
Beyond KernelBoost?

Roberto Rigamonti (roberto.rigamonti@epfl.ch)
http://cvlab.epfl.ch/~rigamont

Vincent Lepetit (vincent.lepetit@epfl.ch)
http://cvlab.epfl.ch/~lepetit

Pascal Fua (pascal.fua@epfl.ch)
http://cvlab.epfl.ch/~fua

School of Computer and Communication Sciences
Swiss Federal Institute of Technology, Lausanne (EPFL)

EPFL-REPORT-200378

July 22, 2014

? This work has been supported in part by the Swiss National Science Foundation.

http://cvlab.epfl.ch/~rigamont
http://cvlab.epfl.ch/~lepetit
http://cvlab.epfl.ch/~fua

Abstract. In this Technical Report we propose a set of improvements
with respect to the KernelBoost classifier presented in [3]. We start with a
scheme inspired by Auto-Context, but that is suitable in situations where
the lack of large training sets poses a potential problem of overfitting.
The aim is to capture the interactions between neighboring image pixels
to better regularize the boundaries of segmented regions. As in Auto-
Context [32] the segmentation process is iterative and, at each iteration,
the segmentation results for the previous iterations are taken into account
in conjunction with the image itself. However, unlike in [32], we organize
our recursion so that the classifiers can progressively focus on difficult-
to-classify locations. This lets us exploit the power of the decision-tree
paradigm while avoiding over-fitting.
In the context of this architecture, KernelBoost represents a powerful
building block due to its ability to learn on the score maps coming from
previous iterations. We first introduce two important mechanisms to em-
power the KernelBoost classifier, namely pooling and the clustering of
positive samples based on the appearance of the corresponding ground-
truth. These operations significantly contribute to increase the effective-
ness of the system on biomedical images, where texture plays a major role
in the recognition of the different image components. We then present
some other techniques that can be easily integrated in the KernelBoost
framework to further improve the accuracy of the final segmentation.
We show extensive results on different medical image datasets, includ-
ing some multi-label tasks, on which our method is shown to outperform
state-of-the-art approaches. The resulting segmentations display high ac-
curacy, neat contours, and reduced noise.

1 Introduction

Many recent papers [32,19,17,10] have shown the importance of using context
when segmenting biomedical images. It helps avoid large segmentation errors
without having to rely on ad hoc regularization priors [24,15], which are com-
monly used but can only improve results to a limited extent. Using context in
this manner can therefore be understood as learning to capture more complex
interactions to better regularize the segmented regions.

In this paper, we go one step further by showing that we can use context not
only to avoid segmentation errors but also to accurately find region boundaries.
This is challenging for several reasons. First, in most kinds of images, classifiers
trained to differentiate locations belonging to one kind of region from those
belonging to another may struggle near boundaries. This is because locations
on both sides of the boundaries can be hard to distinguish, especially when
using feature vectors computed using filters having a substantial spatial extent.
Second, in biomedical images in general and particularly in those at the scale of
living cells, boundaries can have arbitrarily complex shapes.

To overcome these difficulties we propose an approach that is inspired by the
popular Auto-Context algorithm [32] but, unlike it, progressively focuses more
and more on difficult-to-classify samples.

2

Original image Ground-truth

Random Forests Improved KernelBoost

Auto-Context [32] Our approach

Fig. 1. Segmentation example for a test image from the Jurkat dataset [18] (the
area highlighted in orange is ignored during training/testing, as it includes cells
that do not appear in the ground truth). The thresholds were selected to give,
for each method, the highest accuracy. Note that our approach finds accurate
boundaries between the different regions, and that it avoids the errors made
by the other methods especially in the light gray region. Red overlays in the
segmentations are used to mark the mistakes. Best viewed in color.

3

(a) (b) (c)

Fig. 2. (a) Schematic representation of the Auto-Context approach [32]. At each
iteration, the segmentation results from the previous iterations are taken into
account in addition to the input image. (b) Ideal structure of our system, which
we have dubbed Expanded Trees. The output of the first segmentation (Sc) is
split between positive and negative samples, and two separate classifiers are
trained. The procedure is iterated for the desired number of levels, and finally a
classifier collects the different output to produce the final segmentation. Since we
use powerful classifiers, many training samples are required, otherwise we would
quickly run out of samples and therefore overfit after few iterations. Also, the
number of classifiers to train – and therefore the computational costs – grows
exponentially with the depth of the structure. (c) The approach we propose.
We “knot” some branches together, and the classifiers in charge of a specific
class at each level are now the same. This avoids overfitting, as the classifiers
are trained with larger training sets, while retaining most of the classification
power of the tree structure and keeping the computational effort limited. Again,
the output of all the intermediate steps is fed to a classifier that produces the
final segmentation.

More specifically, for foreground/background segmentation purposes, Auto-
Context trains a chain of classifiers as depicted by Fig. 2(a): The input to the
first classifier is simply the image data but the next classifiers also have access
to the segmentation results produced by previous stages. To achieve our goal of
focusing on difficult-to-classify samples, we could instead leverage the powerful
decision tree strategy [5]. This would mean recursively splitting the pixels into
those that are classified as foreground and background and train a new classifier
for each subset, as depicted by Fig. 2(b). Unfortunately, unless the training set
is sufficiently large, that would be suboptimal because each subsequent classifier
would have to be trained on an ever smaller fraction of it, to the point where
the training would become ineffective. This is particularly true in the biomedical

4

field, where often the amount of training data is limited because it is cumbersome
to label. Also, this would require the training of an exponentially growing number
of classifier, and therefore a considerable computational effort. We will refer to
this approach in the following as Expanded Trees.

As shown in Fig. 2(c), our solution is to train only two classifiers at each
stage. The first operates on the samples that are classified as potential foreground
ones by either classifiers at the previous stage, and the second one on samples
classified as potential negatives. In this way, the number of training examples
used to train the classifiers can be kept roughly constant at all stages, which
avoids overfitting. Since we “knot” the two branches of the tree, we have dubbed
this approach Knotted Trees. To focus on the difficult-to-classify examples, we use
permissive bounds to decide if a sample is potentially foreground or background.
For example, a sample classified as negative but with a low confidence score is a
difficult-to-classify sample, and it is sent to the two classifiers at the next stage.
In this way, both classifiers will have access to these important samples. A final
classifier collects the partial results from the different branches and outputs the
final segmentation.

In the evaluation of the schemes we presented, we use in each node a Ker-
nelBoost classifier [3]. However, other classifiers can be used as long as they are
powerful enough, at least in the earlier stages.

Our approach naturally extends to multi-label segmentation problems. We
simply train our approach for each label in a 1-versus-1 scheme, where separate
binary problem are set up for each pair of classes. Again, a final classifier collects
the partial results from the different branches and outputs the final segmentation.

We use four different datasets to demonstrate that our approach outperforms
both Auto-Context [32] and a recent CRF-based method [15], and to assess the
strengths and weaknesses of the methods we propose.

2 Related Work

Image segmentation algorithms typically rely on local image cues combined with
spatial constraints. For example, Markov Random Fields (MRFs) use unary
terms that depend on image features together with pairwise potentials that en-
force simple smoothness priors [12,21]. With Conditional Random Fields (CRFs),
the smoothness terms can also be made dependent on the image cues [30,22].
This can exploit the fact that boundaries between image regions have specific
image appearance, and significantly improves the quality of the resulting seg-
mentation.

However it is not entirely clear that simple spatial features truly make a dif-
ference when powerful image features are used, and several authors report good
results even without spatial constraints [23,33,26,14]. Higher orders terms [9]
or hierarchical approaches [11] have therefore been introduced to capture more
global constraints. Unfortunately, optimizing the parameters of such complex
models in CRFs quickly becomes intractable. [20] shows that decision trees can
be used in Decision Tree Fields to model both the unary and the pairwise terms.

5

This makes the parameter estimation problem much more tractable. [15] relies
on subgradient descent to efficiently learn CRF models for segmentation using
a working set of constraints in a Structured SVM formulation. This method ob-
tains state-of-the-art results on medical data, and we compare against it in the
Experimental Results section.

However despite the widespread interest in them, CRFs are still computa-
tionally expensive at run-time. A more efficient approach to enforcing spatial
constraints was introduced in [32] under the name of Auto-Context. In Auto-
Context, a first segmentation is obtained by simple pixel-wise segmentation,
followed by a second segmentation obtained by combining image features with
“context features”. They are similar to image features but are computed on
the output of the first iteration. This process can be iterated until convergence.
This scheme was inspired by [13]. A similar approach was also developed in [26]
together with a CRF model. Entangled Forests [17] use similar features in the
nodes of Random Forests, applied to the output of previous nodes. Geodesic
Forests [10] extend these features to depend on geodesic distances between pairs
of locations to exploit long-distance correlations. However using the geodesic dis-
tances assumes that strong image gradients are highly correlated with boundaries
between regions, which is often not true in medical images, as shown in Figs. 1, 3,
and 6.

We also use features computed from previous segmentations. However we
show how to leverage this general approach to significantly improve the quality
of the final segmentation, by focusing on the difficult-to-classify locations.

The idea of splitting samples according to the estimated probabilities was
already proposed in [31], but they adopt a traditional binary tree structure,
they do not pass the estimated probabilities down the tree to enrich the input
features – therefore they lack context information –, they do not learn features
on the newly estimated probabilities, and they do not have a final classification
stage.

3 Our Approach

In this section we describe our approach. It relies on a statistical segmentation
method that can take as input the original image and the results of the previous
segmentation steps. In practice we use the KernelBoost method [3], which we
improved for this work. We therefore describe it in Section 4 for completeness,
along with our modifications.

3.1 Knotting Branches for Segmentation

In our approach, as illustrated in Fig. 2(c), we first segment the input image
using a classifier that predicts for each image location to which class the location
belongs, together with a confidence measure about this prediction.

In general this first segmentation has margins for improvement, and we per-
form subsequent segmentations that rely not only on the original image but also
on the output of previous steps.

6

This is similar to what Auto-Context does, but differs in a critical way: we
separate image locations into a “positive set” made of the ones classified as
positives, and a “negative set” made of the ones classified as negatives. Each set
is then processed independently by a new classifier. We iterate this process until
convergence on the training set. The output of the different classifiers are then
fed to a final classifier to produce the final segmentation.

More formally, let T = {(Xi,Yi)}i be a set of training images Xi together
with the corresponding ground truth labels Yi. We write

Yi(u, v) =

{
+1 if (u, v) in Xi belongs to foreground,
−1 otherwise.

(1)

We train a first classifier

ϕ0 = argmin
ϕ

∑
i

∑
(u,v)

L
(
Yi(u, v), ϕ(Xi)(u, v)

)
, (2)

where L is a loss function.
ϕ0(X) can be seen as a confidence map: |ϕ0(X)(u, v)| is a confidence measure

for location (u, v) in X. However, to avoid locations with large absolute values
bias the further steps, we use instead a version normalized to lie in the [−1,+1]
by considering

ϕ0(X) = 2p (Yi = 1 | Xi)− 1, (3)

where p (Yi = 1 | Xi) is the probability of a pixel of being in the positive class.
We use

p (Yi = 1 | Xi) =
1

1 + exp(−2ϕ0(X))
(4)

as in [8].
We then define the positive P 0

i and negative N0
i sets for each training image

Xi as
P 0
i =

{
(u, v) | ϕ0(Xi)(u, v) > −ε

}
, and

N0
i =

{
(u, v) | ϕ0(Xi)(u, v) < +ε

}
.

(5)

Because we use ε > 0, the positive sets {P 0
i }i contain locations that are classified

by ϕ0 as positive but also locations classified as negative but with low confidence.
In practice, we use ε = 1

2 . Similarly, the negative sets {N0
i }i contain locations

classified as positive with low confidence. Both the positive and negative sets
therefore contain all the difficult-to-classify samples, which will be treated by
two new classifiers ϕ1

P and ϕ1
N . The first is taken to be

ϕ1
P = argmin

ϕ

∑
i

∑
(u,v)∈P 0

i

L
(
Yi(u, v), ϕ(X1

i)(u, v)
)
, (6)

where X1
i =

(
Xi, ϕ

0(Xi)
)
. ϕ1

P is therefore trained on the locations in the positive
sets only, and has access to the normalized confidence maps ϕ0(Xi) in addition
to the training images. Its task is thus simpler than that of the first classifier.
The ϕ1

N classifier is defined in a similar way.

7

New positive and negative sets, respectively noted P 1
i and N1

i , are computed
as before from the output of the two classifiers ϕ1

P and ϕ1
N . Next, we train a

second pair of classifiers ϕ2
P and ϕ2

N . The ϕ2
P classifier is taken as:

ϕ2
P = argmin

ϕ

∑
i

∑
(u,v)∈P 1

i

L
(
Yi(u, v), ϕ(X2,P

i)(u, v)
)
, (7)

where X2,P
i is made of image Xi, and all the corresponding confidence maps

computed up to this point: X2,P
i =

(
Xi, ϕ

0(Xi), ϕ
1
P (X1

i)
)
. Similarly,

ϕ2
N = argmin

ϕ

∑
i

∑
(u,v)∈N1

i

L
(
Yi(u, v), ϕ(X2,N

i)(u, v)
)
, (8)

This process is iterated as long as the numbers of misclassified samples in both
branches of our “tree” remain above a threshold.

Finally we train a Randomized Forest to predict the locations labels based
on all the available data, including the input image, feeding the classifier with a
feature descriptor

∆ =
{((

Xi, ϕ
0(Xi), ϕ

1
P (X1

i), ϕ1
N (X1

i), · · ·
)
,Yi

)}
i
. (9)

To incorporate additional information about a pixel’s neighborhood, we also
consider the values located on the corners and on the middle of the side of two
nested squares centred on the point, with side of 5 and 10 pixels respectively, in
a stylized snowflake configuration.

In the case of a multi-label segmentation problem, we proceed as described
above for each label in a 1-versus-all scheme. Again, a final Randomized Forest
is trained to predict the label based on all the intermediate data created for all
the labels.

At run-time, we simply have to apply to the input image X the successive
classifiers ϕ0, ϕ0

P , ϕ1
N , · · · to compute the normalized confidence maps, which

are then fed to the final Randomized Forest to obtain a final confidence map.

3.2 Expanded Trees

In the case of the ideal structure of Fig. 2(b), we proceed as explained above
for what concerns the splitting criteria, but instead of sending samples to the
parallel branch when they meet the criteria to switch branch, we simply continue
the splitting process. When the number of samples in a node falls below a critical
threshold, we stop the growing of that branch.

4 KernelBoost, Improved KernelBoost, and extensions

KernelBoost (KB) is a statistical method that segments an image by classifying
each pixel independently into two classes. It has the key advantage of not re-
quiring to hand-design the kernels it operates with, and that of having very few,
easily tunable parameters.

8

(a) (b)

(c) (d)

Fig. 3. Texture experiment. The segmented image is a mosaic of Brodatz images,
created at USC-SIPI for research on texture segmentation. The dataset is avail-
able at the address http://sipi.usc.edu/database/?volume=textures. (a)
Original test pattern. (b) Ground-truth for the selected material. (c) Segmenta-
tion obtained by the KernelBoost algorithm [3]. (d) Segmentation obtained by
the KernelBoost algorithm coupled with the POSNEG/MAX-pooling scheme.

The training data is a set of training samples {(xi, yi)}i=1...N , where xi ∈
Rn is an image patch and yi ∈ {−1, 1} its corresponding label. From this set,
KernelBoost first generates a bank of discriminative kernels, and then builds
a binary GradientBoost classifier, with weak learners of the form of regression
trees. Each node of these trees contains a test selected from the kernel bank.
At run-time, the selected kernels kj can simply be used as convolutional filters
applied to the image to segment, which makes the approach efficient.

4.1 Pooling and training sample clustering

While obtaining excellent performances in the delineation of curvilinear struc-
tures [3], the original KernelBoost method lacks a mechanism for dealing with
more complex patterns, such as the ones that typically appear in medical images.
To highlight this deficiency, we applied the original KernelBoost to a texture
segmentation problem. As shown in Fig. 3(c), the quality of the segmentation is
quite poor.

9

http://sipi.usc.edu/database/?volume=textures

This is because, for texture recognition problems, the filter responses should
be made robust to slight shifts in the images. We therefore introduce a pooling
mechanism [4] over the filter responses. We evaluated several possible mech-
anisms, and we empirically noticed that keeping the maximum value of the
responses of the POSNEG operator [25] over a region performed best.

The POSNEG operator transforms the result of a convolution C into two
images, one made of the positive values of C, the other one made of the opposite
of the negative values of C. The optimization over each node finds which filter
and which of these two images should be used for best performances.

Moreover, the kernels learned by the original KernelBoost filters are not
always optimal. This is because they are learned in a discriminative fashion
in the attempt to distinguish all the positive samples from the negative ones.
However, this leads to suboptimal performances because positive samples can
be very different from each other, for example in presence of texture.

We therefore cluster the positive samples based on their appearances, and
each kernel is generated by classifying the positive samples of one cluster ran-
domly chosen against all the negative samples. We empirically observed that this
second modification also improves the results compared to the original Kernel-
Boost.

However, even with these improvements, KernelBoost can make significant
mistakes if not incorporated in the framework we propose, as shown in Fig. 1.
In the following we will refer to KernelBoost, when both pooling and clustering
are used, as Improved KernelBoost (IKB for short).

4.2 Superpixel pooling and superpixel features

Superpixels [7] emerged as an efficient way of dealing with large images and im-
age stacks, while at the same time improving the performances by averaging the
results of pixel-based approaches over small, homogeneous image regions. The
idea behind them is to group meaningful regions and to use them as a substitute
of the regular grid structures imposed by pixels [1]. The same pixel-based regu-
lar grid is used by traditional pooling operators available in literature, we have
therefore considered replacing it with a structure based on superpixels. However,
given the homogeneity of the pixels captured inside each superpixel, pooling the
feature values inside each superpixel would be of little use. Indeed, the main goal
of the pooling step is to introduce robustness against small distortions, trans-
lations and rotations, and this requires the pooling scheme to be independent
from the underlying data.

The idea of analyzing filter responses over structures whose shapes are not
imposed by rigid rules, but by the image itself, is nonetheless appealing. We
have therefore considered not the superpixels extracted from the images, but
the regions which can be computed from them by erosion and dilation by a
given amount of pixels. If we consider, for instance, the superpixel segmentation
of Fig. 4(a), we can observe that it is able to group interesting regions, such as the
membranes of the mitochondria. While pooling directly on them would simply
average very similar filter responses on an homogeneous region, if we consider

10

(a) (b)

Fig. 4. Analysis of the regions identified by SLIC superpixels [1] on a fragment
of a medical image. (a) SLIC superpixels extracted by the code provided by [1].
Notice that they accurately distinguish different regions, such as the membranes
of the mitochondria. (a) Example extended/shrinked regions — in blue and
green respectively — where pooling can be performed to extract meaningful
information about the mitochondrion’s membrane.

smaller and larger regions we can hope that, for instance, the classifier gets fed
with the border of each membrane, easing its recognition. As an example, this can
happen by considering the two regions, outlined in green and blue respectively,
of Fig. 4(b). We have dubbed this approach superpixel pooling.

In the KernelBoost context we can go even further and perform operations
over different regions computed from the individual superpixels. The classifier
present in each weak learner will be fed with a set of features resulting from po-
tentially nonlinear operations over multiple regions — for instance the difference
of the absolute values of the negative parts of the two regions in Fig. 4(b) —
and will then be able to select the most discriminative combinations for a given
training set.

Among the different approaches available in literature, SLIC superpixels [1]
emerged for their simplicity and their capability to adhere to image boundaries.
We have therefore based our proposal on the superpixels extracted by this ap-
proach.

4.3 External features

KernelBoost is particularly well suited to exploit the power of external hand-
crafted or learned features. It can indeed load them as additional channels, and
perform filter learning on them, thus empowering them by building a two-level
architecture. A particularly interesting example of features is constituted by
Ilastik features [28]. They are constituted by multiple hand-crafted features —
such as Gaussians, Structure Tensor, . . . — computed with different parameter

11

settings, for instance different Gaussian smoothing. They are used in many state-
of-the-art segmentation tools used by practitioners.

The features that can be used are usually dataset-dependent. For instance,
in one dataset where the task is the segmentation of mitochondria, we have
included as an additional channel the mitochondria membranes obtained by the
algorithm of [27], and this proved to significantly improve the final performance,
as shown in Section 5.

4.4 Multiple scales

When dealing with medical images, the structures of interest commonly appear
at very different scales or occupy relevant portions of the images. In typical EM
images of mitochondria, for example, a single mitochondrion might be several
hundreds pixels in length. For this reason, learning filters from data at full image
scale might lead to a set of filters which are able to capture only small fractions
of the objects, engendering errors in a pixel-level segmentation.

The KernelBoost approach can be easily extended to deal with multiple
scales, given its ability to operate on separate input channels. We just have
to incorporate the notion of scale in the sampling scheme, to ensure that the
same sample is collected over the different scales considered. The filter learn-
ing process is then performed independently for each individual channel at the
proper scale, and the regression tree learning scheme will then be in charge of
selecting which filter and which scale are more discriminative.

4.5 Fake-3D

EM imagery often produces complete, anisotropic image stacks. Full 3D informa-
tion can be very useful in discriminating the different components of the scene,
but it is usually computationally expensive and memory intensive to deal with.
Moreover, the anisotropicity of the data might result in degenerate filters and
therefore poor performance. For these reasons, while KernelBoost could in prin-
ciple operate on N-D data — experiments with 3D image stacks are presented
in [3] — we have chosen to operate on 2D data but incorporating data from mul-
tiple neighboring slices. In particular, the whole segmentation scheme operates
on individual slices until it reaches the final classifier stage. At that point the
classifier is fed not only with the features extracted on the considered slice, but
also with the features extracted on a slice D steps before and on a slice D steps
after it. Padding is performed to deal with stack’s boundaries. We have consid-
ered in our experiments D = 3, but its exact value has to be tuned according to
the size of the structures of interest and the inter-slice distance.

4.6 Z-cut

Biomedical image stacks usually contain components with no predominant ori-
entation. The choice of the axes is therefore arbitary. When enough slices are

12

available, it might be interesting to consider not only the images in the tradi-
tional X-Y plane, but also in the X-Z and Y-Z ones. This is particularly useful in
the context of an architecture such as those presented in the previous chapter,
where different levels of recursion can focus on different image planes. Indeed,
if the anisotropicity is not too elevated, filters can impose a regularity on the
structures found in these planes, giving a final 3D result which is smoother and
less noisy.

5 Experimental Results

To validate our approach we performed extensive experiments on four very dif-
ferent medical image datasets.

5.1 The Human T-Cell Line Jurkat Dataset [18]

The first dataset we consider is composed by Transmission Electron Microscopy
(TEM) images of the human T-cell line Jurkat [18]. We randomly selected 10
training images and 4 test images, each with size 1024 × 1024 pixels. We then
created a set of masks to ignore, both in training and in testing, the components
that are not considered in the available ground-truth images. The particularity
of this dataset is that it contains three different classes, for the background,
the cytoplasm, and the nuclei. A sample training image, along with the corre-
sponding ground-truth, is depicted by Fig. 1. The goal of the final user of this
data is to estimate, with the higher accuracy possible, the areas of the different
components of the cells, in order to use these values to tune numerical models
of the response of illnesses to different treatments.

The main challenge of this dataset is the fact that the cytoplasm and the
cell’s nucleus look very similar. The results obtained by the different approaches
are given in Table 1. Our proposal significantly outperforms the other methods,
including that of [16]. Visual inspection of our approach, as seen in Fig. 1, shows
that not only the accuracy score is higher, but also the contours are significantly
better delineated and macroscopic mistakes get fixed.

Table 1 also shows that normalization of the classifiers’ output as expressed
by Eq. (3) is an important step, as the results without it are not significantly
better than the ones obtained with the original Improved KernelBoost method
on this dataset.

Finally, we have applied the Auto-Context approach [32] on the output of the
Improved KernelBoost method. While Auto-Context improves the segmentation
results for this dataset, the improvement is smaller than that achieved by our
strategy. Fig. 5 shows how errors are distributed for different approaches on a
test image. Note also that what we have labeled Auto-Context is an improved
version of the algorithm of [32], since filters are learned at each stage on the
newly added score images, and the final set of score maps is used to feed a
Random Forest classifier instead of simply relying on the last score map. In our

13

Table 1. Results for the Jurkat dataset [18]. The segmentation accuracy is
computed as the fraction of pixels whose label match the ground-truth data. See
Section 5.1 for more details.

Method Accuracy

Random Forests 0.753
Lucchi et al. [16] 0.836
Improved KernelBoost 0.929
Auto-Context [32] (on Improved KernelBoost) 0.956
our approach (on Improved KernelBoost), no norm. 0.941
our approach (on Improved KernelBoost) 0.973

Original image Auto-Context [32] Our approach

Fig. 5. Segmentation errors for a test image from the Jurkat dataset [18]. The
errors are highlighted in red in the images. Our approach significantly reduces
the mistakes — the accuracy for our approach is 0.972, while it is 0.956 for
Auto-Context. Best viewed in color.

tests with methods that do not learn filters on the feature maps, for instance [2],
the improvements linked with the use of Auto-Context are negligible.

To validate our results, we have randomly selected another set of 10 training
and 6 testing images — denoted here as Jurkat-B dataset —, and we have
reported the results obtained by the three methods of Fig. 2 in Table 2. As
it can be seen, our approach performs better then Auto-Context — which is
reasonable and confirms the results obtained in the other random split — but
also the Expanded Trees, since the amount of training images is limited and
therefore the system might suffer because of that.

5.2 NIH-3T3 Fibroblast Cells Dataset [6]

The second dataset we consider is constituted by 2D fluorescence microscopy im-
ages of Hoechst 33342-stained NIH-3T3 mouse embryonic fibroblast cells [6]. As
it can be seen in the sample test image depicted by Fig. 6, the images often con-
tain debris and the nuclei vary greatly in brightness, making their segmentation

14

Table 2. Results for the Jurkat-B dataset [18].

Method Accuracy

KernelBoost 0.909
Auto-Context [32] (on KernelBoost) 0.922
Expanded Trees (on KernelBoost) 0.934
Knotted Trees (on KernelBoost) 0.948

Table 3. Segmentation accuracy for the NIH-3T3 fibroblast cells dataset [6].
The results for the human expert were obtained by a second human expert on
a subset of 5 images of the test set, and are given only to demonstrate the
complexity of the task. See Section 5.2 for more details.

Method VOC RI DI

Human expert [6] - 0.93 -
Song et al. [29] 0.852 0.932 0.906
KernelBoost 0.817 0.921 0.899
Improved KernelBoost 0.833 0.929 0.909
Auto-Context (on Improved KernelBoost) 0.842 0.920 0.914
our approach (on Improved KernelBoost) 0.874 0.946 0.932
same, but with 50%-50% split 0.842 0.906 0.914

challenging. For these reasons, this dataset was chosen for one of the competi-
tions in the ISBI2009 challenge. The training set is composed by 4 randomly
chosen test images with size 1344 × 1024 pixels, while the test set contains the
remaining 45 images.

Table 3 shows that our approach, using our Improved KernelBoost for the
ϕ classifiers, significantly outperforms the state-of-the-art algorithm for this
dataset [29], as well as the other methods we evaluated. Our approach improves
on the starting point, given by Improved KernelBoost, which in turn is better
than the original KernelBoost classifier. It is also better than Auto-Context,
which does not bring a significative improvement over the starting point.

We also investigated the impact of splitting the samples in two balanced sets
rather than splitting the samples classified as positives from the ones classified
as negatives. As shown in the last row of Table 3, this gives results very similar
to those of Auto-Context, demonstrating again the advantages of splitting the
samples according to the scheme we propose.

5.3 3D Electron Microscopy Stacks [15]

Our third dataset is composed by two 3D Electron Microscopy (EM) stacks
of the CA1 hippocampus region of a rodent brain [15]. The training volume
contains 165 slices with size 1024 × 653 pixels, while the test volume has the

15

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Segmentation results for a randomly-selected test image from the NIH-
3T3 fibroblast cells dataset [6]. The thresholds used to obtain the segmentations
from the score images are given by the values that maximize the VOC score for
the given image. (a) Original test image. The poor contrast exhibited by the
images is one of the characteristics that make this dataset difficult. (b) Ground-
truth for the selected image. (c) Original test image, after being manually altered
to improve the visual quality. Best viewed in colors. (d) Segmentation obtained
with Improved KernelBoost. The VOC score is 0.7243. (e) Segmentation ob-
tained by our approach except that the samples are split into two balanced sets
instead of a positive and negative sets. The VOC score is 0.8024. (f) Segmenta-
tion obtained by our approach. The VOC score is 0.8160.

same number of slices but with size 1024×883 pixels. A sample slice, along with
its corresponding ground-truth, is depicted by Fig. 7. The goal is to segment the
mitochondria.

16

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Segmentation results for a test image from the CA1 Hippocampus
dataset [15]. The image has been randomly selected, but taken away from the
stack’s borders to avoid penalizing the method of [15] which otherwise could not
exploit neighboring slices to improve its result. The thresholds used to obtain
the segmentations from the score images are given by the values that maximize
the VOC score for the given image. (a) Original test image. (b) Ground-truth
outlining the mitochondria in the selected image. (c) Segmentation obtained by
KernelBoost. The VOC score on this image is 0.567. (d) Segmentation obtained
by KernelBoost + pooling + clustering. The VOC score on this image is 0.632.
(e) Segmentation obtained by the approach of [15]. The VOC score on this im-
age is 0.679. (f) Segmentation obtained by our approach. The VOC score on
this image is 0.719.

17

Table 4. Results for the CA1 Hippocampus dataset [15]. The values have been
computed by ignoring a 1-pixel width region around the mitochondria to account
for imprecisions in the manual segmentations. See Section 5.3 for more details.

Method VOC F-measure

Lucchi et al. [15] 0.722 0.839
KernelBoost 0.625 0.769
KernelBoost + pooling only 0.649 0.787
Improved KernelBoost 0.711 0.831
our approach (on Improved KernelBoost) 0.776 0.874

Table 5. Comparison of the effectiveness of the different KernelBoost compo-
nents on a subset of the CA1 Hippocampus dataset [15].

Method VOC

KB 0.592
KB + pooling 0.638
KB + clustering 0.599
KB + pooling + clustering 0.638
KB + Ilastik features 0.667
KB + Ilastik features + pooling 0.673
KB + superpixel pooling 0.653
KB + superpixel pooling + superpixel features 0.660
KB + Ilastik features + superpixel pooling 0.683

As Table 4 shows, we outperform the state-of-the-art algorithm [15], even
though we operate on 2D slices only for simplicity, without enforcing any con-
sistency between consecutive slices, while the approach of [15] relies on a 3D
CRF.

From the table, it is also possible to appreciate the contribution given by the
pooling and sample selection steps as explained in Section 4 with respect to the
original KernelBoost method. A visual analysis of the segmentation mistakes is
given in Fig. 8.

Furthermore, we have randomly chosen a small subset of this dataset — 9
training and 6 test images — to perform an in-depth analysis of the performance
of the different KernelBoost components listed in Section 4. The results are
presented in Table 5.

In the case of this subset clustering does not seem to be that relevant. This
might be due to the size of the dataset, as categorizing the positive samples
might overly reduce the pool of samples used for the filter learning step. Pair-
ing the input image channel with Ilastik features seems to be an interesting
opportunity, as this allows to achieve very good performance. However, adding
a pooling step on top of this does not increase significantly the performance.

18

(a) (b)

Fig. 8. Analysis of the major segmentation mistakes made by our algorithm on
a test image from the CA1 Hippocampus dataset [15]. (a) Original image. (b)
Original image with the segmentation we have obtained overlayed. We have se-
lected this image because the segmentation presents several mistakes, affecting
significantly the final score. (A) The strong background difference in the mito-
chondrion makes our algorithm prematurely end the segmentation. (B) The two
mitochondria are very close, and the texture between them mislead our algo-
rithm. (C) Error in the ground-truth: the component identified by our algorithm
is indeed a mitochondrion. (D) Two shadowed parts of the image are incorrectly
identified as mitochondria, probably due to the borders on both sides (such
structures are not present in the training data). (E,F) Minor mistakes due to
shadows in the image. (G) Error in the ground-truth: a component is incorrectly
identified as a mitochondrion, while it is not. (H) Dark element on the image’s
border incorrectly identified as a mitochondrion. Best viewed in color.

This can be explained by the fact that the smoothed images that are included
in the Ilastik features can partially compensate for the lack of a pooling step.
Superpixel pooling represents an effective strategy to improve the performance
of the system, although computationally expensive. Adding on the top of it su-
perpixel features does not significantly improve the final result. Finally, the pair
superpixel pooling/Ilastik features performed best, achieving a VOC score that
is almost 10% higher than the original KernelBoost score.

From the insights given by these experiments, we performed extensive tests
on the architectures presented in Section 4. The results are given in Table 6.

The results show that pooling on all the channels — thus including the score
images from the previous iterations — slightly improves the segmentation re-
sults. A more significative contribution comes, as expected, from the fake3D
approach and the Z-cut. In this experiment the Expanded Trees performed 0.3%
better than Knotted Trees — a negligible difference that shows that in presence
of enough training samples the two architectures are equivalent, while the exper-
iments on the Jurkat dataset show the superiority of Knotted Trees when few
training samples are available.

19

Table 6. Comparison of the architectures of Section 4 on the CA1 Hippocampus
dataset [15]. The base result is given by KernelBoost with Ilastik features, and
all the subsequent processing starts from the score maps this method produces.
Although very effective, we have skipped superpixel pooling because of its high
computational costs.

Method VOC

KernelBoost + Ilastik features 0.654
Auto-Context 0.701
Auto-Context + pooling (on image channel only) 0.704
Auto-Context + pooling (on all channels) 0.714
Auto-Context + pooling (on image channel only) + fake3D 0.735
Expanded Trees + pooling (on image channel only) 0.720
Expanded Trees + pooling (on image channel only) + fake3D 0.746
Knotted Trees + pooling (on image channel only) 0.717
Knotted Trees + pooling (on image channel only) + fake3D 0.743
Knotted Trees + pooling (on image channel only) + fake3D + Z-cut 0.762

5.4 2D Electron Microscopy Cell dataset

The last dataset is composed by 2D EM images of cells. The images are high-
dimensional (4096 × 4224), and we randomly selected 8 images for training and
4 for testing. The goal is to segment the mitochondria inside the cell, when masks
excluding the outside of the cell and the nuclei are provided. An example image is
given in Fig. 9, along with the corresponding ground-truth. Without additional
information some structures appearing in the images are not clearly categorizable
by a human expert. We have therefore introduced a third class, depicted in gray
in the ground-truth, to account for these elements. This makes the problem more
complex, but allows the final user to individually select whether these elements
have to be included in the final result or not.

We have experimented with multiple scales, to deal with the different size
of the mitochondria present in the images. Also, we have used as additional
channel the membranes extracted by the approach of [27]. Note that, fed with
the appropriate ground-truth, KernelBoost is capable of extracting membranes
with an accuracy close to that of [27], making the approach self-contained. From
the results, presented in Table 7, we can deduce that, while both multiple scales
and membranes contribute to the final result, they work best when combined
together. Auto-Context, preferred over Knotted Trees for its speed, significantly
contributes to the final segmentation when few weak learners are used in the
original KernelBoost classifier, while its impact is less relevant when a large
number of weak learners is used. A visual example of the quality of the final
segmentation is given in Fig. 10

20

(a) (b)

Fig. 9. Example test image from the 2D Electron Microscopy Cell dataset, along
with the corresponding ground-truth. Gray elements in the ground-truth indicate
parts whose label can not be decided with certainty by a human expert.

(a) (b)

Fig. 10. Segmentation of the image in Fig. 9. (a) In red, segmented mitochondria
overlayed to the input image. (b) Overlay with both the segmentation (red) and
the ground-truth (green), which outlines the system’s mistakes.

6 Conclusion

We have introduced a novel approach to exploiting context in a way to capture
complex interactions between neighboring image pixels. Our method outper-
forms current state-of-the-art segmentation algorithms, obtaining results which
exhibit accurate boundaries between the different image regions.

21

Table 7. Evaluation of different KernelBoost components on the 2D Electron
Microscopy Cell dataset.

Method VOC

KB + multiscale, 200 weak learners 0.659
KB + membranes, 200 weak learners 0.706
KB + multiscale + membranes, 200 weak learners 0.762
Auto-Context (on KB + multiscale + membranes, 200 weak learners) 0.799
KB + multiscale + membranes, 1000 weak learners 0.790
Auto-Context on (KB + multiscale + membranes, 1000 weak learners) 0.805

In future work we plan to operate directly on 3D data, a natural extension
of our approach, to exploit context across slices in image stacks, and to consider
different imaging types, such as Magnetic Resonance Imaging (MRI) scans.

References

1. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Suesstrunk. SLIC Super-
pixels Compared to State-Of-The-Art Superpixel Methods. PAMI, 34(11):2274–
2281, 2012.

2. C. Becker, K. Ali, G. Knott, and P. Fua. Learning Context Cues for Synapse
Segmentation in EM Volumes. In MICCAI, September 2012.

3. C. Becker, R. Rigamonti, V. Lepetit, and P. Fua. Supervised Feature Learning for
Curvilinear Structure Segmentation. In MICCAI, September 2013.

4. Y.-L. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analysis of Feature Pooling
in Visual Recognition. In ICML, 2010.

5. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Chapman & Hall, New York, 1984.

6. L. Coelho, A. Shariff, and R. Murphy. Nuclear Segmentation in Microscope Cell
Images: A Hand-Segmented Dataset and Comparison of Algorithms. In Interna-
tional Symposium on Biomedical Imaging, 2009.

7. P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation.
IJCV, 59(2):167–181, 2004.

8. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2001.

9. P. Kohli, L. Ladicky, and P. Torr. Robust Higher Order Potentials for Enforcing
Label Consistency. In CVPR, 2008.

10. P. Kontschieder, P. Kohli, J. Shotton, and A. Criminisi. GeoF: Geodesic Forests
for Learning Coupled Predictors. In CVPR, 2013.

11. L. Ladicky, C. Russell, P. Kohli, and P. Torr. Associative Hierarchical CRFs for
Object Class Image Segmentation. In ICCV, 2009.

12. S. Z. Li. Markov Random Field Modeling in Computer Vision. Springer-Verlag,
1995.

13. M. Loog and B. van Ginneken. Segmentation of the posterior ribs in chest radio-
graphs using iterated contextual pixel classification. IEEE Trans. Med. Imaging,
2006.

14. A. Lucchi, Y. Li, X. Boix, K. Smith, and P. Fua. Are Spatial and Global Constraints
Really Necessary for Segmentation? In ICCV, 2011.

22

15. A. Lucchi, Y. Li, and P. Fua. Learning for Structured Prediction Using Approxi-
mate Subgradient Descent with Working Sets. In CVPR, June 2013.

16. A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua. Supervoxel-Based Segmen-
tation of Mitochondria in EM Image Stacks with Learned Shape Features. TMI,
31(2):474–486, 2011.

17. A. Montillo, J. Shotton, J. Winn, J. Iglesias, D. Metaxas, and A. Criminisi. En-
tangled Decision Forests and Their Application for Semantic Segmentation of CT
Images. In International Conference on Information Processing in Medical Imag-
ing, 2011.

18. V. Morath, M. Keuper, M. Rodriguez-Franco, S. Deswal, G. Fiala, B. Blumenthal,
D. Kaschek, J. Timmer, G. Neuhaus, S. Ehl, O. Ronneberger, and W. Schamel.
Semi-Automatic Determination of Cell Surface Areas Used in Systems Biology.
Frontiers in Bioscience, 2013.

19. D. Munoz, J. Bagnell, and M. Hebert. Stacked Hierarchical Labeling. In ECCV,
2010.

20. S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kohli. Decision Forests
for Computer Vision and Medical Image Analysis, chapter Decision Tree Fields: An
Efficient Non-Parametric Random Field Model for Image Labeling, pages 295–309.
Springer, 2013.

21. P. Perez. Markov Random Fields and Images. CWI Quarterly, pages 413–437,
1998.

22. N. Plath, M. Toussaint, and S. Nakajima. Multi-Class Image Segmentation Using
Conditional Random Fields and Global Classification. In ICML, 2009.

23. D. Ramanan. Learning to Parse Images of Articulated Bodies. In NIPS, 2006.
24. J. Rao, R. Abugharbieh, and G. Hamarneh. Adaptive Regularization for Image

Segmentation Using Local Image Curvature Cues. In ECCV, 2010.
25. R. Rigamonti, M. Brown, and V. Lepetit. Are Sparse Representations Really

Relevant for Image Classification? In CVPR, 2011.
26. J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost for Image Under-

standing: Multi-Class Object Recognition and Segmentation by Jointly Modeling
Texture, Layout, and Context. IJCV, 81(1), January 2009.

27. A. Sironi, V. Lepetit, and P. Fua. Multiscale Centerline Detection by Learning a
Scale-Space Distance Transform. In CVPR, 2014.

28. C. Sommer, C. Straehle, U. Koethe, and F. Hamprecht. Interactive Learning and
Segmentation Tool Kit. In Systems Biology of Human Disease, pages 230–33, 2010.

29. Y. Song, W. Cai, H. Huang, Y. Wang, D. Feng, and M. Chen. Region-Based
Progressive Localization of Cell Nuclei in Microscopic Images with Data Adaptive
Modeling. BMC Bioinformatics, 2013.

30. C. Sutton and A. Mccallum. Piecewise Pseudolikelihood for Efficient Training of
Conditional Random Fields. In ICML, 2007.

31. Z. Tu. Probabilistic Boosting-Tree: Learning Discriminative Models for Classifica-
tion, Recognition, and Clustering. In ICCV.

32. Z. Tu and X. Bai. Auto-Context and Its Applications to High-Level Vision Tasks
and 3D Brain Image Segmentation. PAMI, 2009.

33. J. Verbeek and B. Triggs. Scene Segmentation with Conditional Random Fields
Learned from Partially Labeled Images. In NIPS, 2007.

23

