e.
solving the stationary mass conservation and incompressible
Navier–Stockes equations for laminar flow in the complex 3D fluid
domain. For this pseudo 1D boundary conditions, the pressure drop
across the representative foam with varying Re (Re = quDdmean/
l = 0.1, 1, 10, 50, 100) can be analyzed and directly linked to
K and F. Convergence in the pressure drops was achieved for a
maximal mesh element size of 331.3 lm and a residual RMS below
10�5.
3.2. Energy transfer

For a two-phase medium consisting of a stationary, opaque
solid phase and a moving, transparent fluid phase (kf� ks), with-
out chemical reaction, the volume averaged energy conservation
equations (neglecting the closure terms due to coupling [50]) are
given by [56]:

0 ¼ r � kerhTsis
� �

� hsf A0 hTsis � hT f if
� �

� hr � q00r i ð4Þ

qcp r � huT fi½ � ¼ �hsf A0 hTsis � hT fif
� �

ð5Þ
3.2.1. Convective heat transfer
The convective heat flux, q00, between the solid and the fluid

phase is quantified by the interfacial heat transfer coefficient hsf,

q00 ¼ hsf ðTsf � TmfÞ ð6Þ

We analyzed the transferred heat from isothermal representative
solid foam structures to the fluid phase. The energy conservation
equations were solved in the previously introduced square duct
computational domain [33,37]. The computations were carried
out for Pr = 0.5, 1, and 10, and Re between 1 and 200. Same conver-
gence criteria as for the fluid flow calculations were applied. Local
heat transfer coefficients were determined for a finite number of
slices along the main flow direction in the computational domain
by integrating the heat flux through the phase boundary. The aver-
ages of the local heat transfer coefficient values led to an effective
interfacial heat transfer coefficient [37] that was expressed in the
correlation form Nu = f(Re,Pr).
3.2.2. Conductive heat transfer
The effective thermal heat conductivity was determined by the

volume averaged, one-dimensional steady state equation for heat
conduction, assuming local thermal equilibrium. Linking the heat
flux of the volume averaged quasi-linear temperature field with
the local heat flux through any cross-section of the porous struc-
ture yielded the effective conductivity [35,33].

A quasi-1D system was implemented by modeling the cubical
porous sample with a stagnant and incompressible fluid phase
with temperature independent bulk conductivities. Boundary con-
ditions were: constant temperatures T1 and T2 on either side of the
foam sample and adiabatic surfaces on the remaining four faces.
Both phases of four representative foams with porosities between
0.45 and 0.85 were meshed with an unstructured tetrahedral grid
and solved with a commercial finite volume solver [57]. A grid
convergence study led to the use of a mesh with a maximal mesh
element size of 327.9 lm.
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3.2.3. Radiative heat transfer
The radiation source term for the volume averaged continuum

of a two-phase system is based on the integration of the radiation
transfer equation (RTE) over all wavelengths and solid angles
[33]. The required effective radiative transport properties, namely
the extinction coefficient, b, and the scattering phase function, U,
were identified by radiative distribution functions calculated via a
collision-based Monte Carlo (MC) method [58]. Since pdstrut/k > 5,
geometric optics was valid throughout the porosity range investi-
gated. The cumulative distribution function of the radiation
extinction path was computed by launching a large number
(107) of isotropically directed rays within the void phase and
measuring the path length between emission and collision. A
least-square fit to the exponential Bouger’s law yielded the
extinction coefficient [32]. The scattering phase function was
obtained from the directional distribution of the cosines of the
reflected rays normalized by an isotropic angular distribution.
The MC routine was applied to seven representative foam sam-
ples with the dimensions of 510 � 510 � 510 voxels and porosi-
ties between 0.32 and 0.85.

The results of the pore-scale numerical simulation on the 3D
digital geometry obtained by CT can be considered as approaching
the exact solution within the limits of the numerical truncation
error and the accuracy of geometrical representation (i.e. CT
resolution).
4. Results – mass transfer

4.1. Permeability and Dupuit–Forchheimer coefficient

The numerically determined normalized permeabilities and
Dupuit–Forchheimer coefficients are depicted in Figs. 3 and 4,
respectively, for samples with porosity of 0.45, 0.59, 0.73 and
0.85. In comparison to the semi-empirical models by Conduit flow
theory [5], Carman–Kozeny correlation [7], Ergun et al. [10],
Happel and Brenner [8], and Kyan et al. [9] – introduced in Table 1
– the Carman–Kozeny model fits the computed permeabilities best
with a relative RMS of 29.7%. The model is based on the semi-heu-
ristic Carman–Kozeny equation [7] with a shape factor kK = 5
Fig. 3. Normalized permeability as a function of sample porosity numerically
calculated using the exact structure and dilations thereof, and compared to semi-
empirical correlations found in literature by Conduit flow models [5], Carman–
Kozeny [59], Ergun [10], Happel and Brenner [8], Kyan [9], the Carman–Kozeny
model with a fitted shape factor kK, and the proposed corrected Carman–Kozeny
model.
defined for packed beds of spheres. Kyan et al. [9] proposed a
porosity dependent shape factor for fibrous beds that predicts
the results with a RMS of 33.0%. Happel and Brenner [8] adapted
the shape factor for a flow along parallel cylinders and their predic-
tion deviates 65.1% from our results. The Conduit flow through a
stack of tubes [5] (RMS = 213.0%) and Ergun’s correlation for flows
through packed columns [10] (RMS = 4.7 � 105%) fail to predict our
results. The least-square fitting of the Kozeny constant was pro-
posed by Akolkar et al. [44], who predicted kK = 7.73 in a study
on foams with porosities larger than 0.7, overestimating the flow
rate through the porous material (RMS = 23.9%). Our curve fit with
kK = 5.38, shown in Fig. 3, shows an accurate permeability predic-
tion for highly porous structures; however, for less porous foams,
the model overestimates the flow rate through the porous material
(RMS = 22.3%). Therefore, the porosity exponent of the Carman–
Kozeny model was fitted to the data, as suggested by various
authors [59]:

K ¼ en

kKA2
0

ð7Þ

where kK = 4.81 and n = 3.5 for low porosities (RMS = 3.6%).
The numerically determined Dupuit–Forchheimer coefficients

are compared to the models by Macdonald et al. [11], Ergun [10],
Ward [12] and Cooke [13] described in Table 1. The Ward correla-
tion [12] fails to give a reasonable estimate of F, whereas the mod-
els of Macdonald et al. [11] (RMS = 28.7%) and Ergun [10]
(RMS = 26.7%) agree well with the numerical results for high
porosities, but underestimate F for lower porosities. The latter
two models are based on the Ergun’s theory and the parameters
are empirically determined [60].

The most accurate prediction for the Dupuit–Forchheimer coef-
ficient is found via least-square fitting of the parameters for
Cooke’s correlation [13],

F ¼ n
Km ð8Þ

for n = 9.81 � 10�6 and m = 1.12 (RMS = 1.3 � 10�4%). This is consis-
tent with Cooke’s suggestion of m = 1.24 for particle packs. The
curve with the parameters found by Akolkar et al. [44] (m = 1.08
and n = 1.41 � 10�5) for foam-like structures with restricted
Fig. 4. Numerically calculated, normalized Dupuit–Forchheimer coefficient as a
function of the porosity. Comparison to empirical correlations published by
Macdonald et al. [11], Ergun [10] and Ward [12] are not satisfying, whereas the
least square fit of Cooke’s correlation [13] matches the data accurately. Cooke’s
fitting parameters found by Akolkar et al. [44] for reticulate foams are only accurate
for high porosities.



Table 1
Mass transfer correlations for porous materials.

Model Analytical expression

Permeability
Conduit flow [5] K ¼ e3

2A2
0

Carman–Kozeny [7] K ¼ e3

kK A2
0

Ergun [10] K ¼ e3

150ð1�eÞ2

Happel–Brenner [8] K ¼ e3

kK A2
0
; kK ¼ 2e3

1�eð Þ 2 ln 1
1�e�3þ4ð1�eÞ�ð1�eÞ2½ �

Kyan [9] K ¼ e3

kK A2
0
; kK ¼

62:3N2
e ð1�eÞþ107:4½ �e3

16N6
e ð1�eÞ4

Ne ¼ 2p
1�e
� �1=2 � 2:5

Dupuit–Forchheimer
Macdonald et al. [11] F ¼ 1:80

ð180KÞ1=2e3=2

Ergun [10] F ¼ 1:75
ð150KÞ1=2e3=2

Ward [12] F ¼ 0:55
K1=2

Cooke [13] F ¼ n
Km

Tortuosity
Archie [14] s = e�a

Weissberg [16] s ¼ 1� b ln e
Iversen and Jorgensen [15] s ¼ 1þ cð1� eÞ½ �1=2

Boudreau and Meysman [17] s = 1 + d(1 � e)
Fig. 5. The numerically calculated mean tortuosity vs. porosity, fitted to correla-
tions found in literature by Archie [14], Weissberg [16], Iversen and Jorgensen [15],
and Bourdreau and Meysman [17].
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porosities between 0.73 and 0.95 fits our data in this high porosity
range. Thus, the behavior of the Dupuit–Forchheimer coefficient is
accurately described by the inverse of the permeability.
4.2. Tortuosity

The tortuosity can be defined as the ratio of the length of a flow
path to the length of the porous sample [33].

s ¼ lpath

lsample
ð9Þ

For each velocity vector field obtained in Section 4.1, 3600
streamlines are analyzed to determine the density distribution
of the tortuosity. The mean tortuosity showed only a slight
dependency on Re and a Re-averaged tortuosity for each porosity
was determined. The numerical results, depicted in Fig. 5, are
compared to the least square fits of the models introduced in
Table 1 with fitting parameters a–d, i.e. Archie [14], Weissberg
[16], Iversen and Jorgensen [15], and Boudreau and Meysman
[17]. Archie’s empirical model was developed based on electrical
resistance measurements that were linked to the tortuosity. Val-
ues for the free fitting parameter a was recorded to be between
0.15 and 2.2 for various types of sediments [15]. The model fits
our results with a RMS = 3.3% for a = 0.53. The geometrical model
parameter b of the Weissberg correlation, equal to 0.5 for a bed
of overlapping spheres, was adjusted to b = 0.64 (RMS = 2.1%).
The purely empirical model of Iversen and Jorgensen, developed
for sandy sediments with c = 2, was fitted using c = 2.05
(RMS = 1.3%), whereas the best prediction of the tortuosity is
obtained by the model of Boudreau and Meysman with fitted
d = 8.63 � 10�1 (RMS = 0.65%):

s ¼ 1þ dð1� eÞ ð10Þ

The tortuosity is dependent on the morphology and in Boudreau’s
correlation, the porous material consists of randomly stacked
disks with a height to radius ratio of ð9p32 � dÞ; therefore, our
foam-like material is approximated by a height to radius ratio
of 0.76.
5. Results – heat transfer

5.1. Interfacial heat transfer coefficient

Calculated Nu as function of Re and Pr, for samples with poros-
ity of 0.45, 0.59, 0.73 and 0.85, are shown in Fig. 6a. None of the
porosity-dependent models found in the literature (Table 2) are
consistent with the numerically calculated results using the exact
structure of the foam samples. The correlations yielded Nu num-
bers that depend on the porosity for the low Re regime; the numer-
ical solution however converges to a single Nu number for Re
smaller than one. The model of Gunn [20], which aims to describe
the heat transfer to particles in fixed beds by fitting a stochastic
model to experimental data, predicts the results with a
RMS = 27.0%. Kuwahara et al. [19] conducted a numerical experi-
ment in a simplified, 2D porous structure and related the calcu-
lated interfacial heat transfer coefficients to the heuristic model
of Wakao et al. [18] with the functional form: Nu = a + bRemPrn.
With the fitting parameters found by Kuwahara et al. the equation
deviates from our result with a RMS = 90.7%. As these approxima-
tions are not satisfying, an empirical equation is designed based on
the Re and Pr dependencies observed by Wakao et al. to fit all com-
puted Nu numbers. Eq. (11) with the least square fitting
parameters of e0 = 5.54, e1 = 7.09 � 10�1, e2 = 6.31 � 10�1,
e3 = 2.98 � 10�1, e4 = 1.70 and e5 = 1.39 (RMS = 4.69%) is shown in
Fig. 6a. In Fig. 6b, the models of Gunn and Kuwahara et al. are plot-
ted together with the proposed empirical correlation for Pr = 0.5
and 10, and porosities 0.59 and 0.85.

Nu ¼ e0 þ e1e2 � e2eþ e3
� �

Re
ffiffiffiffiffiffiffiffiffiffiffi
e4�e5e
p

Pr0:6 ð11Þ
5.2. Thermal conductivity

The effective conductivity numerically calculated using the
exact structure of foam samples with porosity of 0.45, 0.59, 0.73
and 0.85 are shown in Fig. 8a for various fluid-to-solid bulk con-
ductivity ratios. The effective conductivity increased with decreas-
ing porosity due to a successive replacement of the fluid phase by
the higher conductive solid phase (kf/ks 6 1). The equations of the
models introduced in Table 2 were fitted to the numerical results



Table 2
Heat transfer correlations for porous materials. The correlations for the thermal conductivity are noted in dimensionless
form with f = ke/ks and g = kf/ks.

Model Analytical expression

Interfacial heat transfer coefficient
Kuwahara et al. [19] Nu ¼ 1þ 4ð1�eÞ

e

� �
þ 1

2 ð1� eÞ1=2Re0:6Pr1=3

Gunn [20] Nu = (7 � 10e + 5e2)(1 + 0.7Re0.2Pr1/3) + (1.33 � 2.4e + 1.2e2)Re0.7Pr1/3

Conductivity
Maxwell upper bound [24]
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Russell [22]
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Loeb [23]
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v = 2rm
Three-resistor model [25] f ¼ ð1� f Þ g

eþ ð1� eÞgþ f ðegþ ð1� eÞÞ

Calmidi and Mahajan [26] f = eg + A(1 � e)n

Extinction coefficient
Hsu and Howell [27]

b ¼ W0

d
ð1� eÞ

Loretz et al. [28]
b ¼ W1

d

ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

Fig. 6. (a) Nu as a function of Re and Pr = 0.5 and 10 numerically calculated using the exact structure of the foams and fitted to the proposed correlation described by Eq. (5).
Results for Pr = 1 are not shown, but they are considered for the least square fit. (b) Comparison of the models of Gunn [20] and Kuwahara et al. [19] to the proposed empirical
correlation for Pr = 0.5 and 1, and e = 0.59 and 0.85.
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with the best approximation achieved by the empirical model of
Calmidi and Mahajan [26] (A = 1.04, n = 1.77, RMS = 11.1%). This
correlation was developed based on thermal conductivity experi-
ments on aluminum foams and allows an accurate prediction for
many foam-like structures due to the free fitting parameters A
and n. The analytical 2D model of Bhattacharya et al. [21] approx-
imates the porous structure as a field of hexagons with the edges of
the elements representing the struts and hexagonal node areas.
With an optimum geometry parameter r = 1.05 � 10�1 – node
diameter to strut diameter – the correlation fits the results with
a RMS = 22.5%. Loeb [23] approached foams with equally sized void
cubes distributed in the solid matrix (RMS = 23.9%). The equation
for the three-resistor model [25] is a linear combination of the
maximum possible (parallel slab model) and minimum possible
(serial slab model) effective conductivity, with the optimum
parameter f = 0.354 (RMS = 28.2%). Maxwell’s [24] derivation of



Fig. 7. Correlations for the normalized effective conductivity by Calmidi and
Mahajan [26], Russell [22], Boomsma and Poulikakos [2], Bhattacharya et al. [21],
Loeb [23], the 3R model [25], and the Maxwell upper bound [24] compared to the
numerically computed values for the porosity 0.59 and 0.85.
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an upper bound for a continuum solid with void inclusions (RMS =
83.9%) and Russell’s [22] geometrical model (RMS = 89.3%) indicate
that those models are limited to a certain porosity range. The equa-
tion of Boomsma and Poulikakos [2] for their 3D tetrakaidecahe-
dron unit cell model is not listed in Table 2 as it is
mathematically only applicable to porosities higher than 0.5, but
it approximates the results of this porosity range with RMS =
14.9% (e = 0.342 – node diameter to strut length). Fig. 7 compares
the models found in literature to the simulation results for the
porosity 0.59 and 0.85.

The proposed three-resistor model fails to describe the effective
conductivity behavior as a function of the porosity. However, the
model parameter f is found to be systematically related to the vol-
ume fraction of the fluid when fitted to the results of the foam
samples separately. The porosity dependency of f, shown in
Fig. 8b, is approximated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0 � g1e
p

with g0 = 7.54 � 10�1 and
Fig. 8. (a) Normalized effective conductivity numerically calculated using the exact struc
Eq. (12) is also shown. (b) The porosity dependent three-resistor model parameter f num
g1 = 8.29 � 10�1 (RMS = 1.0%). Consequently, the three-resistor
model can be extended by this porosity dependency of the param-
eter f, leading to Eq. (12) of the newly proposed extended three-
resistor model (RMS = 2.7%).

ke

ks
¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0 � g1e
pð Þ kf =ks

eþ ð1� �Þkf=ks

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0 � g1e
p

e
kf

ks
þ ð1� �Þ

	 

ð12Þ
5.3. Radiative properties

The extinction coefficients numerically calculated using the
exact structure of the foam samples are shown in Fig. 9. The
models of Hsu and Howell [27] and Loretz et al. [28], introduced
in Table 2, are fitted with the empirical fitting parameter W
equals 2.398 and 1.765, respectively (RMS = 25.0% and 3.8%,
respectively). Hsu and Howell [27] modeled the porous foam
as a suspension of mono dispersed, independently scattering
particles with a diameter equal to the pore diameter d. Despite
some consensus of the model with the extinction coefficients
for foam like structures [61,27], it is not consistent with the
present MC data. In contrast Loretz identified multi-faced parti-
cles based on tomography images of reticulate foams and pro-
posed Eq. (13) that approximates our numerical data more
accurately.

b ¼ W1

ffiffiffiffiffiffiffiffiffiffiffi
1� e
p

dmean
ð13Þ

Both models are based on the assumption of geometric optics and
consequently are not valid for very low porosities.

As an opaque solid phase is assumed, the scattering albedo rs/b
is equal to the solid surface’s directional–hemispherical reflectiv-
ity, averaged over all incoming directions, r. For purely diffuse or
perfectly specular surfaces the scattering and absorption coeffi-
cients are given as rs = rb and j = (1 � r)b, respectively. For a diffu-
sively-reflecting solid phase surface, the scattering phase function
was observed to be independent of the changes in morphology and
was approximated by (RMS = 2.9%)

U ¼ 0:5945l2
s � 1:4095ls þ 0:8018 ð14Þ
ture of the foam samples. The fitted extended three-resistor (3R) model described by
erically calculated using the exact structure and dilations thereof is depicted.



Fig. 9. The extinction coefficient numerically calculated using the exact structure
and dilations thereof as a function of porosity. The models of Hsu and Howell [27]
and Loretz et al. [28] were fitted to our numerical results.
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The scattering function anisotropy factor for the diffusely-reflecting
solid phase surface is equal to �0.47 and constant for the porosity
ranges investigated.
6. Conclusions

Using the 3D digital geometry of a foam obtained via CT, we
determined the effective heat and mass transport properties,
namely: the extinction coefficient, scattering phase function, ther-
mal conductivity, interfacial heat transfer coefficient, permeability,
Dupuit–Forchheimer coefficient, and tortuosity. As a model foam
material, we used a reticulated porous ceramic made of ceria,
which is applied in the solar-driven thermochemical production
of fuels. Digital image processing along with morphological dila-
tion of the structural data was used to vary the ceria loading, i.e.
the porosity, mean pore diameter, and specific surface area, of
the foam. The corresponding changes in the effective transport
properties were determined and compared to empirical, semi-
empirical, and analytical models. Enhanced analytical and
empirical models were proposed. The quantified parameters can
be incorporated into coupled multi-physics continuum-scale mod-
els of e.g. solar thermochemical fuel processing reactors [56],
allowing for the determination of the best porosity for optimized
reactor performance. First attempts to use these types of detailed
pore-level transport characterizations in conjunction with contin-
uum models for the optimization of solar thermal and photoelect-
rochemical power and fuel processing have been reported [45] and
proof the usefulness of the approach. In conclusion, the study
provides guidance for pore-level engineering of foams aimed at
enhancing heat and mass transfer.
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