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Abstract
The effect of the limiter position on the scrape-off layer (SOL) width, radial electric field and intrinsic flows is investigated
via global, three-dimensional turbulence simulations in four different limiter configurations. The limiter position affects the
SOL dynamics in a number of ways, for example by changing the effective connection length or by modifying the unstable
modes present in the system. The simulations show that the SOL width is much smaller and less poloidally asymmetric when
the plasma is limited on the low-field side than on the high-field side, which can be explained by a change in the turbulence
regime between the two configurations. The radial electric field is determined by the combined effect of the sheath physics and
the electron adiabaticity condition, and its poloidal structure depends on the limiter position, as it can be fairly well explained
through an analytical model. Intrinsic parallel flows established in the SOL, typically leading to co-current toroidal rotation
with a magnitude that strongly depends on the limiter position, can also be fairly well reproduced analytically for each limiter
configuration.

Keywords: toroidal rotation, scrape-off layer, turbulence, flows, sheath, poloidal asymmetries

(Some figures may appear in colour only in the online journal)

1. Introduction

The plasma start-up in ITER will be in a limited configuration
[1], using either the inner or outer vessel wall as the limiting
surface. Since this part of the tokamak vessel is not designed
to handle large particle and heat fluxes as are the divertor
plates, the start-up scenario must be carefully tailored to
minimize its power load. In the last few years, dedicated
experiments have been conducted in a number of tokamaks
in order to characterize the fluctuations and equilibrium
profiles in the scrape-off layer (SOL) of limited plasmas
[2–8]. Substantially large asymmetries have been observed
between the different explored configurations, e.g. for inner
wall limited (IWL) versus outer wall limited (OWL) [3, 4, 6].
A common conclusion is that poloidally asymmetric parallel
flows are both a cause and a symptom of these differences
[9]. Along with these experimental studies, numerical models
have been used to get insights on the underlying physical
mechanisms that lead to such asymmetries [10–13]. The
common conclusion is that the inclusion of anomalous,
ballooning-like cross-field transport is required in order to
reproduce the general qualitative behaviour observed in the
experiments. However, such models included the anomalous
transport in an ad hoc manner, namely via transport coefficient

asymmetries or arbitrary unphysical forces [3]. Only recently
have first-principles fluid turbulence simulations been used to
study poloidal asymmetries in the SOL [14], and in [15] the
importance of the limiter position on SOL turbulence and flows
was confirmed for the first time via first-principles gyro-fluid
turbulence simulations.

In this paper, we present the results of global, three-
dimensional fluid simulations of SOL turbulence carried
out with the GBS (Global Braginskii Solver) code [16],
which self-consistently contains, in particular, the physics
of ballooning modes, drift waves and losses at the sheaths.
Four different limiter positions are considered: high-field side
(HFS), low-field side (LFS), top and bottom. We focus
on the effect of the limiter position on the SOL width, the
electrostatic potential and the toroidal rotation. For each case
we give a qualitative explanation for the differences observed
in the simulation results, in terms of the character of turbulent
transport and the effect that the limiter has on it.

We would like to notice that the SOL configuration
considered herein is oversimplified with respect to the
experiments (circular magnetic flux surfaces, no magnetic
shear, cold ions, electrostatic, large aspect ratio, etc). As
a matter of fact we do not target a quantitative comparison
with experimental measurements, but rather an understanding
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of the fundamental mechanisms that explain the dependence
of the SOL plasma dynamics on the limiter position. This
is achieved thanks to global, flux-driven, full-n, three-
dimensional simulations of plasma turbulence in different
limited SOL configurations, with first-principles turbulent
transport and self-consistent sheath boundary conditions.

The paper is organized as follows. In section 2, we
describe the GBS model equations and parameters used to
simulate SOL turbulence in different limiter configurations.
The effect of the limiter position on the SOL width,
electrostatic potential and intrinsic toroidal rotation is analysed
in sections 3, 4 and 5, respectively. The conclusions and the
outlook are found in section 6.

2. The GBS model

The GBS code has been developed in the last few years with
the goal of simulating plasma turbulence in the tokamak SOL
by evolving the full profiles of the various quantities with
no separation between ‘perturbations’ and ‘equilibrium’ [16].
These simulations can explore the self-consistent evolution and
structure of the plasma profiles in the presence of (i) plasma
density and heat input from the core of the fusion machine,
(ii) cross-field transport produced by plasma instabilities
(interchange instability or drift waves, for example) and (iii)
parallel losses at the sheaths where the magnetic field lines
terminate on the walls.

An electrostatic drift-reduced fluid model is suitable to
describe the SOL [17, 18] and it is used by GBS for the
description of the plasma dynamics. In fact, the electron mean-
free path is much smaller than the connection length, λe ! L||,
and trapped particles play a minor role since ν∗

i,e # 1 [19].
Also, electrostatic low-frequency turbulence at a small wave
number, ω ! ωci , k⊥ρs < 1 and k||L|| ∼ 1, is believed
to dominate the cross-field transport of particles and heat in
the SOL, mainly driven by interchange-like modes such as
resistive ballooning modes [20].

Based on the drift-reduced Braginskii equations [21], GBS
describes the time evolution of the plasma density, n, the
vorticity, ω, the electrostatic potential, φ, the ion and electron
parallel velocities, V‖i and V‖e, and the electron temperature
Te, according to the following equations, written here in the
electrostatic, cold ion limit:
∂n

∂t
= − 1

B
{φ, n} − ∇‖

(
nV‖e

)

+
2

eB
[C(pe) − enC(φ)] + Sn, (1)
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Bωci

∂ω
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C(n) − eTeC(φ)
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+ ST , (5)

which are coupled to the Poisson equation ∇2
⊥φ = ω. Here

ωci = eB/mi is the ion gyrofrequency, B is the magnetic field
strength, ν‖ is the parallel Spitzer resistivity, χ‖e is the electron
parallel heat diffusivity and η0e is the electron viscosity [22].
Also, Sn and ST are the density and temperature sources, and
j‖ = en(V‖i − V‖e) is the parallel current. We notice that the
Poisson brackets,

{φ, f } ≡ b · (∇φ × ∇f ), (6)

represent the convection of the quantity f with the E × B
drift. Here b = B/B is the unit vector in the direction of
the magnetic field. Also, the terms containing the curvature
operator,

C(f ) ≡ B

2

(
∇ × b

B

)
· ∇f, (7)

arise from the divergence of the E ×B and diamagnetic drifts,
which is nonvanishing for finite magnetic field curvature. We
would like to remark that a fluid description of the SOL
dynamics with a model based on the Braginskii equations may
be limited to low-temperature regimes such as the L-mode. In
fact, high-temperature events such as the edge localized modes
(ELMs) observed in H-mode plasmas [23] may require more
sophisticated fluid closures [24].

For the sake of simplicity, we consider a tokamak SOL
with circular magnetic flux surfaces, no magnetic shear and a
large aspect ratio. In order to describe such a configuration,
we choose the coordinate system as follows. We define z

as the parallel coordinate and we denote the perpendicular
coordinates with x and y, x being the radial coordinate, and y

the coordinate perpendicular to both x and the magnetic field
(figure 1). The coordinate system is such that (y, x, z) is right-
handed. In this coordinate system, we have

C = 1
R

(
sin θ

∂

∂x
+ cos θ

∂

∂y

)
, (8)

{f, g} = ∂f

∂y

∂g

∂x
− ∂g

∂y

∂f

∂x
, (9)

∇2
⊥ = ∂2

∂x2
+

∂2

∂y2
, (10)

∇‖ = ∂

∂z
, (11)

where θ is the poloidal angle defined so that θ = 0 at the LFS
mid-plane. Since the pitch angle of the magnetic field is very
small, α = ε/q ! 1 (ε is the inverse aspect ratio and q is
the safety factor), the (x, y) plane almost coincides with the
poloidal plane (x, θ).

The GBS model equations, equations 1–5, are completed
with a set of boundary conditions at the end of the field lines,
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Figure 1. Sketch of the SOL geometry with its magnetic topology.
The directions of the toroidal magnetic field Bϕ , the poloidal
magnetic field Bθ , and that of the corresponding plasma current Ip

are indicated. Here the toroidal limiter is located on the HFS
mid-plane (θlimiter = π ).

as given by the magnetic presheath entrance condition [25],

V||i = cs

[
±1 + θn ∓ 1

2
θTe

− 2
eφ

Te

θφ

]
, (12)
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[
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eφ

Te

θφ + 2(θn + θTe
)

]
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e
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2
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2
θTe

]
∂V||i

∂y
, (15)

∂Te
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= eκT

∂φ

∂y
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⊥φ = −mi

e

[ (
1 + θTe

) (
∂V||i

∂y

)2

+ cs

(
±1 + θn ± θTe

/2
) ∂2V||i

∂y2

]
, (17)

where the upper signs apply if the magnetic field is directed
towards the wall, and the lower signs apply in the opposite case.
Here . = log (

√
mi/(2πme)) and κT ≈ 0.1 is a constant that

comes from the analytical definition of the magnetic presheath
entrance (see [25]). Also, in the considered geometry

θf = − ρs

2 tan α

∂xf

f
, (18)

where ρs = cs/ωci and α = ε/q is the pitch angle of the
magnetic field with respect to the wall surface. We remark
that the electrostatic potential φ in equation (13) is measured
with respect to the wall potential, which is assumed to be zero.

Finally, GBS works with normalized quantities defined
through a reference temperature T̂e, a reference density n̂ and
a magnetic field B̂. In particular, the electron temperature and
the electrostatic potential are normalized such that Te → Te/T̂e

and φ → eφ/T̂e, and analogously for the density, n → n/n̂.

Figure 2. Example of equilibrium pressure profile on the LFS
mid-plane (θ = 0), for a simulation with the limiter on the HFS
mid-plane (θlimiter = π ). The source radial extension is
approximately 10ρs0 (shaded area). In the source-free region, a
reasonable fit of the radial profile can be obtained with an
exponential function (dashed red line), leading to Lp / 45ρs0.

The perpendicular coordinates are normalized with respect

to ρ̂s = ĉs/ω̂ci , where ĉs =
√

T̂e/mi and ω̂ci = eB̂/mi .
In the parallel direction, the macroscopic length R is used.
Finally, time is normalized such that t → t/(R/ĉs). The
normalized system of equations evolved by GBS can be found
in [16]. We remark that within this normalization, the parallel
resistivity, heat diffusivity and viscosity are, respectively,
normalized to ν̂ = miĉs/(e

2n̂R), χ̂ = nT̂eR/(ĉsmi) and
η̂ = nT̂e(R/ĉs)(me/mi).

In this paper, we consider a fixed set of model parameters
while changing the limiter position. These parameters are
as follows: major radius R = 500ρ̂s , inverse aspect ratio
a/R ≈ 0.25, radial extension Lx = xmax − xmin = 100ρ̂s ,
safety factor q = 4, mass ratio mi/me = 200, sheath
coefficient . = 3, parallel resistivity ν‖ = 0.1ν̂, parallel
heat diffusivity χ‖e = χ̂ , and viscosity η0e = η̂. We remark
that the values of mass ratio and resistivity used in Ohm’s
law of these simulations are such that the resistive branch of
ballooning modes and drift waves is expected to dominate
over their inertial branch [26], thus they are consistent with
the parameter regime usually explored experimentally. The
angle between the magnetic field and the limiter is such that
tan α = a/qR ≈ 0.0625, corresponding to α ≈ 3.6◦. The
particle and heat outflow from the core is modelled by density
and temperature Gaussian sources that are radially localized
at x = xs = xmin + 30ρ̂s and have a width of 5ρ̂s . When
analysing the simulation results only the region lying radially
outwards from the source is considered. The peak of the
source thus acts as the effective separatrix, defining the SOL
region, and the region lying radially inwards is akin to a buffer
region. Keeping fixed these model parameters, we consider
four different limiter positions: LFS-limited (θlimiter = 0),
HFS-limited (θlimiter = π ), top-limited (θlimiter = π/2) and
bottom-limited (θlimiter = −π/2).

We now analyse the effect of the limiter position on
the SOL width, electrostatic potential and intrinsic toroidal
rotation.

3. Effect of the limiter position on the SOL width

The peak heat load onto the plasma-facing components of
tokamak devices depends on the SOL width [7, 27], which
results from a balance between plasma injection from the core

3
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Figure 3. Equilibrium pressure profiles in a poloidal cross-section, with the limiter (a) on the HFS equatorial mid-plane, (b) on the LFS
equatorial mid-plane, (c) on the top of the vessel and (d) on the bottom of the vessel. Results obtained from GBS simulations.

region, turbulent transport, and losses to the divertor or limiter
plates [28]. Here we define the SOL width as the radial scale
length of the plasma pressure,

Lp =
(

1
p̄

∂p̄

∂x

)−1

, (19)

which is computed from the simulation results by fitting, at
each poloidal location, the equilibrium pressure profile with a
radially decaying exponential function (overbar denotes time-
averaged quantities, while tilde denotes fluctuating quantities,
e.g. p = p̄ + p̃), see figure 2.

Figure 3 shows the equilibrium pressure profiles in a
poloidal cross-section, for the four limiter configurations. The
corresponding value of Lp(θ) is shown in figure 4. Clearly, the
value of Lp depends on the poloidal angle, Lp = Lp(θ), and
it is affected by the limiter position. This is expected since the
change in the limiter position modifies the effective connection
length between the ballooning region and the limiter. We
remark that the effect of flux expansion is not present in these
simulations, thus the poloidal dependence of Lp is only due to
the poloidal asymmetries in the plasma turbulence and flows.
First of all, we observe that the value of Lp in the HFS-limited
case (red curve in figure 4) is larger than that in the LFS-limited
case (blue curve in figure 4), as observed experimentally [6].
The difference is a factor of 2 or less, while factors of 3 and
higher have been obtained experimentally [4, 7]. Second, in
the four configurations considered, the values of Lp tend to be

Figure 4. SOL width Lp as a function of the poloidal angle, for a
limiter on the HFS mid-plane (red), on the LFS mid-plane (blue), on
the top of the vessel (magenta) and on the bottom of the vessel
(black). Results obtained from GBS simulations.

larger on the LFS region than on the HFS region, consistent
with the ballooning character of the turbulent transport. We
notice, however, that this is marginally true for the HFS-limited
configuration, where the peak of Lp is shifted towards positive
values of θ . This shift is most likely due to the presence of an
equilibrium E × B poloidal flow, which is positively directed
along θ . Also, in the LFS-limited configuration, the poloidal
profile of Lp is much flatter than in the other configurations,
and this is due to the fact that turbulent transport is no longer
dominated by ballooning modes. As a matter of fact, as we
show now the poloidal dependence of Lp is strongly affected

4
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Figure 5. Time-averaged turbulent radial flux of plasma pressure in a poloidal cross-section and with the limiter (a) on the HFS mid-plane,
(b) on the LFS mid-plane, (c) on the top and (d) on the bottom. Results obtained from GBS simulations.

by the turbulence properties, which in turn are affected by
the limiter configuration. Figure 5 shows the time-averaged
turbulent radial flux of plasma pressure, 0p = p̃∂y φ̃, in a
poloidal cross-section and for the four limiter positions. In the
HFS-limited, top-limited and bottom-limited configurations,
the transport is clearly ballooned on the LFS. However, in
the LFS-limited configuration, the transport is poloidally less
asymmetrical; this is reflected in the weak dependence of Lp

on the poloidal angle, as shown in figure 4.
These observations suggest that ballooning modes may

become less efficient when the limiter is at the location of their
maximum drive, thus steepening the pressure profiles. This
suggests that transport may become drift-wave dominated,
thus yielding more symmetric poloidal profiles. To assess
this hypothesis, we compute the phase difference 1ϑ between
density and potential fluctuations, which gives 1ϑ / 0.4π

in the HFS-limited configuration and 1ϑ / 0.1π in the
LFS-limited configuration. These are, respectively, consistent
with the expected phase differences for ballooning modes
(1ϑ / 0.5π ) and drift waves (small 1ϑ). To further confirm
this hypothesis, we proceed as follows. The value of Lp can
be predicted by using the gradient removal theory [18],

Lp ∼ qR

cs

(
γ

ky

)

max

, (20)

where γ is the linear growth rate of the unstable mode
present in the system that maximizes the ratio γ /ky , with
ky the poloidal wavenumber. Equation (20) results from a

Table 1. Values of the poloidally averaged pressure scale length Lp

predicted by the gradient removal theory, equation 20 (middle
column), and obtained from nonlinear simulations (right column),
for the HFS-limited and LFS-limited cases. The prediction of Lp in
the case of no interchange drive is also shown.

Lp [ρs0] Lp [ρs0]
Limiter position predicted from GBS

HFS 40.2 44.2
HFS (no interchange drive) 27.5 —
LFS 29.9 29.4
LFS (no interchange drive) 28.0 —

pressure balance between parallel streaming and perpendicular
turbulent transport. A detailed derivation of equation (20) is
presented in the appendix.

The linear growth rate γ that maximizes the ratio γ /ky

is evaluated by using a linear code described in [26]. By
finding numerically the value of Lp that is consistent with
equation (20), according to the procedure described in detail
in [17], we obtain a predictive estimate of the value of the
pressure scale length Lp expected in nonlinear simulations.
As a matter of fact, equation (20) has been used to estimate
Lp as a function of the SOL operational parameters, showing
good agreement with experimental data from a number of
tokamaks [28].

Table 1 shows the result of this procedure, which has
been carried out for both HFS-limited and LFS-limited
configurations. A reduction from Lp ≈ 40ρs0 to Lp ≈ 30ρs0

is expected when going from the HFS-limited configuration

5
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Figure 6. Equilibrium electrostatic potential profiles in a poloidal cross-section, with the limiter (a) on the HFS mid-plane, (b) on the LFS
mid-plane, (c) on the top and (d) on the bottom. Results are obtained from GBS simulations.

to the LFS-limited configuration, which is in good agreement
with the nonlinear simulation results shown in figure 4 and in
table 1. Moreover, table 1 also shows the results obtained by
following the same procedure but with the ballooning drive
turned off (i.e. the curvature term in the vorticity equation,
equation (2), is zeroed out). From the fact that turning off the
ballooning drive only affects the value of Lp in the HFS-limited
case, we can deduce that the transport in the HFS-limited
configuration is dominated by ballooning modes, while in the
LFS-limited configuration, the transport is dominated by drift
waves. This change in the turbulence regime is possibly due
to the fact that for the LFS-limited case, the limiter is at the
location of the maximum drive for the ballooning mode, and
thus, by constraining its properties, the growth rate may be
reduced.

4. Effect of the limiter position on the electrostatic
potential

An essential quantity for the understanding of mean flows and
pedestal formation during the L–H transition in a magnetically
confined plasma is the self-generated radial electric field. In
addition, the radial electric field is important for the description
of the heat losses and impurity dynamics. In this section, we
examine the effect of the limiter position on the structure of the
equilibrium electrostatic potential in the SOL poloidal plane.

In a recent paper [29], we show that the electrostatic
potential in an open field line plasma configuration is set by

the combined effect of two different mechanisms. On the
one hand, the sheath physics regulates the value of φ at the
end of the field lines to ensure quasi-neutrality in the main
plasma. On the other hand, the electron adiabaticity sets the
parallel electric field far from the walls. A general analytical
relation between the equilibrium electrostatic potential and the
equilibrium electron temperature and density, φ̄ = φ̄(T̄e, n̄),
was provided in [29] and is recalled here for convenience:

eφ̄ = 1
2

.(T +
e + T −

e ) + 1.71
[
T̄e − 1

2
(T +

e + T −
e )

]

+ σ0

[
n̄ − 1

2
(n+ + n−)

]
(21)

where T ±
e and n± represent, respectively, the temperature and

density at the magnetic presheath entrance present at both ends
of the magnetic field line, and σ0 / 〈T̄e/n̄〉z, where 〈·〉z denotes
the average along the field line. The first term on the right-
hand side of equation (21) represents the effect of the sheath in
determining the value of φ̄, while the second and third terms
correspond to the effect of the plasma dynamics far from the
walls.

The equilibrium profile of the electrostatic potential in
a poloidal cross-section is shown in figure 6 for the four
different limiter configurations. Strong poloidal asymmetries
are clearly visible in each configuration, which means that the
radial electric field varies significantly in the poloidal direction.
As figure 7 shows, equation (21) can be used to describe the
potential structure in the four limiter configurations. While the

6
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Figure 7. Equilibrium electrostatic potential profiles in a poloidal cross-section, with the limiter (a) on the HFS mid-plane, (b) on the LFS
mid-plane, (c) on the top and (d) on the bottom. Results are obtained from equation (21).

model is able to reproduce both the magnitude and the radial
and poloidal structure of the potential, we note that the poloidal
asymmetries tend to be stronger in the simulations. This is due
to the assumptions leading to equation (21), in particular the
fact that the ratio of temperature to density is assumed to be
about constant along the field line [29].

In general, the radial electric field is reduced in regions of
enhanced transport, namely on the LFS, where the pressure
profiles are also flatter. Moreover, since the equilibrium
pressure profile depends on the position of the limiter, as
shown in section 3, we expect from equation (21) that the
equilibrium electrostatic potential is also affected by a change
in the limiter position. The main effect is that the equilibrium
scale length of the potential, Lφ , is larger in the HFS-limited
case (Lφ ≈ 110ρs) than in the LFS-limited case (Lφ ≈ 80ρs),
as observed for Lp, and this is due to a change in the turbulence
regime. Also, poloidal asymmetries are stronger in the HFS-
limited, top-limited and bottom-limited configurations, where
the transport is dominated by ballooning modes, than in the
LFS-limited configuration, where it is dominated by drift
waves.

5. Effect of the limiter position on intrinsic toroidal
rotation

Recently, it has been found that strong flows in the SOL set
the boundary conditions on the confined plasma and can even

determine the low-to-high confinement mode power threshold
[30]. The generation and transport of such flows has been
investigated in [31] both analytically and through the use of
numerical simulations. In particular, an analytical expression
has been provided for the equilibrium profile of the toroidal
Mach number M(x, y) in the poloidal plane, where x = 0
defines the separatrix and y = ±Ly/2 defines the two ends of
the field line. This expression is recalled here:

M(x, y) = Mse−x/l + (Msh + Ma)
(
1 − e−x/l

)
− 2σϕ

y

Ly

+ 4
[
(Msh + Ma − Ms) e−x/l − Ma

] y2

L2
y

, (22)

where M = −σθσϕV̄||i/cs0 is the parallel Mach number
projected in the toroidal direction along the plasma current
Ip, such that M > 0 always means co-current toroidal
rotation. The subscript 0 denotes the value at y = 0, and
σϕ = ±1 and σθ = ±1 define the direction of the toroidal
and poloidal components of the magnetic field, respectively,
with the toroidal coordinate ϕ defined in the counterclockwise
direction when looking from the top of the machine. Here
Ms = M(0, 0) is the separatrix condition half way between
the two limiter sides or divertor legs, Msh = .ρs0/(αLT ) ∼
e−x/2LT represents the effect of the sheath on plasma rotation,
and Ma = σϕ(δn + δT )/2 is due to the pressure poloidal
asymmetry. LT is the radial scale length of the equilibrium
temperature profile and l = λ2/(4LT ) +

√
λ2 + (λ2/(4LT ))2,
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Figure 8. Equilibrium Mach number profiles (M > 0 means co-current) in a poloidal cross-section, with the limiter (a) on the HFS
mid-plane, (b) on the LFS mid-plane, (c) on the top and (d) on the bottom. The M = 0 and M = ±1 iso-countours are shown in white
(when present). Results obtained from GBS simulations.

where λ2 ≈ πL2
p. Also, the density asymmetry term, δn, can

be estimated as δn ∼ (n+ − n−)/n0, and similarly for δT .
Figure 8 summarizes the effect of the limiter position

on the equilibrium profile of the Mach number in a poloidal
cross-section. Clearly, both the radial and poloidal structure
of the Mach number profile depends on the limiter position. In
particular, the M = 0 and M = ±1 iso-countours show that the
plasma flow is poloidally asymmetric and that it can become
subsonic/supersonic in the vicinity of the limiter. The latter is
due to a recirculation of the E×B flow in the parallel direction
at the magnetic presheath entrance [29]. These profiles can
be compared with the analytical prediction of equation (22),
as shown in figure 9. While the analytical model shows
some discrepancies with respect to the simulations, the main
features of the Mach number profile are reasonably captured:
magnitude, volume average and general structure. In fact,
as shown in table 2, a volume average of M shows, both
from the simulations and from the model, the presence of
intrinsic toroidal flows, despite the fact that no momentum
is injected into the system (see equation (4)). Moreover, the
more favourable co-current configurations are those with a
limiter on the HFS and on the top. This can be explained
by the difference in the sign of δn, which gives a co-current
contribution to the Mach number when δn > 0, and a
counter-current contribution when δn < 0 (see table 2). The
mechanism determining the sign of δn is, as a matter of fact,
the ballooning character of turbulent transport, which leads to

an enhanced plasma pressure around the LFS and therefore to
a poloidal pressure asymmetry between the two sides of the
limiter [31]. Therefore, the location of the limiter can have a
strong effect on the net toroidal rotation established in the SOL.
We remark that, according to equation (22), this effect should
reverse if the toroidal magnetic field is reversed (σϕ = −1). In
general, favourable co-current configurations are expected to
be given by the condition Ma > 0, namely σϕ(δn + δT ) > 0.
This has been shown to agree with the measured experimental
trends for the flow reversal in tokamaks, in particular those
observed in Alcator C-Mod [31, 32].

6. Conclusions and outlook

In this paper, the effect of the limiter position on the SOL
equilibrium profiles has been investigated via GBS simulations
considering four different limiter configurations: a limiter on
the high-field side, low-field side, top and bottom parts of the
vessel.

The width of the SOL has a clear poloidal dependence,
which is qualitatively explained by the ballooning character of
turbulent transport. Also, the SOL width varies significantly
with the limiter position as the effective connection length
between the ballooning region and the limiter is modified.
Consistent with experimental measurements in a number of
tokamaks, the SOL width is reduced when going from a LFS-
limited configuration to a HFS-limited configuration, although

8
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Figure 9. Equilibrium Mach number profiles (M > 0 means co-current) in a poloidal cross-section, with the limiter (a) on the HFS
mid-plane, (b) on the LFS mid-plane, (c) on the top and (d) on the bottom. The M = 0 and M = ±1 iso-countours are shown in white
(when present). Results obtained from equation (22).

Table 2. Time and volume-averaged Mach number, 〈M〉x,y , both
from the simulations and from the theoretical model, and the
corresponding sign of δn, for different limiter positions. For all
cases σϕ = 1.

Limiter position 〈Msim〉x,y 〈Mth〉x,y δn

LFS 0.12 0.08 <0
HFS 0.30 0.32 >0
TOP 0.26 0.36 >0
BOT 0.05 0.05 <0

the reduction is not as large as observed experimentally. We
are able to show that this reduction is explained by a change
in the turbulence regime. The transport in the HFS-limited
configuration is dominated by ballooning modes, while in the
LFS-limited configuration, the transport is dominated by drift
waves. This is due to the location of the limiter, which has
a stabilizing effect on the ballooning modes when its location
coincides with the position of their maximum drive.

The limiter position also substantially modifies the
equilibrium electrostatic potential and the intrinsic rotation
profiles. The radial electric field is poloidally asymmetric,
being reduced in the regions of enhanced transport, similarly to
the pressure profile. Toroidal rotation profiles show co-current
net toroidal flows, which can be strongly reduced depending on
the limiter position. The analytical models developed in [29]
and [31] are able to capture and explain the observed trends.

The results presented herein are obtained for a fixed set
of SOL operational parameters. In particular, the tokamak

major radius used here is much smaller than that of most
tokamaks. Future work will focus on the dependences of
these trends on the tokamak size R, the plasma resistivity
ν‖ and the magnetic shear ŝ, which can modify the relative
importance of ballooning modes with respect to drift waves
[17] and the magnitude of Lp [28]. In particular, we anticipate
that the difference in Lp between HFS-limited and LFS-
limited configurations may increase with the tokamak size.
A detailed validation of our results with experimental data will
be carried out.

Finally, we remark that the GBS simulations presented
here are carried out in the so-called sheath-limited regime,
where convection dominates over conduction. The future
inclusion of neutral physics and diverted geometry may allow
us to explore conduction-limited and detached regimes, where
the pressure poloidal asymmetries are even stronger and
therefore a larger effect on both the radial electric field and
the toroidal Mach number is expected from equations (21)
and (22).
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Appendix

Within the drift-reduced fluid model, a pressure continuity
equation can be obtained by combining the density and
temperature equations, equations (1) and (5). Assuming that
the dominant terms are the parallel convection and the radial
turbulent transport, we are left with an approximate pressure
balance

∂p

∂t
+

∂0p

∂x
+ ∇‖(pV‖e) / 0, (A.1)

where 0p = p̃∂y φ̃/B is the turbulent radial flux of plasma
pressure. Writing

∂x0p ∼ 0p/Lp (A.2)

and
∇‖

(
pV‖e

)
∼ p cs/qR, (A.3)

the time average of equation (A.1) leads to

Lp ∼ qR

cs

0p

p
. (A.4)

An estimate of 0p = p̃∂y φ̃/B can be obtained as follows.
Linearizing equation (A.1) and keeping the dominant terms,
one has

γ p̃ ∼ 1
B

∂φ̃

∂y

∂p̄

∂x
, (A.5)

thus relating the electric field fluctuations with the pressure
fluctuations. Therefore, we have 0̄p ∼ (γLp/p̄)p̃2.
Finally, we can relate p̃ with p̄ by using the gradient
removal hypothesis, namely by assuming that the mode
growth saturates when the fluctuations are able to remove the
instability drive, which is provided by the pressure gradient,
i.e. when

∂p̃

∂x
∼ ∂p̄

∂x
. (A.6)

This condition can be written as kxp̃ ∼ p̄/Lp, where kx gives
the radial extension of the saturated turbulent eddies. This can
be estimated using nonlocal linear theory as kx =

√
ky/Lp

[33]. We can therefore write

p̃2 ∼ p̄2

kyLp

. (A.7)

Hence we are left with an expression for the radial pressure
flux, 0̄p, as a function of equilibrium quantities,

0̄p ∼ p̄

(
γ

ky

)

max

, (A.8)

where the linear growth rate γ and the wavenumber ky must be
chosen in order to maximize the ratio of γ /ky , thus maximizing
the transport. Finally, we can replace this expression into
equation (A.4), leading to

Lp ∼ qR

cs

(
γ

ky

)

max

. (A.9)
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